Powered by Deep Web Technologies
Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Staged direct injection diesel engine  

DOE Patents [OSTI]

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

2

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions  

Science Journals Connector (OSTI)

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions ... The test fuels indicate variable hydrocarbon composition and physical and chemical properties, and they were prepared under a European Union research program aiming to identify future fuel formulations for use in modern DI diesel engines. ... 1,2,4-9,13,14,16,17,24-26 In general, there is an interrelation between the molecular structure (paraffins, olefins, napthenes, and aromatic hydrocarbons), the chemical properties (cetane number, ignition point, etc.), and the physical properties (density, viscosity, surface tension, etc.) of the diesel fuel. ...

Theodoros C. Zannis; Dimitrios T. Hountalas; Roussos G. Papagiannakis

2007-07-19T23:59:59.000Z

3

Injection Technology for Marine Diesel Engines  

Science Journals Connector (OSTI)

The introduction of new emission limits faces modern injection systems with new challenges. Increasing the system pressures puts higher loads on the injection components as regards stability, wear and temperature...

Dr. Rolf Leonhard; Dr.-Ing. Marcus Parche…

2011-04-01T23:59:59.000Z

4

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

5

Performance and Emissions of Direct Injection Diesel Engine Fueled with Diesel Fuel Containing Dissolved Methane  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ... soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solns., one of which is the use of a gaseous fuel as a partial supplement for liq. ... (16)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill:? New York, 1988. ...

Junqiang Zhang; Deming Jiang; Zuohua Huang; Xibin Wang; Qi Wei

2006-01-19T23:59:59.000Z

6

Engines - Fuel Injection and Spray Research - Diesel Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Sprays Diesel Sprays Chris Powell and fuel spray xray beamline Christopher Powell, an engine research scientist, fits a specially designed X-ray pressure window to a high-pressure chamber used in diesel spray research. These windows allow Argonne researchers to use X-rays to probe diesel sprays under the high-density conditions found in diesel engines. Diesel sprays Diesel engines are significantly more fuel-efficient than their gasoline counterparts, so wider adoption of diesels in the U.S. would decrease the nationÂ’s petroleum consumption. However, diesels emit much higher levels of pollutants, especially particulate matter and NOx (nitrogen oxides). These emissions have prevented more manufacturers from introducing diesel passenger cars. Researchers are exploring ways to reduce pollution formation in the engine

7

Advanced Modeling of Direct-Injection Diesel Engines | Department...  

Broader source: Energy.gov (indexed) [DOE]

Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerzellat.pdf More Documents & Publications Effects of Ambient Density and...

8

The Performance Analysis on Fuel Injection System Failure for a Four-Stroke Marine Diesel Engine  

Science Journals Connector (OSTI)

The middle speed four stroke diesel engine has the advantages of small capacity, light in weight, capable to combustion poor fuel oil. In recent years, they have been used more comprehensive than before. Daihatsu 6PSHdM-26H diesel engine, which is a ... Keywords: 4-stroke medium-speed turbocharged marine diesel engine, Fuel injection system failure, delayed combustion, performance analysis

Jialiang Huang; Guohao Yang; Dan Wang

2010-12-01T23:59:59.000Z

9

Injection timing and cone angle behavior on a heavy duty diesel engine  

Science Journals Connector (OSTI)

In this paper the three dimensional computational fluid dynamics (CFD) analysis have been used to improve understanding of the formation of soot and NO during combustion in a heavy duty diesel engine. Six injection strategies were used as follows: start ... Keywords: NO, diesel engine, heavy duty, injection cone angle, injection timing, soot

M. Gorji-Bandpy; D. D. Ganji; S. Soleimani

2008-09-01T23:59:59.000Z

10

Investigation of Cluster-Nozzle Concepts for Direct Injection Diesel Engines  

E-Print Network [OSTI]

Investigation of Cluster-Nozzle Concepts for Direct Injection Diesel Engines Von der Fakultät für Investigation of Cluster-Nozzle Concepts for Direct Injection Diesel Engines WICHTIG: D 82 überprüfen !!! #12" in Zusammenarbeit mit General Motors R&D and Strategic Planning, Warren, MI, USA durchgeführt. Ein Teil der Arbeit

Peters, Norbert

11

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

12

Experimental investigation of the effect of split injection on diesel engine performance  

Science Journals Connector (OSTI)

The combustion process in diesel engines is under constant study. A major research effort is being made to establish a better understanding of diesel combustion. Many issues regarding diesel combustion remain unresolved, and these issues may prevent the use of diesel engines due to increasingly stricter air pollution legislation. This study dealt with the effect of the fuel injection profile on diesel engine performance through the utilisation of different multiple injection strategies. From the engineering point of view, establishing a continuous fuel injection profile with the ability to change fuel flow is impossible today. The most feasible engineering solution to continuous fuel injection profile is the utilisation of multiple injection events, which enables control of fuel flow. Multiple injection as a tool to control combustion in diesel engines has been studied for several years, this study investigated the effect of different two injection strategies on the combustion. The results and the analysis of the results demonstrate that multiple injections affect both the physical processes and the kinetics of combustion. Proper division of the injected fuel among injections may decrease engine emissions considerably while causing only a minor decrease in engine efficiency.

Gideon Goldwine; Eran Sher

2009-01-01T23:59:59.000Z

13

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine  

Science Journals Connector (OSTI)

Numerical Modeling and Experimental Study of Combustion and Soot Formation in a Direct Injection Diesel Engine ... The major problems associated with diesel engines are the high levels of nitrogen oxides (NOX) and particulate emissions. ... (11)?Flagan, R. C.; Seinfeld, J. H. Fundamentals of Air Pollution Engineering; Prentice Hall Inc.:? New York, 1988. ...

T. L. Chan; X. B. Cheng

2007-04-10T23:59:59.000Z

14

Effect of stratified water injection on exhaust gases and fuel consumption of a direct injection diesel engine  

Science Journals Connector (OSTI)

The direct injection Diesel engine with its specific fuel consumption of about 200 g/kWh is one of the most efficient thermal engines. However in case of relatively low CH...x...concentration in the exhaust gas t...

Rainer Pauls; Christof Simon

2004-01-01T23:59:59.000Z

15

Experimental Investigation of Optimal Timing of the Diesel Engine Injection Pump Using Biodiesel Fuel  

Science Journals Connector (OSTI)

University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, SI-2000 Maribor ... Compared to mineral diesel, biodiesel and biodiesel blends in general show lower CO, smoke, and HC emissions but higher NOx emission and higher specific fuel consumption. ... In this sense, to gain knowledge about the implications of its use, waste olive oil Me ester was evaluated as a fuel for diesel engines during a 50 h short-term performance test in a diesel direct-injection Perkins engine. ...

Breda Kegl

2006-05-03T23:59:59.000Z

16

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network [OSTI]

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

Xue, Xingyu 1985-

2012-11-15T23:59:59.000Z

17

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

18

Injection Control Research on High Pressure Common Rail Diesel Engine Based on MPC5554  

Science Journals Connector (OSTI)

Based on new generation MCU MPC5554, new hardware for injection control was designed in this paper. The features of MPC5554 and the ¡®Peak & Hold' drive method for injection solenoids were introduced. The performance of eTPU module in MPC5554 was ... Keywords: Diesel Engine, Common Rail System, Injection Control, MPC5554, eTPU

Chong Luo; Ming Zhou; Shao-Jie Liu

2012-10-01T23:59:59.000Z

19

New Phenomenological Six-Zone Combustion Model for Direct-Injection Diesel Engines  

Science Journals Connector (OSTI)

New Phenomenological Six-Zone Combustion Model for Direct-Injection Diesel Engines ... Nevertheless, to comply with ever more stringent emission standards, particularly regarding NOx and particulate matter (PM) emissions, such as EURO 6 in Europe, diesel engine manufacturers have to find new in-cylinder combustion strategies and/or complex after-treatment devices to reduce their emissions. ... Heywood, J. B. Internal Combustion Engines Fundamentals; McGraw-Hill: New York, 1988. ...

Alain Maiboom; Xavier Tauzia; Samiur Rahman Shah; Jean-François Hétet

2009-01-09T23:59:59.000Z

20

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission  

Science Journals Connector (OSTI)

Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission ... (4, 9, 10) Recently, we have found nonvolatile core particles in the exhaust of heavy-duty diesel vehicles and engines also at high load conditions. ... On the basis of the thermodynamic behavior, particle core material has been inferred to be solid in room temperature,(4, 6, 10) but the character of the particles in general is still an open question. ...

Tero Lähde; Topi Rönkkö; Matti Happonen; Christer Söderström; Annele Virtanen; Anu Solla; Matti Kytö; Dieter Rothe; Jorma Keskinen

2011-02-24T23:59:59.000Z

22

Combustion analysis of a direct injection diesel engine when fuelled with sunflower methyl ester and its diesel blends  

Science Journals Connector (OSTI)

Uncertainty in the availability of petroleum-based fuels in the near future and stringent pollution norms have triggered a search for renewable and clean-burning fuels. The use of vegetable oil as an alternative fuel has for long been in the pipeline, but its direct use has been limited because of its higher viscosity. In this work, sunflower oil was taken as feedstock and the feasibility of sunflower oil methyl ester (SFME) as an alternative fuel for diesel engines was investigated. Tests were conducted in a 4.4 kW, single cylinder, naturally aspirated direct injection diesel engine. It was observed that the premixed combustion phase of SFME and its blends were less intense compared with diesel oil. In addition, it was observed that SFME and its blends had slightly lower thermal efficiency and lower tailpipe emissions than diesel oil.

G. Lakshmi Narayana Rao; S. Saravanan; P. Selva Ilavarasi; G. Devasagayam

2009-01-01T23:59:59.000Z

23

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

24

Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel  

Science Journals Connector (OSTI)

Abstract The diesel/methanol dual fuel (DMDF) combustion mode was conducted on a turbo-charged, inter-cooling diesel engine with 6-cylinder for the heavy duty (HD) vehicle. In DMDF mode, methanol is injected into the intake port to form lean air/methanol premixed mixture, and then ignited by the direct-injected diesel fuel in cylinder. This study is aimed to investigate the effect of diesel injection pressure on the characteristics of performance and exhaust emissions from the engine with common-rail fuel system. The experimental results show that at low injection pressure, the IMEP of DMDF mode is lower than that of pure diesel combustion (D) mode. COVIEMP of DMDF mode firstly decreases and then increases with increasing injection pressure, and it remains under 2.1% for all the tests. It is found that the combustion duration in DMDF mode becomes shorter, the maximum cylinder pressure and the peak heat release rate increase, and CA50 gets close to the top dead center as the injection pressure increases. BSFC of DMDF mode decreases with the increase of injection pressure, and is lower than that of D mode for injection pressure over 115 MPa. Both of NOX and smoke emissions are reduced in DMDF mode. But smoke decreases and NOX increases as the diesel injection pressure increases in DMDF mode. DMDF generates lower NO and CO2 emissions, while produces higher HC, CO, andNO2 emissions compared to D mode. As the diesel injection pressure increases, CO and HC emissions are decreased, however, CO2 and NO2 emissions are slightly increased.

Junheng Liu; Anren Yao; Chunde Yao

2015-01-01T23:59:59.000Z

25

The effect of ethanol-water fumigation on the performance and emissions from a direct-injection diesel engine.  

E-Print Network [OSTI]

??The effect of ethanol fumigation and water injection on the performance and exhaust emissions from a 1.9-liter Volkswagen TDI diesel engine was investigated. The engine… (more)

Olson, André Louis

2010-01-01T23:59:59.000Z

26

Extended performance of alcohol fumigation in diesel engines through different multipoint alcohol injection timing cycles  

SciTech Connect (OSTI)

This paper reports on the results of using multipoint port injection alcohol fumigation of a four-cycle turbocharged diesel engine in which the fumigation injection cycle was varied. The three cycles, dual with one-half of the alcohol injection on each engine revolution, single with all of the alcohol injection during the open intake valve revolution, and single with all of the alcohol injected during the closed intake valve revolution, lead to significant differences in the engines pressure-volume history and alcohol energy replacement tolerance. The engine was fumigated with both industrial grade ethanol and methanol and complete performance and emissions data (excluding aldehydes) were measured at low, medium, and high values of BMEP and rpm.

Savage, L.D.; White, R.A.; Cole, S.; Pritchett, G.

1986-01-01T23:59:59.000Z

27

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

SciTech Connect (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

28

Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel  

Broader source: Energy.gov [DOE]

Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

29

Influence of Early Fuel Injection Timings on Premixing and Combustion in a Diesel Engine  

Science Journals Connector (OSTI)

Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, YuSeong-Gu, Daejeon 305-701, Republic of Korea ... Even with the same fueling rate, faster engine speed would need more advanced injection for achieving 6.5 ms of ?id; more than 100 CAD of ?id was needed at 3000 rpm, and it was increased to 200 CAD at 5000 rpm, which was quite occasional in modern automotive diesel engines. ... Several general observations may be made. ...

Sanghoon Kook; Seik Park; Choongsik Bae

2007-12-12T23:59:59.000Z

30

Performance of a High Speed Indirect Injection Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-12covington.pdf More Documents & Publications Investigation...

31

Partially Premixed Combustion in a Diesel Engine Induced by a Pilot Injection at the Low-pressure Top Dead Center  

Science Journals Connector (OSTI)

The engine used in this research is a single-cylinder, four-stroke, direct-injection diesel research engine since this type of facility generates much more accurate data compared to multicylinder engines. ... Aside from those considerations on the general evolution of ISFC with respect to the EPI ratio, a peak of ISFC appears at EPI ratio of 30%. ... (Professional Engineering Publishing Ltd.) ...

Jesús Benajes; Ricardo Novella; Antonio García; Simon Arthozoul

2009-05-07T23:59:59.000Z

32

Experimental investigation on the characteristics of diesel oxygenated fuel blends in a di diesel engine using two spring split injection;.  

E-Print Network [OSTI]

??Diesel engines are efficient prime movers for heavy duty vehicles, so they have attracted many automobile and research institutions for their use as main prime… (more)

Kumaresan M

2013-01-01T23:59:59.000Z

33

Controlling combustion noise in direct injection diesel engine through mechanical vibration measurement  

Science Journals Connector (OSTI)

The next generations of direct injection diesel engines have greatly improved their performances compared with petrol engines. However, one of the pending subjects is the noise and vibration levels, due to working cycle itself. The design effort to reduce the emissions of noise and vibration transmitted to the vehicle's driver could be lessened because of the assembly process variation. In this paper, a procedure to control this variation has been suggested in order to maintain noise and vibration performances within the limits of design.

J.A. Calvo; V. Diaz; J.L. San Roman

2005-01-01T23:59:59.000Z

34

Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Diesel?Diethyl Adipate Blends  

Science Journals Connector (OSTI)

The advantage of a diesel engine compared with a gasoline engine is the fuel economy benefits; however, the high NOx and smoke emissions still remain the main obstacles for the increasing application of diesel engines with the increasing concerns for environmental protection and implementation of more stringent exhaust gas regulations, thus further reduction in engine emissions becomes one of major tasks in engine development. ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental change in combustion systems. ... Murayama, T.; Zheng, M.; Chikahisa, T. Simultaneous reduction of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate; SAE paper 952518, Society of Automotive Engineers:? Warrendale, PA, 1995. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-04-19T23:59:59.000Z

35

Study of the control strategies on soot reduction under early-injection conditions on a diesel engine  

Science Journals Connector (OSTI)

Abstract To explore the more effective method to fulfill soot reduction challenges of early-injection conditions, different engine operating parameters such as intake pressure, exhaust gas recirculation (EGR), equivalence ratio, intake temperature, coolant temperature, injection pressure and fuel properties such as using the blends of diesel/gasoline, diesel/n-butanol and dual-fuel were investigated on a diesel engine. A wide range of injection timing from 5° CA to ?70° CA ATDC were tested, which covered both conventional diesel injection and early-injection conditions. Results showed that the soot emission increased as the injection timing was advanced from ?35° CA to ?55° CA ATDC, which was attributed to that more spray liquid was out of the piston bowl and impinged on the piston top and cylinder liner. The soot emission decreased as the injection timing further advanced from ?55° to ?70° CA ATDC, which was attributed to the suppressed soot formation. Although more advanced injection (?55° to ?70° CA ATDC) decreased soot emissions, the combustion efficiency was deteriorated. EGR combined with higher intake pressure resulted in lower soot emissions than that of sole EGR control under the same equivalence ratio. Increasing intake temperature and coolant temperature reduced soot emissions at the injection timing later than ?55° CA ATDC but barely affected the soot peak-value. Increasing injection pressure had little impact on soot emissions at early-injection conditions. Regarding to fuel properties, employing the diesel/gasoline and diesel/n-butanol blends dramatically reduced soot emissions and the smokeless combustion was achieved by using pure gasoline or n-heptane. Soot peak-value of diesel/gasoline combustion was higher than that of diesel/n-butanol at low diesel replacement ratio (30%), while for high replacement ratio (70%) the opposite trend was presented. The dual-fuel injection composed by port-injection of gasoline and direct-injection of diesel was more effective in reducing soot emissions than that of single direct-injection under the same gasoline/diesel ratio.

