National Library of Energy BETA

Sample records for injection performance deliverability

  1. Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders, IDIQ Attachment. J-4) | Department of Energy Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings performance contract. Microsoft Office document icon sample_reptg_rqmts.doc More Documents & Publications Pre-Award Deliverables Sample (Part 1 of Sample Deliverables for

  2. Post-Award Deliverables Sample (Part 2 of Sample Deliverables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings ...

  3. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for

  4. FE Transition Deliverables

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FE Transition Deliverables To: Cynthia Quarterman From: Charles Roy, FE-3 Date: 12/04/08 Re: On 12/03/08 Cynthia Quarterman requested a list of major projects with quick starts and job creation from Vic Der. Attached is a hard copy of this document. An electronic version of this document will be submitted to Cynthia Quarterman through the Office of Management. If there are any questions, please contact Charles Roy at 202-586-8977. ,^ (^// Cc~y Major Projects with Quick Starts & Jobs Creation

  5. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2 Internal Combustion Engine Research Towards 45% ...

  6. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Emissions Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  7. Attachment A -- Deliverables.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Unrevised SFO Paragraphs Reissued Attachment 4: Unrevised SFO Paragraphs Reissued PDF icon Unrevised SFO Paragraphs Reissued More Documents & Publications Attachment 2: Solicitation for Offers with New and Revised Green Lease Text Attachment 1: Green Lease Policies and Procedures for Lease Acquisition 1

    B - J Deliverables Attachment A TOC Deliverables DE-AC27-08RV14800 SEC. Contract Section Description Action Timing TFP CO ESQ OPA IR/HR ORP MGR DCAA B B.2 Modify contract to obligate

  8. Attachment A -- Deliverables.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Deliverables Attachment A TOC Deliverables DE-AC27-08RV14800 SEC. FAR/DEAR Clause Reference Description Action Timing TFP CO ESQ OPA IR/HR ORP MGR DCAA I.2 FAR 52.202-1 Definitions (JUL 2004) as supplemented by DEAR 952.202-1 (Mar 2002) Verify compliance As Required L I.3 FAR 52.203-3 Gratuities (APR 1984) Verify compliance As Required L I.4 FAR 52.203-5 Covenant Against Contingent Fees (APR 1984) Verify compliance As Required L I.5 FAR 52.203-6 Restrictions on Subcontractor Sales to the

  9. Generation Interconnection and Deliverability Allocation Procedures...

    Open Energy Info (EERE)

    Interconnection and Deliverability Allocation Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application:...

  10. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents ...

  11. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach

  12. Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.

    SciTech Connect (OSTI)

    Nande, A. M.; Wallner, T.; Naber, J.

    2008-10-06

    The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

  13. Prediction of Gas Injection Performance for Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Blunt, M.J.; Orr, F.M. Jr.

    2001-03-26

    This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

  14. North American Leaders Summit: Energy Deliverables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaders Summit: Energy Deliverables North American Leaders Summit: Energy Deliverables August 10, 2009 - 12:00am Addthis Energy and climate change will be an important element of the trilateral discussions at the North American Leaders Summit, to be held in Guadalajara, Mexico, on August 9-10, 2009. Building on the work of the North American Energy Working Group, established in 2001 by the Energy Secretaries and Minister of the United States, Mexico and Canada, deliverables to announce at the

  15. Experimental Evaluation of DOC Performance Using Secondary Fuel Injection |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_Yetkin.pdf More Documents & Publications Engine Tests of an Active PM Filter Regeneration System Low Temperature Catalyst for Fuel Injection System DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group

  16. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    Preliminary CO2-PENS model (Technical Report) | SciTech Connect LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Authors: Stauffer, Philip H. [1] ; Dai, Zhenxue [1] ; Lu, Zhiming [1] ; Middleton, Richard S. [1] ; Jacobs, John F. [1] ; Carey, James W. [1] + Show Author Affiliations Los Alamos National Laboratory

  17. LANL Deliverable to the Big Sky Carbon Sequestration Partnership:

    Office of Scientific and Technical Information (OSTI)

    Preliminary CO2-PENS model (Technical Report) | SciTech Connect LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Citation Details In-Document Search Title: LANL Deliverable to the Big Sky Carbon Sequestration Partnership: Preliminary CO2-PENS model Authors: Stauffer, Philip H. [1] ; Dai, Zhenxue [1] ; Lu, Zhiming [1] ; Middleton, Richard S. [1] ; Jacobs, John F. [1] ; Carey, James W. [1] + Show Author Affiliations Los Alamos National Laboratory

  18. Performance Measurements of the Injection Laser System Configured for Picosecond Scale Advanced Radiographic Capability

    SciTech Connect (OSTI)

    Haefner, L C; Heebner, J E; Dawson, J W; Fochs, S N; Shverdin, M Y; Crane, J K; Kanz, K V; Halpin, J M; Phan, H H; Sigurdsson, R J; Brewer, S W; Britten, J A; Brunton, G K; Clark, W J; Messerly, M J; Nissen, J D; Shaw, B H; Hackel, R P; Hermann, M R; Tietbohl, G L; Siders, C W; Barty, C J

    2009-10-23

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  19. Deliverables from U.S.-Africa Energy Ministerial 2014 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Deliverables from U.S.-Africa Energy Ministerial 2014 Deliverables from U.S.-Africa Energy Ministerial 2014 This document outlines major deliverables and commitments from U.S.-Africa Energy Ministerial that took place in Ethiopia on June 3-4, 2014. PDF icon Deliverables from U.S.-Africa Energy Ministerial 2014 More Documents & Publications Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Draft

  20. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    SciTech Connect (OSTI)

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electroninjection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10??m injector diameter and 30??m trapping/absorbing layer diameter show an optical gain of ?2000 at bias voltage of ?3?V with a cutoff wavelength of 1700?nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  1. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    SciTech Connect (OSTI)

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  2. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  3. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  4. Influence of gas injection location and magnetic perturbations on ICRF antenna performance in ASDEX Upgrade

    SciTech Connect (OSTI)

    Bobkov, V.; Bilato, R.; Dux, R.; Faugel, H.; Kallenbach, A.; Müller, H. W.; Potzel, S.; Pütterich, Th.; Suttrop, W.; Stepanov, I.; Noterdaeme, J.-M.; Jacquet, P.; Monakhov, I.; Czarnecka, A.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    In ASDEX Upgrade H-modes with H{sub 98}≈0.95, similar effect of the ICRF antenna loading improvement by local gas injection was observed as previously in L-modes. The antenna loading resistance R{sub a} between and during ELMs can increase by more than 25% after a switch-over from a deuterium rate of 7.5⋅10{sup 21} D/s injected from a toroidally remote location to the same amount of deuterium injected close to an antenna. However, in contrast to L-mode, this effect is small in H-mode when the valve downstream w.r.t. parallel plasma flows is used. In L-mode, a non-linearity of R{sub a} at P{sub ICRP}<30 kW is observed when using the gas valve integrated in antenna. Application of magnetic perturbations (MPs) in H-mode discharges leads to an increase of R{sub a}>30% with no effect of spectrum and phase of MPs on R{sub a} found so far. In the case ELMs are fully mitigated, the antenna loading is higher and steadier. In the case ELMs are not fully mitigated, the value of R{sub a} between ELMs is increased. Looking at the W source modification for the improved loading, the local gas injection is accompanied by decreased values of tungsten (W) influx Γ{sub W} from the limiters and its effective sputtering yield Y{sub w}, with the exception of the locations directly at the antenna gas valve. Application of MPs leads to increase of Γ{sub W} and Y{sub w} for some of the MP phases. With nitrogen seeding in the divertor, ICRF is routinely used to avoid impurity accumulation and that despite enhanced Γ{sub W} and Y{sub W} at the antenna limiters.

  5. Cover letter, 10/29/03, re Nuclear Safety Technical Position, Deliverable 4.2.1

    Broader source: Energy.gov [DOE]

    The enclosed Nuclear Safety Technical Position is Deliverable 4.2.1. under the Implementation Plan for Defense Nuclear Facilitises Board (DNFSB) Recommendation 2002-3, Requirements for Design...

  6. H2FIRST Reference Station Design Task: Project Deliverable 2-2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and

  7. Performance and emissions of non-petroleum fuels in a direct-injection stratified charge Sl engine

    SciTech Connect (OSTI)

    Freeman, L.E.; Chui, G.K.; Roby, R.J.

    1982-10-01

    Seven fuels derived from coal and shale resources were evaluated using a direct-injection stratified charge engine. The fuels were refined to different degrees which ranged from those typical of gasoline blending components to those similar to current gasoline. Results showed that fuels refined to have properties similar to gasoline performed like gasoline. The less refined fuels were limited in performance. The total carbon monoxide and the hydrocarbon emissions varied with the volatility of the fuels. Most fuels with a higher overall distillation curve generally gave higher hydrocarbon and carbon monoxide emissions. The NOx emissions increased with the percent aromatics in the fuels. The hydrocarbon emissions were found to increase with fuel viscosity. Within the range of engine operation, nearly all the fuels evaluated gave satisfactory performance. With some modifications, even the less refined fuels can be potentially suitable for use in this engine.

  8. Testing USABC Deliverables/Benchmarking | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    es_10_bloom.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing Energy Storage Testing and Analysis High Power and High Energy Development Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

  9. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect (OSTI)

    1995-04-01

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  10. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect (OSTI)

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  11. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Station Design Task Project Deliverable 2-2 Joseph Pratt Sandia National Laboratories Danny Terlip, Chris Ainscough, Jennifer Kurtz National Renewable Energy Laboratory Amgad Elgowainy Argonne National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Sandia National Laboratories is a multi-program laboratory managed and

  12. Corrective Action Unit Deliverable/Task Status Tracking Tool

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    The CDSTool is a project management tool designed specifically to manage environmental restoration projects. The tool allows users to capture all projects in their baseline, develop and assign approaches, assign documents and reviews to particular projects and approaches, track and measure progress and status of each document/phase/activity in the project, based on the approach. The CDSTtool provides the ability to assign responsible personnel to each activity, provide status to scheduling software, track WBS, capture issues,more » comments, and history of development or performance related to the activity, document or phase.« less

  13. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes

    SciTech Connect (OSTI)

    Wenjin, Zeng; Ran, Bi; Hongmei, Zhang E-mail: iamwhuang@njupt.edu.cn; Wei, Huang E-mail: iamwhuang@njupt.edu.cn

    2014-12-14

    Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of host and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.

  14. Appendix A-1 Contract Performance Reports ARRA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A-1 Contract Performance Reports ARRA December 2011 CHPRC-2011-12, Rev. 0 Contract DE-AC06-08RL14788 Deliverable C.3.1.3.1 - 1 Format 1 - Work Breakdown Structure Format 3 -...

  15. Design and performance of a punch mechanism based pellet injector for alternative injection in the large helical device

    SciTech Connect (OSTI)

    Mishra, J. S.; Sakamoto, R.; Motojima, G.; Matsuyama, A.; Yamada, H.

    2011-02-15

    A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii R{sub c}= 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.

  16. Cost savings deliverables and criteria for the OST technology decision process

    SciTech Connect (OSTI)

    McCown, A.

    1997-04-01

    This document has been prepared to assist focus area (FA) technical and management teams in understanding the cost savings deliverables associated with a technology system during its research and development (R and D) phases. It discusses the usefulness of cost analysis in the decision-making process, and asserts that the level of confidence and data quality of a cost analysis is proportional to the maturity of the technology system`s development life cycle. Suggestions of specific investment criteria or cost savings metrics that a FA might levy on individual research projects are made but the final form of these elements should be stipulated by the FA management based on their rationale for a successful technology development project. Also, cost savings deliverables for a single FA will be more detailed than those for management of the Office of Science and Technology (OST). For example, OST management may want an analysis of the overall return on investment for each FA, while the FA program manager may want this analysis and the return on investment metrics for each technology research activity the FA supports.

  17. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

  18. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadruple Mass Spectrometry

    SciTech Connect (OSTI)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-07-21

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  19. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  20. Inflow performance relationships for solution-gas-drive reservoirs

    SciTech Connect (OSTI)

    Camacho-V, R.G.; Raghavan, R.

    1989-05-01

    In this theoretical study, a numerical model was used to examine the influence of pressure level and skin factor on the inflow performance relationships (IPR's) of wells producing under solution-gas-drive systems. Examination of the synthetic deliverability curves suggests that the exponent of the deliverability curve is a function of time and that the exponent is usually greater than unity. The implication of this observation to field data is discussed. The accuracy of procedures given in the literature to predict oilwell deliverabilities is also examined. It is shown that these methods can be used to predict future performance provided that the exponent of the deliverability curve is known and that extrapolations over large time ranges are avoided. If single-point tests are used to predict future performance (such tests assume that the exponent of the deliverability curve is constant), then errors in predictions will be minimized. Although relative permeability and fluid property data are required, the Muskat material-balance equation and the assumption that GOR is independent of distance can be used to predict future production rates. This method avoids problems associated with other methods in the literature and always yields reliable results. New methods to modify the IPR curve to incorporate changes in skin factor are presented. A new flow-efficiency definition based on the structure of the deliverability equations for solution-gas-drive reservoirs is proposed. This definition avoids problems that result when the currently available methods are applied to heavily stimulated wells.

  1. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage Author Oregon Department of...

  2. SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability

    SciTech Connect (OSTI)

    Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G

    2014-06-01

    Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with ImatriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.750.33%, 99.370.09%, 99.290.12%, 98.140.13% and 99.250.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.

  3. How the NDA Provides Transparency and Visibility of the Technical Deliverability of the R and D Programme - 13303

    SciTech Connect (OSTI)

    Seed, Ian; James, Paula; Brownridge, Melanie; McMinn, Mervin

    2013-07-01

    The Nuclear Decommissioning Authority (NDA) was created under the UK Energy Act 2004 to ensure the UK historic civil public sector nuclear legacy sites are decommissioned safely, securely, cost effectively and in ways that protect the environment. The delivery will involve carrying out many unique projects within a high hazard environment requiring the very highest standards in safety, security and environmental management. Unique problems require unique solutions and there is a substantial amount of research and development required for each project. The NDA's R and D strategic objective is to ensure that delivery of the NDA's mission is technically underpinned by sufficient and appropriate research and development. This drives a requirement to provide transparency and visibility of the technical deliverability of the programme through the technical baseline and accompanying research and development requirements. The NDA need to have confidence in the technical deliverability of the Site License Companies (SLCs) plans, provide overall visibility of R and D across the NDA Estate and ensure that appropriate R and D is being carried out in a timely manner. They need to identify where coordinated R and D programmes may be advantageous as a result of common needs, risks and opportunities and ensure key R and D needs across NDA are identified, prioritised and work programmes are costed and scheduled in the Lifetime Plans for individual sites and SLCs. Evidence of the Site License Company's approach and their corresponding technical underpinning programmes is achieved through submission of a number of outputs collectively known as TBuRDs (Technical Baseline and Underpinning Research and Development Requirements). This paper is a summary of the information generated by an independent review of those TBuRDs. It highlights some of the key messages, synergies and common R and D activities across the estate. It demonstrates the value of a consistent approach to collecting R and D data across multiple Sites with a view to enhancing knowledge transfer and improving delivery efficiency. It will be of interest to all who are running R and D programmes where other programmes may be carrying out similar activities. (authors)

  4. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection Laser System For each of NIF's 192 beams: The pulse shape as a function of time ... NIF's injection laser system (ILS) plays a key role in meeting these three requirements. ...

