Powered by Deep Web Technologies
Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Staged direct injection diesel engine  

DOE Patents [OSTI]

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

2

Diesel engine emissions reduction by multiple injections having increasing pressure  

DOE Patents [OSTI]

Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

2003-01-01T23:59:59.000Z

3

Advanced Modeling of Direct-Injection Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

4

Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine  

E-Print Network [OSTI]

In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

2012-01-01T23:59:59.000Z

5

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

SciTech Connect (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

6

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

7

Advanced Diesel Common Rail Injection System for Future Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

8

Extended performance of alcohol fumigation in diesel engines through different multipoint alcohol injection timing cycles  

SciTech Connect (OSTI)

This paper reports on the results of using multipoint port injection alcohol fumigation of a four-cycle turbocharged diesel engine in which the fumigation injection cycle was varied. The three cycles, dual with one-half of the alcohol injection on each engine revolution, single with all of the alcohol injection during the open intake valve revolution, and single with all of the alcohol injected during the closed intake valve revolution, lead to significant differences in the engines pressure-volume history and alcohol energy replacement tolerance. The engine was fumigated with both industrial grade ethanol and methanol and complete performance and emissions data (excluding aldehydes) were measured at low, medium, and high values of BMEP and rpm.

Savage, L.D.; White, R.A.; Cole, S.; Pritchett, G.

1986-01-01T23:59:59.000Z

9

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

SciTech Connect (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

10

ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES  

E-Print Network [OSTI]

ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

Jagannatham, Aditya K.

11

Performance of a High Speed Indirect Injection Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-12covington.pdf More Documents & Publications Investigation...

12

Thermophoretic effects on soot distribution in a direct-injection diesel engine  

SciTech Connect (OSTI)

A recently developed stochastic particle approach for computing soot particle dynamics is implemented in a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. The model is applied to study the distribution of soot particles in a direct-injection Diesel engine. In particular, the effect of thermophoresis on soot distribution is examined. It is shown that thermophoresis could be important once the soot particles are brought close to the walls, i.e. within the boundary layer, by turbulent eddy convection or as a result of the orientation of the sprays. Thermophoresis does not appear to result in a change in the distribution of soot in the regions outside the boundary layer as the characteristic time associated with turbulent eddy convection is at least an order of magnitude shorter than that associated with thermophoresis and it and bulk convection are by far the dominant factors in determining the soot distribution.

Abraham, J. [Univ. of Minnesota, Minneapolis, MN (United States)

1996-09-01T23:59:59.000Z

13

adiabatic diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

14

advanced diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

15

adiabatic diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

16

advanced diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

17

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

18

Multicylinder Diesel Engine for Low Temperature Combustion Operation...  

Broader source: Energy.gov (indexed) [DOE]

Multicylinder Diesel Engine for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low...

19

Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine  

E-Print Network [OSTI]

, the characteristics of combustion for swept injection timings along the maximum brake torque plateau are determined. The research is conducted by varying injection timing at constant engine speed and load while measuring engine emissions and in-cylinder pressure...

Kroeger, Timothy H

2013-09-19T23:59:59.000Z

20

High-pressure late cycle direct injection of natural gas in a rail medium speed diesel engine  

SciTech Connect (OSTI)

The performance of an Electro-Motive Division (EMD) 567B, two-cylinder locomotive research engine, when operated on high-pressure/late-cycle injection of natural gas, is presented in this paper. A redesign and fabrication of the fuel system was undertaken to facilitate the consumption of natural gas. A small percentage of No.2 diesel fuel (DF-2) was used to ignite the natural gas. Engine performance, while running natural gas, resulted in matching rated speed and power with slightly lower thermal efficiency. Full power was achieved with a ratio of 99 percent natural gas and 1 percent diesel fuel. However, at high natural gas to diesel fuel ratios, audible knock was detected. The primary objective of the project was to establish technical feasibility of, and basic technology for, operating medium-speed rail diesel engines on high-pressure natural gas. Secondary objectives were to attain adequate engine performance levels for rail application, develop a system oriented toward retrofit of in-service locomotives, and realize any potential improvements in thermal efficiency due to use of the high-pressure/late-cycle approach.

Wakenell, J.F.; O'Neal, G.B.; Baker, Q.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines  

SciTech Connect (OSTI)

A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

2010-10-15T23:59:59.000Z

22

Diesel Engine Alternatives  

SciTech Connect (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

23

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

24

Fuel Formulation Effects on Diesel Fuel Injection, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

25

Numerical simulation of turbulent jet primary breakup in Diesel engines  

E-Print Network [OSTI]

Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel

Helluy, Philippe

26

Cleaning Up Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

27

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

28

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

29

Structured hypothesis tests based diagnosis : application to a common rail diesel injection system  

E-Print Network [OSTI]

Structured hypothesis tests based diagnosis : application to a common rail diesel injection system Zahi SABEH, José RAGOT, Frédéric KRATZ Delphi Diesel Systems, Centre Technique de Blois 9 boulevard de to increase diesel engine performances and to reduce noise, emission and fuel consumption. Such goals

Boyer, Edmond

30

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

31

automotive diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

32

automotive diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

33

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

34

The 60% Efficient Diesel Engine: Probably, Possible, Or Just...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

35

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

36

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

37

Adaptive engine injection for emissions reduction  

DOE Patents [OSTI]

NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

2008-12-16T23:59:59.000Z

38

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

39

Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)  

Broader source: Energy.gov (indexed) [DOE]

3th Diesel Engine-Efficiency and Emissions Research (DEER) Conference August 13, 2007 - Poster P-20 Detroit, MI...

40

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm  

E-Print Network [OSTI]

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm Department of Applied Mathematics of a fuel eÆcient, nonpollut- ing diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match

New York at Stoney Brook, State University of

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

42

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

43

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

44

OVERVIEW OF EMERGING CLEAN DIESEL ENGINE TECHNOLOGY  

SciTech Connect (OSTI)

Diesel engines are the most realistic technology to achieve a major improvement in fuel economy in the next decade. In the US light truck market, i.e. Sport Utility Vehicles , pick-up trucks and mini-vans, diesel engines can more than double the fuel economy of similarly rated spark ignition (SI) gasoline engines currently in these vehicles. These new diesel engines are comparable to the SI engines in noise levels and 0 to 60 mph acceleration. They no longer have the traditional ''diesel smell.'' And the new diesel engines will provide roughly twice the service life. This is very significant for resale value which could more than offset the initial premium cost of the diesel engine over that of the SI gasoline engine. So why are we not seeing more diesel engine powered personal vehicles in the U.S.? The European auto fleet is comprised of a little over 30 percent diesel engine powered vehicles while current sales are about 50 percent diesel. In France, over 70 percent of the luxury class cars i.e. Mercedes ''S'' Class, BMW 700 series etc., are sold with the diesel engine option selected. Diesel powered BMW's are winning auto races in Germany. These are a typical of the general North American perspective of diesel powered autos. The big challenge to commercial introduction of diesel engine powered light trucks and autos is compliance with the Environmental Protection Agency (EPA) Tier 2, 2007 emissions standards. Specifically, 0.07gm/mile Oxides of Nitrogen (NOx) and 0.01 gm/mile particulates (PM). Although the EPA has set a series of bins of increasing stringency until the 2007 levels are met, vehicle manufacturers appear to want some assurance that Tier 2, 2007 can be met before they commit an engine to a vehicle.

Fairbanks, John

2001-08-05T23:59:59.000Z

45

Multicylinder Diesel Engine Design for HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

7 DEER Detroit August 12-16 Multicylinder Diesel Engine Design for HCCI operation William de Ojeda Phil Zoldak, Ral Espinoza, Raj Kumar, Chunyi Xia, Dan Cornelius International...

46

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES  

Broader source: Energy.gov (indexed) [DOE]

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES Thierry Leprince & Phil Roberts Extengine Transport Systems, LLC 1370 South Acacia Avenue Fullerton, CA - 92831 www.extengine.com...

47

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

48

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

49

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

50

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

T. A. , (2001). Diesel engines: environmental impact andof a heavy-duty diesel engine to improve deNOx performanceOn-road heavy-duty diesel engine exhaust particulate matter

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

51

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

52

Visualization of UHC Emissions for Low-Temperature Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER...

53

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

54

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

55

Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

System (EAS) for On- Highway Diesel Engines Highway Diesel Engines Haoran Hu Eaton Corporation August 22, 2006 2004 Eaton Corporation. All rights reserved. Agenda...

56

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

57

12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

58

Advances in Diesel Engine Technologies for European Passenger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

59

Emission Performance of Modern Diesel Engines Fueled with Biodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

60

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

62

Achieving High-Effiency Clean Ccombustion in Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

63

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

64

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov (indexed) [DOE]

R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

65

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005...

66

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

67

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Diesel Engine Challenges New Feedstocks and Replacement Fuel Diesel Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

68

adicionado ao diesel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

69

automotive diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

70

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network [OSTI]

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

71

Coal-fueled diesel engines for locomotive applications  

SciTech Connect (OSTI)

GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

1993-11-01T23:59:59.000Z

72

Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement  

E-Print Network [OSTI]

PENNSTATE Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement Overview Tasked with improving cost and quality throughout the Volvo diesel engine

Demirel, Melik C.

73

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

74

Clean and Efficient Diesel Engine  

SciTech Connect (OSTI)

Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

None

2010-12-31T23:59:59.000Z

75

Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

76

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

77

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

78

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

79

THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM  

SciTech Connect (OSTI)

Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

Fairbanks, John W.

2000-08-20T23:59:59.000Z

80

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Durability of Diesel Engine Particulate Filters CRADA No. ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc....

82

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network [OSTI]

EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

Tompkins, Brandon T.

2009-05-15T23:59:59.000Z

83

UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES  

E-Print Network [OSTI]

diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

84

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

85

Vibration signatures, wavelets and principal components analysis in diesel engine  

E-Print Network [OSTI]

Vibration signatures, wavelets and principal components analysis in diesel engine diagnostics G of a normally aspirated diesel engine contain valu­ able information on the health of the combustion chamber induced in a 4­stroke diesel engine and the ensuing vi­ bration signals recorded. Three different feature

Sharkey, Amanda

86

Analysis of Smoke of Diesel Engine by Using Biodiesel as Fuel  

E-Print Network [OSTI]

Abstract- This study represents the analysis of smoke of biodiesel by using smoke tester. In this article biodiesel is taken as a fuel instead of diesel and quantity of emitted pollutants HC and CO is evaluated by taking different quantity of biodiesel at different load. This work shows how use of biodiesel will affect the emission of pollutants. Diesel Engine is compression ignition engine and use diesel as fuel, in this engine alternative fuel can be used. One alternate fuel is biodiesel. Biodiesel can be used in pure form or may be blended with petroleum diesel at any concentration in most injection pump diesel engines and also can be used in Vehicle, Railway, and Aircraft as heating oil.

Gayatri Kushwah; Methanol

87

Jet Simulation in a Diesel Engine James Glimm zx , M.N. Kim x , X.-L. Li z , R. Samulyak x , and Z.-L. Xu yz  

E-Print Network [OSTI]

Jet Simulation in a Diesel Engine James Glimm zx , M.N. Kim x , X.-L. Li z , R. Samulyak x , and Z and spray formation in a diesel engine by the Front Tracking method. We model mixed vapor-liquid region of a high speed diesel jet injected through a circular nozzle are the key to design a fuel e

New York at Stoney Brook, State University of

88

Light-duty diesel engine development status and engine needs  

SciTech Connect (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

89

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

90

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

91

Future Breathing System Requirements for Clean Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Breathing System Requirements for Clean Diesel Engines Poster Location P23 Motivation Results Understand engine air system requirements to reduce NOx Identify...

92

Diesel Engine Strategy & North American Market Challenges, Technology...  

Broader source: Energy.gov (indexed) [DOE]

Engine Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the...

93

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

94

Optimization of Engine-out Emissions from a Diesel Engine to...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5...

95

Effects of Canola Biodiesel on a DI Diesel Engine Performance and Emissions  

E-Print Network [OSTI]

Abstract- A direct injection (DI) diesel engine is tested with different biodiesel-diesel blends, such as B0 (neat diesel), B5 (i.e., 5 vol. % biodiesel and 95 vol. % diesel), B10 (10 vol. % biodiesel), B20 (20 vol. % biodiesel), B50 (50 vol. % biodiesel), and B100 (neat biodiesel) for performance and emissions under different load conditions. Engine performance is examined by measuring brake specific fuel consumption (bsfc) and fuel conversion efficiency (? f). The emission of carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO 2), nitrogen oxides (NOx), carbon dioxide (CO 2) and others are measured. Biodiesel shows a significant CO and HC reduction compared to diesel under low load operation; under high load operation, however, CO with biodiesel is increased a little and HC emissions are very similar to that with diesel. On the other hand, under low load operation, NOx emission with biodiesel is significantly increased than diesel; however, under high load operation, there is almost no change in NOx emissions with biodiesel and diesel. Index Term- Canola biodiesel, diesel engine, engine performance, exhaust emissions.