Haifeng Liu; Shuaiying Ma; Zhong Zhang; Zunqing Zheng; Mingfa Yao

2015-01-01T23:59:59.000Z

36

Just the Basics: Diesel Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Today's direct-injection diesel Today's direct-injection diesel engines are more rugged, powerful, durable, and reliable than gasoline engines, and use fuel much more efficiently, as well. Diesel Engines Yesterday, Today, and Tomorrow Diesels are workhorse engines. That's why you find them powering heavy- duty trucks, buses, tractors, and trains, not to mention large ships, bulldozers, cranes, and other construction equipment. In the past, diesels fit the stereotype of muscle-bound behe- moths. They were dirty and sluggish, smelly and loud. That image doesn't apply to today's diesel engines, however, and tomorrow's diesels will show even greater improvements. They will be even more fuel efficient, more flexible in the fuels they can use, and also much cleaner in emissions. How Diesel Engines Work

37

Optimization of an Irreversible Diesel Cycle: Experimental Results of a Ceramic Coated Indirect-Injection Supercharged Diesel Engine  

Science Journals Connector (OSTI)

Technical Education Faculty and Department of Mechanical Engineering, Sakarya University, Esentepe 54187, Sakarya, Turkey, and Maritime Faculty, Marine Engineering, Istanbul Technical University, Tuzla, Turkey ... Effects of a ceramic coating on performance and exhaust emissions in the LHR engine have been compared to those obtained from the standard (STD) diesel engine based on the comparison of the STD and the LHR engines for identical airflow and brake mean effective pressure. ... Gataowski, J. A. Evaluation of a selectively-cooled single-cylinder 0.5-L Diesel engine; SAE paper No. 900693, Society of Automotive Engineers: Warrendale, PA, 1990. ...

A. Parlak; H. Yasar; H. S. Soyhan; C. Deniz

2008-04-25T23:59:59.000Z

38

Influence of Biodiesel Fuel on the Combustion and Emission Formation in a Direct Injection (DI) Diesel Engine  

Science Journals Connector (OSTI)

The injector needle lift trace at low engine speed was almost identical for both fuels, while at maximum engine speed, a shorter injection delay was observed for biodiesel fuel and the injector needle opened earlier as with D2 fuel. ... Figure 1 Comparison of the engine torque (M), fuel consumption (Gh), and brake specific energy consumption (ge) at full load for biodiesel fuel (BD) and D2 fuel in (a) TAM and (b) MAN engines. ... (7)?Sanatore, A.; Cardone, M.; Rocco, V.; Prati, M. V. A comparative analysis of combustion process in DI diesel engine fueled with biodiesel and diesel fuel. ...

Ales Hribernik; Breda Kegl

2007-05-01T23:59:59.000Z

39

Effect of different percentages of biodiesel–diesel blends on injection, spray, combustion, performance, and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

Abstract A comparative study of effect of different biodiesel–diesel blends (B5, B10, B15, B20, B25, B50 and B100) on injection, spray, combustion, performance, and emissions of a direct injection diesel engine at constant speed (1500 rpm) was carried out. The penetration distance increased with increase in percentage of biodiesel in diesel due to enhanced in-line fuel pressure. The simulation results indicate the spray penetration with biodiesel–diesel blend up to B15 does not lead to wall impingement but B20 is to be a critical limit of wall impingement (within uncertainty ±1.3%). However, it is observed clearly from the simulation results that probability of wall impingement is more with higher blends (B25, B50 and B100). The ignition delay period decreased with all biodiesel blends due to higher cetane number resulting in less rate of pressure rise and the smooth engine running operation. The engine torque does not change significantly with biodiesel–diesel blends up to 20% (B20). However, the torque reduction is about 2.7% with B100 at the rated load. Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel–diesel blends. However, oxides of nitrogen (NOx) emission increased in the range of 1.4–22.8% with all biodiesel–diesel blends at rated load due to oxygenated fuel, automatic advance in dynamic injection timing (DIT), higher penetration and higher in-cylinder temperature. A notable conclusion emerged from this study is the optimum biodiesel–diesel blend based on no wall impingement (B15: 0% and B20 ±1.3% uncertainty limit) and increase in \\{NOx\\} emission (B15: 4.1% and B20: 15.6%) in a conventional (unmodified) diesel engine is up to B15.

Subhash Lahane; K.A. Subramanian

2015-01-01T23:59:59.000Z

40

Large Diesel Engine Lubrication  

Science Journals Connector (OSTI)

Centralized lubrication for slow-speed internal combustion engines ; Marine diesel engine lubrication ...

Hans Gaca; Jan Ruiter; Götz Mehr; Theo Mang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

42

Investigation on the Effect of Port-Injected Methanol on the Performance and Emissions of a Diesel Engine at Different Engine Speeds  

Science Journals Connector (OSTI)

Investigation on the Effect of Port-Injected Methanol on the Performance and Emissions of a Diesel Engine at Different Engine Speeds ... † Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China ... ‡ State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China ...

C. S. Cheung; Z. H. Zhang; T. L. Chan; Chunde Yao

2009-08-21T23:59:59.000Z

43

Performance of a High Speed Indirect Injection Diesel Engine with Poultry Fat Bio-Diesel  

Broader source: Energy.gov [DOE]

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

44

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

45

Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

46

Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine  

E-Print Network [OSTI]

, the characteristics of combustion for swept injection timings along the maximum brake torque plateau are determined. The research is conducted by varying injection timing at constant engine speed and load while measuring engine emissions and in-cylinder pressure...

Kroeger, Timothy H

2013-09-19T23:59:59.000Z

47

Influence and potential of flexible injection rate shaping for medium and heavy duty diesel engine combustion processes  

Science Journals Connector (OSTI)

Modern fuel injection systems for medium and heavy duty diesel engines combine the potential of very high injection pressures and flexible injection rate shaping. Against this background, the Commercial Vehicle Division of DaimlerChrysler AG, in close collaboration with DaimlerChrysler Research, performed principle tests to assess the influence of a flexible injection process, focusing on the effects of injection rate shaping. Besides pressure indexing, optical diagnostic methods and simulation techniques provided valuable insights in this study. Within this project, four different injection systems with different potentials of flexibility were investigated. New insights, such as the influence of needle opening and closing behaviour on nitric oxide emissions and the influence of injection rate shaping on soot emissions have been elaborated.

Thomas Koch; Uwe Gartner; Gerhard Konig

2006-01-01T23:59:59.000Z

48

Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine  

Science Journals Connector (OSTI)

The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine and to compare the outcomes to that of the D2 fuel. Engine performances exhaust emissions and some other important parameters were observed as a function of engine load and speed. In addition the effect of modifying compression ratio was also carried out in this study. From the engine experimental work neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2 operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO CO2 and HC were also lower using blended mixtures and in its neat form. However NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

Mazlan Said; Azhar Abdul Aziz

2012-01-01T23:59:59.000Z

49

Comparison of Neat Biodiesels and ULSD in an Optimized Single-Cylinder Diesel Engine with Electronically-Controlled Fuel Injection  

Science Journals Connector (OSTI)

An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel SAE Int. ... The fuels were then burned in a single-cylinder direct-injection diesel engine and evaluated for both fuel consumption and exhaust emissions of nitrogen oxides, carbon monoxide (CO), unburned hydrocarbons, and particulate matter. ... Monyem, A.; Van Gerpen, J.; Canakcl, M.The effect of timing and oxidation on emissions from biodiesel–fueled engines Carbon 2001, 44 ( 1) 35– 42 ...

Michael Mangus; Farshid Kiani; Jonathan Mattson; Christopher Depcik; Edward Peltier; Susan Stagg-Williams

2014-05-12T23:59:59.000Z

50

Correcting injection pressure maladjustments to reduce NOX emissions by marine diesel engines  

Science Journals Connector (OSTI)

Emissions from the exhausts of marine diesel engines comprises several different gases including NOX. These are currently regulated at the international level under Regulation 13 of ANNEX VI of MARPOL 73/78, but this regulation only applies to new engines and is based on bench tests, for only a single engine designated the “parent engine”. Here, the need to take measurements from across their whole range and once in operation on board a vessel is examined. This would not only improve assessment of new equipment against the current regulation, but would also detect defects in the functioning of the engine.

C. Vanesa Durán Grados; Zigor Uriondo; Manuel Clemente; Francisco J. Jiménez Espadafor; Juan Moreno Gutiérrez

2009-01-01T23:59:59.000Z

51

High-pressure late cycle direct injection of natural gas in a rail medium speed diesel engine  

SciTech Connect (OSTI)

The performance of an Electro-Motive Division (EMD) 567B, two-cylinder locomotive research engine, when operated on high-pressure/late-cycle injection of natural gas, is presented in this paper. A redesign and fabrication of the fuel system was undertaken to facilitate the consumption of natural gas. A small percentage of No.2 diesel fuel (DF-2) was used to ignite the natural gas. Engine performance, while running natural gas, resulted in matching rated speed and power with slightly lower thermal efficiency. Full power was achieved with a ratio of 99 percent natural gas and 1 percent diesel fuel. However, at high natural gas to diesel fuel ratios, audible knock was detected. The primary objective of the project was to establish technical feasibility of, and basic technology for, operating medium-speed rail diesel engines on high-pressure natural gas. Secondary objectives were to attain adequate engine performance levels for rail application, develop a system oriented toward retrofit of in-service locomotives, and realize any potential improvements in thermal efficiency due to use of the high-pressure/late-cycle approach.

Wakenell, J.F.; O'Neal, G.B.; Baker, Q.A.

1987-01-01T23:59:59.000Z

52

Effect of Compression Ratio and Spray Injection Angle on HCCI Combustion in a Small DI Diesel Engine  

Science Journals Connector (OSTI)

Graduate School and Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, and Research & Development Division for Hyundai Motor Company & Kia Motors Corporation, Jangduk-dong, Whasung-si, Gyunggi-do, 445-706, Korea ... To realize this fundamental concept and find the optimal operating conditions, injection timing was varied from top dead center (TDC) to 80° before TDC and up to 45% of exhaust gas recirculation (EGR) was tested. ... From the deep anal., it was found that adding EGR to the air flow rate to the Diesel engine, rather than displacing some of the inlet air, appears to be a more beneficial way of utilizing EGR in Diesel engines. ...

Myung Yoon Kim; Jee Won Kim; Chang Sik Lee; Je Hyung Lee

2005-12-14T23:59:59.000Z

53

Marine Diesel Engines  

Science Journals Connector (OSTI)

Marine diesel engines need reserve power to compensate for ... and decreased efficiency of the engine caused by wear and contamination. Minimum efficiency reserves must be...

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

54

Diesel engine reference book  

SciTech Connect (OSTI)

This book is a reference on the design, operation, and maintenance of all types of diesel engines, ranging from the smallest automotive and ancillary engines to the largest marine diesels. Nearly 900 line drawings, graphs and photos illustrate the book. Major Sections: Theory; Engine Design Practice; Lubrication; Environmental Pollution; Crankcase Explosions; Engine Types; Engine Testing; Maintenance; Index.

Lilly, I.R.C.

1984-01-01T23:59:59.000Z

55

Reducing Diesel Engine Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

56

Effects of Biodiesel from Used Frying Palm Oil on the Exhaust Emissions of an Indirect Injection (IDI) Diesel Engine  

Science Journals Connector (OSTI)

McDonald (27) studied a 50% blend of yellow grease methyl ester with No. 2 diesel fuel (B50) used in a General Motors L65 GMT 600 turbo-charged, IDI diesel engine. ... This is typical for diesel engines because the air?fuel equivalence ratio slightly decreases with an increasing engine speed. ... A 1994 Dodge 2500 turbocharged and intercooled diesel pickup fueled with 100% Et ester of rapeseed oil was driven by personnel representing the University of Idaho, Agricultural Engineering Department from Moscow, Idaho to Los Angeles, California and back to Moscow and then from Moscow to Ocean City, Maryland and back to Moscow, Idaho. ...

Ahmet Necati Ozsezen; Mustafa Canakci; Cenk Sayin

2008-06-28T23:59:59.000Z

57

Effects of Bioethanol-Blended Diesel Fuel on Combustion and Emission Reduction Characteristics in a Direct-Injection Diesel Engine with Exhaust Gas Recirculation (EGR)  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... As a fuel for compression engines, bioethanol-blended diesel fuels have some different trends on the exhaust emission characteristics according to the engine load. ... The paper begins with an introduction of general information on the nature of emissions of exhaust gases, including the toxicity and causes of emissions for both spark-ignition and diesel engines. ...

Su Han Park; Junepyo Cha; Chang Sik Lee

2010-06-03T23:59:59.000Z

58

Evaluation of oxides of nitrogen emissions for the purpose of their transient regulation from a direct injection diesel engine  

Science Journals Connector (OSTI)

The concept of defining a regulatory standard for the maximum allowable emissions of oxides of nitrogen (NOx) from a heavy-duty diesel engine on an instantaneous basis is presented. The significance of this concept from a regulatory point of view is the possibility to realise a steady brake specific NOx emissions result independent of the test schedule used. The emissions of oxides of nitrogen from a state-of-the-art direct injection diesel engine have been examined on an integral as well as on an instantaneous basis over the Federal Test Procedure as well as over several other arbitrary transient cycles generated for this study. Three candidate standards of specific NOx emissions have been evaluated on a real-time, continuous basis. These include brake power specific, fuel mass specific, and carbon dioxide mass specific NOx emissions. Retaining the stock engine control module, the carbon dioxide specific emissions of NOx have been shown to be the most uniform, varying only by about 30% of its mean value regardless of the test schedule or engine operation. The instantaneous fuel specific NOx emissions are shown to be relatively less invariant and the least steady are the brake power specific emissions with a coefficient of variation of up to 200%. Advancing injection timing has been shown to have a wide range of authority over the specific emissions of oxides of nitrogen regardless of the units used, when operating at full load in the vicinity of peak torque speeds. The carbon dioxide specific NOx emissions have shown a linear dependence on the power specific emissions, independent of the examined operating conditions. The trade-off between better brake thermal efficiency, lower exhaust gas temperature at advanced timing and lower NOx emissions has also been shown to be independent of the units of the specific standard used.

Yasser Yacoub; Chris Atkinson

2001-01-01T23:59:59.000Z

59

Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine  

Science Journals Connector (OSTI)

School of Engineering, San Francisco State University, San Francisco, California 94132, and Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 ... Additionally, data obtained from this study provide fundamental insights into NOx and PM formation mechanisms in diesel engines. ... Results show that increasing fuel oxygenation produces lower in-cylinder and engine-out soot levels, consistent with existing studies of the effects of fuel oxygenation on soot emissions from diesel engines. ...

A. S. (Ed) Cheng; Ansis Upatnieks; Charles J. Mueller

2007-05-25T23:59:59.000Z

60

Potential for Reduction of Exhaust Emissions in a Common-Rail Direct-Injection Diesel Engine by Fueling with Fischer–Tropsch Diesel Fuel Synthesized from Coal  

Science Journals Connector (OSTI)

In the constant speed/varying load test modes, the use of CFT also resulted in a general reduction of regulated emissions. ... (5, 6) Moreover, FT diesel fuels can be used in contemporary diesel engines without any modification and with a negligible or weak improvement of engine efficiency. ... Liu, Z.; Shi, S.; Li, Y.Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering Chem. ...