  5. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  6. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  7. Tank waste remediation system retrieval and disposal mission readiness-to-proceed guidance and requirements to deliverables crosswalk

    SciTech Connect (OSTI)

    Hall, C.E.

    1998-01-06

    In September 1996, the US Department of Energy, Richland Operations Office (RL) initiated the first of a two-phase program to remediate waste storage in tanks at the Hanford Site in Washington State. Initiating the first phase, RL signed contracts with two private companies who agreed to receive and vitrify a portion of the tank waste in a demonstration and to return the vitrified product and by-products to the Project Management Hanford Contract (PHMC) team for disposition. The first phase of the overall remediation effort is a demonstration of treatment concepts, and the second phase includes treatment of the remaining tank wastes. The demonstration phase, Phase 1 of the project, is further subdivided into two parts, A and B. During Phase 1A, the vitrification contractors are to establish the technical, operational, regulatory, business, and financial elements required to provide treatment services on a fixed unit price basis. Phase 1A deliverables will be evaluated by RL to determine whether it is in the best interest of the government to have one or more vitrification contractors proceed with Phase 1B, in which 6% to 13% of the tank waste would be treated in the demonstration. In addition, before RL can authorize proceeding with Phase 1B, the PHMC team must demonstrate its readiness to retrieve and deliver the waste to the private contractor(s) and to receive and dispose of the products and by-products returned from the treatment. The PHMC team has organized their plans for providing these vitrification-support services into the Retrieval and Disposal Mission within the Tank Waste Remediation System (TWRS) Project. Three RL core teams were established to assist in evaluating the PHMC team`s readiness specifically in regard to three task areas: Waste feed delivery; Infrastructure and by-products delivery; and Immobilized products. The core teams each developed a set of criteria and plans to be used in evaluating the PHMC team`s readiness to proceed (RTP).

  8. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A; Johnson, Christi R; Collins, Case; Bouman, Charles; Abdulrahman, Hani; Foster, Benjamin

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measured reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.

  9. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  10. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  11. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  12. Focus Area 2 Deliverables

    Office of Environmental Management (EM)

    ... Director, Moab Federal Project Office (MOAB) Dennis M. Miotla, Acting Manager, Idaho ... Distribution includes the DOE Ofl'lce of Health, Safety and Security (HSS) with possible ...

  13. Focus Area 5 Deliverables

    Office of Environmental Management (EM)

    summary evaluation of the health and implementation of the ... EM HQ, DOE Chief Nuclear Safety Office, EM field sites, ... Projects Office D. Metzler, MOAB B. Bower, WVDP T. ...

  14. Summary of WPT FOA phase II demonstration performed on July 21, 2015

    SciTech Connect (OSTI)

    Jones, Perry T.; Onar, Omer C.

    2015-08-01

    This summary provides details of the activities, presentations and hardware demonstrations performed at the International Transportation Innovation Center (iTiC) in Greenville, South Carolina as deliverables for the wireless power transfer (WPT) FOA #000667 phase II gateway. This report does not attempt to identify all encompassing efforts from each of the partners leading up to the demonstration, but will attempt to provide a record which briefly describes the project deliverables met and expectations from the Department of Energy (DOE) as action items agreed to during the wrap-up session on July 21, 2015.

  15. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  16. Transonic Combustion ’ - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy ...

  17. Performance of Powerline-Controlled Luminaire Final Report

    SciTech Connect (OSTI)

    Rubinstein, Francis; Pettler, Pete; Snook, Joel; Engelking, Erik; Kiliccote, Sila

    2004-12-01

    In previous work, LBNL with Vistron Corp, developed an innovative lighting control system using a communications technology called Phase Cut Carrier (PCC). This report describes the performance of the desktop demonstration system that was developed to test this new controls concept. More detailed information on this project is given in [1]. This report is in fulfillment of deliverable No.1 'Report on Performance of Powerline-carrier Controlled Luminaire' from the FY2004 DOE Work Plan.

  18. Fuel injection apparatus

    SciTech Connect (OSTI)

    Suzuki, Y.; Kuroda, Y.; Ogata, K.

    1988-07-12

    A fuel injection apparatus is described for injecting fuel responsive to a rotary speed of an engine by utilizing the pressure of compressed air, the apparatus comprising means for regulating the supplying time of the compressed air responsive to at least one of the rotary speed of the engine and the load of the engine, and the regulating means including means for supplying the compressed air for a longer time at least one of low rotary speed and low load of the engine than at least one of high rotary speed and high load of the engine.

  19. Injection Locking Techniques for Spectrum Analysis

    SciTech Connect (OSTI)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-19

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  20. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  1. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  2. Reductant injection and mixing system

    DOE Patents [OSTI]

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  3. High pressure injection of dimethyl ether

    SciTech Connect (OSTI)

    Glensvig, M.; Sorenson, S.C.; Abata, D.

    1996-12-31

    Partially oxygenated hydrocarbons produced from natural gas have been shown to be viable alternate fuels for the diesel engine, showing favorable combustion characteristics similar to that of diesel fuel but without exhaust particulates and with significantly reduced NO{sub x} emissions and lower engine noise. Further, engine studies have demonstrated that such compounds, like dimethyl ether (DME), can be injected at much lower pressures than conventional diesel fuel with better overall performance. This experimental study compares the injection of DME to that of conventional diesel fuel. Both fuels were injected into a quiescent high pressure chamber containing Nitrogen at pressures up to 25 atmospheres at room temperature with a pintle nozzle and jerk pump. Comparisons were obtained with high speed photography using a Hycam camera. Results indicate that there are significant differences in spray geometry and penetration which are not predictable with analytical models currently used for diesel fuels.

  4. Liquid Propane Injection Technology Conductive to Today's North American

    Broader source: Energy.gov (indexed) [DOE]

    Specification | Department of Energy can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil PDF icon deer09_arnold.pdf More Documents & Publications Liquid Propane Injection Applications Liquid Propane Injection Applications Transportation Fuels: The Future is Today (6 Activities)

  5. Waterflooding injectate design systems and methods (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Citation Details In-Document Search Title: Waterflooding injectate design systems and methods A method of designing an injectate...

  6. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Injectivity Test Jump to: navigation, search Geothermalpower.jpg Looking for the Injectivity Test page? For detailed information on Injectivity Test, click here....

  7. Fact #801: October 28, 2013 Gasoline Direct Injection Continues to Grow

    Broader source: Energy.gov [DOE]

    Gasoline Direct Injection (GDI) is an engine technology that improves fuel economy and engine performance by injecting fuel directly into the combustion chamber, allowing for a more complete and...

  8. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  9. Particle beam injection system

    DOE Patents [OSTI]

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  10. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  11. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  12. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  13. Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (1979) Raft River Geothermal Area 1979 1979 Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Injectivity Test...

  14. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to set. The system then returned to operation as before the test with no major change in the fieldwide injection. The injection and production rates for the field were monitored for approximately one year to give the production side of the system time to stabilize. The polymer treatment conducted on the injection wells in Hawk Point is believed to be the largest treatment of a hot, deep reservoir to date. These injection well treatments did produce some change in the injection profile of the injection wells. However, it is very disappointing that there was no significant improvement in the performance of the field. There was no noticeable reduction in the water production, the water-oil ratio (WOR), or an increase in oil production. The cosponsor has determined that the field is currently at its economic limit because of the high cost of this deep operation and the continual downhole problems. A restructuring of the injection-production pattern is presently being done to prolong the life of the field.

  15. Development of a Stochastic Inversion Tool To Optimize Agreement Between The Observed And Predicted Seismic Response To CO2 Injection/Migration in the Weyburn-Midale Project

    SciTech Connect (OSTI)

    Ramirez, A L; Hao, Y; White, D; Carle, S; Dyer, K; Yang, X; Mcnab, W; Foxall, W; Johnson, J

    2009-12-02

    During Phase 1 of the Weyburn Project (2000-2004), 4D reflection seismic data were used to map CO{sub 2} migration within the Midale reservoir, while an extensive fluid sampling program documented the geochemical evolution triggered by CO{sub 2}-brine-oil-mineral interactions. The aim of this task (3b.11) is to exploit these existing seismic and geochemical data sets, augmented by CO{sub 2}/H{sub 2}O injection and HC/H{sub 2}O production data toward optimizing the reservoir model and thereby improving site characterization and dependent predictions of long-term CO{sub 2} storage in the Weyburn-Midale reservoir. Our initial project activities have concentrated on developing a stochastic inversion method that will identify reservoir models that optimize agreement between the observed and predicted seismic response. This report describes the technical approach we have followed, the data that supports it, and associated implementation activities. The report fulfills deliverable D1 in the project's statement of work. Future deliverables will describe the development of the stochastic inversion tool that uses geochemical data to optimize the reservoir model.

  16. Low-pressure injection molding

    SciTech Connect (OSTI)

    Mangels, J.A. (Ceradyne Inc., Costa Mesa, CA (United States))

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  17. Injection nozzle for a turbomachine

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  18. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S.

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  19. An injectable acoustic transmitter for juvenile salmon

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation, and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.

  20. An injectable acoustic transmitter for juvenile salmon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more » and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  1. An experimental study of fuel injection strategies in CAI gasoline engine

    SciTech Connect (OSTI)

    Hunicz, J.; Kordos, P.

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  2. ARM - 2007 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 (CAM3). Document and evaluate ice water content simulated by CAM3 using ARM and NASA Aura satellite data. Product DocumentationDeliverables - The implementation of the cloud...

  3. QA Standard Contract Language Deliverable

    Office of Environmental Management (EM)

    ... Director, Moab Federal Project Office (MOAB) Richard B. I'rovencher, Deputy ... research, desigdengineering, construction, operation, budget, mission, safety, and health). ...

  4. Attachment A -- Deliverables.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postretirement Benefits (PRB) Other Than Pensions (JUL 2005) Ensure receipt of credit for pension fund asset reversions and ensure flowdown to subcontractors during contractor...

  5. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  6. A study of the spray injection Reynolds number effects on gasoline yields of an FCC riser reactor

    SciTech Connect (OSTI)

    Bowman, B. J.; Zhou, C. Q.; Chang, S. L.; Lottes, S. A.

    2000-04-03

    A computational analysis of the combined effects of feed oil injection parameters in a commercial-scale fluidized catalytic cracking riser reactor was performed using a three-phase, multiple species kinetic cracking computer code. The analysis showed that the injection operating parameters (droplet diameter and injection velocity) had strong impacts on the gasoline yields of the FCC unit. A spray injection Reynolds number combining the two parameters was defined. A correlation between the spray injection Reynolds number and the gasoline product yields for various feed injection conditions was developed. A range of spray injection Reynolds number for the maximum gasoline yield was identified.

  7. Massachusetts Natural Gas Underground Storage Injections All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  8. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  9. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  10. Injection through fractures

    SciTech Connect (OSTI)

    Johns, R.A.

    1987-05-01

    Tracer tests are conducted in geothermal reservoirs as an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field data were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot be judged solely on the quality of the match between field data and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment. In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured data. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, as estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

  11. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  12. Blast Furnace Granulated Coal Injection

    SciTech Connect (OSTI)

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  13. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M.; Chu, Henry S.; Novascone, Stephen R.

    2011-11-15

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  14. Flow regimes for fluid injection into a confined porous medium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  15. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect (OSTI)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convectiondiffusion equation is derived to describe the time evolution of the fluidfluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convectiondiffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  16. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    SciTech Connect (OSTI)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  17. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  18. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  19. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  20. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  1. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis (Livermore, CA)

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  2. Fuel injection for internal combustion engines. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems` variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  4. Allergy Injection Policy | Department of Energy

    Energy Savers [EERE]

    Allergy Injection Policy Allergy Injection Policy Millions of Americans suffer from perennial and seasonal allergic rhinitis. Allergy immunotherapy is an effective way to reduce or eliminate the symptoms of allergic rhinitis by desensitizing the patient to the allergen(s) by giving escalating doses of an extract via regular injections. Receiving weekly injections at a private physician's office is time consuming, reduces productivity, and can quickly deplete an employee's earned leave. FOH

  5. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect (OSTI)

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  6. Duct injection technology prototype development: Nozzle development Subtask 4.1, Atomizer specifications for duct injection technology. Topical report 8

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Babcock & Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  7. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, Larry W.

    1986-01-01

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  8. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  9. Performance of a High Speed Indirect Injection Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies The Linear Engine Pathway of Transformation High Fuel Economy Heavy-Duty Truck Engine

  10. Experimental Investigation of Effect of Injection Parameters, Compression

    Broader source: Energy.gov (indexed) [DOE]

    Ratio and Ultra-cooled EGR on CI Engine Performance and Emissions | Department of Energy Low temperature combustion, simultaneous reduction of NOx and PM, in CI engines is achieved with moderate rate of ultra-cooled EGR PDF icon p-32_patel.pdf More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optimization of Direct-Injection H2 Combustion Engine Performance,

  11. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  12. Longitudinal injection transients in an electron storagering

    SciTech Connect (OSTI)

    Byrd, J.M.; De Santis, S.

    2000-11-02

    We present the results of an experimental study of the longitudinal beam dynamics at injection in the Advanced Light Source (ALS), an electron storage ring. By measuring the longitudinal bunch distribution following injection using a streak camera, we were able to study several useful and interesting e.ects as well as improve overall injection efficiency. These include measurement and correction of the phase and energy offsets at injection, measurement of the injected bunch length and energy spread, direct observation of phase space filamentation due to the spread in synchrotron frequencies, and measurement of the effective damping rate of the bunch shape including radiation damping and decoherence. We have also made some initial studies of the decay of an uncaptured beam at injection which may provide a novel means of measuring the radiation loss per turn.

  13. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  14. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  15. Technology Solutions Case Study: Ducts Sealing Using Injected Spray Sealant

    SciTech Connect (OSTI)

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative to determine the most cost-effective ways to reduce duct leakage in its low-rise housing units.Two retrofit duct sealing techniquesmanually-applied sealants and injecting a spray sealantwere implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. Ihe cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  16. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  17. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  18. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Abstract Required...

  19. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Abstract Required fees and form...

  20. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Environmental Permit Handbook -...

  1. Hawaii Underground Injection Control Permitting Webpage | Open...

    Open Energy Info (EERE)

    Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii...

  2. Low Temperature Catalyst for Fuel Injection System

    Broader source: Energy.gov [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

  3. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect (OSTI)

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85?kA/cm{sup 2} and 1.95?kA/cm{sup 2} at 77?K and 300?K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  4. Injection Molding of Plastics from Agricultural Materials

    SciTech Connect (OSTI)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  5. CO2 Injection Begins in Illinois

    Broader source: Energy.gov [DOE]

    The Midwest Geological Sequestration Consortium, one of seven regional partnerships created by the U.S. Department of Energy to advance carbon storage technologies nationwide, has begun injecting carbon dioxide for their large-scale CO2 injection test in Decatur, Illinois.

  6. Using high temperature baghouses to enhance desulfurization following economizer sorbent injection

    SciTech Connect (OSTI)

    Li, G.; Keener, T.C.