Murari Mohon Roy; Majed Alawi; Wilson Wang

96

Comparative Experimental Investigation of Combustion, Performance and Emission in a Single Cylinder Thermal Barrier Coated Diesel Engine using Diesel and Neem Biodiesel  

E-Print Network [OSTI]

Abstract- The use of methyl esters of vegetable oil known as biodiesel are increasingly popular because of their low impact on environment, green alternate fuel and most interestingly it's use in engines does not require major modification in the engine hardware. Use of biodiesel as sole fuel in conventional direct injection diesel engine results in combustion problems, hence it is proposed to use the biodiesel in low heat rejection (LHR) diesel engines with its significance characteristics of higher operating temperature, maximum heat release, higher brake thermal efficiency (BTE) and ability to handle the lower calorific value (CV) fuel. In this work biodiesel from Neem oil called as Neem oil methyl ester (NOME) was used as sole fuel in conventional diesel engine and LHR direct injection (Dl) diesel engine. The low heat rejection engine was developed with uniform ceramic coating of combustion chamber (includes piston crown, cylinder head, valves and cylinder liner) by partially stabilized /zirconia (PSZ) of 0.5 mm thickness. The experimental investigation was carried out in a single cylinder water-cooled LHR direct injection diesel engine. In this investigation, the combustion, performance and emission analysis were carried out in a diesel and biodiesel fueled conventional and LHR engine under identical operating conditions. The test result of biodiesel fueled LHR engine was quite identical to that of the conventional diesel engine. The brake thermal efficiency (BTE) of LHR engine with biodiesel is decreased marginally than LHR engine operated with diesel. Carbon monoxide (CO) and Hydrocarbon (HC) emission levels are decreased. The results of this comparative experimental investigation reveals that, some of the drawbacks of

M C Navindgi; Dr. Maheswar Dutta; Dr. B. Sudheer Prem Kumar

97

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System  

E-Print Network [OSTI]

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

Stefanopoulou, Anna

98

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network [OSTI]

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

99

Cleaner, More Efficient Diesel Engines  

ScienceCinema (OSTI)

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2014-02-26T23:59:59.000Z

100

Cleaner, More Efficient Diesel Engines  

SciTech Connect (OSTI)

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2013-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

102

Diagnostic utilisant les tests d'hypothses structurs : application un systme d'injection diesel rampe commune  

E-Print Network [OSTI]

'injection diesel à rampe commune Zahi SABEH, José RAGOT, Frédéric KRATZ Delphi Diesel Systems, Centre Technique de a été développé pour obtenir, sur un moteur diesel, une augmentation des performances ainsi qu la pression d'un système d'injection diesel à rampe commune. Mots clés : système d'injection à rampe

Paris-Sud XI, Université de

103

Proceedings of the 1998 diesel engine emissions reduction workshop [DEER  

SciTech Connect (OSTI)

This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

NONE

1998-12-31T23:59:59.000Z

104

Utiization of alternate fuels in diesel engines  

SciTech Connect (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

105

Innovative coal-fueled diesel engine injector  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

106

Estimation and Control of Diesel Engine Processes Utilizing Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

107

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

108

A Correlation of Diesel Engine Performance with Measured NIR...  

Broader source: Energy.gov (indexed) [DOE]

CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

109

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

110

Impact of Biodiesel on Modern Diesel Engine Emissions  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

111

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important...

112

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Broader source: Energy.gov (indexed) [DOE]

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results R. Aneja, B. Bolton, N. Hakim, Z. Pavlova-MacKinnon Detroit...

113

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

Anderson, Byron P.

2011-01-01T23:59:59.000Z

114

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

115

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

116

Knocking detection device in diesel engines  

SciTech Connect (OSTI)

This patent describes a device for detection of knocking in a diesel engine which consists of: a pressure detector, having a piezoelectric element, for detecting the rate of change of combustion pressure of the engine; an angle detector for detecting the rotation of the engine; and a knocking detector for receiving the outputs of the pressure detector and the angle detector for deciding whether or not knocking occurs. The knocking detector consists of a rotation rate detector for converting the output of the angle detector to a signal corresponding to the rotation rate of the engine, and a division apparatus for dividing the output of the pressure detector by the output of the rotation rate detector, the decision of an occurrence of knocking occurring when the output of the division device exceeds a predetermined value.

Ootsuka, Y.; Hattori, T.; Ozaki, T.

1986-02-04T23:59:59.000Z

117

Effect of engine operating parameters and fuel characteristics on diesel engine emissions  

E-Print Network [OSTI]

To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

Acar, Joseph, 1977-

2005-01-01T23:59:59.000Z

118

LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...  

Broader source: Energy.gov (indexed) [DOE]

LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

119

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with...

120

Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created needs Discussed test cell configuration with Diesel Combustion & Emissions Laboratory Performed

Demirel, Melik C.

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

122

MODELING AND CONTROL OF A DIESEL HCCI ENGINE  

E-Print Network [OSTI]

MODELING AND CONTROL OF A DIESEL HCCI ENGINE J. Chauvin A. Albrecht G. Corde N. Petit Institut of the airpath of a Diesel HCCI engine supported by experimental results. Moreover, we propose a simple, yet Ignition (HCCI) ­ has be- come of major interest. It requires the use of high Exhaust Gas Recirculation

123

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network [OSTI]

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

124

Active Diesel Emission Control Technology for Sub-50 HP Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

125

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

126

Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.  

SciTech Connect (OSTI)

The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

2003-01-01T23:59:59.000Z

127

Methanol vaporization and injection system for internal combustion engine  

SciTech Connect (OSTI)

An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

Bayley, R.I.

1980-05-06T23:59:59.000Z

128

BMW Diesel - Engine Concepts for Efficient Dynamics  

Broader source: Energy.gov (indexed) [DOE]

"24 Hours of Nrburgring" 2001 - 2nd Gen. Common Rail (1600 bar) 2004 - Variable Twin Turbo - Diesel Particulate Filter of 2nd Gen. 1999 - First V8 Diesel Sedan in Premium...

129

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

130

Friction Characteristics of Steel Pistons for Diesel Engines  

E-Print Network [OSTI]

The use of iron pistons is increasing due to the higher power requirements of diesel truck engines. Expansion of the iron piston is a common concern. The purpose of this study is to clarify the lubrication conditions of ...

Kim, Dallwoo

131

Nano Catalysts for Diesel Engine Emission Remediation  

SciTech Connect (OSTI)

The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

2012-06-01T23:59:59.000Z

132

Injection nozzle materials for a coal-fueled diesel locomotive  

SciTech Connect (OSTI)

In order to identify materials resistant to coal water mixture (CWM) erosive wear, a number of materials were evaluated using both orifice slurry and dry air erosion tests. Both erosion tests ranked materials in the same order, and the most erosion resistant material identified was sintered diamond compact. Based on operation using CWM in a single-cylinder locomotive test, superhard nozzle materials such as diamond, cubic boron nitride, and perhaps TiB{sub 2} were found to be necessary in order to obtain a reasonable operating life. An injection nozzle using sintered diamond compacts was designed and built, and has operated successfully in a CWM fired locomotive engine.

Mehan, R.L.; Leonard, G.L.; Johnson, R.N.; Lavigne, R.G.

1990-12-31T23:59:59.000Z

133

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson  

E-Print Network [OSTI]

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

Minnesota, University of

134

Advanced Diesel Common Rail Injection System for Future Emission...  

Broader source: Energy.gov (indexed) [DOE]

passing on to third parties. Approval Data for PC - Diesel at least Euro 3 source: KBA Germany Robert Bosch GmbH reserves all rights even in the event of industrial property...

135

Fuel Formulation Effects on Diesel Fuel Injection, Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Reduction Conference The Energy Institute Background Background In the case of biodiesel fueling (e.g., "B20", a blend of 20vol.% methyl soyate in diesel fuel), there is a...

136

BMW Diesel Engines - Dynamic, Efficient and Clean  

Broader source: Energy.gov (indexed) [DOE]

about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

137

French perspective on diesel engines & emissions  

Broader source: Energy.gov (indexed) [DOE]

smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

138

Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-  

E-Print Network [OSTI]

ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

Daraio, Chiara

139

Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions  

E-Print Network [OSTI]

torque output as compared to (non-turbocharged) naturally aspirated engines 13]. The power generated- ifold pressure, increased power generation by the turbine and increased ow of air from compressorControl of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz

Stefanopoulou, Anna

140

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

142

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

143

Investigation of Bio-Diesel Fueled Engines under Low-Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

144

Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines  

E-Print Network [OSTI]

Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines Philippe Komma T¨ubingen, Germany {philippe.komma, andreas.zell}@uni-tuebingen.de system for a diesel engine

Zell, Andreas

145

Diesel Engines: What Role Can They Play in an Emissions-Constrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER)...

146

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

147

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference...

148

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

149

Optimization of Engine-out Emissions from a Diesel Engine to...  

Broader source: Energy.gov (indexed) [DOE]

The 2008 Deer Conference, 4 The 2008 Deer Conference, 4 - - 7th August 7th August Optimization of Engine Optimization of Engine - - out Emissions from out Emissions from a Diesel...

150

Capture of Heat Energy from Diesel Engine Exhaust  

SciTech Connect (OSTI)

Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

Chuen-Sen Lin

2008-12-31T23:59:59.000Z

151

Shaping of fuel delivery characteristics for solenoid operated diesel engine gaseous injectors  

SciTech Connect (OSTI)

Solenoid operated gaseous injectors, when compared to conventional liquid fuel diesel injectors, differ in the way the fuel dose and its discharge rate are controlled. While in conventional diesel systems, the fuel dose and its injection rate depends on the fuel injection pump effective stroke and on the plunger diameter and velocity, the solenoid injectors operate in an on-off manner which limits the ability to control the gas discharge rate, resulting in its profile to be basically rectangular in shape. To reduce the gas injection rate at the beginning of the injection process in order to suppress the diesel-knock phenomenon, similar procedures as used in diesel engines could be implemented. One such approach is to use a throttling type pintle nozzle, and another method is to use a double-spring injector with a hole nozzle. The rationale for using such nozzle configurations is that gaseous fuels do not require atomization, and therefore, can be injected at lower discharge velocities than with liquid fuels. The gas delivery characteristics from a solenoid injector has been computer-simulated in order to assess the impact of the investigated three modes of fuel discharge rate control strategies. The simulation results confirmed that the gas dose and its discharge rate can be shaped as required. An experimental set-up is described to measure the gas discharge rate using a special gas injection mass flow rate indicator with a strain-gage sensor installed at the entry to a long tube, similar to that proposed by Bosch for liquid fuel volumetric flow rate measurements.

Hong, H.; Krepec, T.; Kekedjian, H.

1996-09-01T23:59:59.000Z

152

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine  

E-Print Network [OSTI]

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value

Johansen, Tor Arne

153

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network [OSTI]

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

154

The process of soot formation in a DI Diesel engine is very challenging to understand and  

E-Print Network [OSTI]

Background The process of soot formation in a DI Diesel engine is very challenging to understand and describe. But with respect to the demand for much lower particulate emissions (Tab.1) of Diesel engines emissi- ons of a medium duty DI Diesel engine which is certified for the TIER 3 norm should be evaluated

Sandoghdar, Vahid

155

Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control  

SciTech Connect (OSTI)

Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

Mather, Daniel

2000-08-20T23:59:59.000Z

156

Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines  

SciTech Connect (OSTI)

In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

2008-01-01T23:59:59.000Z

157

Conversion of a diesel engine to a spark ignition natural gas engine  

SciTech Connect (OSTI)

Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

NONE

1996-09-01T23:59:59.000Z

158

Cost and performance data on diesel engine generators and pumps  

SciTech Connect (OSTI)

This report summarizes performance data and costs of operation and maintenance obtained from seven diesel engines operating under field conditions in Kenya. Four of the engines were diesel water pumps and three were diesel generators. Short-term tests (2-hour) were conducted on-site to determine engine efficiency as a function of time after start-up. After the short-term tests, the engines were monitored for a 3-month period to determine use pattern and fuel consumption. In addition, the owners (or operators) completed a questionnaire which documented their perception of reliability and operation and maintenance costs. The short-term tests showed that the diesel efficiencies were primarily dependent on the load factor and time from start-up to shut-down. The measured efficiencies were significantly reduced when the diesels were run for either short periods (less than 90 minutes for the generators and 30 minutes for the pumps) or with loads less than their rated output. The data collected during the 3-month monitoring period revealed relatively low efficiencies because of low load factors and short run periods. This type of use pattern is typical for diesels in Kenya. Operation and maintenance costs varied from .20 to .95 $/kWh for the generators, and from .13 to .74 $/m/sup 3/ of water for the pumps, depending primarily on the efficiency and the cost of labor for an operator and repairs. The owners' perception of the operation and maintenance costs was usually significantly less than the measured costs. 15 figs., 5 tabs.