Chonglin Song; Guohong Gong; Jinou Song; Gang Lv; Xiaofeng Cao; Lidong Liu; Yiqiang Pei

2011-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Performance and emission parameters optimization of mahua (Madhuca indica) based biodiesel in direct injection diesel engine using response surface methodology  

Science Journals Connector (OSTI)

Mahua oil ethyl ester was prepared from mahua oil using potassium hydroxide as catalyst by trans-esterification. The important fuel properties of mahua biodiesel blends were compared with those of high speed diesel and biodiesel standards. Variation of brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) Pmax CO NOx hydrocarbons and smoke opacity across compression ratio blending ratio and load were studied successfully using response surface methodology based on Central composite rotatable design. The trends similar to general theory of compression ignition engines (CI) were obtained. Optimum performance and emission parameters were determined by considering the significant variables affecting the diesel engine. Significant reduction in emissions at 23% blending ratio were observed as compared to neat diesel at optimum input variables. Hence mahua biodiesel is an environment friendly alternate fuel over diesel and has good scope to run the compression ignition engines.

Sunil Dhingra; Gian Bhushan; Kashyap Kumar Dubey

2013-01-01T23:59:59.000Z

62

Experimental investigation of the effect of combined hydrogen and diesel combustion on the particulate size distribution from a high speed direct injection diesel engine  

Science Journals Connector (OSTI)

The effects of hydrogen addition and exhaust gas recirculation (EGR) levels on the exhaust particulate matter size distribution in a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4-cylinder, direct injection engine equipped with a modern high-pressure common rail. A nano-Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) was used in this work to study the particulate matter size distribution. All tests were conducted at the set operating point of 1,500 rpm. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was shifted towards the nucleation mode with the addition of hydrogen. The addition of hydrogen increases the emissions of nitrogen oxides (NOx), but reduces the emissions of unburnt hydrocarbons (THC). Conversely, the addition of EGR reduces NOx, but can increase THC. Hydrogen addition increases the peak cylinder pressure and the maximum rate of pressure rise.

L. McWilliam; A. Megaritis

2009-01-01T23:59:59.000Z

63

Multidimensional modelling of the effect of engine load on various exergy terms in an indirect injection diesel engine  

Science Journals Connector (OSTI)

In this investigation, the energy and exergy analyses are carried out in a Lister 8.1 IDI diesel engine for different loads (25%, 50%, 75% and full loads operation) at maximum torque engine speed (730 rpm). The energy analysis is done during a closed cycle using of a three dimensional CFD code. The results by this model for the pressure in cylinder at 50% and full load operations are compared with the corresponding experimental data and show good agreements. Second-law analysis is carried out by a developed in house computational code. Various rate and accumulative exergy components are identified and calculated separately with crank position for various loads. The results show that when the load increases from 25% to full load in steps by 25%, the percentage of combustion irreversibility decreases from 33.7% to 25% of fuel burn exergy. Also, exergy efficiency reaches its peak of 36.7% at 75% load.

S. Jafarmadar

2014-01-01T23:59:59.000Z

64

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Reducing Emissions of a Diesel Engine Using Fumigation Ethanol and a Diesel Oxidation Catalyst ... † Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China ... In contrast to the conventional approach of using ethanol in spark-ignition engines, this study demonstrates the potential of ethanol utilization in diesel engines using dual-fuel combustion, where ethanol is injected into the intake manifold and diesel ... ...

K. S. Tsang; Z. H. Zhang; C. S. Cheung; T. L. Chan

2010-10-14T23:59:59.000Z

65

Diesel Engine Alternatives  

SciTech Connect (OSTI)

There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

Ryan, T

2003-08-24T23:59:59.000Z

66

Advanced Diesel Common Rail Injection System for Future Emission Legislation  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

67

Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends  

Science Journals Connector (OSTI)

In this study the performance and emission characteristics of a direct injection diesel engine using castor oil biodiesel (COB)-diesel blended fuels were investigated experimentally and then predicted by artificial neural networks. For this aim castor oil was converted to its biodiesel via transesterification approach. Then the effects of the biodiesel percentage in blend engine load and speed on brake power brake specific fuel consumption (BSFC) nitrogen oxides (NOx) carbon dioxide (CO2) carbon monoxide (CO) and particle matter (PM) have been considered. Fuel blends with various percentages of biodiesel (0% 5% 10% 15% 20% 25% and 30%) at various engine speeds and loads were tested. The results indicated that blends of COB with diesel fuel provide admissible engine performance; on the other side emissions decreased so much. Two types of neural networks a group method of data handling (GMDH) and feed forward were used for modeling of the diesel engine to predict brake power BSFC and exhaust emissions such as CO CO2 NOx and PM values. The comparison results demonstrate the superiority of the feed forward neural networkmodels over GMDH type models in terms of the statistical measures in the training and testing data but in the number of hidden neurons and model simplicity GMDH models are preferred.

M. H. Shojaeefard; M. M. Etghani; M. Akbari; A. Khalkhali; B. Ghobadian

2012-01-01T23:59:59.000Z

68

Numerical modeling of combustion processes and pollutant formations in direct-injection diesel engines  

Science Journals Connector (OSTI)

The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection...X formation including thermal NO path, pro...

Seong-Ku Kim; Joon Kyu Lee; Yong-Mo Kim; Jae-Hyun Ahn

2002-07-01T23:59:59.000Z

69

Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions  

E-Print Network [OSTI]

in a Diesel engine equipped with a variable geometry tur- bocharger (VGT) and an external exhaust gas INJECTION EXHAUST MANIFOLD EGR VALVE EGR COOLER AIR EXHAUST Figure 1: Schematic representation of the DieselControl of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz

Stefanopoulou, Anna

70

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

71

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

72

Complex Diesel Engine Simulation with Focus on Transient Operation  

Science Journals Connector (OSTI)

The engine bearings model takes into consideration the significant load variation during each engine cycle and, in general, the lubrication is hydrodynamic. ... Modern diesel engines are using common rail injection systems with electronically controlled injectors capable of very high injection pressure and multiple injection events per cycle. ...

Dinu Taraza; Naeim A. Henein; Radu Ceausu; Walter Bryzik

2008-02-12T23:59:59.000Z

73

Cleaning Up Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Other Mobile Sources Off-Road Diesel Equipment Heavy-Duty Diesel Trucks Diesel Ships, Trains PM 2.5 Emissions Trend PM 2.5 Emissions Trend California Emissions From the 2005...

74

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

75

Experimental Study of Biodiesel Blends’ Effects on Diesel Injection Processes  

Science Journals Connector (OSTI)

It can be said that a lot of studies performed with biodiesel are mere emissions and performances comparisons against a standard diesel fuel using multicylinder engines and fundamental combustion and overall injections aspects are not being completely addressed yet. ... Emissions variations from 2 different engine models and 2 driving cycles were also obsd. ... Lujan, J. M.; Tormos, B.; Salvador, F. J.; Gargar, K. Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminary study (I). ...

José M. Desantes; Raúl Payri; Antonio García; Julien Manin

2009-05-13T23:59:59.000Z

76

Analysis of an extremely fast valve opening camless system to improve transient performance in a turbocharged high speed direct injection diesel engine  

Science Journals Connector (OSTI)

This article describes a theoretical study on the performance optimisation of a high speed direct injection turbocharged diesel engine equipped with an electro-hydraulic variable valve actuation 'camless' system. This system provides extremely fast valve opening and closing slopes. Thus, its potential for recovering part of the energy lost in the valves by reducing gas flow sonic conditions in the valve throat has been investigated. This study has been mainly focused on the analysis of engine performance during a load transient evolution, but the full load steady state attained at the end of the load transient has been also discussed. The results of this investigation have confirmed important improvements in engine performance during the load transient owing to less energy being lost across the valves, which directly results in more energy being available in the turbine. This benefit has also been observed at full load steady state conditions.

J. Benajes; J.R. Serrano; V. Dolz; R. Novella

2009-01-01T23:59:59.000Z

77

Effects of the injection parameters and compression ratio on the emissions of a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Homogenous charge compression ignition (HCCI) cases are compared for improvements on the combustion chamber design of the engine to achieve near zero particulate matter (PM) and NOx emissions. Therefore combustion simulations of the engine have been performed to find out emission generation in the cylinder. The interaction of air motion with high-pressure fuel spray has also been analysed. Finally, a comparison has been made considering the performance of the engine for various configurations such as compression ratio, injection timing, and cone angle. The results are widely in agreement qualitatively with the previous similar experimental and computational studies in the literature.

Mustafa Yilmaz; Hasan Köten; M. Zafer Gul

2012-01-01T23:59:59.000Z

78

Numerical simulation of turbulent jet primary breakup in Diesel engines  

E-Print Network [OSTI]

Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann and Aerospace Engineering Arizona State University "Micro-Macro Modelling and Simulation of Liquid-Vapour Flows" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase

Helluy, Philippe

79

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

80

Materials - Catalysts for Diesel Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Global market requirements to be met by diesel injection systems for heavy-duty and off-highway engines Part 2  

Science Journals Connector (OSTI)

This article by Robert Bosch GmbH examines the demands to be met by diesel injection systems in heavyduty on-highway and off-highway applications, the latter being a segment that is characterized by lower grow...

Rudolf Maier; Ulrich Projahn; Klaus Krieger

2002-10-01T23:59:59.000Z

82

North American Market Challenges for Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale...

83

Future Breathing System Requirements for Clean Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Breathing System Requirements for Clean Diesel Engines Future Breathing System Requirements for Clean Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency &...

84

Achieving High-Effiency Clean Ccombustion in Diesel Engines ...  

Broader source: Energy.gov (indexed) [DOE]

Achieving High-Effiency Clean Ccombustion in Diesel Engines Achieving High-Effiency Clean Ccombustion in Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

85

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

86

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES | Department of...  

Broader source: Energy.gov (indexed) [DOE]

SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

87

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

88

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

89

Hydrogen as a Supplemental Fuel in Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

as a Supplemental Fuel in Diesel Engines Hydrogen as a Supplemental Fuel in Diesel Engines Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research...

90

Next Generation Diesel Engine Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

91

Engine Materials for Clean Diesel Technology: An Overview | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials for Clean Diesel Technology: An Overview Engine Materials for Clean Diesel Technology: An Overview Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

92

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

93

Reduction of NOx emission on NiCrAl-Titanium Oxide coated direct injection diesel engine fuelled with radish (Raphanus sativus) biodiesel  

Science Journals Connector (OSTI)

The main aim of this study is the experimental investigation of single cylinder DI diesel engine with and without coating. Diesel and radish (Raphanus sativus) oil Methyl Ester are used as fuels and the results are compared to find the effect of biodiesel in a thermal barrier coating engine. For this purpose engine cylinder head valves and piston crown are coated with 100??m of nickel-chrome-aluminium bond coat and 450??m of TiO2 by the plasma spray method. Radish oil methyl ester is produced by the transesterification process method. From the experimental investigation slight increase in specific fuel consumption in thermal barrier coating engine is observed when compared with the uncoated engine whereas NOx HC Smoke and CO emissions decreased with coated engine for all test fuels used in the coated engine when compared with that of the uncoated engine.

V. Ravikumar; D. Senthilkumar

2013-01-01T23:59:59.000Z

94

Combined Numerical-experimental Study of Dual Fuel Diesel Engine  

Science Journals Connector (OSTI)

Abstract In the present paper the authors discuss the effect of different fuel ratios on the performance and emission levels of a common rail diesel engine supplied with natural gas and diesel oil. Dual fuel operation is characterized by a diesel pilot injection to start combustion in an intake port premixed NG/air mixture. The combined numerical – experimental study of the dual fuel diesel engine that is carried out in this paper aims at the evaluation of the CFD potential to predict the main features of this particular engine operation. The experimental investigations represent a tool for validating such a potential and for highlighting, at the same time, the major problems that arise from the actual engine operation with different NG / diesel oil fuel ratios.

Carmelina Abagnale; Maria Cristina Cameretti; Luigi De Simio; Michele Gambino; Sabatino Iannaccone; Raffaele Tuccillo

2014-01-01T23:59:59.000Z

95

Global market requirements to be met by diesel injection systems for heavy-duty and off-highway engines Part 1  

Science Journals Connector (OSTI)

This article by Robert Bosch GmbH examines the demands to be met by diesel injection systems in heavy-duty on-highway and off-highway applications, the latter being a segment that is characterised by lower gro...

Rudolf Maier; Ulrich Projahn; Klau Krieger

2002-09-01T23:59:59.000Z

96

Performance and Emission Characteristics of Diesel Engines Fueled with Diesel?Dimethoxymethane (DMM) Blends  

Science Journals Connector (OSTI)

Although application of high-pressure injection and common rail system can reduce both NOx and PM emissions, the expense is also very high and unaffordable for many engine producers and consumers, especially for diesel engines widely applied for agricultural machinery, most of which are single-cylinder and of low price. ... Fleisch et al.,(2) Kapus and Ofner,(3) and Sorenson and Mikkelsen(4) have studied DME in a modified diesel engine, and their results showed that the engine could meet ultra-low emission levels without a fundamental change in the combustion systems. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, 1988. ...

Ruijun Zhu; Xibin Wang; Haiyan Miao; Zuohua Huang; Jing Gao; Deming Jiang

2008-11-14T23:59:59.000Z

97

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions  

Science Journals Connector (OSTI)

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions ... Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels ...

Matthew A. Ratcliff; A. John Dane; Aaron Williams; John Ireland; Jon Luecke; Robert L. McCormick; Kent J. Voorhees

2010-10-01T23:59:59.000Z

98

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

99

Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program  

SciTech Connect (OSTI)

The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

100

Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine  

Science Journals Connector (OSTI)

Mechanical and Aerospace Engineering Department, U.S. Naval Postgraduate School, Watkins Hall 700 Dyer Road Monterey, California 93943-5100, United States ... However, this study was done using an indirect injection diesel engine that may be uncharacteristic for typical diesel engines, which utilize direct injection. ... The IGD can, in turn, be used to provide qualitative or even quantitative prediction of other operational parameters such as peak pressure, maximum rate of pressure rise, or the general viability of the fuel in a diesel engine. ...

John Petersen; Doug Seivwright; Patrick Caton; Knox Millsaps

2014-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Investigations on emission characteristics of the pongamia biodiesel–diesel blend fuelled twin cylinder compression ignition direct injection engine using exhaust gas recirculation methodology and dimethyl carbonate as additive  

Science Journals Connector (OSTI)

Experiments were carried out on a twin cylinder direct injection compression ignition engine using pongamia biodiesel–diesel blend as fuel with exhaust gas recirculation (EGR) and dimethyl carbonate (DMC) as additive. The experimental results showed that pongamia biodiesel–diesel blend fuelled engine with EGR and DMC can simultaneously reduce smoke and nitric oxide ( NO x ) emission. The NO x emission was reduced by about 17.68% for 10% of EGR introduction and about 13.55% increase in smoke emission. When dimethyl carbonate was added with EGR the engine emits lower smoke with lesser NO x emission and it showed that the smoke reduction rate had a linear relationship with DMC percentage. The carbon monoxide (CO) and hydrocarbon (HC) emissions also decreased when DMC was added. However the addition of DMC with EGR caused an increase in both BSEC and BTE.

M. Pandian; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

102

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

103

Performance and emissions of a dual fuel operated diesel engine  

Science Journals Connector (OSTI)

Vegetable oil and its esters (biodiesel) are the renewable alternative fuels that can be used as a substitute for diesel in the diesel engines. The vegetable oil fuelled diesel engine results in lower efficiency and higher smoke emission. Hence in this work, an attempt has been made to use inedible and under utilised mahua oil (MO) as a substitute for diesel by fumigating liquefied petroleum gas (LPG) along with the air. A single cylinder diesel engine was modified to work in dual fuel mode by suitable retrofitting. The MO was injected into the cylinder using a fuel pump and LPG was fumigated along with the air. In MO + LPG dual fuel mode, 9% increase in brake thermal efficiency and 35% reduction in smoke emission of the engine were observed as compared to the sole fuel mode with MO. Also, the engine performance characteristics in MO + LPG dual fuel mode are close to sole fuel mode with diesel. From this work, it is concluded that LPG can be fumigated along with the air to increase the performance of MO fuelled agricultural diesel engine.