    1995-12-31

    In order to explore the potential of using high temperature baghouses to enhance SO{sub 2} removal following upstream sorbent injection, an integrated two-stage reactor system has been built. It consists of an injection stage and a filtration stage. Distinct from one-stage fixed-bed reactors, sorbent particles in this system are initially converted under controlled injection conditions before entering the filtration reactor chamber. By the aid of the system, several unique features regarding the gas-solid reactions in the baghouse after economizer zone sorbent injection have been revealed. Results have shown that the appropriate usage of a high temperature baghouse may substantially enhance the performance of the process. The further SO{sub 2} removal in the baghouse is comprehensively affected by both the conditions in the injection zone and those in the baghouse.

  7. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  8. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  9. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  11. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  12. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  13. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Optimization of Direct-Injection H2 ...

  14. Investigation of Direct Injection Vehicle Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. PDF icon p-10gibbs.pdf More ...

  15. Direct liquid injection of liquid petroleum gas

    SciTech Connect (OSTI)

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  16. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  17. High Resolution RANS NLH Study of Stage 67 Tip Injection Physics

    SciTech Connect (OSTI)

    Matheson, Michael A

    2014-01-01

    Numerical prediction of the Stage 67 transonic fan stage employing wall jet tip injection flow control and study of the physical mechanisms leading to stall suppression and stability enhancement afforded by endwall recirculation/injection is the focus of this paper. Reynolds averaged Navier-Stokes computations were used to perform detailed analysis of the Stage 67 configuration experimentally tested at NASA s Glenn Research Center in 2004. Time varying prediction of the stage plus recirculation and injection flowpath were performed utilizing the Nonlinear Harmonic approach. Significantly higher grid resolution per passage was achieved than what has been generally employed in prior reported numerical studies of spike stall phenomena in transonic compressors. This paper focuses on characterizing the physics of spike stall embryonic stage phenomena and the impact of tip injection, resulting in experimentally and numerically demonstrated stall suppression

  18. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  19. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  20. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  1. Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers

    SciTech Connect (OSTI)

    Sciamanna, M.; Panajotov, K.

    2006-02-15

    We perform a theoretical investigation of the polarization dynamics in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the injected field has a linear polarization (LP) orthogonal to that of the free-running VCSEL. In agreement with previous experiments [Z. G. Pan et al., Appl. Phys. Lett. 63, 2999 (1993)], an increase of the injection strength may lead to a polarization switching accompanied by an injection locking. We find that this route to polarization switching is typically accompanied by a cascade of bifurcations to wave-mixing dynamics and time-periodic and possibly chaotic regimes. A detailed mapping of the polarization dynamics in the plane of the injection parameters (detuning, injection strength) unveils a large richness of dynamical scenarios. Of particular interest is the existence of another injection-locked solution for which the two LP modes both lock to the master laser frequency, i.e., an elliptically polarized injection-locked (EPIL) steady state. Modern continuation techniques allow us to unveil an unfolding mechanism of the EPIL solution as the detuning varies and also to link the existence of the EPIL solution to a resonance condition between the master laser frequency and the free-running frequency of the normally depressed LP mode in the slave laser. We furthermore report an additional case of bistability, in which the EPIL solution may coexist with the second injection-locked solution (the one being locked to the master polarization). This case of bistability is a result of the interaction between optical injection and the two-polarization-mode characteristics of VCSEL devices.

  2. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  3. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  4. Summary of the Optics, IR, Injection, Operations, Reliability...

    Office of Scientific and Technical Information (OSTI)

    Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group Citation Details In-Document Search Title: Summary of the Optics, IR, Injection, ...

  5. V-170: Apache Subversion Hook Scripts Arbitrary Command Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability V-170: Apache Subversion Hook Scripts Arbitrary Command Injection Vulnerability June 4, 2013 - 12:17am...

  6. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006, ...

  7. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel ...

  8. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction ...

  9. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. ...

  10. Waterflooding injectate design systems and methods Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Waterflooding injectate design systems and methods Brady, Patrick V.; Krumhansl, James L. A method of designing an injectate to be used in a waterflooding operation is disclosed....

  11. EPA - Underground Injection Control Classes of Wells webpage...

    Open Energy Info (EERE)

    Underground Injection Control Classes of Wells webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Underground Injection Control Classes of...

  12. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  13. Idaho Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Underground Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage...

  14. Vermont Underground Injection Control Rule | Open Energy Information

    Open Energy Info (EERE)

    Underground Injection Control Rule Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Underground Injection Control...

  15. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, ... Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, ...

  16. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs Citation Details In-Document Search Title: Numerical modeling of water injection ...

  17. Flow monitoring and control system for injection wells (Patent...

    Office of Scientific and Technical Information (OSTI)

    Flow monitoring and control system for injection wells Title: Flow monitoring and control system for injection wells The present invention relates to a system for monitoring and ...

  18. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  19. Better Buildings Alliance Equipment Performance Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... FY2012 FY2013 FY2014 Milestones & Deliverables (Actual) Q3 (Apr-Jun) Q4 (Jul-Sep) Q1 (Octt-Dec) Legend Summary Q2 (Jan-Mar) FY12 activities focused on development of ...

  20. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  1. Ducts Sealing Using Injected Spray Sealant, Raleigh, North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques - manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  2. System Study: High-Pressure Coolant Injection 1998-2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  3. System Study: High-Pressure Safety Injection 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  4. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  5. Electrically Injected UV-Visible Nanowire Lasers

    SciTech Connect (OSTI)

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  6. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines. In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled with turbocharging as a cost-effective option for improving the efficiency and performance of gasoline engines. While GDI engines are expected to account for 60% of the U.S. market by 2016, and the technology

  7. Mixed Mode Fuel Injector And Injection System

    DOE Patents [OSTI]

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  8. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; Fisher, Alan; Huang, Xiaobiao; Safranek, James; Westerman, Stuart; Cheng, Weixing; Mok, Walter; /Unlisted

    2012-06-21

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  9. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  10. Implications of Disruption to Natural Gas Deliverability

    SciTech Connect (OSTI)

    Science Applications International

    2008-09-30

    This project was sponsored by Department of Energy/Office of Electricity Delivery and Energy Reliability and managed by the National Energy Technology Laboratory. The primary purpose of the project was to analyze the capability of the natural gas production, transmission and supply systems to continue to provide service in the event of a major disruption in capacity of one or more natural gas transmission pipelines. The project was specifically designed to detail the ability of natural gas market to absorb facility losses and efficiently reallocate gas supplies during a significant pipeline capacity disruption in terms that allowed federal and state agencies and interests to develop effective policies and action plans to prioritize natural gas deliveries from a regional and national perspective. The analyses for each regional study were based on four primary considerations: (1) operating conditions (pipeline capacity, storage capacity, local production, power dispatch decision making and end user options); (2) weather; (3) magnitude and location of the disruption; and, (4) normal versus emergency situation. The detailed information contained in the region reports as generated from this project are Unclassified Controlled Information; and as such are subject to disclosure in accordance with the Freedom of Information Act. Therefore, this report defines the regions that were analyzed and the basic methodologies and assumptions used to completing the analysis.

  11. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  12. Passive safety injection system using borated water

    DOE Patents [OSTI]

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  13. Silicone injection restores failing submarine cables

    SciTech Connect (OSTI)

    Tilstra, M.

    1995-12-01

    Faced with the prospect of replacing nearly 10 miles of aging undersea cables, Orcas Power & Light Co (Opalco) elected instead to inject silicone into as many of the cables as possible. Silicone injection has been used extensively on underground residential distribution (URD) and feeder cables, but only two underwater cables had previously been injected: a feeder cable for Florida Power Corp under an intercoastal waterway and a cable for Washington Water Power Co under a lake in western Idaho. The compound restores power cables damaged by water treeing and prevents further water damage. Selection criteria included age, type, and whether the cables had ever been spliced. Older, soldered, hand-wrapped splices were avoided as they block the CableCure fluid from flowing through. This makes the cable uninjectable unless the splices are replaced with the molded type. The first cables chosen for injection were between 15 and 30 years old and clear of soldered splices. They also were free from faults. 4 figs.

  14. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    Capture (Technical Report) | SciTech Connect Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture Citation Details In-Document Search Title: Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture This document summarizes the work performed on Cooperative Agreement DE-FE0000465, "Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture," during the period of performance of January 1, 2010 through September

  15. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  16. Analysis of Performance of Selected AFC, ATF Fuels, and Lanthanide Transport

    SciTech Connect (OSTI)

    Unal, Cetin; Galloway, Jack D.

    2015-09-29

    We started to look at the performance of ATF concept in LWRs late in FY14 and finish our studies in FY15. The work has been presented in AFC review meetings, ICAPP and TOPFUEL conferences. The final version of the work is accepted for publication in Nuclear Engineering and Science Journal (NES). The copy of ICAPP and NES papers are attached separately to this document as our milestone deliverables. We made an important progress in the modeling of lanthanide transport in FY15. This work produced an ANS Winter Meeting paper and GLOBAL 2015 paper. GLOBAL 2015 paper is also attached as deliverable of FY15. The work on the lanthanide transport is preliminary. We are exploring other potential mechanisms, in addition to “liquid-like” diffusion mechanisms, proposed by Robert Mariani [1] before we analyze data that will be taken by Ohio State University. This year, we concentrate on developing diffusion kernels and principles of modeling. Next year, this work will continue and analyze the Ohio State data and develop approaches to solve multicomponent diffusion. In addition to three papers we attached to this report, we have done some research on coupling and the development of gas release model for metallic fuels in FY15. They are also preliminary in nature; therefore, we give the summary of what we found rather than an extended report that will be done in FY16.

  17. Neutral Beam Injection Experiments and Related Behavior of Neutral Particles in the GAMMA 10 Tandem Mirror

    SciTech Connect (OSTI)

    Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Watanabe, K. [Plasma Research Center, University of Tsukuba (Japan); Higashizono, Y. [Plasma Research Center, University of Tsukuba (Japan); Ohki, T. [Plasma Research Center, University of Tsukuba (Japan); Ogita, T. [Plasma Research Center, University of Tsukuba (Japan); Shoji, M. [National Institute for Fusion Science(Japan); Kobayashi, S. [Institute of Advanced Energy, Kyoto University (Japan); Islam, M.K. [Plasma Research Center, University of Tsukuba (Japan); Kubota, Y. [Plasma Research Center, University of Tsukuba (Japan); Yoshikawa, M. [Plasma Research Center, University of Tsukuba (Japan); Kobayashi, T. [Plasma Research Center, University of Tsukuba (Japan); Yamada, M. [Plasma Research Center, University of Tsukuba (Japan); Murakami, R. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    Results of neutral beam injection (NBI) experiments in the GAMMA 10 tandem mirror plasmas are presented together with the neutral particle behavior observed in the experiments. A hydrogen neural beam was injected into the hot-ion-mode plasmas by using the injector installed in the central-cell for the plasma heating and fueling. High-energy ions produced by NBI were observed and its energy distribution was measured for the first time with a neutral particle analyzer installed in the central-cell. The temporal and spatial behavior of hydrogen was observed with axially aligned H{sub {alpha}} detectors installed from the central midplane to anchor-cell. Enhancement of hydrogen recycling due to the beam injection and the cause of the observed decrease in plasma diamagnetism are discussed. The Monte-Carlo code DEGAS for neutral transport simulation was applied to the GAMMA 10 central-cell and a 3-dimensional simulation was performed in the NBI experiment. Localization of neutral particle during the beam injection is investigated based on the simulation and it was found that the increased recycling due to the beam injection was dominant near the injection port.

  18. Waterflooding injectate design systems and methods

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2014-08-19

    A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.

  19. Target injection methods for inertial fusion energy

    SciTech Connect (OSTI)

    Petzoldt, R.W.; Moir, R.W.

    1994-06-01

    We have studied four methods to inject IFE targets: the gas gun, electrostatic accelerator, induction accelerator, and rail gun. We recommend a gas gun for indirect drive targets because they can support a gas pressure load on one end and can slide along the gun barrel without damage. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable; for other types of targets, a sabot would be necessary. A cam and poppet valve arrangement is recommended for gas flow control. An electrostatic accelerator is attractive for use with lightweight spherical direct drive targets. Since there is no physical contact between the target and the injector, there will be no wear of either component during the injection process. An induction accelerator has an advantage of no electrical contact between the target and the injector. Physical contact is not even necessary, so the wear should be minimal. It requires a cylindrical conductive target sleeve which is a substantial added mass. A rail gun is a simpler device than an electrostatic accelerator or induction accelerator. It requires electrical contact between the target and the rails and may have a significant wear rate. The wear in a vacuum could be reduced by use of a solid lubricant such as MoS{sub 2}. The total required accuracy of target injection, tracking and beam pointing of {plus_minus}0.4 mm appears achievable but will require development and experimental verification.

  20. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  1. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  2. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect (OSTI)

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  3. Modeling of Carbon Migration During JET Injection Experiments

    SciTech Connect (OSTI)

    Strachan, J. D.; Likonen, J.; Coad, P.; Rubel, M.; Widdowson, A.; Airila, M.; Andrew, P.; Brezinsek, S.; Corrigan, G.; Esser, H. G.; Jachmich, S.; Kallenbach, A.; Kirschner, A.; Kreter, A.; Matthews, G. F.; Philipps, V.; Pitts, R. A.; Spence, J.; Stamp, M.; Wiesen, S.

    2008-10-15

    JET has performed two dedicated carbon migration experiments on the final run day of separate campaigns (2001 and 2004) using {sup 13}CH{sub 4} methane injected into repeated discharges. The EDGE2D/NIMBUS code modelled the carbon migration in both experiments. This paper describes this modelling and identifies a number of important migration pathways: (1) deposition and erosion near the injection location, (2) migration through the main chamber SOL, (3) migration through the private flux region aided by E x B drifts, and (4) neutral migration originating near the strike points. In H-Mode, type I ELMs are calculated to influence the migration by enhancing erosion during the ELM peak and increasing the long-range migration immediately following the ELM. The erosion/re-deposition cycle along the outer target leads to a multistep migration of {sup 13}C towards the separatrix which is called 'walking'. This walking created carbon neutrals at the outer strike point and led to {sup 13}C deposition in the private flux region. Although several migration pathways have been identified, quantitative analyses are hindered by experimental uncertainty in divertor leakage, and the lack of measurements at locations such as gaps and shadowed regions.

  4. Tetrakis(1-imidazolyl) borate (BIM4) based zwitterionic and related molecules used as electron injection layers

    DOE Patents [OSTI]

    Li, Huaping; Xu, Yunhua; Bazan, Guillermo C

    2013-02-05

    Tetrakis(1-imidazolyl)borate (BIm4) based zwitterionic and/or related molecules for the fabrication of PLEDs is provided. Device performances with these materials approaches that of devices with Ba/Al cathodes for which the cathode contact is ohmic. Methods of producing such materials, and electron injection layers and devices containing these materials are also provided.

  5. Using DMA for copying performance counter data to memory

    DOE Patents [OSTI]

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W

    2013-12-31

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance data.

  6. Using DMA for copying performance counter data to memory

    DOE Patents [OSTI]

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance counter data.

  7. T-731:Symantec IM Manager Code Injection Vulnerability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-731:Symantec IM Manager Code Injection Vulnerability T-731:Symantec IM Manager Code Injection Vulnerability September 30, 2011 - 8:30am Addthis PROBLEM: Symantec IM Manager Code...