Kenna, J.

1987-05-01T23:59:59.000Z

159

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

SciTech Connect (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

160

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines  

E-Print Network [OSTI]

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

Minnesota, University of

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

SciTech Connect (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

162

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

163

Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam-and Crankshaft  

E-Print Network [OSTI]

replaces the crankshaft of the traditional diesel engine with a power tur- bine to convert energy from, combining a diesel process with a freely moving piston in the cylinder and a power turbine. Engines MW (net power) test cylinder built by Kv rner ASA. In contrast to the original free-piston diesel

Johansen, Tor Arne

164

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network [OSTI]

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111, however, is providing the report on its Website because it is important for parties interested in diesel

Minnesota, University of

165

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a  

E-Print Network [OSTI]

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry

Paris-Sud XI, Université de

166

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine  

E-Print Network [OSTI]

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which and to a higher order nonlinear model suggests the validity of this approach. I. INTRODUCTION Modern diesel

Cambridge, University of

167

An Evolutionary Algorithm to design Diesel Engines T. Donateo, D. Laforgia  

E-Print Network [OSTI]

An Evolutionary Algorithm to design Diesel Engines T. Donateo, D. Laforgia CREA, Research Center silvia.mocavero@unile.it Abstract - An evolutionary algorithm has been developed for the design of diesel to be achieved. A typical case is the contemporary reduction of soot and NOx emissions in a diesel engine. All

Coello, Carlos A. Coello

168

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

SciTech Connect (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

169

Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...  

Broader source: Energy.gov (indexed) [DOE]

* Motivation and background * Adaptive Injection Strategy (AIS) * Simulation and optimization - Two-Stage Combustion (TSC -- HCCI + Diffusion combustion) optimization using AIS...

170

A photographic study of the combustion of low cetane fuels in a Diesel engine aided with spark assist  

SciTech Connect (OSTI)

An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions. Results indicate that controlled combustion of extended fuel blends in a Diesel engine may be possible without inlet air preconditioning and that engine knock may be avoided when heat release is optimized with proper spark and injection timing.

Abata, D.L.; Fritz, S.G.; Stroia, B.J.

1986-01-01T23:59:59.000Z

171

Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)  

Reports and Publications (EIA)

On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

2007-01-01T23:59:59.000Z

172

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

173

Experimental and computational study of soot formation under diesel engine conditions  

E-Print Network [OSTI]

Past research has shown that during diesel combustion, soot is formed in local premixed fuel-rich regions. This project focuses on the fundamentals soot formation under fuel-rich conditions similar to those in diesel engine ...

Kitsopanidis, Ioannis, 1975-

2004-01-01T23:59:59.000Z

174

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

SciTech Connect (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

175

Cleaning Up Diesel Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, Efficient,Diesel

176

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines  

SciTech Connect (OSTI)

The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

Hall, Matt; Matthews, Ron

2011-09-30T23:59:59.000Z

177

Injection System and Engine Strategies for Advanced Emission...  

Broader source: Energy.gov (indexed) [DOE]

Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006,...

178

Study of deposit formation inside diesel injectors nozzles  

E-Print Network [OSTI]

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

179

An experimental investigation of low octane gasoline in diesel engines.  

SciTech Connect (OSTI)

Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

Ciatti, S. A.; Subramanian, S. (Energy Systems)

2011-09-01T23:59:59.000Z

180

Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers is to quantify friction losses on Volvo's current 11-liter engine model. Team members will remove hardware

Demirel, Melik C.

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reduction of idle knock by EGR in a passenger car diesel engine  

SciTech Connect (OSTI)

In order to reduce the diesel idle knock, the effects of EGR on the idling characteristics were investigated on a passenger car equipped with an EGR Idle Knock Reduction System developed for practical use. It was found that EGR was effective not only for reducing idle knock but also for decreasing fuel consumption, smoke density, exhaust emissions and engine vibration. Moreover, the practical range and possibility of the EGR Idle Knock Reduction System were found by clarifying the relationship between EGR, injection timing, cooling water temperature, noise level and fuel consumption.

Fukutani, I.; Watanabe, E.

1984-01-01T23:59:59.000Z

182

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Improvement DEER August 24 - 28, 2003 3 System Development Methodology Control model Engine model Simulation Urea Injector SCR Catalyst CSF Steady State Modal Development...

183

Systems and methods for controlling diesel engine emissions  

DOE Patents [OSTI]

Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

2004-06-01T23:59:59.000Z

184

administered diesel exhaust: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection Diesel Engine Using Pongamia Oil CiteSeer Summary: Abstract The use of biodiesel, the methyl esters of vegetable oils are becoming popular due to their low...

185

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1986 Second Annual Report Department of Energy Contract Number through the evaluation of fluid reserves, and the forecastingl of field behavior with time. Injection al series of Proceedings that are a prominent literature source on geothermal energy. The Program

Stanford University

186

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

Stanford University

187

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

188

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- July 1, 2009 * End - December 31, 2012 * 60% Complete * Barriers addressed - improved fuel economy in light-duty and heavy-duty engines - create and apply advanced tools for...

189

Neural Modeling and Control of Diesel Engine with Pollution Constraints  

E-Print Network [OSTI]

The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

2009-01-01T23:59:59.000Z

190

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

191

Dynamics and Control of a Free-Piston Diesel Engine Tor A. Johansen1  

E-Print Network [OSTI]

Dynamics and Control of a Free-Piston Diesel Engine Tor A. Johansen£1 , Olav Egeland£, Erling Aa, Norway. Abstract Free-piston diesel engines are characterized by freely moving pistons without any crankshaft or camshaft connected to the pistons. This allows a compact and efficient engine design

Johansen, Tor Arne

192

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

193

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

194

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

195

EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL AND ITS BLENDS  

E-Print Network [OSTI]

Increasing oil prices, and global warming activates the research and development of substitute energy resources to maintain economic development. The methyl esters of vegetable oil, known as biodiesel are becoming popular because of their low ecological effect and potential as a green substitute for compression ignition engine. The main objective of this study is to investigate the performance of neem oil methyl ester on a single cylinder, four stroke, direct injection, and 8 HP capacity diesel engine. The Experimental research has been performed to analyze the performance of different blends 20 % (BD20), 50 % (BD50), and 100 % (BD100) of neem oil biodiesel. Biodiesel, when compared to conventional diesel fuel, results showed that the brake specific fuel consumption and brake specific energy consumption are higher and brake thermal efficiency less during testing of engine. The brake specific energy consumption is increased by 0.60 % to 8.25 % and brake thermal efficiency decreased by 0.57 % to 7.62 % at 12 kg engine brake load as compared to diesel fuel. When the fuel consumption of biodiesel is compared to diesel fuel it observed that the fuel consumption was increased by 2.5 % to 19.5 % than that of diesel fuel for B20, B50 and B100 bends at 12 kg engine brake load. It is observed that the performance of biodiesel blends is less as compared to plain diesel and during testing of diesel engine run normally for all engine loads. It is investigated that the neem oil biodiesel 20 % blend showed very close performance when compared to plain diesel and hence can be used as an alternative fuel for conventional diesel in the future.

Rob Res; Dharmendra Yadav; Nitin Shrivastava; Vipin Shrivastava

196

Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1  

SciTech Connect (OSTI)

A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

Poola, R.B.; Sekar, R.R.; Assanis, D.N.

1996-09-01T23:59:59.000Z

197

Systems engineering approach towards performance monitoring of emergency diesel generator  

SciTech Connect (OSTI)

Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

Ramli, Nurhayati, E-mail: nurhayati14@gmail.com; Yong-kwan, Lee, E-mail: nurhayati14@gmail.com [KEPCO International Nuclear Graduate School, 1456-1 Shinam-ri, Ulsan 689-882 (Korea, Republic of)

2014-02-12T23:59:59.000Z

198

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

199

Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS  

E-Print Network [OSTI]

Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

Md. Nurun Nabi; S. M. Najmul Hoque

200

Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol  

SciTech Connect (OSTI)

Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated.

Murayama, T.; Ogawa, H.; Miyamoto, N.; Chikahisa, T.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

202

Advances in Diesel Engine Technologies for European Passenger Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of Energy Diesel Engine

203

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland  

E-Print Network [OSTI]

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines are characterized by freely moving pistons without any rigid crankshaft or camshaft connected to the pistons

Johansen, Tor Arne

204

Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines  

SciTech Connect (OSTI)

The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

2011-01-01T23:59:59.000Z

205

The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine  

SciTech Connect (OSTI)

Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

Becker, Paul C.

2000-08-20T23:59:59.000Z

206

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

ID-NR.12345-1 Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Deer Conference 2003 Presented by Josef Maier AVL Powertrain Engineering ID-NR.12345-2 Overview of...

207

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

208

Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine  

E-Print Network [OSTI]

-Duty Diesel Engine Z. Gerald Liu and Devin R. Berg Cummins Emission Solutions, Stoughton, WI James J. Schauer spec- trum of chemical species from diesel engine emissions were investigated in this study with established procedures and com- pared between the measurements taken from a baseline heavy-duty diesel engine

Wu, Mingshen

209

Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional Moment Closure  

E-Print Network [OSTI]

1 Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional-volume vessel under diesel engine conditions under different ambient densities (14.8 and 30 kg/m3 ) and ambient that the conditional moment closure approach is a promising framework for soot modelling under Diesel engine conditions

Daraio, Chiara

210

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

211

A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine  

SciTech Connect (OSTI)

Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

2012-04-24T23:59:59.000Z

212

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

1991-11-01T23:59:59.000Z

213

OH radical imaging in a DI diesel engine and the structure of the early diffusion flame  

SciTech Connect (OSTI)

Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

Dec, J.E.; Coy, E.B.

1996-03-01T23:59:59.000Z

214

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect (OSTI)

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

215

9th Diesel Engine Emissions Reduction (DEER) Workshop 2003  

SciTech Connect (OSTI)

The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

2003-08-24T23:59:59.000Z

216

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

217

Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel  

E-Print Network [OSTI]

Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO) biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0 % ethanol (wt%), 1.0 % potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

Oguntola J Alamu; Ezra A Adeleke; Nurudeen O. Adekunle; Salam O; Oguntola J Alamu; Ezra A Adeleke; Nurudeen O Adekunle; Salam O Ismaila

218

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

1984-01-01T23:59:59.000Z

219

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

220

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends  

SciTech Connect (OSTI)

Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**  

E-Print Network [OSTI]

1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose dynamics and outperform during transients the control schemes based on static mappings. Keywords: Diesel

Paris-Sud XI, Université de

222

PERFORMANCE OF DIESEL ENGINE USING BLENDED CRUDE JATROPHA OIL  

E-Print Network [OSTI]

renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its

Kamarul Azhar Kamarudin; Nor Shahida; Akma Mohd Sazali; Ahmad Jais Alimin

2009-01-01T23:59:59.000Z

223

EXPERIMENTAL INVESTIGATIONS IN AN INSULATED DI DIESEL ENGINE WITH NEWLY DEVELOPED LUBRICANTS  

E-Print Network [OSTI]

Ever since the rise of fuel cost and rapidly depleting conventional energy sources the diesel engine manufacturers have been allocating a great deal of research for the improvement of the engine thermal efficiency and developing of alternative fuels. The alternative fuels developed should be renewable with low emissions. This recognizes alcohol as a preferable replacement because these are derived from indigenous sources and are renewable. But the alcohols by their nature do not make a good C.I Engine fuels and this can be ignited in the high temperature combustion chambers. So in the present work a thermally insulated (PSZ coated cylinder head, valves and air gap liner and air gap piston) engine is developed for improving fuel efficiency and to reduce the emissions. The low viscosity of alcohols leads to the problem of injection and equipment wear and tear. In order to compensate this, the fuel injection pressure has been reduced to 165 bar for the experimentation. Tests are conducted on a single cylinder 4-stroke, water-cooled 3.68 KW Kirloskar C.I. engine. Performance of lubricating oil plays an important role in determining the amount of power output and the improvement in the efficiency of the engine. At present first we tried the commercial lubricant for the experimentation. But the performance of this lubricant is inadequate at escalated thermal environment and the frictional losses are found to be higher. So in the present work new lubricants are developed and are further blended with different additives and analyzed the frictional losses to find the best oil.

Rob Res; S Sunil; Kumar Reddy; S P Akbar Hussain

224

REVIEW OF TRANSAMERICA DELAVAL INC. DIESEL GENERATOR OWNERS' GROUP ENGINE REQUALIFICATION PROGRAM  

SciTech Connect (OSTI)

In December 1983, 13 nuclear utilities that own TDI diesel generators formally established an Owners• Group to address concerns regarding the reliability and operability of these engines. The Owners' Group program for engine requalification consisted of four major elements: 1) resolution of known problems with potentially generic implications, 2) a design review and quality revalidation (DR/QR) effort aimed at identifying and correcting potential problems with the important engine components, 3) expanded engine testing and inspection, and 4) enhanced engine maintenance and surveillance (M/S) to maintain the qualification of the diesel engines for the lifetime of the nuclear plants that they service. In providing technical support to NRC, the PNL project staff, assisted by a number of diesel engine consultants, focused on the four major elements of the Owners' Group engine requalification program, addressing both generic and plant-specific areas.