N. Kapilan; R.P. Reddy

2012-01-01T23:59:59.000Z

104

Diesel Engine Alternatives | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternatives Diesel Engine Alternatives 2003 DEER Conference Presentation: Southwest Research Institute 2003deerryan.pdf More Documents & Publications Combustion Targets for Low...

105

Diesel Engine Emission Reduction (DEER) Experiment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Reduction (DEER) Experiment Diesel Engine Emission Reduction (DEER) Experiment Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

106

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

107

Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Engine Diesel Engine Emissions Reduction (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on Digg Find More places to share Vehicle Technologies Office: 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations on

108

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

109

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

110

Cummins/DOE Light Truck Diesel Engine Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

111

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

112

Impact of Real Field Diesel Quality Variability on Engine Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation Impact of Real Field Diesel Quality Variability on Engine...

113

Advanced Diesel Engine Technology Development for HECC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engine Technology Development for HECC Advanced Diesel Engine Technology Development for HECC 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

114

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lähde; Topi Rönkkö; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hämeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

115

A Correlation of Diesel Engine Performance with Measured NIR...  

Broader source: Energy.gov (indexed) [DOE]

A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics Results indicate...

116

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

117

Update on Modeling for Effective Diesel Engine Aftertreatment...  

Broader source: Energy.gov (indexed) [DOE]

Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment...

118

Advances in Diesel Engine Technologies for European Passenger...  

Broader source: Energy.gov (indexed) [DOE]

Advances in Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation:...

119

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

120

Recent Diesel Engine Emission Mitigation Activities of the Maritime...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

122

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network [OSTI]

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

123

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

124

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

125

Diesel Engine Oil Technology Insights and Opportunities | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Technology Insights and Opportunities Diesel Engine Oil Technology Insights and Opportunities Perrformance of API CJ-4 diesel engine lubricating oil and emerging lubricant...

126

Combustion Modeling for Diesel Engine Control Design  

E-Print Network [OSTI]

Combustion Modeling for Diesel Engine Control Design Von der Fakult¨at f¨ur Maschinenwesen der Combustion Modeling for Diesel Engine Control Design WICHTIG: D 82 überprüfen !!! #12;Bibliographic research stays at General Motors R&D in Warren, MI, USA, possible. Furthermore, I would like thank Tom

Peters, Norbert

127

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect (OSTI)

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

128

Experimental investigations of the performance, emission and combustion characteristics of a biodiesel (ethyl ester of fish oil) fuelled direct-injection diesel engine  

Science Journals Connector (OSTI)

The thirst for fuel is steadily increasing as technology continues to open new areas of exploration. At the same time, the indiscriminate extraction of fossil fuels may also result in pollutant emissions which cause major impacts on ecological systems. In order to overcome the above problems, a suitable biodiesel should be used to replace the diesel fuel. Hence, in this work, feasibility of using biodiesel prepared from fish oil was investigated. Experimental tests were carried out to evaluate the performance, emission and combustion characteristics of a single cylinder, constant speed engine using several blends under variable load conditions. It was found that NOx, HC and CO emission was reduced for blends along with a marginal increase of brake thermal efficiency and smoke. The ignition delay and maximum heat release rate were reduced compared to diesel. Ultimately, fish oil can indeed become the appropriate source for biodiesel with environmental benefits.

G. Sakthivel; G. Nagarajan; M. Ilangkumaran

2013-01-01T23:59:59.000Z

129

(1) Elements of Diesel Engineering: (2) Diesel and other Internal-Combustion Engines: (3) Diesel Engines  

Science Journals Connector (OSTI)

... publications arising from its importance from scientific, technical and commercial points of view, the Diesel ...

1937-01-30T23:59:59.000Z

130

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

Fairbanks, J.W.

1995-10-01T23:59:59.000Z

131

Robust Strategy for Intake Leakage Detection in Diesel Engines  

E-Print Network [OSTI]

Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

Boyer, Edmond

132

Neural-Network-Based Maintenance Decision Model for Diesel Engine  

Science Journals Connector (OSTI)

To decrease the fuzzy and uncertain factors in the maintenance decision models of diesel engine, a combination BP-neural-network-based maintenance decision model for diesel engine is presented in this paper. It can make the maintenance of diesel engine ... Keywords: Deterioration degree, Diesel engine, Maintenance decision, Neural network

Yingkui Gu; Juanjuan Liu; Shuyun Tang

2008-09-01T23:59:59.000Z

133

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

134

Technology Development for Light Duty High Efficient Diesel Engines  

Broader source: Energy.gov [DOE]

Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

135

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

136

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode  

Science Journals Connector (OSTI)

Abstract The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both ‘quiescent’ and high “swirl” modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

Roberto Freitas Britto Jr.; Cristiane Aparecida Martins

2014-01-01T23:59:59.000Z

137

Pollution duality in turbocharged heavy duty diesel engine  

Science Journals Connector (OSTI)

Diesel engine designers are faced with increasingly stringent social demands to reduce emissions while maintaining high performance. Several strategies are considered, such as the advanced fuel system, the cooled exhaust gas recirculation (EGR), the particulate filter, the NOx after-treatment, the oxidation catalyst, the advanced control techniques and the alternative combustion. These strategies have been tuned to achieve the lowest engine exhaust gas emissions. The major problem of diesel engine pollution is the NOx and soot formation. Their antagonistic evolution according to the air/fuel ratio is well-known, and requires a good compromise. In this article, a numerical investigation was carried out using the KIVA-3v code. The aim deals with the influence of some engine parameters on the performances and the pollutant (NOx-soot) formation of a turbocharged heavy duty direct injection diesel engine. The numerical simulations were achieved to capture independently the effects of engine operating parameters such as the fuel injection timing, the fuel injection duration, the piston bowl diameter and the EGR rate. The obtained results are discussed and some conclusions are developed.

M. Bencherif; A. Liazid; M. Tazerout

2009-01-01T23:59:59.000Z

138

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

139

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

140

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Guidelines for Improving Diesel Engine Characteristics  

Science Journals Connector (OSTI)

An appropriate amount of EGR can improve cold startability of a diesel engine and promote combustion and emission performance during...x...emissions without a significant penalty for the specific fuel consumption

Breda Kegl; Marko Kegl; Stanislav Pehan

2013-01-01T23:59:59.000Z

142

Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

143

EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE  

Science Journals Connector (OSTI)

A water?cooled four stroke four cylinder direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0% 5% 10% 15% 20% 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that in general using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm the torque the BMEP and efficiency are found to have maximum values under these conditions. CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

A. Sakhrieh; R. H. Fouad; J. A. Yamin

2009-01-01T23:59:59.000Z

144

A diesel engine study of conventional and alternative diesel and jet fuels: Ignition and emissions characteristics  

Science Journals Connector (OSTI)

Abstract Measurements of ignition delay, CO and NO emissions, and fuel consumption were carried out in a light-duty single-cylinder direct-injection diesel engine for operation with petroleum and alternative hydroprocessed and Fischer–Tropsch diesel and jet fuels. Ignition measurements carried out for a fixed engine speed and injection timing quantify the decrease in in-cylinder ignition delay with increasing derived cetane number (DCN) over a range of DCN relevant to diesel engine operation (DCN = 40–80) and show no discernible dependence of ignition delay on other fuel properties. Brake specific fuel consumption (BSFC) was found to decrease with increasing DCN with strong correlation due to a reduction in ignition time for fixed-injection-timed operation. Brake specific CO emissions were also found to decrease with increasing DCN due to increased time provided for CO burn out due to earlier ignition. Brake specific NO emissions were found to decrease with increasing hydrogen-to-carbon (H/C) ratio, due to the lower peak combustion temperatures and thermal \\{NOx\\} occurring for fuels with higher H/C.

Sandeep Gowdagiri; Xander M. Cesari; Mingdi Huang; Matthew A. Oehlschlaeger

2014-01-01T23:59:59.000Z

145

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

146

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

147

Emulsified fuel testing in a medium speed diesel engine. Final report Feb 81-Apr 82  

SciTech Connect (OSTI)

Medium-speed diesel engine testing of fuel-water emulsification with various grades of diesel fuel was conducted in order to determine the effect of water emulsification on engine performance. Emulsions from 0 to 12% water (by volume) were test run with various water particle sizes, injection timings, and engine loads with four separate fuels: Marine diesel, 1500 SR1, 3500 SR1, and 5000 SR1. Experimental results are presented for the basic engine performance areas for the various conditions run, focusing mainly on the effects of water emulsification on fuel consumption, exhaust emissions, and engine component wear rates. Details of the emulsification system are also discussed.

Barich, J.J.; Hinrichs, T.L.; Pearce, K.R.

1982-06-01T23:59:59.000Z

148

Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine  

Science Journals Connector (OSTI)

Abstract This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (?th) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. \\{NOx\\} produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases.

Ali Alahmer

2013-01-01T23:59:59.000Z

149

Usage of Fuel Mixtures Containing Ethanol and Rapeseed Oil Methyl Esters in a Diesel Engine  

Science Journals Connector (OSTI)

However, its use in the diesel engine cycle is hampered by the poor motor-fueling characteristics of lower alcohols and, primarily, the limited solubility of ethanol in fossil diesel fuel and its low self-ignition characteristics. ... Coefficient ? = Gair/(GfL0) estimates air supply into a diesel engine cylinder (indicator process), taking into account the differences of stoichiometric ratio L0 of the tested fuels, caused by the increase of the E portion in the RME?E mixture (Gair is air consumption, and Gf is fuel consumption). ... Future research will concentrate on the analysis of fuel injection and heat release rate characteristics in a cylinder, while a diesel engine is running on biodiesel fuels RME?E, and also on the operational parameters of diesel engines when fossil diesel fuel is replaced with three-component fuels D?RME?E. ...

Sergejus Lebedevas; Galina Lebedeva; Violeta Makareviciene; Prutenis Janulis; Egle Sendzikiene

2008-11-12T23:59:59.000Z

150

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

151

Thermal barrier coatings application in diesel engines  

SciTech Connect (OSTI)

Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

Fairbanks, J.W.

1995-03-01T23:59:59.000Z

152

Combustion and emission characteristics of a turbocharged diesel engine using high premixed ratio of methanol and diesel fuel  

Science Journals Connector (OSTI)

Abstract The combustion and emission characteristics of a dual fuel diesel engine with high premixed ratio of methanol (PRm) were investigated. Experiments were performed on a 6-cylinder turbocharged, inter-cooling diesel engine. Methanol was injected through the intake port and ignited by direct injected diesel in the cylinder, the maximum \\{PRm\\} was over 70%. The experimental results showed that with high PRm, the maximum in-cylinder pressure increased from medium to high engine load but varied little or even decreased at low engine speed and load. High \\{PRm\\} prolonged the ignition delay but shortened the combustion duration and decreased the in-cylinder gas temperature at ignition timing. Hydrocarbons (HC), carbon monoxide (CO), formaldehyde emissions and the proportion of nitrogen dioxide (NO2) in nitrogen oxides (NOX) increased significantly with the increase of \\{PRm\\} while NOX and dry soot emissions were significantly reduced, which meant the trade-off relationship between NOX and soot emissions disappeared. The increased HC, CO and formaldehyde emissions could be effectively reduced by diesel oxidation catalyst (DOC) when the exhaust gas temperature reached the light off temperature of the DOC. After DOC, the NO2 proportion in NOX was greatly reduced to less than that of baseline engine at methanol premixed mode but increased slightly at pure diesel mode. The maximum \\{PRm\\} was confined by in-cylinder pressure at high engine speed and load. But at low engine speed and load, it was confined by the high emissions of HC, CO and formaldehyde even after DOC.

Lijiang Wei; Chunde Yao; Quangang Wang; Wang Pan; Guopeng Han

2015-01-01T23:59:59.000Z

153

Development scenario for passenger-car diesel engines with optimised: Combustion processes to meet future emission standards  

Science Journals Connector (OSTI)

The main reason why the modern supercharged direct-injection diesel engine is so successful as a means of propelling passenger cars is because it is more efficient than spark-ignition engines in nearly every o...

Jörn Kahrstedt; Kai Behnk; Ansgar Sommer; Thorsten Wormbs

2003-10-01T23:59:59.000Z

154

Neat Tallow Combustion in a Large Diesel Engine for Electricity Generation from Waste  

Science Journals Connector (OSTI)

This paper explores how neat tallow can be used as a renewable fuel from waste for electricity generation in a large direct injection (DI) diesel engine capable of burning higher viscosity fuel. ... The fuel supply panel is linked with the main engine control panel, so that any alarm state of the plant (i.e., grid voltage fault, engine overheating) results in automatic change over into diesel mode—system flushing. ... Reforming Mini Reactor ...

Jakub Piaszyk; Perry Leung; Miroslaw L. Wyszynski; Athanasios Tsolakis; Barney Williams; Paul Latham; Andrew P. E. York

2012-10-15T23:59:59.000Z

155

Effect of n-Heptane Premixing on Combustion Characteristics of Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Heptane Premixing on Combustion Characteristics of Diesel Engine ... Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... In a different analysis, Simescu et al.17 explained, using their diesel-fueled partial HCCI engines, that soot formed during the premixed combustion period before DI fuel injection is not oxidized completely and emitted as exhaust gas. ...

Dae Sik Kim; Chang Sik Lee

2005-09-23T23:59:59.000Z

156

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

157

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

158

Robust intelligent control design for marine diesel engine  

Science Journals Connector (OSTI)

This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control ... controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to...

Hai-de Hua ???; Ning Ma ? ?; Jie Ma ? ?…

2013-12-01T23:59:59.000Z

159

Systematic evaluation of the reliability of marine diesel engines  

Science Journals Connector (OSTI)

A systematic model is proposed for evaluating the operational reliability of marine diesel engines. In mathematical terms, the model is ... permits the estimation of the overall reliability of marine diesel engines

G. S. Gamidov; N. K. Sanaev; Z. I. Adeev

2009-05-01T23:59:59.000Z

160

The Estimation of the Marine Main Diesel Engine Energy Balance  

Science Journals Connector (OSTI)

The basis of impact of energy device (marine main diesel engine) on its environment in terms of energy ... . Types of energy and exergy characterizing the marine main diesel engine are presented. The description ...

Z. Matuszak; G. Nicewicz

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Results of completed study on...

162

Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine  

E-Print Network [OSTI]

EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T. TOMPKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2008 Major Subject: Mechanical Engineering EMISSIONS COMPARISON BETWEEN PETROLEUM DIESEL AND BIODIESEL IN A MEDIUM-DUTY DIESEL ENGINE A Thesis by BRANDON T...

Tompkins, Brandon T.

2009-05-15T23:59:59.000Z

163

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

164

UNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES  

E-Print Network [OSTI]

diesel engines and stationary power plants. The possibility of early detecting small defects priorUNSUPERVISED CONDITION CHANGE DETECTION IN LARGE DIESEL ENGINES Niels Henrik Pontoppidan and Jan detection in large diesel engines from acoustical emis- sion sensor signal and compared to more classical

165

Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels  

SciTech Connect (OSTI)

A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

2007-01-01T23:59:59.000Z

166

Light-duty diesel engine development status and engine needs  

SciTech Connect (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

167

Effect of Oxygenated Fuel on Combustion and Emissions in a Light-Duty Turbo Diesel Engine  

Science Journals Connector (OSTI)

The influence of fuel oxygen content on soot reduction in diesel engines is well-known. ... Fuel consumption was determined by weighing the fuel at the beginning and end of each test mode or each fuel blend through a Sartorius precision scale, with an accuracy of ±2 g. ... studies on effects of oxygenated fuels in conjunction with single and split fuel injections were conducted at high and low loads on a Caterpillar SCOTE DI diesel engine. ...