  8. High frequency pacing of edge localized modes by injection of...

    Office of Scientific and Technical Information (OSTI)

    High frequency pacing of edge localized modes by injection of lithium granules in DIII-D ... Title: High frequency pacing of edge localized modes by injection of lithium granules in ...

  9. RRC - Summary of Injection Control Rules | Open Energy Information

    Open Energy Info (EERE)

    Summary of Injection Control Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Summary of Injection Control Rules Abstract This webpage...

  10. WAC - 173-218 Underground Injection Control Program | Open Energy...

    Open Energy Info (EERE)

    8 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173-218 Underground Injection...

  11. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  12. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  13. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  14. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    Capture (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture Citation Details In-Document Search Title: Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture This document summarizes the work performed on Cooperative Agreement DE-FE0000465, "Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture," during the period of

  15. The effect of diesel injection timing on a turbocharged diesel engine fumigated with ethanol

    SciTech Connect (OSTI)

    Schroeder, A.R.; Savage, L.D.; White, R.A.; Sorenson, S.C.

    1988-01-01

    A study has been done to determine the effect of changes in diesel injection timing on engine performance using a multicylinder, turbocharged diesel engine fumigated with ethanol. Tests at half load with engine speeds of 2000 and 2400 rpm indicated that a 4% increase in thermal efficiency could be obtained by advancing the diesel injection timing from 18 to 29/sup 0/BTDC. The effect of changes in diesel timing was much more pronounced at 2400 rpm. Advancing the diesel timing decreased CO and unburned HC levels significantly. The increase in NO levels due to advances in diesel timing was offset by the decrease in NO due to ethanol addition.

  16. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    SciTech Connect (OSTI)

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  17. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  18. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  19. INJECTION PAINTING OPTIMIZATION WITH FUZZY LOGIC EXPERT SYSTEM.

    SciTech Connect (OSTI)

    BEEBE-WANG,J.; TANG,J.

    2001-06-18

    Optimizing transverse particle distributions in the accumulator ring is one of most important factors to the future performance of the Spallation Neutron Source (SNS) [l]. This can only be achieved by optimizing the injection bumps that paint the beam in phase space. The process is complex due to the vague distribution inputs and the multiple optimization goals. Furthermore, the priority of the optimization criteria could change at different operational stages. We propose optimizing transverse phase space painting with fuzzy logic and present our initial studies toward that end. The focus of this paper is on how the problem can be solved with a Fuzzy Logic (FL) expert system through the creation of a set of rules that can be applied by the system. Various particle distributions, from computer simulations, are analyzed with FL and the results are compared and discussed. Finally, a run-time optimization control system is proposed.

  20. Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone

    SciTech Connect (OSTI)

    Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F.

    2010-04-15

    The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

  1. Alternative Designs for the NSLS-II Injection Straight Section

    SciTech Connect (OSTI)

    Shaftan,T.; Heese, R.; Weihreter, E.; Willeke, F.; Rehak, M.; Meier, R.; Fliller, R.; Johnson, E. D.

    2009-05-04

    Brookhaven National Laboratory (BNL) is developing a state-of-the-art 3 GeV synchrotron light source, the NSLS-II [1]. The 9.3 meter-long injection straight section of its storage ring now fits a conventional injection set-up consisting of four kickers producing a closed bump, together with a DC septum and a pulsed septum. In this paper, we analyze an alternative option based on injection via a pulsed sextupole magnet. We discuss the dynamics of the injected and stored beams and, subsequently, the magnet's specifications and tolerances. We conclude by summarized the advantages and drawbacks of each injection scheme.

  2. Numerical simulation of water injection into vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  3. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  4. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  5. Determining How Magnetic Helicity Injection Really Works

    SciTech Connect (OSTI)

    Paul M. Bellan

    2001-10-09

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments.

  6. Direct tuyere injection of oxygen for enhanced coal combustion

    SciTech Connect (OSTI)

    Riley, M.F.

    1996-12-31

    Injecting oxygen directly into the tuyere blowpipe can enhance the ignition and combustion of injected pulverized coal, allowing the efficient use of higher coal rates at high furnace production levels. The effects of direct oxygen injection have been estimated from an analysis of the factors controlling the dispersion, heating, ignition, and combustion of injected coal. Injecting ambient temperature oxygen offers mechanical improvements in the dispersion of coal but provides little thermochemical benefit over increased blast enrichment. Injecting hot oxygen through a novel, patented thermal nozzle lance offers both mechanical and thermochemical benefits over increased enrichment or ambient oxygen injection. Plans for pilot-scale and commercial-scale testing of this new lance are described.

  7. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J.

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  8. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    SciTech Connect (OSTI)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B.; Pötschke, P.

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  9. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  10. Gas Injection Apparatus for Vacuum Chamber

    SciTech Connect (OSTI)

    Almabouada, F.; Louhibi, D.; Hamici, M.

    2011-12-26

    We present in this article a gas injection apparatus which comprises the gas injector and its electronic command for vacuum chamber applications. Some of these applications are thin-film deposition by a pulsed laser deposition (PLD) or a cathodic arc deposition (arc-PVD) and the plasma generation. The electronic part has been developed to adjust the flow of the gas inside the vacuum chamber by controlling both of the injector's opening time and the repetition frequency to allow a better gas flow. In this case, the system works either on a pulsed mode or a continuous mode for some applications. In addition, the repetition frequency can be synchronised with a pulsed laser by an external signal coming from the laser, which is considered as an advantage for users. Good results have been obtained using the apparatus and testing with Argon and Nitrogen gases.

  11. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  12. Boise geothermal injection well: Final environmental assessment

    SciTech Connect (OSTI)

    1997-12-31

    The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

  13. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  14. Pneumatic direct cylinder fuel injection system

    SciTech Connect (OSTI)

    Reinke, P.E.

    1988-09-20

    This patent describes a pneumatic direct cylinder fuel injection system for use in an internal combustion engine of the type having an engine block means with an air induction means for supplying induction air to cylinders in the engine block means, with each cylinder having a piston reciprocable therein so as to define a combustion chamber which includes a stratified charge chamber as a portion thereof, the system including a plurality of pneumatic injectors, with the pneumatic injector being supported by the engine block means in position to discharge an air/fuel mixture into an associate stratified charge chamber, each of the pneumatic injectors including a body means terminating at one end thereof in a nozzle body, a bore means through the body means and the nozzle body, a valve seat encircling the bore means at the outboard free end of the nozzle body, the opposite end of the bore means being connectable to a source of air at a predetermined pressure, a poppet valve operatively positioned in the bore means. The poppet value includes a head movable between an open position and closed position relative to the valve seat and a stem extending from the head and defining with the bore means an air passage, control means operatively associated with the poppet valve to normally maintain the poppet valve in the closed position and being operative to permit movement of the poppet valve to the open position and, an electromagnetic fuel injector operatively positioned in the body means for injecting pressurized fuel into the air passage upstream of the head of the poppet valve in terms of the direction of air flow through the air passage during a compression stroke of the piston in the associate cylinder, the arrangement being such that when the compression pressure reaches a predetermined pressure the poppet valve will be moved to the valve closed position.

  15. Long-Fiber Thermoplastic Injection Molded Composites: from Process Modeling to Property Prediction

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Holbery, Jim D.; Johnson, Kenneth I.; Smith, Mark T.

    2005-09-01

    Recently, long-fiber filled thermoplastics have become a great interest to the automotive industry since these materials offer much better property performance (e.g. elastic moduli, strength, durability) than their short-fiber analogues, and they can be processed through injection molding with some specific tool design. However, in order that long-fiber thermoplastic injection molded composites can be used efficiently for automotive applications, there is a tremendous need to develop process and constitutive models as well as computational tools to predict the microstructure of the as-formed composite, and its resulting properties and macroscopic responses from processing to the final product. The microstructure and properties of such a composite are governed by i) flow-induced fiber orientation, ii) fiber breakage during injection molding, and iii) processing conditions (e,g. pressure, mold and melt temperatures, mold geometries, injection speed, etc.). This paper highlights our efforts to address these challenging issues. The work is an integrated part of a research program supported by the US Department of Energy, which includes The development of process models for long-fiber filled thermoplastics, The construction of an interface between process modeling and property prediction as well as the development of new constitutive models to perform linear and nonlinear structural analyses, Experimental characterization of model parameters and verification of the model predictions.

  16. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs

    SciTech Connect (OSTI)

    Streitparth, F. Walter, A.; Stolzenburg, N.; Heckmann, L.; Breinl, J.; Rinnenthal, J. L.; Beck, A.; De Bucourt, M.; Schnorr, J.; Bernhardt, U.; Gebauer, B.; Hamm, B.; Guenther, R. W.

    2013-06-15

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.

  17. Piezoelectric transducer design for a miniaturized injectable acoustic transducer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercialmore » tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.« less

  18. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun D.

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercialmore » tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. Furthermore, the findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.« less

  19. Piezoelectric transducer design for a miniaturized injectable acoustic transducer

    SciTech Connect (OSTI)

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercial tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  20. Replenishing data descriptors in a DMA injection FIFO buffer

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Cernohous, Bob R.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.

    2011-10-11

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  1. Low Cost Injection Mold Creation via Hybrid Additive and Conventional

    Office of Scientific and Technical Information (OSTI)

    Manufacturing (Technical Report) | SciTech Connect Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details In-Document Search Title: Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this

  2. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Spin injection and spin transport in paramagnetic insulators This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above

  3. Spin injection and spin transport in paramagnetic insulators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect SciTech Connect Search Results Journal Article: Spin injection and spin transport in paramagnetic insulators Citation Details In-Document Search This content will become publicly available on February 22, 2017 Title: Spin injection and spin transport in paramagnetic insulators We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow

  4. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  5. Multipoint Grout Injection System. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    2001-09-01

    At the Oak Ridge Reservation (ORR), radioactive waste contained in the 16 cylindrical Gunite and Associated Tanks (GAATs) must retrieved so the tanks can be closed. In many cases, removing the small amounts of sludge that remain in the tank after the bulk of the waste is retrieved is extremely costly and provides little benefit from site health and environmental standpoints. The Tanks Focus Area is working with ORR's M and I contractor (Bechtel-Jacobs), Oak Ridge National Laboratory, and Ground Environmental Services to demonstrate the application of multi-point-injection (MPI) grout emplacement technology for horizontal cylindrical tanks during a cold demonstration in FY99. GAAT TH-4 has been identified as the tank to be used for the hot demonstration in FY00. Evaluation efforts continue on the effect of slag on strength performance of the grout to be used in TH-4 tank closure. The site must find out what level of slag can be accommodated in the grout while maintaining strength performance requirements. Other efforts in support of the utilization of MPI TM technology in large-scale waste tanks will continue. Also, ORR is collaborating with SRS to evaluate the use this technology to support grouting of the Old Burial Ground tanks at SRS.

  6. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  7. Impact of Extreme Injection Pressure and EGR on the Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  8. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  9. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details ... reduce the cost of the tooling (machining and materials) required to create ...

  10. An Injectable Apatite PRB for In Situ Strontium-90 Immobilization...

    Office of Scientific and Technical Information (OSTI)

    Title: An Injectable Apatite PRB for In Situ Strontium-90 Immobilization. Abstract not provided. Authors: Moore, Robert C. ; Vermeul, Vince ; Szecsody, Jim ; Fritz, Brad ; ...

  11. Summary of the Optics, IR, Injection, Operations, Reliability...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group Citation Details In-Document Search Title: Summary of the Optics, ...

  12. Single Well Injection Withdrawl Tracer Tests for Proppant Detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large question preventing optimal natural gas production from "hydrofracked" shales is how far proppants, injected to keep shale fractures open, move into the gas-bearing shales. ...

  13. Texas Water Code 27A General Provisions for Injection Wells ...

    Open Energy Info (EERE)

    WellsLegal Abstract These rules outline the requirements for construction and maintenance of injection wells in Texas. Published NA Year Signed or Took Effect 1977 Legal...

  14. Oregon Fees for Underground Injection Control Program Fact Sheet...

    Open Energy Info (EERE)

    Fees for Underground Injection Control Program Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material:...

  15. Hawaii Underground Injection Control Permit Packet | Open Energy...

    Open Energy Info (EERE)

    PermittingRegulatory Guidance - Supplemental Material: Hawaii Underground Injection Control Permit PacketPermittingRegulatory GuidanceSupplemental Material Author State of...

  16. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  17. WSDE Underground Injection Control Well Registration Form | Open...

    Open Energy Info (EERE)

    Injection Control Well Registration Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit ApplicationPermit Application: WSDE Underground...

  18. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  19. Numerical Simulation of Injectivity Effects of Mineral Scaling...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir Citation Details In-Document Search Title: Numerical Simulation ...

  20. Hawaii Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii Department...

  1. Oregon Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Webpage Abstract Provides overview of regulations...

  2. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after ...

  3. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  4. Oxidation characteristics of gasoline direct-injection (GDI)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation Title Oxidation characteristics of gasoline...

  5. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

  6. Injectivity Test At Raft River Geothermal Area (1979) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River...

  7. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW...

  8. Injectivity Test At Chena Geothermal Area (Holdmann, Et Al.,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Chena Geothermal Area (Holdmann, Et Al., 2006) Exploration Activity Details Location...

  9. Injectivity Test At Reese River Area (Henkle & Ronne, 2008) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese...

  10. Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  11. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

  12. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  13. Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  14. Numerical modeling of water injection into vapor-dominatedgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing ...

  15. Investigation of Direct Injection Vehicle Particulate Matter Emissions

    Broader source: Energy.gov [DOE]

    This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer.

  16. RRC - Injection/Disposal Well Permitting, Testing, and Monitoring...

    Open Energy Info (EERE)

    InjectionDisposal Well Permitting, Testing, and Monitoring manual Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Luo, Qingtao; Li, Bin; Nie, Zimin; Miller, Eric; Chambers, Jeff; Sprenkle, Vincent L.; Wang, Wei

    2013-04-08

    The newly developed Fe/V redox flow battery has demonstrated attractive cell performance. However, the deliverable energy density is relatively inferior due to the low cell voltage. To compensate this disadvantage and compete with other redox flow battery systems, cost reduction of the Fe/V system is necessary. This paper describes evaluation of hydrocarbon-based Daramic® microporous separators for use in the Fe/V system. The separator B having ion exchange capacity demonstrated excellent capacity retention capability. Separator B exhibited energy efficiency above 65% over a broad temperature range of 5-50oC and at current densities up to 80mA/cm2. Plus, separator B is very inexpensive and has exceptional mechanical properties. Therefore, this separator shows great potential to replace the expensive Nafion® membrane. This will drive down the capital cost and make the Fe/V system a promising low-cost energy storage technology.

  18. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 First Quarterly Report

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Simmons, Kevin L.; Mathur, Raj N.; Sangid, Michael D.; Jin, Xiaoshi; Costa, Franco; Gandhi, Umesh N.; Mori, Steven; Tucker III, Charles L.