Berlinger, C. H.

1985-12-01T23:59:59.000Z

225

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

226

A Study of a Diesel Engine Based Micro-CHP System  

SciTech Connect (OSTI)

This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

2010-08-31T23:59:59.000Z

227

Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis Overview Volvo Group Powertrain Engineering is interested will need to be constructed that can motor the engine and measure power losses using a torque sensor built

Demirel, Melik C.

228

Development of the Cooper-Bessemer CleanBurn gas-diesel (dual-fuel) engine  

SciTech Connect (OSTI)

NO[sub x] emission legislation requirements for large-bore internal combustion engines have required engine manufacturers to continue to develop and improve techniques for exhaust emission reduction. This paper describes the development of the Cooper-Bessemer Clean Burn gas-diesel (dual-fuel) engine that results in NO[sub x] reductions of up to 92 percent as compared with an uncontrolled gas-diesel engine. Historically, the gas-diesel and diesel engine combustion systems have not responded to similar techniques of NO[sub x] reduction that have been successful on straight spark-ignited natural gas burning engines. NO[sub x] levels of a nominal 1.0 g/BHP-h, equal to the spark-ignited natural gas fueled engine, have been achieved for the gas-diesel and are described. In addition, the higher opacity exhaust plume characteristic of gas-diesel combustion is significantly reduced or eliminated. This achievement is considered to be a major breakthrough, and the concept can be applied to both new and retrofit applications.

Blizzard, D.T. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Grove City, PA (United States)); Schaub, F.S.; Smith, J.G. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Mount Vernon, OH (United States))

1992-07-01T23:59:59.000Z

229

Diesel Engine CO2 and SOx Emission Compliance Strategy for the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy...

230

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation ace061ruth2011o.pdf More Documents & Publications ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

231

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

232

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Research Council Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode...

233

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES  

E-Print Network [OSTI]

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI-like efficiencies and extremely low emissions. HCCI engines rely on a lean combustion process (in excess of air

Paris-Sud XI, Université de

234

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

SciTech Connect (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

235

STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm  

E-Print Network [OSTI]

STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study ......................................................................................12 Stationary engines for decentralised CHP or industrial CHP

236

Future Diesel Engine Thermal Efficiency Improvement andn Emissions...  

Broader source: Energy.gov (indexed) [DOE]

release, December, 2004 11th DEER Conference, Chicago IL, August, 2005 2005 Detroit Diesel Corporation. All Rights Reserved. 3 Near-term Powertrain Evolution Improved Thermal...

237

2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...  

Energy Savers [EERE]

with a Combined SCR and DPF Technology for Heavy-Duty Diesel Retrofit Ray Conway Johnson Matthey Environmental Catalysts & Technologies (PDF 287 KB) A Soot Formation Model...

238

The use of auxiliary ignition devices to improve combustion of low centane-high volatility fuels in a diesel engine  

SciTech Connect (OSTI)

The use of auxiliary ignition devices to improve the combustion of low cetane-high volatility fuels in a Diesel engine is described. Previous combustion with a low cetane-high volatility fuel (with a spark plug located at the periphery of the cylinder) resulted in engine knock at heavy loads and poor engine operation at light loads. In the present investigation, several new ignition devices were used to ignite the fuel in the center of the cylinder, to allow combustion to be controlled by rate of injection. The devices used were an extended spark electrode, a fuel spray deflector, a nozzle glow ring, and a nozzle fuel cage. High speed photography and heat release were used to characterize the ignition and combustion process of the low cetane fuel in conjunction with the ignition devices. Combustion with all of the ignition devices was initiated in the center of the cylinder, significantly reducing engine knock. The use of the auxiliary ignition devices to ignite the fuel in the center of the chamber demonstrated extended operation of the Diesel engine for all of the devices tested.

Stroia, B.L.; Abata. D.L.

1988-01-01T23:59:59.000Z

239

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect (OSTI)

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

240

Galib, “Biodiesel from jatropha oil as an alternative fuel for diesel engine  

E-Print Network [OSTI]

Abstract — The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN, and Nicolas PETIT  

E-Print Network [OSTI]

Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN of the combustion of HCCI engines during sharp transients. This approach complements existing airpath and fuelpath Combustion modes (HPC), including Homogeneous Charge Compression Ignition (HCCI). Consider a Diesel engine

242

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

243

Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends  

E-Print Network [OSTI]

Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

244

Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel  

SciTech Connect (OSTI)

In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

Mancaruso, E.; Vaglieco, B.M. [Istituto Motori - CNR, Via Marconi, 8, 80125 Napoli (Italy)

2010-04-15T23:59:59.000Z

245

Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review  

E-Print Network [OSTI]

Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

Darunde Dhiraj S; Prof Deshmukh Mangesh M

246

A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES  

SciTech Connect (OSTI)

The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

Blau, Peter Julian [ORNL

2009-11-01T23:59:59.000Z

247

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

248

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Broader source: Energy.gov (indexed) [DOE]

UT-Battelle for the U.S. Department of Energy Overview Timeline * Develop supporting materials technology to enable Heavy-Duty diesel efficiency of 55%, while meeting prevailing...

249

2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...  

Energy Savers [EERE]

Bunting, Oak Ridge National Laboratory Diesel Emission Control in Review Timothy V. Johnson Corning Incorporated (PDF 1.1 MB) Development of a NOx Adsorber System for Dodge Ram...

250

Effect of translucence of engineering ceramics on heat transfer in diesel engines  

SciTech Connect (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

1992-04-01T23:59:59.000Z

251

Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report  

SciTech Connect (OSTI)

This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

1992-04-01T23:59:59.000Z

252

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect (OSTI)

K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

253

Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol  

SciTech Connect (OSTI)

Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.

Murayama, T.; Chikahisa, T.; Miyamoto, N.; Ogawa, H.

1984-02-01T23:59:59.000Z

254

Inevitability of Engine-Out Nox Emissions from Spark-Ignition and Diesel Engines  

SciTech Connect (OSTI)

Internal combustion engines, both spark ignition and Diesel, are dominant types of vehicle power sources and also provide power for other important stationary applications. Overall, these engines are a central part of power generation in modern society. However, these engines, burning hydrocarbon fuels from natural gas to gasoline and Diesel fuel, are also responsible for a great deal of pollutant emissions to the environment, especially oxides of nitrogen (NO{sub x}) and unburned hydrocarbons (UHC). In recent years, pollutant species emissions from internal combustion engines have been the object of steadily more stringent limitations from various governmental agencies. Engine designers have responded by developing engines that reduce emissions to accommodate these tighter limitations. However, as these limits become ever more stringent, the ability of engine design modifications to meet those limits must be questioned. Production of NO{sub x} in internal combustion engines is primarily due to the high temperature extended Zeldovich reaction mechanism: (1) O + N{sub 2} = NO + N; (2) N + O{sub 2} = NO + O; and (3) N + OH = NO + H. The rates of these reactions become significant when combustion temperatures reach or exceed about 2000K. This large temperature dependence, characterized by large activation energies for the rates of the reactions listed here, is a direct result of the need to break apart the tightly bonded oxygen and nitrogen molecules. The strongest bond is the triple bond in the N {triple_bond} N molecule, resulting in an activation energy of about 75 kcal/mole for Reaction (1), which is the principal cause for the large temperature dependence of the extended Zeldovich NO{sub x} mechanism. In most engines, NO{sub x} is therefore produced primarily in the high temperature combustion product gases. Using a reliable kinetic model for NO{sub x} production such as the GRI Mechanism [1] or the Miller-Bowman model [2] with hydrocarbon products at temperatures from 1500K through 2500K, the amounts of NO{sub x} produced at a given residence time in an engine can easily be computed, as shown in Figure 1. Figure 1 depicts how temperatures such as those existing in the combustion zones of heavy-duty engines would produce NO{sub x} emissions. This figure was created assuming that a fuel/air equivalence ratio {phi} of 0.65 was used to heat the combustion air. This equivalence ratio would be similar to that of a heavy-duty lean-burn spark-ignition or diesel engine. At temperatures in the neighborhood of 2000K and residence times between 1-5 milliseconds, which are typical of residence times at these temperatures in engines, the production of NO{sub x} increases dramatically. It is evident from Fig. 1 that product temperatures must remain below approximately 2100K to achieve extremely low NO{sub x} production levels in engines. This conclusion led to a combined experimental and modeling study of product gas temperatures in engine combustion and their influence on emission levels.

Flynn, P F; Hunter, G L; Farrell, L A; Durrett, R P; Akinyemi, O C; Westbrook, C K; Pitz, W J

2000-01-11T23:59:59.000Z

255

Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine  

SciTech Connect (OSTI)

The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

256

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect (OSTI)

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

257

Manufacture and properties of continuous grain flow crankshafts for locomotive and power generation diesel engines  

SciTech Connect (OSTI)

The bulk of the large crankshaft production volume is associated with the medium speed diesel engine market. These engines have seen intense development to obtain higher power outputs without change in the physical size of the crankshaft and at the same time there has been continuing pressure to reduce costs. Fatigue and bearing normal wear are the major technical hurdles that threaten the crankshaft life, and measures for dealing with these issues are described. Continuous grain flow (CGF) crankshafts are responsible for the continued integrity of these enhanced power output engines and the production of these crankshafts is described. Comparisons are made with the older slab forging crankshaft production method. The demand for the medium speed diesel engine and its natural gas derivative is strong and supports an aggressive engine building industry serving locomotive, marine and power generation markets. This demand in turn relies on practical national standards that serve the needs of the engine builder, material supplier and the end user.

Antos, D.J.; Nisbett, E.G. [National Forge Co., Irvine, PA (United States)

1997-12-31T23:59:59.000Z

258

Highly efficient 6-stroke engine cycle with water injection  

DOE Patents [OSTI]

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23T23:59:59.000Z

259

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

260

An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine  

E-Print Network [OSTI]

in head bolts were tested under a variety of operating conditions on a single cylinder, research, diesel engine. The sensors' pressure vs. crank angle output was compared with the output of a piezoelectric pressure transducer mounted, in the engine head...

Turner, Timothy Troy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

262

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

263

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

264

Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels  

SciTech Connect (OSTI)

The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high?fidelity models that served as the basis for the reduced order models used for internal state estimation. The high?fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high?fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

2013-04-30T23:59:59.000Z

265

Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions  

SciTech Connect (OSTI)

To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

1999-04-26T23:59:59.000Z

266

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

267

Optimization of Direct-Injection H2 Combustion Engine Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

268

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

269

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect (OSTI)

K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

270

Emissions and engine performance from blends of soya and canola methyl esters with ARB {number_sign}2 diesel in a DCC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, California ARB No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emissions trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with delays in engine timing and technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transits (except in California, which mandates ARB diesel).

Spataru, A.; Romig, C.

1995-12-31T23:59:59.000Z

271

2008-01-0984 Active Combustion Control of Diesel HCCI Engine: Combustion  

E-Print Network [OSTI]

. Chauvin and O. Grondin IFP, France. N. Petit Ecole des Mines de Paris, France Copyright c 2008 Society according to the air path dynamics on a Diesel HCCI engine. This approach complements existing airpath of environmental restrictions and sustainable de- velopment, pollution standards have become more and more

272

2006-01-1085 Air Path Estimation on Diesel HCCI Engine  

E-Print Network [OSTI]

: fresh air and EGR temperature probes. INTRODUCTION Increasingly stringent pollution standards norms have2006-01-1085 Air Path Estimation on Diesel HCCI Engine J. Chauvin, N. Petit, P. Rouchon ´Ecole des Mines de Paris G. Corde IFP C. Vigild Ford Forschungszentrum Aachen GmbH Copyright c 2006 Society

273

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network [OSTI]

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

274

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

SciTech Connect (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z

275

Fabrication of small-orifice fuel injectors for diesel engines.  

SciTech Connect (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

276

Diesel fuel component contribution to engine emissions and performance. Final report  

SciTech Connect (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

277

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

DOE Patents [OSTI]

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

278

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...  

Broader source: Energy.gov (indexed) [DOE]

Properties Affecting Fuel Economy and Engine Wear Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Engine Lubricants: Trends and Challenges...