Juhun Song; Kraipat Cheenkachorn; Jinguo Wang; Joseph Perez; André L. Boehman; Philip John Young; Francis J. Waller

2002-01-15T23:59:59.000Z

168

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

169

Friction and Wear Reduction in Diesel Engine Valve Trains | Department...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Mechanisms of Oxidation-Enhanced Wear in Diesel Exhaust Valves Materials for Advanced Engine Valve Train Materials for Advanced Engine Valve Train...

170

Natural Oils - The Next Generation of Diesel Engine Lubricants...  

Broader source: Energy.gov (indexed) [DOE]

Aftertreatment with a Oil Conditioning Filter Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil - Impact on Wear Development of High Performance Heavy Duty Engine Oils...

171

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

172

Optimization of Engine-out Emissions from a Diesel Engine to...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5...

173

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

174

Combustion system development of a two-stroke, spark-assisted DI diesel engine  

SciTech Connect (OSTI)

A loop-scavenged, two-stroke, spark-assisted DI diesel engine was developed by modifying an outboard marine gasoline engine to operate on diesel fuel with high fuel efficiency similar to a diesel engine, yet retain the two-stroke engine advantages of low cost, light weight, and high power-to-weight ratio. Engine modification was concentrated in the area of the combustion system, including transfer port design to generate air swirl in the cylinder, and combustion chamber design to generate air squish and turbulence. Bore and stroke (84 x 72 mm) remained the same as those of the base engine. The experimental engine used the production engine's piston, crankshaft, connecting rod, bearings, and cylinder block. The transfer port design was optimized using a flow test bench for best swirl and air flow pattern with a simple flow visualization technique. The best combustion chamber geometry, compression ratio, and fuel injection spray pattern were determined through engine experiments.

Ariga, S.; Matsushita, Y.

1988-01-01T23:59:59.000Z

175

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System  

E-Print Network [OSTI]

Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G. In this pa- per we investigate the coupling of a power assist system at the turbocharger shaft of a diesel representation of a diesel engine with a turbocharger power assist system. A turbocharger power assist system

Stefanopoulou, Anna

176

Argonne TTRDC - Feature - Five Myths About Diesel Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Five Myths About Diesel Engines Five Myths About Diesel Engines by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility Diesel engines, long confined to trucks and ships, are garnering more interest for their fuel efficiency and reduced carbon dioxide emissions relative to gasoline engines. Argonne mechanical engineer Steve Ciatti takes a crack at some of the more persistent myths surrounding the technology. Myth #1: Diesel is dirty. "We all have this image of trucks belching out dirty black smoke," Ciatti said. This smoke is particulate matter from diesel exhaust: soot and small amounts of other chemicals produced by the engine. But EPA emissions requirements have significantly tightened, and diesel engines now have to meet the same criteria as gasoline engines. They do

177

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

SciTech Connect (OSTI)

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24T23:59:59.000Z

178

Cleaner, More Efficient Diesel Engines  

SciTech Connect (OSTI)

Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

Musculus, Mark

2013-08-13T23:59:59.000Z

179

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network [OSTI]

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

180

Load Expansion with Diesel/Gasoline RCCI for Improved Engine Efficiency and Emissions  

Broader source: Energy.gov [DOE]

This poster will describe preliminary emission results of gasoline/diesel RCCI in a medium-duty diesel engine.

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Correlations of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

Department of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens 157 80, Greece ... The amount of pollutants emitted from diesel engines is affected by both the engine and the fuel quality. ...

D. Karonis; E. Lois; S. Stournas; F. Zannikos

1998-02-14T23:59:59.000Z

182

Engines - Particulate Studies - Revealing the True Nature of Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Engine Nanoparticle Research: Revealing the True Nature of Diesel Particulates Thermophoretic sampling device Argonne's test engine with the thermophoretic sampling device attached. Nanostructure of graphitic diesel soot under high engine load A transmission electron microscope reveals the nanostructures of graphitic diesel soot sampled under high engine loads. Morphology of particles collected from diesel combustion with iso-paraffin-enriched fuel. Morphology of particles collected from diesel combution with iso-paraffin-enriched fuel. Amorphous soot particle collected from biodiesel combustion undera low-temperature condition. Amorphous soot particle collected from biodiesel combustion under low temperature conditions. Researchers have many ideas about how to reduce the soot produced by diesel

183

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

184

Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles  

SciTech Connect (OSTI)

This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei [Department of Mechanical System Engineering, University of Hiroshima, Higashi-Hiroshima, 739-8527 (Japan); Zhang, Yuyin [Department of Mechanical Engineering, Tokyo Denki University, Tokyo, 101-8457 (Japan)

2009-06-15T23:59:59.000Z

185

Argonne TTRDC - Feature - Combining Gas and Diesel Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Gas and Diesel Engines Could Yield the Best of Both Worlds Combining Gas and Diesel Engines Could Yield the Best of Both Worlds by Louise Lerner Steve Ciatti Steve Ciatti in the Engine Research Facility It may be hard to believe, but the beloved gasoline engine that powers more than 200 million cars across America every day didn't get its status because it's the most efficient engine. Diesel engines can be more than twice as efficient, but they spew soot and pollutants into the air. Could researchers at the U.S. Department of Energy's Argonne National Laboratory engineer a union between the two-combining the best of both? Steve Ciatti, a mechanical engineer at Argonne, is heading a team to explore the possibilities of a gasoline-diesel engine. The result, so far, is cleaner than a diesel engine and almost twice as efficient as a typical

186

Diesel Engines for Road Transport  

Science Journals Connector (OSTI)

... A REMARKABLE revolution is taking place in the type of engine used in large motor vehicles, and by some it is thought that for road ... motor vehicles, and by some it is thought that for road transport the highspeed oil engine is destined to supersede the long-favoured petrol ...

1933-10-21T23:59:59.000Z

187

E-Print Network 3.0 - adiabatic diesel engine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: adiabatic diesel engine...

188

E-Print Network 3.0 - automotive diesel engine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive diesel engine...

189

E-Print Network 3.0 - advanced diesel engine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced diesel engine...

190

Utiization of alternate fuels in diesel engines  

SciTech Connect (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

191

Innovative coal-fueled diesel engine injector  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

192

Control Oriented Dynamic Modeling of a Turbocharged Diesel Engine  

Science Journals Connector (OSTI)

To build a precise model is a key issue in fulfilling on optimal control of the turbocharged diesel engine. Meanvalue model has been extensively used for engine control, but neglects the scavenging efficiency. On the basis of carefully considering air-fuel ... Keywords: Diesel engine, mean-value model, AFR

Haiyan Wang; Jundong Zhang

2006-10-01T23:59:59.000Z

193

Effect of Ethanol on Blending Stability and Diesel Engine Emissions  

Science Journals Connector (OSTI)

Effect of Ethanol on Blending Stability and Diesel Engine Emissions ... Industrial & Engineering Chemistry Research2013 52 (44), 15504-15508 ... This article describes the effects of hydroxylated biodiesel (castor oil methyl ester – COME) on the properties, combustion, and emissions of butanol–diesel blends used within compression ignition engines. ...

Magín Lapuerta; Octavio Armas; Reyes García-Contreras

2009-07-28T23:59:59.000Z

194

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations  

Science Journals Connector (OSTI)

Diesel Soot Oxidation with NO2:? Engine Experiments and Simulations ... Particulate filtration in the exhaust system of diesel engines is increasingly gaining in importance for both light- and heavy-duty applications. ... The reaction rates are, in general, in the same order of magnitude with the engine-out soot emission rates. ...

Ioannis P. Kandylas; Onoufrios A. Haralampous; Grigorios C. Koltsakis

2002-09-20T23:59:59.000Z

195

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integration - Strategy and Experimental Results The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important...

196

Design Challenges of Locomotive Diesel Engines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Technology MobiCleanTM Soot Filter for Diesel Locomotiive Applications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations...

197

Estimation and Control of Diesel Engine Processes Utilizing Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

198

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Broader source: Energy.gov (indexed) [DOE]

Example of exhaust availability for a Light-duty diesel Example 2 nd Law Distribution 10% Heat Loss (engine block, head, intercooler, etc) 14% Availability Exhaust Flow 36%...

199

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

200

A Correlation of Diesel Engine Performance with Measured NIR...  

Broader source: Energy.gov (indexed) [DOE]

CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

202

Investigation of operating range in a methanol fumigated diesel engine  

Science Journals Connector (OSTI)

Abstract An experimental study was conducted to investigate the operating range and combustion characteristics in a methanol fumigated diesel engine. The test engine was a six-cylinder, turbocharged direct injection engine with methanol injected into the intake manifold of each cylinder. The experimental results showed that the viable diesel methanol dual fuel (DMDF) operating range in terms of load and methanol substitution percent (MSP) was achieved over a load range from 6% to 100%. The operating range was restricted by four bounds: partial burning, misfire, roar combustion and knock. The lower bound of the operating range was the partial burn bound, which occurred under very low load conditions with high MSP. As the load increased to medium load, MSP reached its maximum value of about 76%, and the onset of misfire provided the right bound for normal operation. At medium to high load, maximum MSP began to decrease. DMDF combustion with excessive MSP was extremely loud with high pressure rise rate, which defined the roar combustion bound. As it increased to nearly full load, measured pressure traces in-cylinder showed strong acoustic oscillations. The appearance of knock provided the upper bound of the operating range. In general, as the load increased, the characters of the combustion changed from partial burn to misfire to roar combustion and to knocking. The range between these four bounds and the neat diesel combustion bound constituted the viable operating range. Over the viable operating range, DMDF combustion worsened the brake thermal efficiency (BTE) at light load while boosted it at medium and high load.

Quangang Wang; Lijiang Wei; Wang Pan; Chunde Yao

2015-01-01T23:59:59.000Z

203

DOE/VTP Light-Duty Diesel Engine Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

204

A New Design Concept for 2-Stroke Aircraft Diesel Engines  

Science Journals Connector (OSTI)

Abstract High power density, low weight, compact dimensions, high efficiency as well as reliability are the key factors in designing and dimensioning piston engines for General Aviation and Unmanned Aerial Vehicle (UAV) power plants. Despite of new available technologies, conventional solutions are still struggling to fulfill simultaneously all those requirements. The paper explores the application of a new design of 2-Stroke externally scavenged engines to aircraft. The new concept basically consists in the use of a patented rotary valve for controlling the flow through a set of inlet ports, enabling supercharging and the achievement of extremely high power densities compared to conventional solutions. The scavenging is realized by using an external pump, made up of a further cylinder, whose piston is connected to the same crankshaft. The piston pump allows the crankcase to be used as a conventional oil sump, and greatly improves the crankshaft balance. No poppet valves or camshafts need to be installed, since the flow is driven by piston-controlled ports and by two sets of reed valves. The engine can adopt two types of combustion system: Gasoline Direct Injection (GDI) for SI operations, and Direct Injection Common Rail for Diesel cycle. The paper is focused on the last version, since it can run on standard aircraft fuel. The Diesel engine has three cylinders and three piston pumps, for a total displacement of 1.5 liter The engine is turbocharged and inter-cooled, in order to reach a power target, at sea level, of 150 kW@4000 rpm. Another fundamental target is the minimum power of 100 kW, at the altitude of 20,000 feet.The paper reviews the design of the engine and presents the numerical prediction of the key performance parameters.

Giuseppe Cantore; Enrico Mattarelli; Carlo Alberto Rinaldini

2014-01-01T23:59:59.000Z

205

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

Anderson, Byron P.

2011-01-01T23:59:59.000Z

206

Knocking detection device in diesel engines  

SciTech Connect (OSTI)

This patent describes a device for detection of knocking in a diesel engine which consists of: a pressure detector, having a piezoelectric element, for detecting the rate of change of combustion pressure of the engine; an angle detector for detecting the rotation of the engine; and a knocking detector for receiving the outputs of the pressure detector and the angle detector for deciding whether or not knocking occurs. The knocking detector consists of a rotation rate detector for converting the output of the angle detector to a signal corresponding to the rotation rate of the engine, and a division apparatus for dividing the output of the pressure detector by the output of the rotation rate detector, the decision of an occurrence of knocking occurring when the output of the division device exceeds a predetermined value.

Ootsuka, Y.; Hattori, T.; Ozaki, T.

1986-02-04T23:59:59.000Z

207

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

208

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

209

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

210

Effect of engine operating parameters and fuel characteristics on diesel engine emissions  

E-Print Network [OSTI]

To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

Acar, Joseph, 1977-

2005-01-01T23:59:59.000Z

211

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines 2003 DEER Conference Presentation: AVL Powertrain...

212

2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research...

213

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Injection Diesel Engine Fuel Consumption”, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

214

Fuzzy control of a turbocharged diesel engine  

Science Journals Connector (OSTI)

In this paper an innovative fuzzy controller is proposed to regulate the intake manifold pressure and the fresh mass airflow of diesel engines simultaneously. Unlike many multivariable controllers published in the literature, it requires neither an internal model nor identification algorithms. It has been designed considering the instrumentation set usually embedded in a mass-produced passenger car. Its rule-based structure has led to an algorithm, which is easy to implement. In comparison to controllers embedded at present in standard Engine Control Units (ECUs), it improves the trajectory tracking of desired outputs as noted during simulation of EURO cycles. In terms of robustness, this controller is little sensitive to the parameter disparity generally encountered in mass-produced engines.

Jean-Francois Arnold; Nicolas Langlois; Houcine Chafouk; Gerard Tremouliere

2008-01-01T23:59:59.000Z

215

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

216

An investigation of diesel–ignited propane dual fuel combustion in a heavy-duty diesel engine  

Science Journals Connector (OSTI)

Abstract This paper presents a detailed experimental analysis of diesel–ignited propane dual fuel combustion on a 12.9-l, six-cylinder, production heavy-duty diesel engine. Gaseous propane was fumigated upstream of the turbocharger air inlet and ignited using direct injection of diesel sprays. Results are presented for brake mean effective pressures (BMEP) from 5 to 20 bar and different percent energy substituted (PES) by propane at a constant engine speed of 1500 rpm. The effect of propane PES on apparent heat release rates, combustion phasing and duration, fuel conversion and combustion efficiencies, and engine-out emissions of oxides of nitrogen (NOx), smoke, carbon monoxide (CO), and total unburned hydrocarbons (HC) were investigated. Exhaust particle number concentrations and size distributions were also quantified for diesel–ignited propane combustion. With stock engine parameters, the maximum propane PES was limited to 86%, 60%, 33%, and 25% at 5, 10, 15, and 20 bar BMEPs, respectively, either by high maximum pressure rise rates (MPRR) or by excessive HC and CO emissions. With increasing PES, while fuel conversion efficiencies increased slightly at high \\{BMEPs\\} or decreased at low BMEPs, combustion efficiencies uniformly decreased. Also, with increasing PES, \\{NOx\\} and smoke emissions were generally decreased but these reductions were accompanied by higher HC and CO emissions. Exhaust particle number concentrations decreased with increasing PES at low loads but showed the opposite trends at higher loads. At 10 bar BMEP, by adopting a different fueling strategy, the maximum possible propane PES was extended to 80%. Finally, a limited diesel injection timing study was performed to identify the optimal operating conditions for the best efficiency-emissions-MPRR tradeoffs.

Andrew C. Polk; Chad D. Carpenter; Kalyan Kumar Srinivasan; Sundar Rajan Krishnan

2014-01-01T23:59:59.000Z

217

The new V8 diesel engine for Land Rover  

Science Journals Connector (OSTI)

After the launch of the 2.7-l TDV6 diesel engine for Jaguar, Land Rover and PSA ... family. The new 3.6-l TDV8 Diesel engine was developed for Land Rover’s ... and Range Rover Sport models. The premium market seg...