    2014-02-19

    The CRADA between PNNL, Autodesk, Toyota and Magna has been effective since October 28th, 2013. The whole team including CRADA and subcontract partners kicked off the project technically on November 1st, 2013. This report describes work performed during the first quarter of FY 2014. The following technical progresses have been made toward project milestones: 1) The project kickoff meeting was organized at PlastiComp, Inc. in Winona on November 13th, 2013 involving all the project partners. During this meeting the research plan and Gantt chart were discussed and refined. The coordination of the research activities among the partners was also discussed to ensure that the deliverables and timeline will be met. 2) Autodesk delivered a research version of ASMI to PNNL for process modeling using this tool under the project. PNNL installed this research version on a PNNL computer and tested it. Currently, PNNL is using ASMI to prepare the models for PlastiComp plaques. 3) PlastiComp has compounded long carbon-fiber reinforced polypropylene and polyamide 6,6 compounds for rheological and thermal characterization tests by the Autodesk laboratories in Melbourne, Australia. 4) Initial mold flow analysis was carried out by PlastiComp to confirm that the 3D complex part selected by Toyota as a representative automotive part is moldable. 5) Toyota, Magna, PlastiComp and PNNL finalized the planning for molding the Toyota 3D complex part. 6) Purdue University worked with PNNL to update and specify the test matrix for characterization of fiber length/orientation. 7) Purdue University developed tools to automate the data collection and analysis of fiber length and orientation measurements. 8) Purdue University designed and specified equipment to replace the need for equipment using the technology established by the University of Leeds at General Motors.

  19. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  20. Bibliography: injection technology applicable to geothermal utilization

    SciTech Connect (OSTI)

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  1. Dynamic Feed Control For Injection Molding

    DOE Patents [OSTI]

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  2. Transonic Combustion ’- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine

    Broader source: Energy.gov [DOE]

    Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

  3. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  4. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect (OSTI)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  5. Optimization of Micro Metal Injection Molding By Using Grey Relational Grade

    SciTech Connect (OSTI)

    Ibrahim, M. H. I. [Dept. Of Mechanical Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Precision Process Research Group, Dept. of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Muhamad, N.; Sulong, A. B.; Nor, N. H. M.; Harun, M. R.; Murtadhahadi [Precision Process Research Group, Dept. of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Jamaludin, K. R. [UTM Razak School of Engineering and Advanced Technology, UTM International Campus, 54100 Jalan Semarak, Kuala Lumpur (Malaysia)

    2011-01-17

    Micro metal injection molding ({mu}MIM) which is a variant of MIM process is a promising method towards near net-shape of metallic micro components of complex geometry. In this paper, {mu}MIM is applied to produce 316L stainless steel micro components. Due to highly stringent characteristic of {mu}MIM properties, the study has been emphasized on optimization of process parameter where Taguchi method associated with Grey Relational Analysis (GRA) will be implemented as it represents novel approach towards investigation of multiple performance characteristics. Basic idea of GRA is to find a grey relational grade (GRG) which can be used for the optimization conversion from multi objectives case which are density and strength to a single objective case. After considering the form 'the larger the better', results show that the injection time(D) is the most significant followed by injection pressure(A), holding time(E), mold temperature(C) and injection temperature(B). Analysis of variance (ANOVA) is also employed to strengthen the significant of each parameter involved in this study.

  6. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  7. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M.; Eichinger, F.; Rafi, M.

    1995-12-01

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  8. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  9. High pressure injection and atomization characteristics of methanol

    SciTech Connect (OSTI)

    Aigal, A.K.; Pundir, B.P.; Khatchian, A.S.

    1986-01-01

    Research on conversion of diesel engines for operation on methanol is, currently, of worldwide interest. Due to requirements of higher cyclic delivery of methanol and changes in fuel properties e.g. compressibility, wave propagation velocity, viscosity, surface tension, density etc., injection and atomization characteristics of methanol are expected to be different from diesel. From the equation of continuity and forces acting on the injection system elements and applying the principles of similarity, modifications required in the injection system were identified. Methanol injection and atomization characteristics were studied with a modified injection system and compared with those observed with diesel fuel. Methanol gave more favourable cyclic delivery characteristics than diesel. Laser diffraction technique was used to study time and space resolved drop size distribution in methanol and diesel sprays. With methanol, drop size distribution were, generally, much narrower and droplets were smaller than diesel. Spatial distribution of drop size in methanol spray showed somewhat different trends than for diesel.

  10. Conceptual study of electron ripple injection for tokamak transport control

    SciTech Connect (OSTI)

    Choe, W.; Ono, M.; Chang, C.S.

    1995-08-01

    A non-intrusive method for inducing radial electric field based on electron ripple injection is under development by the Princeton CDX-U group. The radial electric field is known to play an important role in the L-H and H-VH mode transition according to the recent theoretical and experimental research. It is therefore important to develop a non-intrusive tool to control the radial electric field profile in tokamak plasmas. The present technique utilizes externally-applied local magnetic ripple fields to trap electrons at the edge, allowing them to penetrate towards the plasma center via {gradient}B and curvature drifts, causing the flux surfaces to charge up negatively. Electron cyclotron resonance heating is utilized to increase the trapped population and the electron drift velocity by raising the perpendicular energy of trapped electrons. In order to quantify the effects of cyclotron resonance heating on electrons, the temperature anisotropy of resonant electrons in a tokamak plasma is calculated. For the calculation of anisotropic temperatures, energy moments of the bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function for heated electrons are solved, assuming a moderate wave power and a constant quasilinear diffusion coefficient. Simulation using a guiding-center orbit model have been performed to understand the behavior of suprathermal electrons in the presence of ripple fields. Examples for CDX-U and ITER parameters are given.

  11. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-06-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

  12. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  13. Performance Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Acquisition » Guidance » Contracting for Support Services » Performance Based Service Acquisition Toolkit Performance Based Service Acquisition Toolkit Performance-based Service Acquisition (PBA) means an acquisition structured around the results to be achieved as opposed to the manner by which the work is to be performed. Performance-based Work Statement (PWS) means that a statement of work for performance-based acquisitions that describes the required results in clear,

  14. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  15. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas

  16. Wisconsin Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  17. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of

  18. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  19. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  20. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground

  1. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

    1995-01-01

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  2. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  3. North Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) North Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 2,626 2,019 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  4. Effect of current injection into thin-film Josephson junctions

    SciTech Connect (OSTI)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  5. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into

  6. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  7. Performance Modeling

    Office of Scientific and Technical Information (OSTI)

    The prediction methodology will form the foundation of a more robust resource management ... Accurate performance prediction requires accurate performance models of the components ...

  8. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:30

  9. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to...

  10. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  11. Application Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Application Porting and Performance IXPUG Performance and Debugging Tools Measuring Arithmetic Intensity Training & Tutorials Software Policies User Surveys NERSC Users...

  12. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  13. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

  14. Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

  15. Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D

    SciTech Connect (OSTI)

    Izzo, V. A.

    2013-05-15

    Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localized gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.

  16. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  17. Modifications of Fowler-Nordheim injection characteristics in {gamma} irradiated MOS devices

    SciTech Connect (OSTI)

    Scarpa, A.; Paccagnella, A.; Montera, F.; Candelori, A.; Ghibaudo, G.; Pananakakis, G.; Fuochi, P.G.

    1998-06-01

    In this work the authors have investigated how gamma irradiation affects the tunneling conduction mechanism of a 20 nm thick oxide in MOS capacitors. The radiation induced positive charge is rapidly compensated by the injected electrons, and does not impact the gate current under positive injection after the first current-voltage measurement. Only a transient stress induced leakage current at low gate bias is observed. Instead, a radiation induced negative charge has been observed near the polysilicon gate, which enhances the gate voltage needed for Fowler-Nordheim conduction at negative gate bias. No time decay of this charge has been observed. Such charges slightly modify the trapping kinetics of negative charge during subsequent electrical stresses performed at constant current condition.

  18. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    SciTech Connect (OSTI)

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  19. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    Convert a Geothermal Injection Well - Form 4003-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal...

  20. DOE Regional Partner Initiates CO2 Injection Study in Virginia...

    Broader source: Energy.gov (indexed) [DOE]

    injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced ...

  1. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal...

    Broader source: Energy.gov (indexed) [DOE]

    begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to ... indicated that the region's low-rank coal seams have the capacity to store up to 8 ...

  2. Fact #869: April 20, 2015 Gasoline Direct Injection Captures...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Direct Injection Captures 38% Market Share in Just Seven Years from First Significant Use File fotw869web.xlsx More Documents & Publications Fact 905: December 28, 2015 ...

  3. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  4. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  5. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  6. Tracer Recovery and Mixing from Two Geothermal Injection-Backflow...

    Open Energy Info (EERE)

    procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results...

  7. Interpretation of self-potential measurements during injection...

    Open Energy Info (EERE)

    self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  8. COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION...

    Office of Scientific and Technical Information (OSTI)

    COLLATERAL EFFECTS ON SOLAR NEBULA OXYGEN ISOTOPES DUE TO INJECTION OF sup 26Al BY A NEARBY SUPERNOVA Citation Details In-Document Search Title: COLLATERAL EFFECTS ON SOLAR ...

  9. Title 40 CFR 144 Underground Injection Control Program | Open...

    Open Energy Info (EERE)

    44 Underground Injection Control Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 144...

  10. Gasoline Compression Ignition - Start of Injection Timing Sweep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us For more information, contact Greg Cunningham at (630) 252-8232 or media@anl.gov. Gasoline Compression Ignition - Start of Injection Timing Sweep (VERIFI) Share Topic...

  11. Premixed direct injection nozzle for highly reactive fuels

    DOE Patents [OSTI]

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  12. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  13. Illinois CO2 Injection Project Moves Another Step Forward

    Broader source: Energy.gov [DOE]

    The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide injection test site is an important step forward for the carbon capture and storage project's planned early 2011 startup.

  14. Flow regimes for fluid injection into a confined porous medium...

    Office of Scientific and Technical Information (OSTI)

    For a two-dimensional configuration with point source injection, a nonlinear convection-diffusion equation is derived to describe the time evolution of the fluid-fluid interface. ...

  15. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.

  16. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.

  17. Laterally injected light-emitting diode and laser diode

    SciTech Connect (OSTI)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  18. Memory and Spin Injection Devices Involving Half Metals (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Memory and Spin Injection Devices Involving Half Metals Citation Details In-Document Search Title: Memory and Spin Injection Devices Involving Half Metals Authors: Shaughnessy, M. ; Snow, Ryan ; Damewood, L. ; Fong, C. Y. Publication Date: 2011-01-01 OSTI Identifier: 1198038 Grant/Contract Number: AC52-07NA27344 Type: Published Article Journal Name: Journal of Nanomaterials Additional Journal Information: Journal Volume: 2011; Journal ID: ISSN 1687-4110 Publisher: Hindawi

  19. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, R.M.; Archuleta, J.; Fink, C.F.

    The disclosure relates to downhole injection of radioactive /sup 82/Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular /sup 82/Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the /sup 82/Br into surrounding fractured strata. A sensor in a remote horehole reads progress of the radioactive material through fractured structure.

  20. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, Robert M.; Archuleta, Jacobo R.; Fink, Conrad F.

    1983-01-01

    The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

  1. Passive injection: A strategy for mitigating reservoir pressurization,

    Office of Scientific and Technical Information (OSTI)

    induced seismicity and brine migration in geologic CO2 storage (Journal Article) | SciTech Connect Journal Article: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Authors: Dempsey, David ; Kelkar, Sharad ; Pawar, Rajesh Publication

  2. Boundary condition and fuel composition effects on injection processes of

    Office of Scientific and Technical Information (OSTI)

    high-pressure sprays at the microscopic level (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level This content will become publicly available on March 22, 2018 « Prev Next » Title: Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level Authors: Manin, J. ; Bardi, M. ; Pickett, L. M. ; Payri, R.

  3. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  4. Productivity and injectivity of horizontal wells. Quarterly report, January

    Office of Scientific and Technical Information (OSTI)

    1, 1995--March 31, 1995 (Technical Report) | SciTech Connect Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995 Citation Details In-Document Search Title: Productivity and injectivity of horizontal wells. Quarterly report, January 1, 1995--March 31, 1995 × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as

  5. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  6. Direct plasma injection scheme with various ion beams

    SciTech Connect (OSTI)

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  7. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  8. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  9. Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384

    SciTech Connect (OSTI)

    Mehos, M. S.

    2014-01-01

    Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

  10. Taming the Wild World of Management, Performance and Communication - 13459

    SciTech Connect (OSTI)

    Ford, Laurie

    2013-07-01

    Management has evolved a long way from its original meaning of 'governing a horse'. The industrial revolution fostered 'scientific management'; 1930's Hawthorne studies discovered that people's social interactions could alter productivity; and the dawn of the computer age in the post-war 1950's brought general systems theory into management thinking. Today, mobile wireless connectivity aims to transform ever-changing networks of players, mandates, and markets into something that can be 'managed'. So why is there no clear and simple recipe for how to practice management? We talk about financial management, safety management, and operations management, but surely the 'management' part of those endeavors will share the same set of practices. Instead, we are still arguing for 'management' to include everything from developing people to negotiating contracts. A manager's job may include many things, but one of them, the job of management, needs to be nailed down. Three standard practices for managing in a network are developed: (a) support the dialogues that connect people vital to accomplishing a goal or objective; (b) develop and sustain the scoreboards that serve as a road-map to reach the goal; and (c) control the feedback to 'govern the horse'. These three practices are useful for more than reaching goals, as they also support coordinating across boundaries and running productive meetings. The dialogues for productive relationships, scoreboards for goals and deliverables, and feedback for performance together constitute a recipe for managing in a networked world. (authors)

  11. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are ...

  12. Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Performance of a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  15. Performance Tuning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Tuning Performance Tuning Hints and tips on how to optimize your Burst Buffer performance Note: this only applies to the Cori Phase 1 Burst Buffer and should not be taken as general Burst Buffer advice. This page will be updated as the DataWarp software is updated and performance continues to improve. For larger files, ensure your Burst Buffer allocation will be striped over multiple nodes Currently, the Burst Buffer granularity is 213GB. If you request an allocation smaller than

  16. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect (OSTI)

    Blo, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Lser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  17. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  18. Role of stochastic heating in wakefield acceleration when optical injection is used

    SciTech Connect (OSTI)

    Rassou, S.; Bourdier, A.; Drouin, M.

    2014-08-15

    The dynamics of an electron in two counterpropagating waves is investigated. Conditions for stochastic acceleration are derived. The possibility of stochastic heating is confirmed when two waves interact with low density plasma by performing PIC (Particle In Cell) code simulations. It is shown that stochastic heating can play an important role in laser wakefield acceleration. When considering low density plasma interacting with a high intensity wave perturbed by a low intensity counterpropagating wave, stochastic heating can provide electrons with the right momentum for trapping in the wakefield. The influence of stochastic acceleration on the trapping of electrons is compared to the one of the beatwave force which is responsible for cold injection. To do so, several polarizations for the colliding pulses are considered. For some value of the plasma density and pulse duration, a transition from an injection due to stochastic acceleration to a cold injection dominated regime—regarding the trapped charge—has been observed from 2D and 3D PIC code simulations. This transition is ruled by the ratio of the interaction length of the pulses to the longitudinal size of the bubble. When the interaction length of the laser pulses reaches the radius of the accelerating cavity stochastic heating becomes dominant, and might be necessary to get electrons trapped into the wakefield, when wakefield inhibition grows with plasma density.