279

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

280

Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines  

E-Print Network [OSTI]

from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

Wu, Mingshen

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

THIESEL 2010 Conference on Thermo-and Fluid Dynamic Processes in Diesel Engines Influence of Nozzle Geometry on Spray Shape, Particle Size, Spray  

E-Print Network [OSTI]

THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines Influence of Nozzle Geometry on Spray Shape, Particle Size, Spray Velocity and Air Entrainment of High Pressure Diesel Abstract. Air/fuel mixing process in the combustion chamber of Diesel engines plays an important role

Paris-Sud XI, Université de

282

Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green, Jr., John M. Storey, and C. Stuart Daw  

E-Print Network [OSTI]

1 Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green) for reduced nitro- gen oxide emissions from diesel engines. The research objective is to develop fundamental in- formation about the relationship between EGR parameters and diesel combustion instability

Tennessee, University of

283

Getting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD BE FUELED BY VEGETABLE  

E-Print Network [OSTI]

determined other- wise. The world is now seriously revisiting Diesel's vision, driven by surging global oil- outrequiringsubstantialmodificationofexistingvehiclesorofthefueldistributioninfrastructure:secu- rity of supply (biofuels can be produced locally in sustainable systems), lowernetGHGemissions(biofuelsrecyclecarbondioxidethatwasextractedGetting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD

284

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

285

Vibro-acoustical comfort in cars at idle : human perception of simulated sounds and vibrations from three and four cylinder diesel engines  

E-Print Network [OSTI]

three and four cylinder diesel engines Etienne Parizet, Maël Amari Laboratoire Vibrations Acoustique This paper deals with comfort in diesel cars running at idle. A bench was used to reproduce the vertical

Paris-Sud XI, Université de

286

Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399  

SciTech Connect (OSTI)

To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

Williams, A.

2013-06-01T23:59:59.000Z

287

Diesel fuel aromatic and cetane number effects on combustion and emissions from a prototype 1991 diesel engine  

SciTech Connect (OSTI)

This book reports on a prototype 1991-model diesel engine that was tested using EPA transient emissions procedures to determine the effect of fuel properties on combustion characteristics and exhaust emissions. The eleven test fuel set focused primarily on total aromatic content, multi-ring aromatic content, and cetane number, but other fuel variables were also studied. Hydrotreating was used to obtain reductions in fuel sulfur and aromatic content. Increasing cetane number and reducing aromatic content resulted in lower emissions of hydrocarbons and NO{sub x}. Particulate emission were best predicted by sulfur content, aromatic content and 90% distillation temperature. Multi-ring aromatics showed a greater significance that total aromatics on hydrocarbon and particulate emissions. combustion parameters were highly dependent on fuel cetane number.

Sienicki, E.J.; Jass, R.E.; Slodowske, W.J.; McCarthy, C.I.; Krodel, A.L.

1990-01-01T23:59:59.000Z

288

European Diesel Engine Technology: An Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse EnvironmentalEstimatingin EGR Coolers |Diesel

289

Analysis of the injection process in direct injected natural gas engines. Part 1: Study of unconfined and in-cylinder plume behavior  

SciTech Connect (OSTI)

A study of natural gas (NG) direct injection (DI) processes has been performed using multidimensional computational fluid dynamics analysis. The purpose was to improve the understanding of mixing in DI NG engines. Calculations of injection into a constant-volume chamber were performed to document unconfined plume behavior. A full three-dimensional calculation of injection into a medium heavy-duty diesel engine cylinder was also performed to study plume behavior in engine geometries. The structure of the NG plume is characterized by a core of unmixed fuel confined to the near-field of the jet. This core contains the bulk of the unmixed fuel and is mixed by the turbulence generated by the jet shear layer. The NG plume development in the engine is dominated by combustion chamber surface interactions. A Coanda effect causes plume attachment to the cylinder head, which has a detrimental impact on mixing. Unconfined plume calculations with different nozzle hole sizes demonstrate that smaller nozzle holes are more effective at mixing the fuel and air.

Jennings, M.J.; Jeske, F.R. (Ricardo North America, Burr Ridge, IL (United States))

1994-10-01T23:59:59.000Z

290

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

291

Recent Developments in BMW's Diesel Technology  

SciTech Connect (OSTI)

The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

Steinparzer, F

2003-08-24T23:59:59.000Z

292

Update on Modeling for Effective Diesel Engine Aftertreatment...  

Broader source: Energy.gov (indexed) [DOE]

"Three-Layer" Development Strategy 3D 3D - - CFD Base CFD Base Detailed physics and high spatial resolution. High computational time required. Engine system integration focus with...

293

Efficiency Improvement in an Over the Road Diesel Powered Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and potential efficiency enhancement deer08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

294

Diesel Engine Strategy & North American Market Challenges, Technology...  

Broader source: Energy.gov (indexed) [DOE]

engine into every vehicle? GM's Long Term Vision GM's Long Term Vision Remove the automobile from the energy & environmental equation Remove the automobile from the energy &...

295

Ethanol fuel for diesel tractors  

SciTech Connect (OSTI)

The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

da Cruz, J.M.

1981-01-01T23:59:59.000Z

296

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

SciTech Connect (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-01-01T23:59:59.000Z

297

Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets  

SciTech Connect (OSTI)

The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

1992-12-31T23:59:59.000Z

298

ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES  

E-Print Network [OSTI]

with artificially in­ duced valve burn­through situations. The primary potential mon­ itoring measurements were engine performance. Further, during the expansion stroke at engine­builder specific timing, to lift its seat and thereby provide scavenge (from scavenge air system) of the polluted air in the cylinder

Mosegaard, Klaus

299

Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control  

E-Print Network [OSTI]

1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

Brown, Alan

300

Proof-of-principle test for thermoelectric generator for diesel engines; Final report  

SciTech Connect (OSTI)

In September of 1987, the principals of what is now Hi-Z TECHNOLOGY, INC. applied to the National Bureau of Standards (now National Institute of Standards and Technology, NIST) under the Energy Related Inventions Program. The invention was entitled ``Thermoelectric Generator for Diesel Engines.`` The National Institute of Standards and Technology evaluated the invention and on January 12, 1989 forwarded Recommendation Number 455 to the Department of Energy (DOE). This recommendation informed the DOE that the invention had been selected for recommendation by the NIST for possible funding by the DOE. Following the recommendation of the NIST, the DOE contacted Hi-Z to work out a development program for the generator. A contract for a grant to design, fabricate, and test a Proof-of-Principle exhaust powered thermoelectric generator for Diesel engines was signed October 19, 1989. Hi-Z provided the thermoelectric modules used in the generator as their contribution to the project. The purpose of this Grant Program was to design, build, and test a small-scale, Proof-of-Principle thermoelectric generator for a Diesel engine. 15 figs., 1 tab.

NONE

1991-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis of experimental performance investigation on kirloskar single cylinder diesel engine using mustard seed oil and diesel blend.  

E-Print Network [OSTI]

??This research work is focused on the mustard oil based bio diesel which is important renewable and alternative fuel in future. Mustard oil, is a… (more)

Ram Rattan

2013-01-01T23:59:59.000Z

302

Comparative Toxicity of Gasoline and Diesel Engine Emissions  

SciTech Connect (OSTI)

Better information on the comparative toxicity of airborne emissions from different types of engines is needed to guide the development of heavy vehicle engine, fuel, lubricant, and exhaust after-treatment technologies, and to place the health hazards of current heavy vehicle emissions in their proper perspective. To help fill this information gap, samples of vehicle exhaust particles and semi-volatile organic compounds (SVOC) were collected and analyzed. The biological activity of the combined particle-SVOC samples is being tested using standardized toxicity assays. This report provides an update on the design of experiments to test the relative toxicity of engine emissions from various sources.

JeanClare Seagrave; Joe L. Mauderly; Barbara Zielinska; John Sagebiel; Kevin Whitney; Doughlas R. Lawson; Michael Gurevich

2000-06-19T23:59:59.000Z

303

Emissions and engine performance from blends of soya and canola methyl esters with ARB No. 2 diesel in a DDC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emission trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transit sectors (except California, which mandates ARB diesel).

Spataru, A.; Romig, C. [ADEPT Group, Inc., Los Angeles, CA (United States)

1995-11-01T23:59:59.000Z

304

Improving Diesel Engine Sweet-spot Efficiency and Adapting it...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-18yan.pdf More Documents & Publications D-Cycle -...

305

Engineering for sustainable development for bio-diesel production  

E-Print Network [OSTI]

Engineering for Sustainable Development (ESD) is an integrated systems approach, which aims at developing a balance between the requirements of the current stakeholders without compromising the ability of the future generations to meet their needs...

Narayanan, Divya

2009-05-15T23:59:59.000Z

306

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

307

DIESEL FUEL LUBRICATION  

SciTech Connect (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

308

High-speed four-color infrared digital imaging for studying in-cylinder processes in a DI diesel engine. Final report  

SciTech Connect (OSTI)

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 micron sec. At the same time, a new advanced four-color W imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

309

Diesel Combustion Control with Closed-Loop Control of the Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

are enabler for new combustion concepts for further reduction of engine out emission deer09tatur.pdf More Documents & Publications Future Directions in Engines and Fuels...

310

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

311

Sandia National Laboratories: New Conceptual Insights into Diesel Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage SystemAir Force ResearchCSPFuel-Injection

312

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

SciTech Connect (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

313

Application and development of technologies for engine-condition-based maintenance of emergency diesel generators  

SciTech Connect (OSTI)

The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2012-07-01T23:59:59.000Z

314

Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

Dane, J.; Voorhees, K. J.

2010-06-01T23:59:59.000Z

315

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

SciTech Connect (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

316

Control method for turbocharged diesel engines having exhaust gas recirculation  

DOE Patents [OSTI]

A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

2000-03-14T23:59:59.000Z

317

Calibraton of a Directly Injected Natural Gas HD Engine for Class...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This...

318

Soot formation in direct injection spark ignition engines under cold-idle operating conditions  

E-Print Network [OSTI]

Direct injection spark ignition engines are growing rapidly in popularity, largely due to the fuel efficiency improvements in the turbo-downsized engine configuration that are enabled by direct injection technology. ...

Ketterer, Justin Edward

2013-01-01T23:59:59.000Z

319

Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines  

E-Print Network [OSTI]

The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

2007-01-01T23:59:59.000Z

320

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

Kass, M.; Veliz, M. (Caterpillar, Inc.) [Caterpillar, Inc.

2011-09-30T23:59:59.000Z

322

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be...

323

2009-01-0366 In-cylinder Burned Gas Rate Estimation and Control on VVA Diesel Engines  

E-Print Network [OSTI]

the combustion cham- bers of turbocharged Diesel engines equipped with low pressure EGR loop and VVA actuator. We engine. Using a high Exhaust Gas Recirculation (EGR) rate along with advanced combustion timing allows Monoxides (CO) emissions. To compensate the exhaust temperature reduction, an Internal Exhaust Gas

324

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

Gerke, Frank G.

2001-08-05T23:59:59.000Z

325

Fuels and Lubricants to Support Advanced Diesel Engine Technology |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.Engines

326

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.Department ofEngines |

327

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance aEnginesInEnergy

328

BMW Diesel - Engine Concepts for Efficient Dynamics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- Engine Concepts for Efficient

329

BMW Diesel Engines - Dynamic, Efficient and Clean | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- Engine Concepts for

330

Development and Validation of a NOx Emission Testing Setup for a Diesel Engine, Fueled with Bio-Diesel.  

E-Print Network [OSTI]

??The increasing concerns related to long term availability of petroleum-based fuels and the emissions from diesel-powered vehicles have given rise to a growing search for… (more)

Kohli, Dhruv

2009-01-01T23:59:59.000Z

331

Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine  

E-Print Network [OSTI]

Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

Song, Hoseok

2012-07-16T23:59:59.000Z

332

Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine  

SciTech Connect (OSTI)

Particulate emissions at the exhaust of a diesel engine were systematically investigated at different engine loads and speeds by rapid thermophoretic sampling followed by direct transmission electron microscope (TEM) visualization. Spherule and aggregate size distributions, aggregate fractal dimensions and prefactors, and particle volume fractions were comprehensively characterized using this novel technique, which provided new, accurate, and relevant data on diesel particulates compared to the abundant past studies involving questionable mobility sizing measurements. In contrast to the narrow (Gaussian) distributions of spherule sizes, there were broad variations in aggregate sizes that were approximated by a lognormal probability function with a geometric standard deviation of about 1.8. Mean spherule diameters were in the range 20-35 nm, and mean aggregate gyration diameters of 0.16-0.35 {mu}m were always smaller than the PM2.5 standard. Average sizes of both spherules and aggregates mostly increased with the relative engine load or overall equivalence ratio, which disagreed with the trends and correlations suggested by a recent study. Independent of engine operating condition, aggregate fractal dimension was 1.77+/-0.14, a nearly universal property that contradicted with the broad range of past values reported for diesel engines based on mobility-based experiments. The aggregate fractal prefactor, which was also necessary to fully characterize the morphology of diesel soot, was found to be 1.9+/-0.5. In addition to this new contribution, sampling/TEM experiments were also implemented for the first time in a diesel engine to estimate particle volume fractions, which were crucial for the determination of available specific surface areas. The present method was more accurate than the laser attenuation method for the relatively low particle volume fractions of 0.001-0.1 ppm emitted by the diesel engine considered here. (author)

Neer, Adam; Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, MO 65409-0050 (United States)

2006-07-15T23:59:59.000Z

333

Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion  

SciTech Connect (OSTI)

The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

Singh, Satbir [General Motors Research and Development, Warren, MI 48090 (United States); Musculus, Mark P.B. [Sandia National Laboratories, Livermore, CA 94551 (United States); Reitz, Rolf D. [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States)

2009-10-15T23:59:59.000Z

334

A theoretical analysis of acoustic scrubber in diesel engine emission control  

E-Print Network [OSTI]

are the coefficients of en- trainment for particles 1 and 2 respectively and W is g the vibratory velocity of the gaseous medium, defined by (4) where Q is the acoustic intensity, C is the sound speed, and the particle collision efficiency EOK is K e OK (K + 0... particulate by-products; the diesel particulate is 30 to SO times more than for an engine using unleaded gasoline (1). The Environmental Protection Agency (EPA) has defined particulate as any solid or liquid, with the exception of water, that collects...