Roland Ernst; Thomas Grünert; Paul Turner

2007-04-01T23:59:59.000Z

218

Air management in a diesel engine using fuzzy control techniques  

Science Journals Connector (OSTI)

Air management for diesel engines is a major challenge from the control point of view because of the highly nonlinear behavior of this system. For this reason, linear control techniques are unable to provide the required performance, and nonlinear controllers ... Keywords: Diesel engines, Fuzzy systems, Identification, LMIs, Nonlinear control

S. García-Nieto; J. Salcedo; M. Martínez; D. Laurí

2009-09-01T23:59:59.000Z

219

Novel injector techniques for coal-fueled diesel engines. Final report  

SciTech Connect (OSTI)

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

220

Analysis of parasitic losses in heavy duty diesel engines  

E-Print Network [OSTI]

Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

James, Christopher Joseph

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New Two-Stroke Marine Diesel Engines from Wärtsilä  

Science Journals Connector (OSTI)

Wärtsilä has developed a new generation of small marine diesel engines with the designations RT-flex35 and RT- ... of 35 cm and 40 cm. The engines are equipped exclusively with an integrated electronic ... first ...

Dipl.-Ing. Patrick Frigge; Dipl.-Ing. Samuel Affolter…

2011-11-01T23:59:59.000Z

222

4 - Fundamentals of dynamic and static diesel engine system designs  

Science Journals Connector (OSTI)

Abstract: This chapter lays out the foundation of dynamic and static diesel engine system designs by linking the theoretical governing equations of the instantaneous engine in-cylinder cycle processes and the gas flow network of the air system. Engine manifold filling dynamics is discussed for dynamic system design. The chapter develops the theory of pumping loss and engine delta P, which are key design issues for modern high-EGR turbocharged diesel engines. The theory is used to predict engine hardware performance or determine hardware specifications to meet target performance. Four core equations for engine air system are proposed. Different theoretical options of engine air system design are summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

223

Methanol vaporization and injection system for internal combustion engine  

SciTech Connect (OSTI)

An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

Bayley, R.I.

1980-05-06T23:59:59.000Z

224

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

225

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

226

Effect of Bioethanol Blended Diesel Fuel and Engine Load on Spray, Combustion, and Emissions Characteristics in a Compression Ignition Engine  

Science Journals Connector (OSTI)

Yan et al.(8) investigated the combustion and emission characteristics of diesel engines fueled with ethanol–diesel blended fuel in a single cylinder diesel engine. ... Figure 11 shows the indicated specific fuel consumption (ISFC) characteristics of diesel–bioethanol blended fuels at various engine loads. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Su Han Park; In Mo Youn; Yunsung Lim; Chang Sik Lee

2012-07-03T23:59:59.000Z

227

Feature - Air Force Fellows helping work toward smarter diesel engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Force Fellows helping work toward smarter diesel engines Air Force Fellows helping work toward smarter diesel engines Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. (Photo by Wes Agresta) One of the three core values of the Air Force is "excellence in all we do." So it should be no surprise that there are currently two Air Force officers here at Argonne studying ways to improve the efficiency of military vehicles. Lieutenant Colonel Jeff Gillen and Major Clint Abell are the fourth set of Air Force Fellows to spend time at Argonne, but the first to be stationed

228

Combustion of the alternative marine diesel fuel LCO in large diesel engines  

Science Journals Connector (OSTI)

Large diesel engines represent the heart of the ships, which transport worldwide about 80 % of the goods over the sea route these days. Regimentations of the IMO are planning drastic reductions of nitrogen oxi...

Dipl.-Ing. Daniel Struckmeier; Prof. Dr.-Ing. Koji Takasaki…

2008-11-01T23:59:59.000Z

229

Diesel Engines: What Role Can They Play in an Emissions-Constrained World?  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation; California Air Resources Board

230

An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control  

Broader source: Energy.gov [DOE]

Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

231

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

232

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

233

Oxygenated fuels for clean heavy-duty diesel engines  

Science Journals Connector (OSTI)

For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been extrapolated towards lower emission levels. Exhaust gas recirculation (EGR) was applied to a modern EURO-3-type HD diesel engine. Tests were done at different engine working points, with EGR-levels and start of fuel delivery timings set to give NOx emissions between 3.5 and 2.0 g/kWh with regular diesel fuel. Fourteen blends of a low-sulphur diesel fuel respectively of a gas-to-liquid synthetic diesel fuel with different oxygenates were tested. The corresponding fuel matrix covers a range of fuel oxygen mass fractions up to 15%. Results are presented and the impact of fuel oxygen mass fraction and Cetane Number are analysed and compared with results from previous research.

P.J.M. Frijters; R.S.G. Baert

2006-01-01T23:59:59.000Z

234

Diesel Engine Combustion of Biomass Pyrolysis Oils  

Science Journals Connector (OSTI)

Biomass pyrolysis oils are manufactured through a moderate-temperature process (?500 °C) in which the biomass feedstock is subjected to rapid heating in the absence of air, where it vaporizes, cracks, and is condensed after a short residence time (?500 ms) into a dark brown liquid composed of a complex mixture of oxygenated hydrocarbons whose heating value is approximately half that of No. 2 diesel fuel. ... The combustion air inlet temperature can be preheated up to 130 °C through the use of an in-line electric heater, which allows engine operation with fuels that have long ignition delay, without relying on any ignition additives. ... Their data showed that in addition to reducing the peak heat release magnitude, slower chemical kinetics resulted in reduced rate of instantaneous heat release (the slope of the instantaneous heat release curve) in the early combustion phase, resulting in delayed peak heat release timing relative to SOC. ...

Alan Shihadeh; Simone Hochgreb

2000-02-15T23:59:59.000Z

235

Effect of sulfur on heavy duty diesel engine lubricants  

SciTech Connect (OSTI)

Diesel engine exhaust legislation has become quite onerous for heavy duty engines. Yet, these high thermal efficiency engines continue to meet lower exhaust particulate and NOx emissions limits, due to new engine designs and the complementary engine oil performance requirements of the API service categories. In addition, the EPA has mandated changes in on-highway diesel fuel to help meet particulate emissions regulations. On October 1, 1993, when the EPA outlawed high sulfur fuels for on-highway use, the development of the API CG-4 engine oil performance specification was already in progress. All the new diesel engine tests in the category were therefore designed to run with low (< 0.05% wt.) sulfur fuel. In some engine tests, this new fuel improved some lubricant performance characteristics and degraded others. An engine oil specification for low sulfur fuel brings new challenges to developing future specifications for diesel engine oils. Both higher and lower lubricant additive treat rate products, high performance single grade oils, and formulations to meet world-wide specifications become viable. This paper discusses the results of a diesel engine oil technology that performs well with the new, low sulfur fuel in both engine tests and in the field.

Hayden, T.E. [Texaco Fuels and Lubricants Research Dept., Beacon, NY (United States)

1996-12-01T23:59:59.000Z

236

The effect of reformer gas mixture on the performance and emissions of an HSDI diesel engine  

Science Journals Connector (OSTI)

Abstract Exhaust gas assisted fuel reforming is an attractive on-board hydrogen production method, which can open new frontiers in diesel engines. Apart from hydrogen, and depending on the reactions promoted, the reformate typically contains a significant amount of carbon monoxide, which is produced as a by-product. Moreover, admission of reformed gas into the engine, through the inlet pipe, leads to an increase of intake air nitrogen to oxygen ratio. It is therefore necessary to study how a mixture of syngas and nitrogen affects the performance and emissions of a diesel engine, in order to gain a better understanding of the effects of supplying fuel reformer products into the engine. In the current research work, a bottled gas mixture with H2 and CO contents resembling those of typical diesel reformer product gas was injected into the inlet pipe of an HSDI diesel engine. Nitrogen (drawn from a separate bottle) at the same volumetric fraction to syngas was simultaneously admitted into the inlet pipe. Exhaust analysis and performance calculation was carried out and compared to a neat diesel operation. Introduction of syngas + N2 gas mixture resulted in simultaneous reduction of the formation of \\{NOx\\} and smoke emissions over a broad range of the engine operating window. Estimation of the bottled carbon monoxide utilisation showed that by increasing either the load or the speed the admitted carbon monoxide is utilised more efficiently. As a general rule, CO2 emissions increase when the bottled carbon monoxide utilisation is approximately over 88%. Isolation of the H2 and N2 effect revealed that a CO diluted flame promotes the formation of smoke. When the intake air is enriched with syngas + N2, an increase of engine speed results in reduction of maximum pressure rise rate (dp/da). The effect of load on dp/da varies depending on engine speed. Finally, the engine is more fuel efficient when running on neat diesel.

Fanos Christodoulou; Athanasios Megaritis

2014-01-01T23:59:59.000Z

237

Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created in order to guide the engine disassembly and testing. The overall goal was to improve fuel economy

Demirel, Melik C.

238

1 - The analytical design process and diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Diesel engine system design (DESD) is an important and leading function in the design and development of modern low-emissions EGR diesel engines. It creates a paradigm shift in how engine design is carried out. It leads and integrates the designs from the system level to the component level by producing high-quality system design specifications with advanced analytical simulation tools. This chapter introduces the fundamental concepts in diesel engine system design and provides an overview on the theory and approaches in this emerging technical field. The central theme is how to design a good engine system performance specification at an early stage of the product development cycle. The chapter employs a systems engineering approach and applies the concepts of reliability and robust engineering to diesel engine system design to address the optimization topics encountered in design for target, design for variability, and design for reliability. An attribute-driven system design process is developed for advanced analytical engine design from the system level to the subsystem/component level in order to coordinate different design attributes and subsystems. Four system design attributes – performance, durability, packaging, and cost – are elaborated. The chapter also addresses competitive benchmarking analysis. By focusing on engine performance and system integration (EPSI), the technical areas, theoretical foundation, and tools in diesel engine system design are introduced.

Qianfan Xin

2013-01-01T23:59:59.000Z

239

Combustion and emission characteristics of diesel engine fuelled with methyl esters of pungam oil and rice bran oil  

Science Journals Connector (OSTI)

Biodiesel derived from vegetable oils and animal fats can be used in diesel engines with little or no modifications. In this work, the combustion, performance and emission characteristics of various biodiesel (rice bran oil and pungam oil) and their blends are evaluated in a direct injection diesel engine. Lower ignition delay, higher peak pressure and heat release rate with almost same brake thermal efficiency are obtained for 20% biodiesel blend as compared with diesel fuel. They exhibited lower unburned hydrocarbon, carbon monoxide and soot emissions with a penalty of higher NOx emissions.

G. Lakshmi Narayana Rao; N. Nallusamy; S. Sampath; K. Rajagopal

2008-01-01T23:59:59.000Z

240

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Broader source: Energy.gov (indexed) [DOE]

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends  

Science Journals Connector (OSTI)

The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of ...

Ni Zhang; Zuohua Huang; Xiangang Wang; Bin Zheng

2011-03-01T23:59:59.000Z

242

Diesel Engine Strategy & North American Market Challenges, Technology and Growth  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

243

Friction Characteristics of Steel Pistons for Diesel Engines  

E-Print Network [OSTI]

The use of iron pistons is increasing due to the higher power requirements of diesel truck engines. Expansion of the iron piston is a common concern. The purpose of this study is to clarify the lubrication conditions of ...

Kim, Dallwoo

244

Improving supply chain responsiveness for diesel engine remanufacturing  

E-Print Network [OSTI]

Achieving a significant reduction in order-to-shipment lead-time of remanufactured diesel engines can dramatically decrease the amount of finished goods inventory that Caterpillar needs to carry in order to meet its delivery ...

Méndez de la Luz, Diego A., 1979-

2011-01-01T23:59:59.000Z

245

Particle Number and Size Emissions from a Small Displacement Automotive Diesel Engine: Bioderived vs Conventional Fossil Fuels  

Science Journals Connector (OSTI)

§ General Motors Powertrain Europe, Corso Castelfidardo 36, 10138 Torino, Italy ... The experiments were carried out at the Politecnico di Torino on a modern small displacement, turbocharged, common-rail Euro 5 direct injection (DI) automotive diesel engine, one of the smallest engines on the market, considering unit displacement. ...

Federico Millo; Davide Simone Vezza; Theodoros Vlachos; Andrea De Filippo; Claudio Ciaravino; Nunzio Russo; Debora Fino

2012-01-11T23:59:59.000Z

246

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

247

An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel  

Science Journals Connector (OSTI)

Abstract This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P engine power, torque and specific fuel consumption. The mean values of engine power were increased in the range of 59.14–69.5 kW with increasing the engine speed. The engine power did not show significant difference for all the fuel blends except for the D65B25E10, 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P engine speed ranged from 1600 to 2000 rpm. The engine specific fuel consumption was increased significantly when the engine speed ranged from 1900 to 2000 rpm. The engine specific fuel consumption was greater for all the fuel blends when compared to neat diesel fuel. The D93B5E2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D86B10E4 and D79B15E6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application.

Seyed Reza Hassan-beygi; Vahideh Istan; Barat Ghobadian; Mohammad Aboonajmi

2013-01-01T23:59:59.000Z

248

Air intake modelling with fuzzy AFR control of a turbocharged diesel engine  

Science Journals Connector (OSTI)

One of the most vital factors in combustion control is Air-to-Fuel Ratio (AFR) estimation and control. In this work a detailed mathematical, nonlinear and control oriented model of dynamic processes of turbocharged diesel engines is presented. This model has been developed using physical equations and also experimental data. Common Rail Injection (CRI) that is a flexible fuel injection system in which quantity, timing and pressure of injection are controllable separately is chosen for this purpose. AFR control is performed making use of fuzzy logic methodology with a fast fuzzy controller. All above-mentioned models are programmed in Matlab/Simulink software.

Amir H. Shamdani; Amir H. Shamekhi; M. Ziabasharhagh

2008-01-01T23:59:59.000Z

249

The Research of the Intelligent Fault Diagnosis Optimized by ACA for Marine Diesel Engine  

Science Journals Connector (OSTI)

The marine diesel engine has the important function to guarantee the marine security and reliability. It is a strong ... with conventional FNN fault diagnosis method for this marine diesel engine’s combustion sys...

Peng Li; Lei Liu; Haixia Gong

2010-01-01T23:59:59.000Z

250

Heat waste recovery system from exhaust gas of diesel engine to a reciprocal steam engine.  

E-Print Network [OSTI]

??This research project was about the combined organic Rankine cycle which extracted energy from the exhaust gas of a diesel engine. There was a study… (more)

Duong, Tai Anh

2011-01-01T23:59:59.000Z

251

Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) | Department...  

Broader source: Energy.gov (indexed) [DOE]

Control System Through the Use of CFD Analysis Modeling Combustion Control for High Power Diesel Mode Switching Microstructural Contol of the Porous Si3N4 Ceramics Consisted...

252

10 - Friction and lubrication in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter addresses engine friction and lubrication dynamics modeling in diesel engine system design. It starts by introducing important fundamental principles of engine tribology and builds up a three-level system modeling approach of engine friction. The chapter summarizes the friction characteristics and friction-reduction design measures for both the overall engine system and individual subsystems such as the piston assembly, the piston rings, the bearings, and the valvetrain.

Qianfan Xin

2013-01-01T23:59:59.000Z

253

The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine  

Science Journals Connector (OSTI)

Abstract The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (?4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. \\{NOx\\} emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load, the effect of the additives is much less significant, due to the fact that the ratio oxygen from additive/oxygen from air is much lower.

F. Gómez-Cuenca; M. Gómez-Marín; M.B. Folgueras-Díaz

2013-01-01T23:59:59.000Z

254

Characteristics of Soot and Particle Size Distribution in the Exhaust of a Common Rail Light-Duty Diesel Engine Fuelled with Biodiesel  

Science Journals Connector (OSTI)

Limited studies have been accumulated as to the effects of biodiesel on PSD in light-duty modern diesel engines employed with common rail (CR) injection system and exhaust gas recirculation (EGR) that are currently widely used in transportation vehicles in European and U.S. markets. ... 0 diesel, which is commonly used in the Chinese market. ...

Xusheng Zhang; Zhijun Wu; Liguang Li

2012-08-09T23:59:59.000Z

255

Coal-water-slurry autoignition in a high-speed Detroit diesel engine  

SciTech Connect (OSTI)

Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm{sup 3} injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DDC) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NO{sub x} levels with a combustion efficiency of 99.2 percent. 6 refs., 15 figs., 4 tabs.

Schwalb, J.A.; Ryan, T.W. III.; Kakwani, R.M.; Winsor, R.E.