  19. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    L DELIVERABLE TRACKING SYSTEM

  20. Injection of ?-like suprathermal particles into diffusive shock acceleration

    SciTech Connect (OSTI)

    Kang, Hyesung; Petrosian, Vah; Ryu, Dongsu; Jones, T. W. E-mail: vahe@stanford.edu E-mail: twj@msi.umn.edu

    2014-06-20

    We consider a phenomenological model for the thermal leakage injection in the diffusive shock acceleration (DSA) process, in which suprathermal protons and electrons near the shock transition zone are assumed to have the so-called ?-distributions produced by interactions of background thermal particles with pre-existing and/or self-excited plasma/MHD waves or turbulence. The ?-distribution has a power-law tail, instead of an exponential cutoff, well above the thermal peak momentum. So there are a larger number of potential seed particles with momentum, above that required for participation in the DSA process. As a result, the injection fraction for the ?-distribution depends on the shock Mach number much less severely compared to that for the Maxwellian distribution. Thus, the existence of ?-like suprathermal tails at shocks would ease the problem of extremely low injection fractions, especially for electrons and especially at weak shocks such as those found in the intracluster medium. We suggest that the injection fraction for protons ranges 10{sup 4}-10{sup 3} for a ?-distribution with 10 ? ? {sub p} ? 30 at quasi-parallel shocks, while the injection fraction for electrons becomes 10{sup 6}-10{sup 5} for a ?-distribution with ? {sub e} ? 2 at quasi-perpendicular shocks. For such ? values the ratio of cosmic ray (CR) electrons to protons naturally becomes K {sub e/p} ? 10{sup 3}-10{sup 2}, which is required to explain the observed ratio for Galactic CRs.

  1. Optical injection probing of single ZnO tetrapod lasers

    SciTech Connect (OSTI)

    Szarko, Jodi M.; Song, Jae Kyu; Blackledge, Charles Wesley; Swart, Ingmar; Leone, Stephen R.; Li, Shihong; Zhao, Yiping

    2004-11-23

    The properties of zinc oxide (ZnO) nanotetrapod lasers are characterized by a novel ultrafast two-color pump/stimulated emission probe technique. Single legs of tetrapod species are isolated by a microscope objective, pumped by 267 nm pulses, and subjected to a time-delayed 400 nm optical injection pulse, which permits investigation of the ultrafast carrier dynamics in the nanosize materials. With the optical injection pulse included, a large increase in the stimulated emission at 400 nm occurs, which partially depletes the carriers at this wavelength and competes with the normal 390 nm lasing. At the 390 nm lasing wavelengths, the optical injection causes a decrease in the stimulated emission due to the energetic redistribution of the excited carrier depletion, which occurs considerably within the time scale of the subpicosecond duration of the injection pulse. The effects of the optical injection on the spectral gain are employed to probe the lasing dynamics, which shows that the full width at half maximum of the lasing time is 3 ps.

  2. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  3. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  4. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  5. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van; Binderbauer, M.; Isakov, I.

    2005-10-15

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  6. Electroconvection under injection from cathode and heating from above

    SciTech Connect (OSTI)

    Mordvinov, A. N.; Smorodin, B. L.

    2012-05-15

    We study the electroconvection that appears in a nonuniformly heated, poorly conducting liquid in a parallel-plate horizontal capacitor due to the action of an external static electric field on the charge injected from the cathode. It is shown that the heating of the layer from above prevents steady-state convection and that, unlike the isothermal situation, electroconvection can appear in the oscillatory manner as a result of direct Hopf bifurcation. The effect of the heating intensity, the intensity of charge injection from the cathode, and the charge mobility on the thresholds of oscillatory and monotonic electroconvection is analyzed and the characteristic scales and frequencies of critical perturbations are determined. The nonlinear wave and steady-state regimes of the 2D convective structures formed in the poorly conducting liquid under the action of thermogravitational and injection mechanisms of convection are analyzed. The domains of existence of standing, traveling, and modulated waves are determined.

  7. Economic Performance

    Energy Savers [EERE]

    in Environmental, Energy, and Economic Performance ... of greenhouse gas emissions a priority for Federal agencies, it is hereby ordered as follows: Section 1. Policy. ...

  8. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  9. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  10. Residual orientation in micro-injection molded parts

    SciTech Connect (OSTI)

    Healy, John; Edward, Graham H.; Knott, Robert B. (Monash); (ANSTO)

    2008-06-30

    The residual orientation following micro-injection molding of small rectangular plates with linear polyethylene has been examined using small-angle neutron scattering, and small- and wide-angle X-ray scattering. The effect of changing the molding conditions has been examined, and the residual chain orientation has been compared to the residual orientation of the crystallites as a function of position in the sample. This study has found that, for micromoldings, the orientation of the crystallites decreases with increasing injection speed and increasing mold thickness. The combined data suggest that the majority of the orientation present comes from oriented crystal growth rather than residual chain orientation.

  11. New Jersey Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 805 975 1,281 1970's 1,447 1,626 1,765 1,867 3,953 6,378 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  12. Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

  13. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  14. INJECTION CARBON STRIPPING FOIL ISSUES IN THE SNS ACCUMULATOR RING.

    SciTech Connect (OSTI)

    BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.

    2001-06-18

    We are reporting the results of studies on issues related to the injection stripping foil in the Spallation Neutron Source (SNS) accumulator ring. The problems related to foil heating and foil lifetime, such as current density distribution and temperature distribution in the foil, are investigated. The impact of injection errors on the beam losses at the foil is studied. The particle traversal rate and the beam losses due to scattering in the foil are summarized. Finally, SNS end-to-end simulation results of the foil-missing rate, the foil-hitting rate and the maximum foil temperature are presented.

  15. Turbomachine injection nozzle including a coolant delivery system

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  16. Transition duct with late injection in turbine system

    SciTech Connect (OSTI)

    LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray; Flanagan, James Scott; Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-15

    A system for supplying an injection fluid to a combustor is disclosed. The system includes a transition duct comprising an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The passage defines a combustion chamber. The system further includes a tube providing fluid communication for the injection fluid to flow through the transition duct and into the combustion chamber.

  17. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOE Patents [OSTI]

    Ramsey, J. Michael

    2002-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolitographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  18. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOE Patents [OSTI]

    Ramsey, J. Michael

    1999-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  19. Acid-gas injection encounters diverse H{sub 2}S, water phase changes

    SciTech Connect (OSTI)

    Carroll, J.J.

    1998-03-09

    For acid-gas injection systems, pressure-composition diagrams indicate the significant phase changes that H{sub 2}S and water mixtures can undergo when going from an amine unit to downhole in an injection well. This conclusion of a two-part series describes the importance of considering H{sub 2}S and water phase changes in the design of acid gas injection compressors, pipelines, injection wells, and methanol injection.

  20. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  2. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  3. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  4. One-Dimensional SO2 Predictions for Duct Injection

    Energy Science and Technology Software Center (OSTI)

    1993-10-05

    DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.

  5. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  6. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  7. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  8. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  9. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  10. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  11. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  12. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect (OSTI)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, ?= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10100 kHz), at a definite pressure of ?0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  13. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to the most effient use of NERSC HPSS: File sizes of about 1 GB or larger will give the best network performance (see graph below) Files sizes greater than about 500 GB can be more difficult to work with and lead to longer transfer times. Files larger than 15 TB cannot be uploaded to HPSS. Aggregate groups of small files

  14. Presidential Performance Contracting Challenge: Performance Toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Performance Contracting Challenge: Performance Toward New 4 Billion Goal Presidential Performance Contracting Challenge: Performance Toward New 4 Billion Goal ...

  15. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect (OSTI)

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  16. Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance assessment (PA) is defined in the United States by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) regulations as a process to be used in estimating the long-term performance of deep geologic disposal sites for high-level and transuranic radioactive waste. Although specific regulatory requirements differ for individual projects (e.g., the Waste Isolation Pilot Plant and the potential repository at Yucca Mountain), the overall approach to PA is

  17. Performance Period

    Office of Environmental Management (EM)

    Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill | Department of Energy Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter

  18. Performance evaluation of low heat rejection engines

    SciTech Connect (OSTI)

    Sun, X.; Wang, W.G.; Bata, R.M. ); Gao, X. )

    1994-10-01

    Improving the performance of the Chinese B135 six-cylinder direct injection turbocharged and turbocompounded Low Heat Rejection Engine (LHRE) was based on experimental and analytical studies. The studies were primarily applied on a B1135 single-cylinder LHR engine and a conventional water-cooled B1135 single-cylinder engine. Performance of the B1135 LHRE was worse than that of the conventional B1135 due to a deterioration in the combustion process of the B1135 LHRE. The combustion process was improved and the fuel injection system was redesigned and applied to the B135 six-cylinder LHRE. The new design improved the performance of the LHRE and better fuel economy was realized by the thermal energy recovered from the exhaust gases by the turbocompounding system.

  19. Injection and Monitoring at the Wallula Basalt Pilot Project

    SciTech Connect (OSTI)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show that mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.

  20. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  1. South Central Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) South Central Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 43,713 72,210 68,273 129,736 166,816 139,578 127,533 106,014 152,936 188,366 105,938 79,339 2015 42,402 27,815 109,364 202,417 199,245 125,159 103,901 98,174 147,861 157,461 91,849 81,946 2016 39,777 68,898 - = No Data Reported; -- = Not Applicable; NA = Not

  2. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  3. East Region Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Injections into Underground Storage (Million Cubic Feet) East Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 9,107 10,259 22,569 71,857 144,145 132,960 120,491 118,493 122,207 94,669 33,103 25,810 2015 8,423 5,281 16,253 88,445 149,767 130,188 108,787 114,704 101,174 71,777 40,221 27,722 2016 8,190 15,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  5. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  6. Control of cooling losses at high pulverized coal injection rates

    SciTech Connect (OSTI)

    Bonte, L.; Nieuwerburgh, H. Van

    1996-12-31

    One of the problems which is encountered by many blast furnace operators is the appropriate control of the cooling losses of the blast furnace. This problem has been aggravated by the introduction of pulverized coal injection. Even with equal burden and coke composition, both Sidmar furnaces behave differently with respect to the cooling losses. This phenomenon is possibly attributable to the different profile and cooling circuitry of the furnaces. Among other parameters the angles of bosh and stack may favor the formation of scabs or not. Some operators experience a decrease of their cooling losses, other operators have problems to limit their cooling losses to an acceptable level. As a result, different operating practices exist with respect to the burden distribution. The increase of the ore to coke ratio with pulverized coal injection suggests that the coke and sinter quality has to be monitored very carefully in order to avoid permeability problems.

  7. Pacific Region Natural Gas Injections into Underground Storage (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) Pacific Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 4,011 3,540 14,172 43,546 58,466 51,172 32,264 32,879 23,448 31,224 15,841 14,871 2015 5,947 15,411 23,160 28,448 37,851 21,448 19,718 17,633 22,413 27,233 13,622 8,742 2016 7,399 8,534 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  8. AGA Eastern Consuming Region Natural Gas Injections into Underground

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223

  9. AGA Producing Region Natural Gas Injections into Underground Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375

  10. AGA Western Consuming Region Natural Gas Injections into Underground

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122

  11. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOE Patents [OSTI]

    Hartwell, Jack K.; Goodwin, Scott G.; Johnson, Larry O.; Killian, E. Wayne

    1990-01-01

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  12. Apparatus and method for controlling the secondary injection of fuel

    DOE Patents [OSTI]

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  13. Stratified charge injection for gas-fueled rotary engines

    SciTech Connect (OSTI)

    King, S.R.

    1992-03-10

    This patent describes a stratified charge injection for gas-fueled rotary engines having an air intake stroke, a compression stroke, a power stroke, and an exhaust stroke. It comprises a rotor housing, the housing including an air intake port and an exhaust port, and an outer perimeter, a rotor rotatable in the housing, a gaseous fuel injector supplying all of the fuel is connected to the housing between 270{degrees} and 360{degrees} of the rotor rotation after compression top dead center and downstream of the air intake port, the injector providing gaseous fuel at a pressure less than peak compression pressure, the injector located in the middle of the width of the outer perimeter of the housing, spark ignition means in the housing downstream of the injector, and means connected to the fuel injector responsive to the compression pressure for controlling the rate and duration of fuel injection.

  14. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J.; Berg, J. Scott; Kelliher, D. J.; Machida, S.

    2010-03-30

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  15. Pulse-actuated fuel-injection spark plug

    DOE Patents [OSTI]

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  16. Lithium pellet injection experiments on the Alcator C-Mod tokamak

    SciTech Connect (OSTI)

    Garnier, D.T.

    1996-06-01

    A pellet enhanced performance mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient ({ell}{sub p} {le} a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neoclassical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li{sup +} emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near the n = {infinity} and the n = 1 marginal stability limits.

  17. A Novel Method of Injection Molding Titanium Components

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a unique blend of powder injection molding feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process.

  18. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  19. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect (OSTI)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  20. Method and apparatus for continuous flow injection extraction analysis

    DOE Patents [OSTI]

    Hartenstein, Steven D. (Idaho Falls, ID); Siemer, Darryl D. (Idaho Falls, ID)

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  1. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  2. Alcohol injection cuts diesel consumption on turbocharged tractors

    SciTech Connect (OSTI)

    Edson, D.V.

    1980-07-21

    M and W Gear Co. of Gibson City, IL, are marketing a new alcohol- injection system that permits turbocharged diesel engines to burn alcohol and claims to cut diesel consumption by 30% and more. The alcohol fuel, a blend of alcohol and water, does not meet the diesel fuel until the alcohol has been atomized and sprayed through the intake manifold into the cylinders. It permits farmers to use home- still-produced ethanol without the added expense of refining to anhydrous composition.

  3. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  4. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: Earth Sciences; Energy Sciences; Energy Conservation, Consumption, & Utilization(32); Environmental Sciences(54); ...

  5. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... clusters that serve occasional vehicles traveling a long distance between clusters, but ... The benefits of this approach are tangible. Common parts will help minimize maintenance ...

  6. LANL Deliverable to the Big Sky Carbon Sequestration Partnership...

    Office of Scientific and Technical Information (OSTI)

    Carey, James W. Los Alamos National Laboratory Earth Sciences; Energy Sciences; Energy Conservation, Consumption, & Utilization(32); Environmental Sciences(54);...

  7. Deliverable for F?ST project: Ln Resin based PLE

    SciTech Connect (OSTI)

    Peterson, Dominic S.; Armenta, Claudine E.; Rim, Jung H.