Huang, Tiing-Lieh

1985-01-01T23:59:59.000Z

335

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

336

Common Rail Injection System Development  

SciTech Connect (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

337

Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse**, A. Louzimi*,  

E-Print Network [OSTI]

Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse is the air path control of a turbocharged diesel engine with Exhaust Gas Recirculation (EGR). Simulation, considering the air path control, the manipulated variables are the wastegate and the EGR valve

Boyer, Edmond

338

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

339

Wear mechanism and wear prevention in coal-fueled diesel engines. Final report  

SciTech Connect (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

340

Update on Diesel Exhaust Emission Control Technology and Regulations...  

Broader source: Energy.gov (indexed) [DOE]

Update on Diesel Exhaust Emission Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

342

Retrofit Diesel Emissions Control System Providing 50% NOxControl...  

Broader source: Energy.gov (indexed) [DOE]

Retrofit Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER)...

343

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

E-Print Network [OSTI]

emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

Jakober, Chris A.

2008-01-01T23:59:59.000Z

344

Measurements of Diesel Truck Traffic Associated with Goods Movement  

E-Print Network [OSTI]

Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

Houston, Douglas; Krudysz, Margaret; Winer, Arthur

2007-01-01T23:59:59.000Z

345

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

346

Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas  

E-Print Network [OSTI]

to 70' of maximum power; how- ever, dual-fuel operation at high speed with advanced tim- ing resulted in full-power operation with a 65(0 reduction in diesel fuel consumption as compared to conventional die- sel operation. Engine knock was evident... of gas-air ratio, the gaseous charge is ignited by its compression, prior to diesel fuel injec- tion. This preignition results in an uncontrolled pressure rise, the "knocking" noise, and eventual engine wear. The knock-limited gas-air ratio has been...

Blacksmith, James Richard

1979-01-01T23:59:59.000Z

347

Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines  

SciTech Connect (OSTI)

Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

Wagner, G.L.; Peterson, C.L.

1982-01-01T23:59:59.000Z

348

Diesel emission reduction using internal exhaust gas recirculation  

DOE Patents [OSTI]

A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

He, Xin (Denver, CO); Durrett, Russell P. (Bloomfield Hills, MI)

2012-01-24T23:59:59.000Z

349

Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder  

SciTech Connect (OSTI)

Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

Muth, T. R.; Mayer, R. (Queen City Forging)

2012-05-04T23:59:59.000Z

350

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties  

SciTech Connect (OSTI)

The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

2009-01-01T23:59:59.000Z

351

An Experimental Investigation of Low Octane Gasoline in Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Octane Gasoline in Diesel Engines An Experimental Investigation of Low Octane Gasoline in Diesel Engines Presentation given at the 16th Directions in Engine-Efficiency and...

352

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

Scora, George Alexander

2011-01-01T23:59:59.000Z

353

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

354

Constrained motion planning for the airpath of a Diesel HCCI engine Jonathan Chauvin, Gilles Corde, and Nicolas Petit  

E-Print Network [OSTI]

Constrained motion planning for the airpath of a Diesel HCCI engine Jonathan Chauvin, Gilles Corde (HCCI) mode. Conclusions stress the possibility of taking into account the non- minimum phase effects Ignition (HCCI) ­ has become of major interest. It requires the use of high Exhaust Gas Recirculation (EGR

355

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a  

E-Print Network [OSTI]

Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

Hickman, Mark

356

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect (OSTI)

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

357

Experimental study and modeling of dodecane ignition in a diesel engine  

SciTech Connect (OSTI)

Two experiments have been performed under conditions as close as possible to those existing in a diesel engine. The first is oxidation of n-dodecane in a motored diesel engine running under conditions close to ignition but avoiding it. The progress of chemical reactions is followed by measurements of the global temperature increase {Delta}T of the exhaust gases, and by continuous sampling of the combustion chamber gases, to measure the concentrations of hydroperoxides and molecular hydrogen; about 4.2% of the energy introduced as hydrocarbon is consumed, thus showing significant transformations during the ignition delay of n-dodecane. The location of the maximum concentration of hydroperoxides coincides with the fuel jet`s edge. Tarlike compounds are present in the unburnt dodecane at the engine exhaust. The second experiment is the study of ignition delay of an n-dodecane spray in an oxidation chamber filled with air, between 715 and 760 K and 15 and 25 bar. A reduced mechanism of 32 reactions, with three types of branching due to the species (RO{sub 2}, RO{sub 2}H), (HO{sub 2}, H{sub 2}O{sub 2}), and H, enable one to predict the ignition delay. Computer simulations are made with the KIVA II code. They show good agreement between the experimental and the calculated ignition delays. They also indicate that, during the ignition delay, reactions occur first at the boundary of the fuel spray. A temperature increase of about 100 K takes place at the hottest points, which correspond to concentration maxima of the three branching species. Time-dependent evolutions of average concentrations show that RO{sub 2}H reaches a maximum first, then H{sub 2}O{sub 2}, and lastly the H atom.

Sahetchian, K. [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique] [CNRS, Saint-Cyr-l`Ecole (France). Lab. de Mecanique Physique; Champoussin, J.C.; Brun, M. [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques] [Ecole Centrale de Lyon, Ecully (France). Lab. de Machines Thermiques

1995-11-01T23:59:59.000Z

358

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

359

Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine  

E-Print Network [OSTI]

For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

Radovanovic, Michael S

2006-01-01T23:59:59.000Z

360

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network [OSTI]

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ENSC 461: Four-Stroke Diesel Engine School of Engineering Science  

E-Print Network [OSTI]

and brake unit (HM 365), and internal combustion engine basic module (CT 159). Internal combustion engine basic module The internal combustion engine basic module forms the basis for investigations and experiments on internal combustion engines. This unit is equipped with mechanisms for measuring fuel and air

Bahrami, Majid

362

Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2  

SciTech Connect (OSTI)

This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

2000-03-02T23:59:59.000Z

363

Performance of the 1 kW thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) has been developing a 1 kW thermoelectric generator for class eight Diesel truck engines under U.S. Department of Energy and California Energy Commission funding since 1992. The purpose of this generator is to replace the currently used shaft-driven alternator by converting part of the waste heat in the engine`s exhaust directly to electricity. The preliminary design of this generator was reported at the 1992 meeting of the XI-ICT in Arlington, Texas. This paper will report on the final mechanical, thermal and thermoelectric design of this generator. The generator uses seventy-two of Hi-Z`s 13 Watt bismuth-telluride thermoelectric modules for energy conversion. The number of modules and their arrangement has remained constant through the program. The 1 kW generator was tested on several engines during the development process. Many of the design features were changed during this development as more information was obtained. We have only recently reached our design goal of 1 kW output. The output parameters of the generator are reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Bass, J.C.; Elsner, N.B.; Leavitt, F.A. [Hi-Z Technology, Inc (??)

1994-08-10T23:59:59.000Z

364

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

365

Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start  

E-Print Network [OSTI]

Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

Cedrone, Kevin David

2013-01-01T23:59:59.000Z

366

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

367

Tailored Acicular Mullite Substrates for Multifunctional Diesel...  

Broader source: Energy.gov (indexed) [DOE]

"New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications," Proceedings of the 9th Diesel Engine Emissions Reduction Conference August 24-28, 2003,...

368

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

369

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

370

Diesel fuel component contributions to engine emissions and performance: Clean fuel study  

SciTech Connect (OSTI)

The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

Erwin, J.; Ryan, T.W. III; Moulten, D.S. [Southwest Research Inst., San Antonio, TX (United States)

1994-08-01T23:59:59.000Z

371

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

372

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

Minnesota, University of

373

Design of oil consumption measuring system to determine the effects of evolving oil sump composition over time on diesel engine performance and emissions  

E-Print Network [OSTI]

The automotive industry is currently struggling because of the increasingly stricter emissions standards that will take effect in the near future. Diesel engine emissions are of particular interest because they are still ...

Ortiz-Soto, Elliott (Elliott A.)

2006-01-01T23:59:59.000Z

374

Optical-Engine Study of a Low-Temperature Combustion Strategy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel Optical-Engine Study of...

375

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

376

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

377

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

378

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

379

Fuel injection system and method of operating the same for an engine  

DOE Patents [OSTI]

A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

2011-02-15T23:59:59.000Z

380

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2013-01-01T23:59:59.000Z

382

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine  

Broader source: Energy.gov (indexed) [DOE]

levels Commercially Viable Solutions - High quality, Great Performance, Low Total Cost of Ownership 4 Scope Weight reduction in comparison to current diesel ...

383

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

384

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

SciTech Connect (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

385

Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines  

SciTech Connect (OSTI)

This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

1999-01-01T23:59:59.000Z

386

Abrasive wear by diesel engine coal-fuel and related particles  

SciTech Connect (OSTI)

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

387

International Journal of Mechanical & Mechatronics IJMME-IJENS Vol: 10 No: 03 1 BIODIESEL FROM JATROPHA OIL AS AN ALTERNATIVE FUEL FOR DIESEL ENGINE  

E-Print Network [OSTI]

Abstract—The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

388

Optimization of Direct-Injection H2 Combustion Engine Performance...  

Broader source: Energy.gov (indexed) [DOE]

Engine friction Values derived from measurement on multi-cylinder engine Turbo-charger performance Derived from results of turbo-charged multi-cylinder hydrogen...

389

Optimization of Direct-Injection H2 Combustion Engine Performance...  

Broader source: Energy.gov (indexed) [DOE]

100 bar injection pressure Simulated turbocharging based on hydrogen PFI turbo results Operation limited due to peak cylinder pressure Only early DI possible...

390

An investigation of high pressure/late cycle injection of CNG (compressed natural gas) as a fuel for rail applications  

SciTech Connect (OSTI)

This report describes a demonstration effort to investigate the use of natural gas in a medium-speed diesel engine. The effort was unique in the sense that natural gas was injected directly into the combustion chamber late in the compression stroke, as a high pressure gas rather than through low pressure fumigation or low pressure injection early in the compression stroke. Tests were performed on a laboratory two-cylinder, two-stroke cycle medium-speed diesel engine in an attempt to define its ability to operate on the high pressure/late cycle injection concept and to define the performance and emission characteristics of the engine under such operation. A small quantity of No.-2 diesel fuel was injected into the cylinder slightly before the gas injection to be used as an ignition source for the gas. Pilot (diesel fuel) and main (natural gas) timing and injection duration were systematically varied to optimize engine performance. The test demonstrated that the medium-speed engine was capable of attaining full rated speed and load (unlike the low pressure approach) with very low percentages of pilot injection with the absence of knock. Thermal efficiency was as much as 10 percent less than thermal efficiency levels obtained with neat diesel fuel. This was primarily due to the placement and injection characteristics of the pilot and main injectors. Optimization of the injection system would undoubtedly result in increased thermal efficiency. 11 figs., 4 tabs.

Wakenell, J.F.; O'Neal, G.G.; Baker, Q.A.; Urban, C.M.

1988-04-01T23:59:59.000Z

391

A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines  

SciTech Connect (OSTI)

A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

Westbrook, C K; Pitz, W J; Curran, H J

2005-11-14T23:59:59.000Z

392

Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine  

E-Print Network [OSTI]

Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

393

The effect of air charge temperature on performance, ignition delay and exhaust emissions of diesel engines using w/o emulsions as fuel  

SciTech Connect (OSTI)

Most of the work performed on the use of water/oil emulsions in diesel engines showed that increasing the water content in the emulsified fuel was effective in reducing NO/sub x/ and soot emissions. Unfortunately, the increase in water content in the emulsified fuel also increases the ignition delay and may cause diesel knock. One way to reduce the ignition delay is to increase the air charge temperature. In this study, the effect of increasing the air charge temperature on ignition delay, performance and exhaust emissions was investigated. The experiments were conducted on a CLR diesel engine using base-line diesel fuel number2 and stabilized macro-emulsions containing 15 percent, 30 percent and 45 percent water by volume.