1994-10-01T23:59:59.000Z

256

Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester  

Science Journals Connector (OSTI)

Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.

B. Gokalp; E. Buyukkaya; H.S. Soyhan

2011-01-01T23:59:59.000Z

257

A Neural Network Approach for the Correlation of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties  

Science Journals Connector (OSTI)

National Technical University of Athens, Department of Chemical Engineering, Iroon Polytechniou 9, Athens 157 80, Greece ... The emissions from diesel engines have been drastically reduced during the last 30 years as a result of significant improvement in engine technology and modification of diesel fuel. ... First principles models are using fundamental equations, which have been developed by analyzing the physical insight of the systems. ...

D. Karonis; E. Lois; F. Zannikos; A. Alexandridis; H. Sarimveis

2003-08-15T23:59:59.000Z

258

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

259

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson  

E-Print Network [OSTI]

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

Minnesota, University of

260

BMW Diesel Engines - Dynamic, Efficient and Clean  

Broader source: Energy.gov (indexed) [DOE]

about cars General Attitude towards Driving & Cars Market Study Diesel Image Germany and UK 2005 74 85 75 82 60 72 65 66 64 66 56 60 60 51 54 66 83 83 89 62 57 29 32 64...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

French perspective on diesel engines & emissions  

Broader source: Energy.gov (indexed) [DOE]

smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

262

Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-  

E-Print Network [OSTI]

ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

Daraio, Chiara

263

Optimizing the design of a hydrogen engine with pilot diesel fuel ignition  

Science Journals Connector (OSTI)

A diesel engine was converted to dual-fuel hydrogen operation, ignition being started by a 'pilot' quantity of diesel fuel but with 65 to 90% of the energy being supplied as hydrogen. With later injection timing, use of delayed port admission of the gas, and a modified combustion chamber, thermal efficiencies were achieved nearly 15% greater than those for diesel as the sole fuel. A 'solid' water injection technique was used to curb knock under full load conditions when the power output equalled or exceeded that of a similar diesel engine. The indicator diagrams under these conditions closely approach those of the Otto cycle. The development was assisted by computer simulation using a novel self-ignition and flame propagation model. The very fast burning rates obtained with stoichiometric hydrogen-air mixtures show combustion to occur within 5 degrees of crank rotation yet Otto cycle thermal efficiency was not achieved. However, greenhouse gases are shown to be reduced by more than 80%, nitrogen oxides by up to 70%, and exhaust smoke by nearly 80%.

S.M. Lambe; H.C. Watson

1993-01-01T23:59:59.000Z

264

Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol  

Science Journals Connector (OSTI)

Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min?1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, \\{NOx\\} emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

C.S. Cheung; Yage Di; Zuohua Huang

2008-01-01T23:59:59.000Z

265

Advanced Diesel Common Rail Injection System for Future Emission...  

Broader source: Energy.gov (indexed) [DOE]

passing on to third parties. Approval Data for PC - Diesel at least Euro 3 source: KBA Germany Robert Bosch GmbH reserves all rights even in the event of industrial property...

266

Engine state monitoring and fault diagnosis of large marine diesel engines  

Science Journals Connector (OSTI)

The reliable detection of engine malfunctions in order to predict and to ... of industry. For instance, occurring faults of marine diesel engines which are on the high seas for ... systems (CMS) should be able to...

D. Watzenig; M. S. Sommer; G. Steiner

2009-05-01T23:59:59.000Z

267

Prediction of marine diesel engine performance under fault conditions  

Science Journals Connector (OSTI)

The diesel engine, due to its superior efficiency when compared to other thermal engines, is widely used for propulsion of marine vessels. Since in such applications the power concentration is critical, most marine diesel engines are of the turbocharged type. Turbocharging has a serious effect on engine performance due to the interaction between the turbocharger and the engine. This interaction makes the detection of engine faults extremely difficult since a specific fault affects the turbocharger and through it the engine. For this reason various methods have been proposed for the detection of engine faults. The present author has in the past presented a method for marine diesel diagnosis by processing measured engine data using a simulation model. In the present work a completely different approach is followed; an attempt is made to use a simulation model to predict marine diesel engine performance under various fault conditions. The method is applied to a newly built vessel powered by a slow speed two stroke marine diesel engine. Using the engine shop trial data obtained under propeller law the simulation model constants are determined, using an automatic method that has been developed. The comparison of results obtained with the data from the official shop trials confirms the accuracy of the model and its ability to predict almost all operating parameters of the engine. The model is then used to produce results by simulating various engine faults or faults of its subsystems. From this analysis their impact on various measurable engine parameters is determined. It is interesting to see that in the case of turbocharged engines some faults have a different effect when compared to naturally aspirated ones. Also, it is revealed that without the use of modeling in many cases it is relatively difficult to determine the actual cause for an engine malfunction, since the observed effects on engine performance are similar. The proposed method is promising and assists the engineer to understand the actual effect of various faults on engine performance. Also it can be used as a training tool since it is easy to simulate various engine faults, a procedure which is extremely difficult, if not impossible, to perform on the field.

Dimitrios T Hountalas

2000-01-01T23:59:59.000Z

268

Development, Optimization and Validation of Gas Chromatographic Fingerprinting of Brazilian Commercial Diesel Fuel for Quality Control  

Science Journals Connector (OSTI)

......of the representative diesel oil samples. Gas chromatographic...representative commercial diesel samples showed the same...peaks (Table-I). All general fingerprinting data were...high-speed direct-injection diesel engine equipped with a common......

Bruno César Diniz Brito dos Santos; Danilo Luiz Flumignan; José Eduardo de Oliveira

2012-10-01T23:59:59.000Z

269

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Focus is the heavy duty, US dynamometer...

270

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

271

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

272

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

273

Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines  

E-Print Network [OSTI]

of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

Anderson, Byron P.

2011-01-01T23:59:59.000Z

274

Optimization of the Combustion in Large Marine Diesel Engine by Controlling the Exhaust Gas  

Science Journals Connector (OSTI)

The diesel engine performance and emissions are strongly linked to ... to regulate the air-fuel mixture in a diesel engine, by controlling the turbocharger speed through a ... work we have taken as a model a marine

Sabri Bechir

2013-01-01T23:59:59.000Z

275

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation:...

276

Practical implications of marine diesel engine emission regulations  

SciTech Connect (OSTI)

The main pollutants from marine diesel engines are oxides of nitrogen (NOx), sulfur oxides (SOx) and particulates (soot). However, the proposed marine diesel engine emission regulations will primarily focus on the levels of NOx and SOx. In the future, once the proposed regulations are met, the limits and levels of other emissions will come under increasing scrutiny, such as particulates, hydrocarbons and carbon monoxide. Regardless of the type of pollutant, there are generally two classes of emission control: (1) techniques that reduce the amount of pollutant formed in the combustion process, or (2) prevent the pollutants from reaching the atmosphere. Unfortunately, some of these control techniques will not be able to meet the incoming regulations. Therefore, this paper identifies the diesel engine emissions of concern, the impending regulations, and the merits of current and future emission control technologies required to meet these regulations.

Bowen, C.E.; Potter, I.J.; Reader, G.T. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1996-09-01T23:59:59.000Z

277

Shaping of fuel delivery characteristics for solenoid operated diesel engine gaseous injectors  

SciTech Connect (OSTI)

Solenoid operated gaseous injectors, when compared to conventional liquid fuel diesel injectors, differ in the way the fuel dose and its discharge rate are controlled. While in conventional diesel systems, the fuel dose and its injection rate depends on the fuel injection pump effective stroke and on the plunger diameter and velocity, the solenoid injectors operate in an on-off manner which limits the ability to control the gas discharge rate, resulting in its profile to be basically rectangular in shape. To reduce the gas injection rate at the beginning of the injection process in order to suppress the diesel-knock phenomenon, similar procedures as used in diesel engines could be implemented. One such approach is to use a throttling type pintle nozzle, and another method is to use a double-spring injector with a hole nozzle. The rationale for using such nozzle configurations is that gaseous fuels do not require atomization, and therefore, can be injected at lower discharge velocities than with liquid fuels. The gas delivery characteristics from a solenoid injector has been computer-simulated in order to assess the impact of the investigated three modes of fuel discharge rate control strategies. The simulation results confirmed that the gas dose and its discharge rate can be shaped as required. An experimental set-up is described to measure the gas discharge rate using a special gas injection mass flow rate indicator with a strain-gage sensor installed at the entry to a long tube, similar to that proposed by Bosch for liquid fuel volumetric flow rate measurements.

Hong, H.; Krepec, T.; Kekedjian, H.

1996-09-01T23:59:59.000Z

278

Fumigation of a heavy duty common rail marine diesel engine with ethanol–water mixtures  

Science Journals Connector (OSTI)

A heavy duty common rail marine diesel engine operating with two stage injection is tested under load on a test bench with vapourised ethanol–water mixtures mixed into the inlet air at various rates. Ethanol/water mixture strengths of 93%, 72% and 45% by mass are tested. Results are presented for two engine loads at 1800 rpm, with brake mean effective pressure (BMEP) 17 bar and 20 bar. At each test point, constant engine speed and brake torque are maintained for various rates of aqueous ethanol addition. Small increases in brake thermal efficiency are measured with moderate rates of ethanol addition at a BMEP of 20 bar. Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbons, oxygen and carbon dioxide, and exhaust opacity are measured. CO emissions and exhaust opacity tend to increase with increased ethanol addition. \\{NOx\\} emissions tend to decrease with increased ethanol addition and with increased water content. Hydrocarbon emissions remain low, near the detection limit of the analyser. Cylinder pressure and the electronically controlled two stage liquid fuel injection timing are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. The apparent heat release rate and fuel injection timing together allow analysis of the mechanism of the combustion process with ethanol fumigation. Two stage injection involves a small pre-injection of diesel fuel to reduce early pressure rise rates in normal diesel engine combustion. Even though injection timing is retarded by the Engine Control Unit as more ethanol is added, combustion timing effectively advances due to the effect of two stage injection. Where the ethanol/air mixture strength is above the lower flammability limit at compression temperatures, the mixture is ignited by the pre-injection and begins to burn rapidly by flame propagation and/or autoignitive propagation before the main liquid fuel injection begins. This occurs for ethanol energy substitution rates greater than 30%. Two distinct peaks in heat release rate appear at the higher ethanol rates. Severe knock becomes apparent for 34% ethanol. Two stage injection may be disadvantageous in these circumstances.

L. Goldsworthy

2013-01-01T23:59:59.000Z

279

Precise instrumentation of a diesel single-cylinder research engine  

Science Journals Connector (OSTI)

The accuracy of any empirical result is a direct consequence of the quality of experimental setup and the strict control over testing conditions. For internal combustion engines, a large number of parameters that also exhibit complex interdependence may significantly affect the engine performance. Therefore, this work describes the essentials required to establish a high-quality diesel engine research laboratory. A single-cylinder diesel engine is taken as the fundamental building block and the requirements for all essential sub-systems including fuel, intake, exhaust, coolant and exhaust gas recirculation (EGR) are laid out. The measurement and analysis of cylinder pressure, and exhaust gas sampling/conditioning requirements for emission measurement are discussed in detail. The independent control of EGR and intake boost is also highlighted. The measurement and analysis techniques are supported with empirical data from a single-cylinder diesel engine setup. The emphasis is on providing the necessary guidelines for setting up a fully-instrumented diesel engine test laboratory.

Usman Asad; Raj Kumar; Xiaoye Han; Ming Zheng

2011-01-01T23:59:59.000Z

280

Cavitation problem in heavy duty diesel engines: a literature review  

Science Journals Connector (OSTI)

This paper reviews the existing knowledge on cavitation in general and its effect on diesel engine cylinder liners. A brief definition of cavitation and various cavitation numbers are presented. Various effects involved in the formation, growth and collapse of bubbles are also characterized. The effects of pressure, temperature, and dissolved gas on bubble behaviour are mentioned. An attempt is made to study the various types of damage caused by cavitation on fluid flow machinery. The discussion highlights the amount of damage caused to diesel engine cylinder liners, and lists remedies suggested by numerous experts in the field.

Sunil Katragadda; Reda Bata

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

282

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine  

E-Print Network [OSTI]

Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value

Johansen, Tor Arne

283

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm  

E-Print Network [OSTI]

JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm Department of Applied Mathematics of a fuel eÃ?cient, nonpollut- ing diesel engine. We report preliminary progress on the numerical simulation Introduction The design of a fuel eÃ?cient, nonpolluting diesel engine is the subject of intensive international

New York at Stoney Brook, State University of

284

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland  

E-Print Network [OSTI]

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines. This paper present a dynamic mathematical model of a free-piston diesel engine, a control oriented dynamic

Johansen, Tor Arne

285

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network [OSTI]

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

286

The process of soot formation in a DI Diesel engine is very challenging to understand and  

E-Print Network [OSTI]

Background The process of soot formation in a DI Diesel engine is very challenging to understand and describe. But with respect to the demand for much lower particulate emissions (Tab.1) of Diesel engines emissi- ons of a medium duty DI Diesel engine which is certified for the TIER 3 norm should be evaluated

Sandoghdar, Vahid

287

Tallow Biodiesel: Properties Evaluation and Consumption Tests in a Diesel Engine  

Science Journals Connector (OSTI)

Tallow Biodiesel: Properties Evaluation and Consumption Tests in a Diesel Engine ... Then, the mixture of alkyl esters of fatty acids from vegetable oils or animal fats is named biodiesel and used in diesel engines, pure or blended with mineral diesel. ... Industrial & Engineering Chemistry Research (1998), 37 (9), 3768-3771 CODEN: IECRED; ISSN:0888-5885. ...

Maria Silvana Aranda Moraes; Laiza Canielas Krause; Michele Espinosa da Cunha; Candice Shimitt Faccini; Eliana Weber de Menezes; Renato Cataluña Veses; Maria Regina Alves Rodrigues; Elina Bastos Caramão

2008-03-15T23:59:59.000Z

288

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine  

E-Print Network [OSTI]

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which nonlinear airpath model of the diesel engine will be described in Section III. The model will be derived

Cambridge, University of

289

Direct Capillary Gas Chromatography of Filter-Borne Particulate Emissions from Diesel Engines  

Science Journals Connector (OSTI)

......Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson P.R. Shore...Filter-Borne Particulate Emissions from Diesel Engines R.D. Cuthbertson and P.R...oil-derived material. Introduction Diesel engines emit particulate matter consisting......

R.D. Cuthbertson; P.R. Shore

1988-03-01T23:59:59.000Z

290

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

291

Combustion and performance of a diesel engine with preheated Jatropha curcas oil using waste heat from exhaust gas  

Science Journals Connector (OSTI)

Abstract The viscosity and density of CJO (crude Jatropha oil) were reduced by heating it using the heat from exhaust gas of a diesel engine with an appropriately designed helical coil heat exchanger. Experiments were conducted to evaluate the combustion characteristics of a DI (direct injection) diesel engine using PJO (preheated Jatropha oil). It exhibited a marginally higher cylinder gas pressure, rate of pressure rise and heat release rate as compared to HSD (high speed diesel) during the initial stages of combustion for all engine loadings. Ignition delay was shorter for PJO as compared to HSD. The results also indicated that BSFC (brake specific fuel consumption) and EGT (exhaust gas temperature) increased while BTE (brake thermal efficiency) decreased with PJO as compared to HSD for all engine loadings. The reductions in CO2 (carbon dioxide), HC (hydrocarbon) and \\{NOx\\} (nitrous oxide) emissions were observed for PJO along with increased CO (carbon monoxide) emission as compared to those of HSD.

Priyabrata Pradhan; Hifjur Raheman; Debasish Padhee

2014-01-01T23:59:59.000Z

292

Performance and emission characteristics of a diesel engine using esters of palm olein/soybean oil blends  

Science Journals Connector (OSTI)

In this experimental study, the engine performance and exhaust emissions of a diesel direct injection engine using mixed palm oleinâ??soybean vegetable oil ethyl ester (POSEE) and methyl ester (POSME) have been examined. The results of experimental studies have shown that the torque and brake power output of an engine, which uses biodiesels, is slightly lower and specific fuel consumption is higher than in an engine using conventional diesel fuel. It has also been observed that there is a decrease in both carbon monoxide and hydrocarbon (HC) emissions, which indicates an advantage of exhaust emissions. Although methyl ester's CO2 emissions decreased compared with those of diesel fuel, NO and NOX emissions were higher with the biodiesels.