    2012-05-03

    This memo describes the fabrication of a polymer ligand extractant based on Eichrom's LN-1 resin. This work has been in support of the Fast Alpha Spectrometry Tool (F{alpha}ST) project. The first part of LANL's role in this project is to evaluate new extractants for use in polymer ligand extractants (PLEs). The first new extractant evaluated is Di(2-ethyl hexyl) phosphoric acid (HDEHP), which is an effective metal extractant. It has very efficient chelating properties for a wide variety of metal ions. HDEHP is an amphiphillic molecule with two long hydrocarbon chains and a polar end with a phosphoryl oxygen (P=O) and an acidic -OH group as shown in Figure 1. HDEHP has shown effectiveness in extracting lanthanides, selective actinides, and other trivalent elements. Several authors have reported that lanthanides and elements with +3 oxidation state have similar extraction behavior in nitric acid. The distribution ratio for lanthanides rapidly decreases at lower nitric concentration then start to increase at higher concentration as shown in. The trivalent americium, curium, and yttrium exhibit similar trend as trivalent lanthanides. This extraction trend can be also observed from hydrogen chloride solution. This work describes the use of this ligand in a PLE to extract plutonium from solution. Polymer ligand films were prepared by dissolving HDEHP ligands and polystyrene beads in THF. The solution was directly deposited onto a 40 mm diameter stainless steel substrate using an automated pipette. HDEHP based PLEs with direct stippling method are shown in Figure 2. The solution was air dried at room temperature overnight to ensure complete evaporation of THF. The plutonium tracer solution was prepared in 0.01, 0.1, 1, and 8M nitric solutions to study the effect of nitric concentration in plutonium extraction. 0.1667 Bq {sup 239}Pu tracer solution was directly stippled on each PLE and was allowed to equilibrate for 3 hours before removing the solution. The plutonium activity of each sample was measured by direct alpha counting to quantify the plutonium recovery by HDEHP PLE. The alpha spectra from alpha spectroscopy are shown in Figure 3. 1:5, 1:10, and 1:20 PLEs had sharp peak with low tailing. 1:2 had an extremely long tail, which is a possible indication that a large amount of ligands caused the film to not form a smooth surface. Also, it can be noted that 1:2 ratio PLE surface was not as rigid as the other ratio PLEs and it was prone to scratching during sample handing. The resolution of alpha spectra was quantified by measuring Full Width at Half of the Maximum (FWHM) using Bortels equation. The tailing component of the peak was also measured along with FWHM. The peak resolutions and tailing measurements for 0.1M nitric solution samples are given in Table 1. The best resolution was achieved with 1:5 PLE and worst was given by 1:2 PLE. The plutonium recovery by HDEHP PLE was dependent on both nitric concentration and ligand to polymer ratio. 1:2 PLE consistently had the highest recovery followed by 1:5 as shown in Figure 4. It should be noted that 1:2 ratio PLEs consistently had long tailing and the ROI of the spectrum had to be increased to encompass total counts from the tracer. 1:10 and 1:20 PLEs had close to zero percent recovery in all nitric concentration except for 0.01M. The highest plutonium recovery was observed for 0.1M nitric acid. 1:5 PLE gave the best combination of alpha spectroscopy resolution and plutonium recovery. Radiography image of samples were generated to study the plutonium distribution on the PLE surface. Samples were placed on an imaging plate (Fujifilm BAS-TR 2025) for 24 hours and the plate was scanned using GE Typhoon FLA 7000 system. The radiography image in Figure 5 shows uneven distribution with hot spots along the edge and in the center of the samples. These hot spots may be the result of highly localized concentration of ligands or surface defects that were observed in SEM. This unevenness in distribution may cause inaccurate activity measurement by alpha spectroscopy due to a bias in the

  8. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  9. Coanda injection system for axially staged low emission combustors

    DOE Patents [OSTI]

    Evulet, Andrei Tristan (Clifton Park, NY); Varatharajan, Balachandar (Cincinnati, OH); Kraemer, Gilbert Otto (Greer, SC); ElKady, Ahmed Mostafa (Niskayuna, NY); Lacy, Benjamin Paul (Greer, SC)

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  10. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  11. PORTFOLIO PERFORMANCE

    Broader source: Energy.gov [DOE]

    NOTE FROM THE EXECUTIVE DIRECTOR The U.S. Department of Energy’s Loan Programs Oce (LPO) provides the critical financing needed to deploy some of the world’s largest and most innovative clean energy and advanced technology vehicle manufacturing projects to date. Despite its mission to help finance innovation, which carries some degree of financial risk, LPO has maintained strong financial performance, even when compared with private financing of conventional energy projects in the United States. As of September 2014, more than $810 million of interest has already been earned and the estimated loss ratio on LPO’s portfolio is approximately 2% of LPO’s total commitments. This strong performance demonstrates our commitment to protecting taxpayer interests while helping deploy the innovative energy technology necessary to make the United States a global leader in clean energy.

  12. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    SciTech Connect (OSTI)

    Srinivasan, Sanjay

    2014-09-30

    In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.

  13. File:04ORDExplorationInjectionPermit (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    ORDExplorationInjectionPermit (1).pdf Jump to: navigation, search File File history File usage Metadata File:04ORDExplorationInjectionPermit (1).pdf Size of this preview: 463 ...

  14. Initial Results of the DeNOx SCR System by Urea Injection in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus 2005 Diesel Engine Emissions ...

  15. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS You ...

  16. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS (Technical...

    Office of Scientific and Technical Information (OSTI)

    DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Citation Details In-Document Search Title: DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS Soil vapor extraction ...

  17. H.A.R. 11-23 - Underground Injection Control | Open Energy Information

    Open Energy Info (EERE)

    3 - Underground Injection Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-23 - Underground Injection...

  18. A Case History of Injection Through 1991 at Dixie Valley, Nevada...

    Open Energy Info (EERE)

    History of Injection Through 1991 at Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Case History of Injection Through...

  19. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with ...

  20. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection

    Broader source: Energy.gov [DOE]

    Gasoline direct fuel injection (GDI) allows fuel to be injected directly into the cylinder so the timing and shape of the fuel mist can be controlled more precisely. The improved combustion and...

  1. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    Field air injection tests to determine the effect of a heat cycle on the permeability of welded tuff Citation Details In-Document Search Title: Field air injection tests to ...

  2. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff Citation Details In-Document Search Title: Air-injection field tests to ...

  3. Formation dry-out from CO2 injection into saline aquifers: Part...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54; 58; AQUIFERS; BRINES; CROSS SECTIONS; DIFFUSION; DISSOLUTION; EVAPORATION; FRESH WATER; GEOMETRY; INJECTION WELLS; MITIGATION; PERMEABILITY; POROSITY; PRECIPITATION; ...

  4. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  5. Effect of pilot injection on combustion in a turbocharged D.I. diesel engine

    SciTech Connect (OSTI)

    Ishida, Masahiro; Chen, Z.L.; Luo, G.F.; Ueki, Hironobu

    1994-09-01

    For reducing the exhaust emissions and improving the ignition characteristics, the effect of pilot injection was investigated experimentally in a turbocharged direct injection diesel engine. The pilot injection quantity was varied by changing the seat diameter of the Doge plunger installed in the newly developed pilot injector while the separation period between the beginning of pilot injection and that of main injection was fixed at a short interval in the present experiment. The pilot injection effect on combustion was compared with the case of normal injection in two fuel oils with the cetane indexes of 53 and 40-respectively. The pilot injection showed some significant effects on improving the ignition characteristics and fuel consumption as follows: (1) The pilot ignition delay and the main ignition delay were about half of the ignition delay of the normal injection respectively. (2) The lower fuel consumption and NOx could be attained by the pilot injection at the retarded injection timing, especially under the lower load condition. (3) The trade-off relationship between the specific fuel consumption and NOx was significantly improved by the pilot injection. (4) In the present short pilot-main interval, a small amount of pilot quantity was recommended to reduce NOx and fuel consumption without deteriorating smoke density. 12 refs., 16 figs., 1 tab.

  6. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  7. THE COUPLING IMPEDANCE OF THE RHIC INJECTION KICKER SYSTEM.

    SciTech Connect (OSTI)

    HAHN,H.

    1999-06-28

    IN THIS PAPER, RESULTS FROM IMPEDANCE MEASUREMENTS ON THE RHIC INJECTION KICKERS ARE REPORTED. THE KICKER IS CONFIGURED AS A ''C'' CROSS SECTION MAGNET WITH INTERLEAVED FERRITE AND HIGH-PERMITTIVITY DIELECTRIC SECTIONS TO ACHIEVE A TRAVELLING WAVE STRUCTURE. THE IMPEDANCE WAS MEASURED USING THE WIRE METHOD, AND ACCURATE RESULTS ARE OBTAINED BY INTERPRETING THE FORWARD SCATTERING COEFFICIENT VIA THE LONG-FORMULA. THE FOUR KICKERS WITH THEIR CERAMIC BEAM TUBES CONTRIBUE AT Z/N-0.22 OMEGA/RING IN THE INTERESTING FREQUENCY RANGE FROM 0.1 TO 1 BHZ, AND LESS ABOVE.

  8. Dual mode fuel injection system and fuel injector for same

    DOE Patents [OSTI]

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  9. Injection mode-locking Ti-sapphire laser system

    DOE Patents [OSTI]

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  10. HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND

    Office of Scientific and Technical Information (OSTI)

    HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR Semi-Annual Report Reporting Period Start Date: May 1, 2003 Reporting Period End Date: November 1, 2003 Principal Authors: Robert Loucks (Co-PI), Steve Ruppel (Co-PI), Julia Gale, Jon Holder, Jon Olsen, Deanna Combs, Dhiraj Dembla, and Leonel Gomez Date Report Issued: December 10, 2003 DOE Award Number: DE-FC26-02NT15442 Bureau of Economic Geology The John A. and Katherine G. Jackson School of Geosciences The

  11. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    SciTech Connect (OSTI)

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  12. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    SciTech Connect (OSTI)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-09-10

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length ({lambda}{sub De}) enabled the measurement of positive potential pulses with half-widths 4 to 25{lambda}{sub De} and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  13. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    SciTech Connect (OSTI)

    Marray, Tarek [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France); Jaccquet, Philippe; Moinard-Checot, Delphine [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, LaBoMaP, Rue Porte de Paris, 71250 CLUNY (France); Fabre, Agnes; Barrallier, Laurent [Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France)

    2011-01-17

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  14. Boundary layer modeling of reactive flow over a porous surface with angled injection

    SciTech Connect (OSTI)

    Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2008-08-15

    An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)

  15. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    SciTech Connect (OSTI)

    Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.H.; Gul, R.; and James, R.B.

    2010-10-26

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  16. Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures

    SciTech Connect (OSTI)

    Bryan, M. T.; Basu, S.; Fry, P. W.; Schrefl, T.; Gibbs, M.R.J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2009-03-23

    Magnetization reversal in patterned ferromagnetic nanowires usually occurs via domain wall (DW) nucleation and propagation from one end (or both ends) of the wire which can be significantly reduced by a large, magnetically soft pad on one of the wire ends. These 'nucleation pads' reverse at lower fields than an isolated nanowire and introduce a DW to the wire from the wire end attached to the pad. Once a critical 'injection' field is reached, the DW sweeps through the wire, reversing its magnetization. Nucleation pads are frequently used as part of nanowire devices and experimental structures. Magnetic-field-driven shift register memory can include an injection pad to write data while those attached to nanowire spiral turn sensors act as both a source and sink of domain walls. Both of these devices use two-dimensional wire circuits and therefore require the use of orthogonal in-plane magnetic fields to drive domain walls through wires of different orientations. These bi-axial fields can significantly alter the fields at which DW injection occurs and control the number of different injection modes. We have used magnetic transmission soft X-ray microscopy (M-TXM) [6] providing 25nm spatial resolution to image the evolution of magnetization configurations in patterned 24nm thick Ni{sub 80}Fe{sub 20} rectangular nucleation pads and attached wires during DW injection. The structures consisted of 2 {micro}m x 3 {micro}m nucleation pads with wires of width 200 nm, 300 nm or 500 nm attached Comparing the magnetic configuration of the injection pads with micromagnetic models, we find that the relative orientation of closure domains in the remanent magnetization configuration of injection pads determines the reversal pathway that follows, although this is further affected by applied transverse fields. Micromagnetic simulations were performed using a hybrid finite element/boundary element code. The magnetic elements were designed with 20 nm thickness and discretized into a mesh of tetrahedral elements with a maximum cell size of 20 nm. Material properties for bulk permalloy were used, i.e. exchange stiffness A = 1.3 x 10{sup -11} J/m, saturation magnetization M{sub S} = 800 kA/m, magneto-crystalline anisotropy K = 0 Jm{sup -3}, damping constant a = 0.01. A linearly increasing magnetic field (1 Oe/ns) was applied parallel to the wire long axis to simulate switching fields. The dimensions of the simulated structures mimicked the essential features of the experimental structures, although edge roughness was neglected from the model. The remanent magnetization state of the pad with no transverse field consists of a uniform magnetization aligned with the wire axis, with closure domains at the edges facing and joining the wire. When H{sub y} = 0 Oe and H{sub x} = 20 Oe, the magnetization state of the pad buckles, forming eight domains, half of which have magnetizations rotated away from the x-axis. As H{sub x} is increased, the rotation of the domains become larger and the non-rotated domains shrink A transverse field applied in addition to the axial field exhibits a more complex modes of magnetization reversal in the pad (Fig. 1). We understand the pathway of pad magnetization more generally by using micromagnetic simulations. Two initial configurations are shown in Fig. 2 with the closure domain on the left-hand edge of the pad either parallel or anti-parallel to both closure domains on the righthand edges of the pad. As H{sub x} is increased to inject a domain wall, the pad magnetization states changed to vortex states, as observed by M-TXM. At higher fields, the magnetization of the modeled pad became single-domain, although closure domains remained at fields up to H{sub x} = 90 Oe. This supports the suggestion that experimentally observed multi-modal injection is due to the magnetization state of the pad. In summary, the relative orientation of closure domains in the pads determines the magnetization reversal pathway under an axial field. However, the addition of transverse fields can alter these and lead to the pads undergoing reversal under lower axial fields. Our observations have wider implications for experiments and devices using patterned magnetic wires.

  17. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and development bridges fundamental chemical kinetics and applied engine research to investigate how new engine technologies can be co-developed with fuels and lubricants to maximize energy-efficient vehicle performance. Through

  18. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schaperys model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelbys equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  19. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  20. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  1. Duct injection technology prototype development. Materials corrosion report, Revision 1

    SciTech Connect (OSTI)

    Harper, S.L.

    1991-08-01

    This report describes a test program conducted to determine the corrosion rate of materials in the dry scrubber or duct injection systems. Four materials were evaluated: 1010 carbon steel, Corten, 317SS and Hastelloy C-276. The results show that acidic conditions result in higher corrosion rates than alkaline conditions for all the materials. The carbon steel, Corten and stainless steel show moderate to heavy pitting attack in the acidic environment. For the alkaline conditions, the corrosion rates of carbon steel and Corten were higher than the stainless steel or Hastelloy C-276. Also, the corrosion rate of abraded specimens were four time those of unabraded specimens in the flue gas. It is probable that areas of wall-wetting and plugging in the duct injection process will exhibit high rates of corrosion for the carbon steel, Corten, and stainless steel materials. General corrosion and pitting corrosion will predominate. Additionally, abraded duct areas will corrode at a significantly higher rate than unabraded duct materials. 6 refs., 11 figs., 7 tabs.

  2. Sample extraction and injection with a microscale preconcentrator.

    SciTech Connect (OSTI)

    Robinson, Alex Lockwood; Chan, Helena Kai Lun

    2007-09-01

    This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solvent filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.

  3. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  4. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  5. Asymmetric injection of cathodic arc plasma into a macroparticlefilter

    SciTech Connect (OSTI)

    Anders, Andre; MacGill, Robert A.