Afify, E.M.; Korah, N.S.; Dickey, D.W.

1987-01-01T23:59:59.000Z

394

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

395

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

1998-05-05T23:59:59.000Z

396

ME 374C Combustion Engine Processes ABET EC2000 syllabus  

E-Print Network [OSTI]

combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors engine, although diesels and 2-strokes are also discussed. Topics Covered (# of classes per topic): 1 of an Engineering System 4. Introduction to Engine Modeling 5. Fuels 6. Combustion and Knock 7. 4-stroke SI Engines

Ben-Yakar, Adela

397

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Broader source: Energy.gov (indexed) [DOE]

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

398

Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications  

SciTech Connect (OSTI)

Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

2002-08-25T23:59:59.000Z

399

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network [OSTI]

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

400

Effects of secondary air injection during cold start of SI engines  

E-Print Network [OSTI]

The paucity of exhaust oxygen during cold start of automobile SI engines limits the extent of exothermic chemical reactions in the exhaust port, manifold, and catalyst. The injection of air into the exhaust system therefore ...

Lee, Dongkun

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrocarbon emissions in a homogeneous direct-injection spark engine : gasoline and gasohol  

E-Print Network [OSTI]

In order to better understand the effects on hydrocarbon emissions of loading, engine temperature, fuel type, and injection timing, a series of experiments was performed. The effect of loading was observed by running the ...

Tharp, Ronald S

2008-01-01T23:59:59.000Z

402

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents [OSTI]

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

403

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

404

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends  

E-Print Network [OSTI]

The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

Dimou, Iason

405

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

406

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

407

Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing  

SciTech Connect (OSTI)

In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing. 18 refs.

Vijayaraghavan, D.; Brewe, D.E.; Keith, T.G. Jr. (NASA, Lewis Research Center, Cleveland, OH (United States) Toledo Univ., OH (United States))

1993-07-01T23:59:59.000Z

408

BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE  

E-Print Network [OSTI]

Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

409

Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions  

SciTech Connect (OSTI)

A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissions is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.

He, X.; Ratcliff, M. A.; Zigler, B. T.

2012-04-19T23:59:59.000Z

410

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network [OSTI]

into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied...

Xue, Xingyu 1985-

2012-11-15T23:59:59.000Z

411

Performance of a High Speed Indirect Injection Diesel Engine with Poultry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow YourPerformance AuditPerformance of a HeatFat

412

Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4Department of Energy Control|

413

Advanced Modeling of Direct-Injection Diesel Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOEOperationModeling of

414

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

SciTech Connect (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

415

Time- and space-resolved quantitative LIF measurements of formaldehyde in a heavy-duty diesel engine  

SciTech Connect (OSTI)

Formaldehyde (CH{sub 2}O) is a characteristic species for the ignition phase of diesel-like fuels. As such, the spatio-temporal distribution of formaldehyde is an informative parameter in the study of the ignition event in internal combustion engines, especially for new combustion modes like homogeneous charge compression ignition (HCCI). This paper presents quantitative data on the CH{sub 2}O distribution around diesel and n-heptane fuel sprays in the combustion chamber of a commercial heavy-duty diesel engine. Excitation of the 4{sub 0}{sup 1} band (355 nm) as well as the 4{sub 0}{sup 1}2{sub 0}{sup 1} band (339 nm) is applied. We use quantitative, spectrally resolved laser-induced fluorescence, calibrated by means of formalin seeding, to distinguish the contribution from CH{sub 2}O to the signal from those of other species formed early in the combustion. Typically, between 40% and 100% of the fluorescence in the wavelength range considered characteristic for formaldehyde is in fact due to other species, but the latter are also related to the early combustion. Numerical simulation of a homogeneous reactor of n-heptane and air yields concentrations that are in reasonable agreement with the measurements. Formaldehyde starts to be formed at about 2 CA (crank angle degrees) before the rise in main heat release. There appears to be a rather localised CH{sub 2}O formation zone relatively close to the injector, out of which formaldehyde is transported downstream by the fuel jet. Once the hot combustion sets in, formaldehyde quickly disappears. (author)

Donkerbroek, A.J.; van Vliet, A.P.; Klein-Douwel, R.J.H.; Meerts, W.L.; ter Meulen, J.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Somers, L.M.T.; Frijters, P.J.M. [Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dam, N.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2010-01-15T23:59:59.000Z

416

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

417

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Component Analysis  

SciTech Connect (OSTI)

In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may significantly alter other specifications or fuel chemistry. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal component analysis (PCA) was used in this work, because of its ability to deal with co-linear variables and to uncover 'hidden' relationships in the data. In this paper, a set of 11 diesel fuels with widely varying properties were run in a simple HCCI engine. Fuel properties and engine performance are examined to identify underlying fuel relationships and to determine the interplay between engine behavior and fuels. Results indicate that fuel efficiency is mainly controlled by a collection of specifications related to density and energy content and ignition characteristics are controlled mainly by cetane number.

Bunting, Bruce G [ORNL; Crawford, Robert W [Rincon Ranch Consulting

2007-01-01T23:59:59.000Z

418

EPA Diesel Update  

Broader source: Energy.gov (indexed) [DOE]

for US Introduction of Tier 2 Diesels - Dr. Gerhard Schmidt, VP Research and Advanced Engineering Ford, "Our target must be 50 state programs at LEV2Bin 5. ....the prognosis...

419

Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection  

E-Print Network [OSTI]

Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct of engines with gasoline direct injection. Exhaust gas aftertreatment requires storage catalysts fractions in a gasoline engine with spray-guided direct injection using laser-induced fluorescence (LIF

Lee, Tonghun

420

The John Deere E diesel Test & Research Project  

SciTech Connect (OSTI)

Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

Fields, Nathan; Mitchell, William E.

2008-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

422

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

Minnesota, University of

423

Evaluation of Oxydiesel as a Fuel for Direct-Injection Compression-Ignition Engines  

E-Print Network [OSTI]

speed and maximum power for 500 hours on a blend of ethanol, No. 2 diesel, and an additive as compared and diesel with a special additive, has been shown to be a promising new alternative fuel for existing diesel the mixing of diesel fuel with ethanol. The Illinois DCCA has embarked on a widespread research program

Illinois at Urbana-Champaign, University of

424

Renewable Diesel  

Broader source: Energy.gov (indexed) [DOE]

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

425

Decentralized robust control-system for a non-square MIMO system, the air-path of a turbocharged Diesel engine  

E-Print Network [OSTI]

and greenhouse gas pollutants. In this paper, a non-square multivariable controller for the air-path systemDecentralized robust control-system for a non-square MIMO system, the air-path of a turbocharged the performance of the proposed control-system. Keywords: Diesel engine air path, Robust control, CRONE

Paris-Sud XI, Université de

426

Combustion engine with fuel injection system, and a spray valve for such an engine  

SciTech Connect (OSTI)

This paper describes a fuel system for a combustion engine have a cylinder with an air inlet passage. It comprises: a fuel spray valve having a fuel injection nozzle for spraying fuel into the cylinder air inlet passage and having a fuel spray valve passage leading to the nozzle, means for mounting the fuel spray valve to position the nozzle to open into the cylinder air inlet passage adjacent the cylinder, a fuel pump for providing fuel under pressure to the fuel spray valve passage to be sprayed from the fuel spray valve nozzle, and a fuel heating device connectable to an electrical power supply and disposed adjacent to the valve to be energized for heating the fuel to enhance finer spraying thereof by the fuel spray valve nozzle, the fuel heating device comprising means defining a spiral fuel flow path of selected length connected to and coaxial with the fuel spray valve passage to dispose the selected length of fuel flow path closely adjacent to the fuel spray valve passage, and a fuel heating element comprising a thermistor of a ceramic material of positive temperature coefficient of resistivity arranged to heat the selected length of the spiral fuel flow path to transfer heat to the fuel flowing in the spiral fuel flow path throughout the selected length of the spiral fuel flow path to substantially heat the fuel at a location closely adjacent to the fuel spray valve passage to enhance vaporizing of fuel being sprayed from the valve nozzle.

Wechem, G.V.; Beunk, G.; Van Den Elst, F.; Gerson, P.M.

1991-10-08T23:59:59.000Z

427

Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability  

SciTech Connect (OSTI)

In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

2004-06-01T23:59:59.000Z

428

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

429

DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance  

E-Print Network [OSTI]

DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

Ickert-Bond, Steffi

430

Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...  

Broader source: Energy.gov (indexed) [DOE]

Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research 2009 DOE...

431

EFFECT ON PERFORMANCE OF ENGINE BY INJECTING HYDROGEN  

E-Print Network [OSTI]

The principle of this type of combustion is to addition of hydrogen gas to the combustion reactions of either compression or spark ignition engines. The addition of hydrogen has been shown to decrease the formation of NOx, CO and unburnt hydrocarbons. Studies have shown that added hydrogen in percentages as low as 5-10 % of the hydrocarbon fuel can reduce that hydrocarbon fuel consumption. The theory behind this concept is that the addition of hydrogen can increase the lean operation limit, improve the lean burn ability, and decrease burning time. To apply this method to an engine a source of hydrogen is needed. At this time the simplest option would be to carry a tank of hydrogen. Research is being conducted to allow the hydrogen to be reformed from the vehicles hydrocarbon fuel supply or produce hydrogen from electrolysis of water. In the future, better methods could be developed for storing hydrogen in the vehicle or production of hydrogen on-board the vehicle.

Rob Res; Suryakant Sharma Et Al; Suryakant Sharma; Deepak Bhardwaj; Vinay Kumar; Corresponding Suryakant Sharma

432

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network [OSTI]

In a locomotive application, Diesel-electric powertrains areaspect of electric motors. Although Diesel engines provide

Saxena, Samveg

2011-01-01T23:59:59.000Z

433

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

434

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

435

Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergyduty H2-Diesel

436

Convective Heating of the LIFE Engine Target During Injection  

SciTech Connect (OSTI)

Target survival in the hostile, high temperature xenon environment of the proposed Laser Inertial Fusion Energy (LIFE) engine is critical. This work focuses on the flow properties and convective heat load imposed upon the surface of the indirect drive target while traveling through the xenon gas. While this rarefied flow is traditionally characterized as being within the continuum regime, it is approaching transition where conventional CFD codes reach their bounds of operation. Thus ANSYS, specifically the Navier-Stokes module CFX, will be used in parallel with direct simulation Monte Carlo code DS2V and analytically and empirically derived expressions for heat transfer to the hohlraum for validation. Comparison of the viscous and thermal boundary layers of ANSYS and DS2V were shown to be nearly identical, with the surface heat flux varying less than 8% on average. From the results herein, external baffles have been shown to reduce this heat transfer to the sensitive laser entrance hole (LEH) windows and optimize target survival independent of other reactor parameters.

Holdener, D S; Tillack, M S; Wang, X R

2011-10-24T23:59:59.000Z

437

A study of diesel combustion process under the condition of EGR and high-pressure fuel injection with gas sampling method  

SciTech Connect (OSTI)

It is well known that a high-pressure fuel injection is effective for the reduction in particulates and smoke emissions. Exhaust gas recirculation (EGR) is effective for the reduction in NO{sub x} emission. In this study an experiment aiming to understand more comprehensive combustion under the condition of EGR and high-pressure fuel injection was carried out by using gas sampling method for the purpose of understanding what occurred inside the spray before and after combustion. The number of combustion cycles in this engine can be controlled in order to change EGR conditions by adjusting the residual gas concentration in the cylinder. Main results were: (1) close to the nozzle tip, the sampling gas data showed little reaction which implies that combustion never occurs in this area during the injection period; (2) in the case of high-pressure fuel injection O{sub 2} concentration decreased faster and air dilution was more active and earlier, this may cause the decrease of smoke emissions due to accelerated soot oxidation; (3) in the case of EGR, combustion was poor since oxygen concentration was insufficient, thus, inactivity of oxidation reaction caused reduction in NO{sub x} emission; (4) in the case of increasing the amounts of N{sub 2} gas while keeping the O{sub 2} content constant (same amount as without EGR), NO{sub x} emission decreased without deterioration of smoke emission and Pmi.

Shimazaki, Naoki; Hatanaka, Hirokazu; Yokota, Katsuhiko; Nakahira, Toshio

1996-09-01T23:59:59.000Z

438

Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing  

E-Print Network [OSTI]

Compression Ignition (HCCI) engines high level of EGR can be used to indirectly control combustion initiation and HCCI engines [7, 10]. Conventional external EGR (eEGR), relies on a pressure drop from exhaust manifold

Stefanopoulou, Anna

439

Emission Characteristics of Jatropha- Dimethyl Ether Fuel Blends on A DI Diesel Engine  

E-Print Network [OSTI]

loads at the maximum torque.The engine speed was maintained at 1500 rpm. Here the jatropha oil is used

M. Loganathan; A. Anbarasu; A. Velmurugan

440

Modeling deposit formation in diesel injector nozzle  

E-Print Network [OSTI]

Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

Sudhiesh Kumar, Chintoo

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003  

E-Print Network [OSTI]

Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

2008-01-01T23:59:59.000Z

442

An analytical investigation of the effects of water injection on combustion products and detonation in spark ignition engines  

E-Print Network [OSTI]

AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILIIAM CHARLES BROWN Submitted to the Graduate College of Texas ANNI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Aerospace Engineering AN ANALYTICAL INVESTIGATION Ol' THE El'FECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILLIAM...