    2004-02-11

    The cathodic arc plasmas produced by cathode spots usuallyinclude macroparticles, which is undesirable for many applications. Acommon way of removing macroparticles is to use curved solenoid filterswhich guide the plasma from the source to the substrate. In this work, anarc source with relatively small cathode is used, limiting the possiblelocations of plasma production. The relative position of cathodic arcsource and macroparticle filtered was systematically varied and thefiltered plasma current was recorded. It was found that axis-symmetricplasma injection leads to maximum throughput only if an anode aperturewas used, which limited the plasma to near-axis flow by scraping offplasma at larger angles to the axis. When the anode aperture was removed,more plasma could enter the filter. In this case, maximum filtered ioncurrent was achieved when the plasma was injected off-axis, namely offsetin the direction where the filter is curved. Such behavior wasanticipated because the plasma column in the filter is known to beshifted by ExB and centrifugal drift as well as by non-axis-symmetriccomponents of the magnetic field in the filter entrance and exit plane.The data have implications for plasma transport variations caused bydifferent spot locations on cathodes that are not small compared to thefilter cross section.

  6. Improved plasma uniformity in a discharge system with electron injection

    SciTech Connect (OSTI)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.

    2009-02-15

    We present the results of experiments leading to improvement in bulk plasma uniformity of a constricted-arc discharge system with electron injection. The steady-state discharge was in argon, at a gas pressure of 0.5 mTorr, and operated with a main discharge voltage between 20 and 100 V and current between 3 and 15 A. The radial plasma distribution was measured with a movable Langmuir probe. We find that geometric modification of the intermediate electrode exit aperture and the main discharge cathode add little to the plasma uniformity. Improved bulk plasma uniformity is observed when a special distributing grid electrode is used and the main discharge voltage is less than 20-30 V. The application of a weakly divergent magnetic field in the region of the intermediate electrode exit aperture decreases the plasma nonuniformity from 20% to 14% over a radial distance of 30 cm. The plasma uniformity was further improved by compensating the magnetic self-field of the injected electron beam by a reverse magnetic field produced with a special electrode compensator. It is shown that an increase in discharge current causes a proportional increase in back current in the distributing electrode. The approach allows a decrease in plasma nonuniformity from 20% to 13% over a radial distance of 30 cm.

  7. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  8. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  9. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  10. Simulations of Merging Helion Bunches on the AGS Injection Porch

    SciTech Connect (OSTI)

    Gardner, C. J.

    2014-08-29

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  11. Performance Engineering Research Center and RECOVERY. Performance...

    Office of Scientific and Technical Information (OSTI)

    Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document ...

  12. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    SciTech Connect (OSTI)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  13. Ducted combustion chamber for direct injection engines and method

    SciTech Connect (OSTI)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  14. Fuel injection of coal slurry using vortex nozzles and valves

    DOE Patents [OSTI]

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  15. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOE Patents [OSTI]

    Davidson, J. Courtney; Balch, Joseph W.

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  16. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  17. Post-injection transmission attenuation measurements for PET

    SciTech Connect (OSTI)

    Daube-Witherspoon, M.E.; Carson, R.E.; Green, M.V.

    1988-02-01

    The feasibility of acquiring PET transmission information after tracer injection was studied using ring and rotating pin transmission sources. A combined transmission/emission scan was acquired, followed by an emission scan, used to subtract the emission counts from the transmission/emission data. The ratio of emission count rate for FDG brain scans to transmission count rate is 50-100% for a 5-mCi ring source and less than 5% for a 5-mCi pin source. Windowing of the sinogram, which rejects most random and scattered coincidences, also eliminates most emission counts. The magnitude and effects of residual random and scattered coincidences as well as increases in variability from tranmission/emission scans were studied. In addition, the results of combined transmission/emission scans for a high-contrast emission source distribution using ring and pin sources are described.

  18. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect (OSTI)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  19. Insights on postinjection-associated soot emissions in direct injection diesel engines

    SciTech Connect (OSTI)

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio

    2008-08-15

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been fitted to the experimental soot emissions associated with the postinjection obtained in many engine operating conditions, and the appropriate quality of the fit demonstrates that these two parameters explain the main behaviors of the soot emissions associated with a postinjection. (author)

  20. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  1. Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wiremesh mixer development should bring harmony between injection, thermolysis, and mixing. PDF icon deer08_rajadurai.pdf More Documents & Publications Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient Urea SCR NOx Reduction SCR Performance Optimization Through Advancements in Aftertreatment Packaging Urea Mixing Design -- Simulation and Test Investigation

  2. Pre-injection brine production for managing pressure in compartmentalized CO? storage reservoirs

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO? storage that combines CO? injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO?. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO? injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO? injection directly informs reservoir managers about CO? storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.

  3. Effects of gas injection condition on mixing efficiency in the ladle refining process

    SciTech Connect (OSTI)

    Pan, S.M.; Chiang, J.D.; Hwang, W.S.

    1997-02-01

    The aim of this research was to investigate the effects of injection condition on the mixing efficiency of the gas injection treatment of the ladle refining process in steelmaking. A water modeling approach was employed. A NaCl solution was injected into the vessel and the electric conductivity value of the water solution was measured to represent the concentration of the additive. The results of this investigation reveal that up to a certain level, mixing efficiency is improved as the gas flow rate increases. Off-center injection is better than centerline injection. However, the injection lance should not be too close to the wall. Also, mixing efficiency is improved when the submerged depth of the immersion lance increases. The immersion hood has a optimal size as far as mixing efficiency is concerned. A larger or smaller hood would reduce its efficiency. The submerged depth of the immersion hood should be kept to a minimum to improve mixing efficiency.

  4. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore » directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  5. The Impact of Injection on Seismicity at The Geyses, CaliforniaGeothermal Field

    SciTech Connect (OSTI)

    Majer, Ernest L.; Peterson, John E.

    2006-09-25

    Water injection into geothermal systems has often become arequired strategy to extended and sustain production of geothermalresources. To reduce a trend of declining pressures and increasingnon-condensable gas concentrations in steam produced from The Geysers,operators have been injecting steam condensate, local rain and streamwaters, and most recently treated wastewater piped to the field fromneighboring communities. If geothermal energy is to provide a significantincrease in energy in the United States (US Department of Energy (DOE)goal is 40,000 megawatts by 2040), injection must play a larger role inthe overall strategy, i.e., enhanced geothermal systems, (EGS). Presentedin this paper are the results of monitoring microseismicity during anincrease in injection at The Geysers field in California using data froma high-density digital microearthquake array. Although seismicity hasincreased due to increased injection it has been found to be somewhatpredicable, thus implying that intelligent injection control may be ableto control large increases in seismicity.

  6. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect (OSTI)

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/?{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  7. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.

  8. V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vulnerabilities | Department of Energy 3: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities December 10, 2012 - 1:00am Addthis PROBLEM: Perl Locale::Maketext Module Two Code Injection Vulnerabilities PLATFORM: Locale::Maketext 1.23 is affected; other versions also may be affected. ABSTRACT: Two vulnerabilities have been reported in Locale::Maketext module for Perl

  9. Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 23, 2005, Summary Report | Department of Energy Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Docket No. EO-05-01: Trona injection tests were conducted at Mirant's Potomac River Station on Unit 1 between November 12 and December 23, 2005. The purpose of these tests was to determine the capability of dry

  10. A study of solitary wave trains generated by injection of a blob into

    Office of Scientific and Technical Information (OSTI)

    plasmas (Journal Article) | SciTech Connect A study of solitary wave trains generated by injection of a blob into plasmas Citation Details In-Document Search Title: A study of solitary wave trains generated by injection of a blob into plasmas We have investigated the evolution of consecutive electrostatic solitary waves (ESWs) generated upon injection of a finite-sized blob into plasmas using one-dimensional electrostatic particle-in-cell simulations. Strong charge separation developed at

  11. Fuel injection system and method of operating the same for an engine

    DOE Patents [OSTI]

    Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  12. Method and apparatus for injecting a substance into the bloodstream of a subject

    DOE Patents [OSTI]

    Lambrecht, R.M.; Bennett, G.W.; Duncan, C.C.; Ducote, L.W.

    1983-10-18

    An apparatus and method is disclosed for injecting a substance, such as a radiopharmaceutical, into the bloodstream of a subject. The apparatus comprises an injection means, such as a servo controlled syringe, a means for measuring the concentration of that substance in the subject's bloodstream, and means for controlling the injection in response to the measurement so that the concentration of the substance follows a predetermined function of time. The apparatus of the subject invention functions to inject a substance into a subject's bloodstream at a rate controlled by an error signal proportional to the difference between the concentration of the substance in the subject's bloodstream and the predetermined function. 2 figs.

  13. Method and apparatus for injecting a substance into the bloodstream of a subject

    DOE Patents [OSTI]

    Lambrecht, Richard M.; Bennett, Gerald W.; Duncan, Charles C.; Ducote, Louis W.

    1983-10-18

    An apparatus and method for injecting a substance, such as a radiopharmaceutical, into the bloodstream of a subject. The apparatus comprises an injection means, such as a servo controlled syringe, a means for measuring the concentration of that substance in the subject's bloodstream, and means for controlling the injection in response to the measurement so that the concentration of the substance follows a predetermined function of time. The apparatus of the subject invention functions to inject a substance into a subject's bloodstream at a rate controlled by an error signal proportional to the difference between the concentration of the substance in the subject's bloodstream and the predetermined function.

  14. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  15. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...dnavnghistn5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" ...

  16. Fuel Injection and Spray Research Using X-Ray Diagnostics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Injection and Spray Research Using X-Ray Diagnostics Low-Temperature Diesel Combustion Cross-Cut Research Vehicle Technologies Office Merit ...

  17. 10,422,136 Metric Tons of CO2 Injected as of August 21, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed below. Regional Carbon...

  18. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    SciTech Connect (OSTI)

    Bhat, C. M.; Chase, B. E.; Chaurize, S. J.; Garcia, F. G.; Seiya, K.; Pellico, W. A.; Sullivan, T. M.; Triplett, A. K.

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  19. Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location...

  20. Water injection as a means for reducing non-condensible andcorrosive...

    Office of Scientific and Technical Information (OSTI)

    Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs Citation Details In-Document Search Title: Water ...

  1. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions

    Broader source: Energy.gov [DOE]

    3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros/% CO2 reduction) at a significantly lower on-cost.

  2. T-655: Mozilla Firefox CVE-2011-2369 HTML Injection Vulnerability

    Broader source: Energy.gov [DOE]

    Mozilla Firefox is prone to an HTML-injection vulnerability because it fails to properly sanitize user-supplied input before using it in dynamically generated content.

  3. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2

    Broader source: Energy.gov [DOE]

    A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected.

  4. Vehicle Technologies Office Merit Review 2015: Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel injection...

  5. Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel injection...

  6. A study of solitary wave trains generated by injection of a blob...

    Office of Scientific and Technical Information (OSTI)

    Title: A study of solitary wave trains generated by injection of a blob into plasmas We have investigated the evolution of consecutive electrostatic solitary waves (ESWs) generated ...

  7. Liquid Propane Injection Technology Conductive to Today's North...

    Broader source: Energy.gov (indexed) [DOE]

    the same power, torque, and environmental vehicle performance while reducing imports of foreign oil PDF icon deer09arnold.pdf More Documents & Publications Liquid Propane ...

  8. Modeling of geomechanical proceses during injection in amultilayered...

    Office of Scientific and Technical Information (OSTI)

    characterization. The numericalsimulation is performed using the coupled processes simulator TOUGH-FLAC(Rutqvist et al. 2002, Rutqvist and Tsang, 2003), and is an extension ...

  9. Performance and operation of the Hamm Minnelusa Sand Unit, Campbell County, Wyoming

    SciTech Connect (OSTI)

    Doll, T.E.; Hanson, M.T.

    1987-12-01

    The Hamm Minnelusa Sand Unit was discovered in 1966 and produced from the Minnelusa B sand. The field was under fluid-expansion primary recovery until water injection began in Dec. 1972. Waterflood response peaked at a higher monthly rate than that of primary recovery. Water production indicated channeling through high-permeability zones. In Oct. 1975, a volumetric-sweep improvement program was initiated into the single-injection wellbore. Anionic polyacrylamide and aluminum citrate were injected to provide in-depth vertical conformance. A second well was converted to injection in April 1976, and sweep improvement started 26 months later. The third well was converted to injection and the chemical-oil-recovery program began in Aug. 1982. The first two injectors were converted to produce water disposal at that date. The polymer-augmented waterflood was terminated in Jan. 1985. Water injection continues. This paper details flood performance up to July, 1985. Cumulative water injection is 76.6% of the total PV. A 39.5% PV chemical slug has been injected. Total recovery to data is 48.7% of the original oil in place (OOIP).

  10. State and national energy environmental risk analysis systems for underground injection control. Final report, April 7, 1992--May 31, 1995

    SciTech Connect (OSTI)

    1995-05-01

    The purpose of this effort is to develop and demonstrate the concept of a national Energy and Environmental Risk Analysis System that could support DOE policy analysis and decision-making. That effort also includes the development and demonstration of a methodology for assessing the risks of groundwater contamination from underground injection operations. EERAS is designed to enhance DOE`s analytical capabilities by working with DOE`s existing resource analysis models for oil and gas. The full development of EERAS was not planned as part of this effort. The design and structure for the system were developed, along with interfaces that facilitate data input to DOE`s other analytical tools. The development of the database for EERAS was demonstrated with the input of data related to underground injection control, which also supported the risk assessment being performed. The utility of EERAS has been demonstrated by this effort and its continued development is recommended. Since the absolute risk of groundwater contamination due to underground injection is quite low, the risk assessment methodology focuses on the relative risk of groundwater contamination. The purpose of this methodology is to provide DOE with an enhanced understanding of the relative risks posed nationwide as input to DOE decision-making and resource allocation. Given data problems encountered, a broad assessment of all oil reservoirs in DOE`s resource database was not possible. The methodology was demonstrated using a sample of 39 reservoirs in 15 states. While data difficulties introduce substantial uncertainties, the results found are consistent with expectations and with prior analyses. Therefore the methodology for performing assessments appears to be sound. Recommendations on steps that can be taken to resolve uncertainties or obtain improved data are included in the report.

  11. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  12. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect (OSTI)

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  13. METALLIZATION OF SNS RING INJECTION KICKER CERAMIC CHAMBERS.

    SciTech Connect (OSTI)

    HE,P.; HSEUH,H.C.; TODD,R.J.

    2002-06-03

    Ceramic chambers will be used in the pulsed kicker magnets for the injection of H{sup -} into the Spallation Neutron Source (SNS) accumulator ring, to avoid shielding of a fast-changing external magnetic field by metallic chamber walls and to reduce eddy current heating. The inner surfaces of the ceramic chambers will be coated with a conductive layer, possibly titanium (Ti) or copper (Cu) with a titanium nitride (TiN) overlayer, to reduce the beam coupling impedance, provide passage for beam image current and to reduce the secondary electron yields. This paper describes the development of sputtering method for the 0.83m long 16cm inner diameter (ID) ceramic chambers. Coatings of Ti, Cu and TiN with thickness up to 10 {micro}m were produced by means of DC magnetron sputtering. The difficulty of coating insulators was overcome with the introduction of an anode screen. Films with good adhesion, uniform longitudinal thickness, and conductivity were produced.

  14. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect (OSTI)

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  15. Raceway behaviors in blast furnace with pulverized coal injection

    SciTech Connect (OSTI)

    Chung, J.K.; Han, J.W.; Cho, B.R.

    1995-12-01

    The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

  16. Creating unstable velocity-space distributions with barium injections

    SciTech Connect (OSTI)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges.

  17. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03...

  18. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03

  19. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Cook, James R.

    2005-12-07

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  20. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.