Brown, William Charles

1979-01-01T23:59:59.000Z

443

Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology.  

E-Print Network [OSTI]

??Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning… (more)

Abuhabaya, Abdullah

2012-01-01T23:59:59.000Z

444

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

445

Develop the dual fuel conversion system for high output, medium speed diesel engines. Final report  

SciTech Connect (OSTI)

The original plan for the project involved design modifications to an existing system to enhance its performance and increase the limit of power that was achieved by the original design and to apply the higher performance product to the full sized engine and test its performance. The new system would also be applied to a different engine model. The specific work would include the redesign of gas injectors, piston configurations and two types of igniters, engine instrumentation, monitoring and testing.

NONE

1998-07-16T23:59:59.000Z

446

Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories  

SciTech Connect (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

Robert W. Carling; Gurpreet Singh

2000-06-19T23:59:59.000Z

447

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine  

SciTech Connect (OSTI)

The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

Bunting, Bruce G [ORNL] [ORNL; Eaton, Scott J [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

2009-01-01T23:59:59.000Z

448

Center for Diesel Research Potential Efficiency Improvement  

E-Print Network [OSTI]

Speed Histogram #12;Center for Diesel Research Results ­ Power Data Wasted power · Engine Hydraulic FanW Fan Power Histogram Fan Power Scatter Plot #12;Center for Diesel Research Results ­ Average AccessoryCenter for Diesel Research Potential Efficiency Improvement by Accessory Load Reduction on Hybrid

Minnesota, University of

449

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

450

Development of a Waste Heat Recovery System for Light Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and...

451

A computational study of an HCCI engine with direct injection during gas exchange  

SciTech Connect (OSTI)

We present a new probability density function (PDF)-based computational model to simulate a homogeneous charge compression ignition (HCCI) engine with direct injection (DI) during gas exchange. This stochastic reactor model (SRM) accounts for the engine breathing process in addition to the closed-volume HCCI engine operation. A weighted-particle Monte Carlo method is used to solve the resulting PDF transport equation. While simulating the gas exchange, it is necessary to add a large number of stochastic particles to the ensemble due to the intake air and EGR streams as well as fuel injection, resulting in increased computational expense. Therefore, in this work we apply a down-sampling technique to reduce the number of stochastic particles, while conserving the statistical properties of the ensemble. In this method some of the most important statistical moments (e.g., concentration of the main chemical species and enthalpy) are conserved exactly, while other moments are conserved in a statistical sense. Detailed analysis demonstrates that the statistical error associated with the down-sampling algorithm is more sensitive to the number of particles than to the number of conserved species for the given operating conditions. For a full-cycle simulation this down-sampling procedure was observed to reduce the computational time by a factor of 8 as compared to the simulation without this strategy, while still maintaining the error within an acceptable limit. Following the detailed numerical investigation, the model, intended for volatile fuels only, is applied to simulate a two-stroke, naturally aspirated HCCI engine fueled with isooctane. The in-cylinder pressure and CO emissions predicted by the model agree reasonably well with the measured profiles. In addition, the new model is applied to estimate the influence of engine operating parameters such as the relative air-fuel ratio and early direct injection timing on HCCI combustion and emissions. The qualitative trends observed in the parametric variation study match well with experimental data in literature. (author)

Su, Haiyun; Vikhansky, Alexander; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Kim, Kyoung-Oh; Kobayashi, Tatsuo [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan); Mauss, Fabian [Division of Combustion Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)

2006-10-15T23:59:59.000Z

452

DIESEL ENGINES FOR FIREDAMP MINES Institut National de 1'Environnement Industricl  

E-Print Network [OSTI]

arresting devices in the intake circuit and exhaust circuit. The old French mining regulations defined %. This is of considerable interest to French coal mines who need more and more powerfui engines to drive their rubber tyred

Paris-Sud XI, Université de

453

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

454

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

455

A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL  

E-Print Network [OSTI]

A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL ENGINES 1 Gianluca Zito ,2 Ioan is illustrated by means of an automotive case study, namely a variable geometry turbocharged diesel engine identification procedure is illustrated. In section 3 a diesel engine system, used to test the procedure

Paris-Sud XI, Université de

456

Transient Scuffing of Candidate Diesel Engine Materials at Temperatures up to 600oC  

SciTech Connect (OSTI)

This milestone report summarizes the general characteristics of scuffing damage to solid surfaces, then describes transient effects on scuffing observed during oscillating sliding wear tests of candidate material pairs for high-temperature diesel engine applications, like waste-gate bushings in exhaust gas recirculation (EGR) systems. It is shown that oxidation and the formation of wear particle layers influence the friction of such components. In the case of metallic materials in cylindrical contacts where there is a generous clearance, debris layers can form which reduce the torque over time. For ceramic combinations, the opposite effect is observed. Here, the accumulation of wear debris leads to an increase in the turning torque. High-temperature transient scuffing behavior is considered in terms of a series of stages in which the composition and morphology of the contact is changing. These changes are used to explain the behavior of 11 material pairs consisting of stainless steels, Ni-based alloys, Co-based alloys, and structural ceramics.

Blau, P.

2003-06-20T23:59:59.000Z

457

Further improvement of conventional diesel NOx aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Future Directions in Engines and Fuels Diesel Passenger Car Technology for Low Emissions and CO2 Compliance A View from the Bridge...

458

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network [OSTI]

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

459

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network [OSTI]

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

460

Effect of fuel properties on the first cycle fuel delivery in a Port Fuel Injected Spark Ignition Engine  

E-Print Network [OSTI]

Achieving robust combustion while also yielding low hydrocarbon (HC) emissions is difficult for the first cycle of cranking during the cold start of a Port Fuel Injected (PFI) Spark Ignition (SI) engine. Cold intake port ...

Lang, Kevin R., 1980-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - auxiliary diesel units Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: units that converted diesel fuel to electricity to supply space conditioning, and power for appliances... About Diesel Engines 14 Argonne Teams Up with...

462

X-Ray Characterization of Diesel Sprays and the Effects of Nozzle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sprays and the Effects of Nozzle Geometry X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry 2004 Diesel Engine Emissions Reduction (DEER) Conference...

463

Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation  

E-Print Network [OSTI]

of combustion that have caught attention of the recent researchers are homogeneous charge compression ignition (HCCI) combustion and premixed charge compression ignition (PCI) combustion modes. In HCCI combustion mode, fuel and air are completely mixed prior... inside the cylinder. The control of combustion process is more challenging in case of HCCI combustion mode. In PCI combustion, air and fuel are not completely premixed, but the fuel is injected sufficiently before the desired start of combustion...

Oak, Sushil Shreekant

2008-10-10T23:59:59.000Z

464

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

SciTech Connect (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

465

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.  

E-Print Network [OSTI]

Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

466

Effect of carbon coating on scuffing performance in diesel fuels  

SciTech Connect (OSTI)

Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

2000-06-29T23:59:59.000Z

467

Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine using JET-A Fuel  

E-Print Network [OSTI]

Protection Agency (EPA)............................................................ 10 1.4.3 Emission Technology .................................................................................................... 11 1.4.3.1 Catalytic Converter... Actual e Exit f Fuel inf Free Stream o Point Pr Prop T Thrust x Compound Family viii Abbreviations Definition AFR Air Fuel Ratio BHP Brake Horsepower CED Compact Engine Display CFR Code of Federal Regulations CReSIS Center for Remote...

Underwood, Sean Christopher

2008-05-05T23:59:59.000Z

468

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

469

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

de Weck, Olivier L.

470

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network [OSTI]

to excessive speeds and intake manifold to unnecessary pressures. 10 Table 1: Engine Specifications Number of Cylinders 4 Compression Ratio 17.0:1 Bore (in, mm) 4.19, 106 Stroke (in,mm) 5, 127 Displacement (in2... then decrease as injection moves from its most retarded timing to its most advanced timing. When varying from -4? ATDC to -22? ATDC, the BFCE reaches a peak at -10? ATDC of 22.9%, while the minimum of 20.1% occurs at -22? ATDC. For higher load low speed...

McLean, James Elliott

2011-10-21T23:59:59.000Z

471

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

J. , Internal Combustion Engine Fundamentals. March 31stfrom a large ship diesel engine. Atmos. Environ. 2009, 43 (low-speed marine diesel engine. Aerosol Sci. Technol. 2007,

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

472

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...  

Broader source: Energy.gov (indexed) [DOE]

Adsorber Regeneration Issues Effective NOx regeneration difficult below 300C with in-pipe diesel injection Post cycle in-cylinder injection can generate more reactive reductants...

473

System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspectEngines |Impacts| Department of

474

CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel...  

Broader source: Energy.gov (indexed) [DOE]

engine * Cast stainless upgrade for SiMo cast-iron diesel engine exhaust components turbo-housing exhaust manifold C-15, 14.6L HD On- Highway Diesel Engine Materials Need: High...

475

Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion  

E-Print Network [OSTI]

the turbocharger and the diesel engine in steady-state 5]. Secondly, it modi es the power transfer to the turbineEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable

Stefanopoulou, Anna

476

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

Minnesota, University of

477

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997  

SciTech Connect (OSTI)

This quarter the project focused primarily in two basic areas. Approximately 60% of the time was applied at continuing to manufacture and test alternate designs of the diesel prechamber and its associated auxiliary equipment. Approximately 23% time was applied to the hydraulic actuation of the gas injector and the design work of applying the gas injector to the engines cylinder liner. The remaining 17% time was spread over a number of areas two of which include the completion of knock detection system and test facility calibration and service.

NONE

1997-06-30T23:59:59.000Z

478

Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by  

E-Print Network [OSTI]

of an electrostatic diesel injector. Micro-Pilot Ignition Studies for Alternative Fueled Engines- five-year project with/without electrical heating and with/without secondary air injection. Alabama Alternative Fuel base, develop and disseminate alternative fuels information to Alabama citizens, and coordinate

Carver, Jeffrey C.

479

Transonic Combustion ? - Injection Strategy Development for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

480

Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber  

SciTech Connect (OSTI)

Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

2011-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Particulate Filter Technologies for Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

482

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

483

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 2, January 1--March 31, 1997  

SciTech Connect (OSTI)

Energy Conversions Incorporated has continued to work on the EMD-710 dual-fuel test cell in the second quarter of the project. The project is on schedule and is sticking to their original timeline. The tasks performed and percent complete are spark prechamber work--50% done; diesel prechamber work--50% done; gas compressor--100% complete; port injection work--50% complete; hydraulic gas inlet valve work--30% complete; knock board modifications--75% complete; test documentation--50% complete; record data from navy generator and offshore rigs--50% complete and single cylinder testing--50% complete. The authors continued to do much of their parts testing on single cylinder gas operation. The single cylinder testing will likely continue throughout the 710 development.

NONE

1997-04-11T23:59:59.000Z

484

Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays  

SciTech Connect (OSTI)

The effects of injection pressure and orifice diameter on the lift-off length of a direct-injection (DI) diesel spray (defined as the farthest upstream location of high temperature combustion) were investigated using a natural light emission imaging technique. The lift-off length experiments were conducted in a constant-volume combustion vessel under quiescent, heavy-duty DI diesel engine conditions using a Phillips research grade No.2 diesel fuel. The results show that natural light emission at 310 nm provides an excellent marker of the lift-off length. At this location, natural light emission at 310 nm is dominated by OH chemiluminescence generated by high-temperature combustion chemistry. Lift-off lengths determined from images of natural light emission at 310 nm show that as either injection pressure (i.e., injection velocity) or orifice diameter increase, the lift-off length increases. The observed lift-off length increase was linearly dependent on injection velocity, the same dependency as previously noted for gas jets. The lift-off length increase with increasing orifice diameter, however, is different than the independence of lift-off length on orifice diameter noted for gas jets An important overall observation was made by considering the lift-off length data in conjunction with data from recent investigations of liquid-phase fuel penetration and spray development. The combined data suggests that a systematic evolution of the relationship and interaction between various processes in a DI diesel spray has been occurring over time, as injection pressures have been increased and orifice diameters reduced as part of efforts to meet emissions regulations. The trends observed may eventually help explain effects of parameters such as injection pressure and orifice diameter on emissions.

D. L. Siebers; B. S. Higgins

2000-07-01T23:59:59.000Z

485

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network [OSTI]

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z