Imdat Taymaz; Mucahit Sengil

2010-01-01T23:59:59.000Z

293

Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers use this rig in the future to quantify frictional losses and improve on the efficiency of their diesel

Demirel, Melik C.

294

Conversion of a diesel engine to a spark ignition natural gas engine  

SciTech Connect (OSTI)

Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

NONE

1996-09-01T23:59:59.000Z

295

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

SciTech Connect (OSTI)

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

296

Statistics on cylinder wear in marine diesel engines  

Science Journals Connector (OSTI)

A description of the United Steamship Company's efforts to elucidate statistically the problems in connection with cylinder wear in marine diesel engines, by the use of punched cards and electronic digital computers. Further, some hypotheses concerning the causes of cylinder wear and the way to overcome it are given.

H.D. Lees

1959-01-01T23:59:59.000Z

297

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines  

E-Print Network [OSTI]

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

Minnesota, University of

298

Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil- Impact on Wear  

Broader source: Energy.gov [DOE]

Results of completed study on the effect of four exhaust gas recirculation levels on diesel engine oil during standard test with an API Cummins M-11 engine.

299

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect (OSTI)

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

300

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2 - Durability and reliability in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: Consideration of durability and reliability is necessary at the earliest stage of system design. This chapter presents the theory and analysis methods of durability and reliability in diesel engine system design. It begins by describing engine durability issues, followed by an elaboration on the relationship between performance and durability through the discussions on system-level loading and durability design constraints. It then provides a systematic introduction on the fundamentals of thermo-mechanical failures and the applications on diesel engine cylinder head, exhaust manifold, valvetrain, piston, turbocharger and aftertreatment devices, followed by discussions on cylinder liner cavitation, engine wear, and EGR cooler durability. An integrated analysis approach on system durability–reliability is finally summarized.

Qianfan Xin

2013-01-01T23:59:59.000Z

302

Air charge system emulation for diesel engine.  

E-Print Network [OSTI]

??The work presented in this thesis details a novel engine evaluation approach utilising real-time simulation and advanced engine testing systems for general applicability to new… (more)

Zhang, Kai

2010-01-01T23:59:59.000Z

303

Assessment of fuel efficiency of neem biodiesel (Azadirachta indica) in a single cylinder diesel engine  

Science Journals Connector (OSTI)

Increase of petroleum diesel usage and its environmental pollution necessitate the study of alternate fuel production. Vegetable oils are the viable alternate form of non-polluted, renewable fuel to diesel engines. In this work, the non-edible oil, neem (Azadirachta indica) was used to produce biodiesel by a two step transesterification process. The fuel properties of the biodiesel thus produced were determined by standard methods. It is further tested in a single cylinder diesel engine by mixing with petroleum diesel in various percentages. The brake thermal efficiency (BTE) and specific fuel consumption (SFC) of the engine running with biodiesel blends (10-50%) were compared with the petroleum diesel. The results have shown that the performance of the diesel engine was similar as that of normal diesel and thus the use of biodiesel in diesel engine is viable.

M. Mathiyazhagan; T. Elango; T. Senthilkumar; A. Ganapathi

2013-01-01T23:59:59.000Z

304

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

305

An Integrated Platform for Engine Performance Simulations and Optimization under Diesel Conditions  

Broader source: Energy.gov [DOE]

The direct injection stochastic reactor model is capable of accurate simulation of combustion under diesel conditions and can also be used to simulate and test different fuels.

306

An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions  

Science Journals Connector (OSTI)

Abstract Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO2 emission increase and \\{NOx\\} emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO2 emission and the decrease of \\{NOx\\} emission.

Jerzy Kowalski

2014-01-01T23:59:59.000Z

307

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Journals Connector (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

308

Effect of EGR contamination of diesel engine oil on wear.  

SciTech Connect (OSTI)

Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

2007-09-01T23:59:59.000Z

309

Effect of biodiesel fuels on diesel engine emissions  

Science Journals Connector (OSTI)

The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.

Magín Lapuerta; Octavio Armas; José Rodríguez-Fernández

2008-01-01T23:59:59.000Z

310

Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract The purpose of this research work is to optimize the combustion bowl geometry of a single cylinder stationary diesel engine for the effective operation of KME (kapok methyl ester) – diesel blends. Considering that the reported design modification would render the benefit of adaptation of higher blends of KME, in this study, two different combustion chamber geometries such as TRCC (trapezoidal combustion chamber) and TCC (toroidal combustion chamber) were chosen in addition to the convention design of HCC (hemispherical combustion chamber). In the experimental investigation, suitable blends such as B25 (25% KME + 75% diesel), B50 (50% KME + 50% diesel), B75 (75% KME + 25% diesel) and B100 (100% KME) were tested in a diesel engine with various combustion chamber geometries as mentioned above. Based on the results obtained from this study, TCC was shown to exhibit better performance and emission than TRCC and HCC for all test blends. Further, when compared to diesel, B25 and B50 were found to be the optimum blends with HCC and TCC, respectively, while TRCC seldom evinced better engine characteristics for any of the blends. Categorically, B50 showed a 5.2% increase in BTE (brake thermal efficiency) than diesel with TCC, whereas emissions such as CO (carbon monoxide) and smoke were reduced by 15.7% and 7.8%, respectively, with a comparable NOX (nitrogen oxides) emission with diesel. Similarly, combustion for B50 with TCC was found to be better than diesel, manifesting an increase in maximum heat release rate that that of diesel. Conclusively, from the experimental study, TCC was recognized as an ideal choice of combustion chamber design for the operation of blends up to B50 in a diesel engine.

S. Vedharaj; R. Vallinayagam; W.M. Yang; C.G. Saravanan; P.S. Lee

2015-01-01T23:59:59.000Z

311

Injection System and Engine Strategies for Advanced Emission...  

Broader source: Energy.gov (indexed) [DOE]

Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006,...

312

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

SciTech Connect (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

313

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a  

E-Print Network [OSTI]

Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel

Paris-Sud XI, Université de

314

Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam-and Crankshaft  

E-Print Network [OSTI]

replaces the crankshaft of the traditional diesel engine with a power tur- bine to convert energy from, combining a diesel process with a freely moving piston in the cylinder and a power turbine. Engines MW (net power) test cylinder built by Kv rner ASA. In contrast to the original free-piston diesel

Johansen, Tor Arne

315

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

SciTech Connect (OSTI)

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

316

Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Variable Spray Angle Variable Spray Pattern * Variable Injection Pressure (VIP) Liquid penetration of non-evaporating sprays vapor penetration of evaporating sprays: 14 P...

317

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

318

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

319

A photographic study of the combustion of low cetane fuels in a Diesel engine aided with spark assist  

SciTech Connect (OSTI)

An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions. Results indicate that controlled combustion of extended fuel blends in a Diesel engine may be possible without inlet air preconditioning and that engine knock may be avoided when heat release is optimized with proper spark and injection timing.

Abata, D.L.; Fritz, S.G.; Stroia, B.J.

1986-01-01T23:59:59.000Z

320

Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines  

Science Journals Connector (OSTI)

Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O32SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 ?m thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

S B Patond; S A Chaple; P N Shrirao; P I Shaikh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

322

The comparative analysis of diesel engine combustion and emission parameters fuelled with palm oil methyl esters and its diesel blends  

Science Journals Connector (OSTI)

In this work, the combustion and emission characteristics of a direct injection compression ignition engine fuelled with diesel-Palm Oil Methyl Ester (POME) blends are investigated. This study shows that the ignition delay decreases with increase in the POME addition. The maximum rate of pressure rise and maximum rate of heat release decreases with increase in POME addition at all loads. As the percentage of POME in the blend increases, the crank angle at which the maximum rate of heat release takes place advances. The brake thermal efficiency decreases with increase in POME addition. The unburned hydrocarbon, carbon monoxide and soot intensity decreases, while nitrogen oxides (NOx) increase with increase in POME addition. [Received: April 4, 2008; Accepted: November 24, 2008

G. Lakshmi Narayana Rao; S. Saravanan; P. Selva Ilavarasi

2009-01-01T23:59:59.000Z

323

Steam bottoming cycle for an adiabatic diesel engine  

SciTech Connect (OSTI)

A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

1984-03-01T23:59:59.000Z

324

Application of Artificial Intelligence Methods for the Diagnosis of Marine Diesel Engines  

Science Journals Connector (OSTI)

The paper presents a diagnostic system for marine diesel engine based on an expert system model. The ... identified. The basic knowledge related to the diesel diagnostic was undertaken from experts and diagnostic...

Adam Charchalis; Rafa? Pawletko

2011-01-01T23:59:59.000Z

325

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine ... Mechanical Engineering, Batman University, Batman 72100, Turkey ... Diesel engines are widely used for transportation, energy production, and agricultural and industrial applications because of their high fuel conversion efficiencies and durability. ...

S?ehmus Altun; Cengiz O?ner; Fevzi Yas?ar; Hamit Adin

2011-06-22T23:59:59.000Z

326

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels  

Science Journals Connector (OSTI)

Oxygen Reactivity of Devolatilized Diesel Engine Particulates from Conventional and Biodiesel Fuels ... Abatement of diesel particulates has led to an overall decrease in the fuel efficiency of diesel engines, and overcoming these losses has been one of the more challenging problems in exhaust aftertreatment. ... (16-18) Establishing a general physical basis for modeling diesel particulate oxidation is especially challenging because of the large variations in microscopic structure that it can have. ...

Andrea Strzelec; Todd J. Toops; C. Stuart Daw

2013-06-10T23:59:59.000Z

327

Prediction of the Effects of Ethanol-Diesel Fuel Blends on Diesel Engine Performance Characteristics, Combustion, Exhaust Emissions, and Cost  

Science Journals Connector (OSTI)

Bilgin et al.’s and ?ahin’s experimental studies which have been used in comparisons with numerical results of the present model have been performed in a single cylinder diesel engine at Karadeniz Technical University, Engineering Faculty Mechanical Engineering Department Internal Combustion Engines Laboratory. ... Durgun, O. A practical method for calculation engine cycles Union of Chambers of Turkish Engineers and Architects, Chamber of Mech. ... Dieselhols (blends of diesels, biodiesels, and alcohols) have received considerable attention because of their low emission of CO2. ...

Z. ?ahin; O. Durgun

2009-02-10T23:59:59.000Z

328

Instantaneous crankshaft torsional deformation during turbocharged diesel engine operation  

Science Journals Connector (OSTI)

An experimentally validated diesel engine code is used to study the crankshaft torsional deformations originating in the difference between instantaneous engine and load torques. The analysis aims in studying the phenomena under critical conditions, namely operation when one cylinder malfunctions ('open valves' or motoring situation) as well as during transient conditions. A detailed crankshaft torsional model is formulated; this takes into account cylinder gas, inertia, friction, load and stiffness and damping torques. Details are provided concerning the underlying mechanism of the crankshaft torsional deformations, which can assume significant values depending on the specific configuration, being important for safe engine operation.

E.G. Giakoumis; I.A. Dodoulas; C.D. Rakopoulos

2010-01-01T23:59:59.000Z

329

Dual Fuel Diesel Engine Operation Using H2. Effect on Particulate Emissions  

Science Journals Connector (OSTI)

Dual Fuel Diesel Engine Operation Using H2. ... School of Engineering, Mechanical and Manufacturing Engineering, The University of Birmingham, Birmingham B15 2TT, United Kingdom, Universidad de Castilla?La Mancha, Edificio Politecnico, Escuela Tecnica Superior de Ingenieros Industriales, Avda. ... In diesel engines, the reduction of particulate emissions must be achieved in conjunction with the reduction of NOx emissions. ...

A. Tsolakis; J. J. Hernandez; A. Megaritis; M. Crampton

2005-01-11T23:59:59.000Z

330

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network [OSTI]

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111 Church St, S.E., Minneapolis, MN 55455 3 Department of Mechanical Engineering and Engineering Mechanics

Minnesota, University of

331

Performance Evaluation of Fuel Blends Containing Croton Oil, Butanol, and Diesel in a Compression Ignition Engine  

Science Journals Connector (OSTI)

† Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa ... (2) The use of vegetable oils in diesel engines is as old as the diesel engine itself. ... The results indicate a general increase in NOx emissions as the load increases at a steady engine speed. ...

Frank Lujaji; Akos Bereczky; Makame Mbarawa

2010-07-15T23:59:59.000Z

332

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

SciTech Connect (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

333

Magnetic quantum diesel engine in Ni2  

Science Journals Connector (OSTI)

Quantum Diesel cycles are numerically realized using the electronic states of a Ni2 dimer. The quantum nature and the complexity of the electronic structure of the Ni2 dimer result in new features in the evolution of the pressure as well as in the heat-work transformation. The multitude of internal degrees of freedom in the isobaric process in molecules can result in crossing of the two adiabatic processes in the P-V diagram. The interplay of heat and work, originating from thermal nonequilibrium effects, can lead to a thermal efficiency of up to 100%. The spin moment of the Ni2 can be decreased by the isobaric process. To link the molecular heat capacity to easily accessible experimental quantities, we also calculate the Kerr effect and the magnetic susceptibility at different temperatures and magnetic fields.

C. D. Dong; G. Lefkidis; W. Hübner

2013-12-20T23:59:59.000Z

334

Performance and emission evaluation of biodiesel fueled diesel engine abetted with exhaust gas recirculation and Ni coated catalytic converter  

Science Journals Connector (OSTI)

This article summarizes the results of a laboratory exertion to evaluate the performance and emission parameters of a single cylinder water cooled direct injection diesel engine with and without the aid of exhaust gas recirculation (EGR) as well as with and without the assistance of nickel coated catalytic converter. Neat diesel ethyl esters of waste frying oil (B100) and its diesel blends (B20 and B40) were used as test fuels to assess the various engine operating parameters. Conjointly in this work the effects of emission characteristics by incorporating nickel coated catalytic converter along with 0% 15% and 20% of HOT EGR technique are elaborately discussed. Experimental results proved that the diesel engine operated up to B40 blends assisted by catalytic converter and 15% EGR level showed an adequate reduction in oxides of nitrogen in the exhaust pipe. Also EGR level up to 15% proved reasonable brake thermal efficiency and specific fuel consumption when the test engine operated up to B40 biodiesel-diesel blends.

D. Subramaniam; A. Murugesan; A. Avinash

2013-01-01T23:59:59.000Z

335

Study of deposit formation inside diesel injectors nozzles  

E-Print Network [OSTI]

Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

Wang, YinChun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

336

Study of combustion noise mechanism under accelerating operation of a naturally aspirated diesel engine  

Science Journals Connector (OSTI)

This paper studies combustion noise mechanism during transient operation of naturally aspirated-DI-Diesel engines by developing testing techniques and methods. By testing and analysing four load conditions, the mechanism that governs the differences between transient and steady-state combustion noise is studied. The analysis demonstrates that during transients, the combustion chamber wall temperature, fuel injection pressure, maximum needle lift and unseal standing time of needle lift are higher than those under steady-state conditions for the same speed and load; a fact causing differences in ignition delay, start point of combustion and fuel injection quantity during transient conditions with a low acceleration rate. It is shown that the differences between the combustion chamber wall temperature, fuel injection pressure and ignition delay, as well as high-frequency oscillation of combustion pressure develop during transients in a different pattern compared to the respective steady-state conditions, thus resulting in different combustion noise emissions.

Gequn Shu; Haiqiao Wei

2007-01-01T23:59:59.000Z

337

Characterization of Particulate Matter Emissions from a Common-Rail Diesel Engine  

Science Journals Connector (OSTI)

Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy ... The preferred approach to control the emissions of diesel engines is the adoption of an exhaust gas recirculation (EGR) system followed by a diesel oxidation catalyst (DOC) in front of a diesel particulate filter (DPF). ... Some fundamental information on the particulate matter (PM) characteristics emitted by an automotive diesel engine was gathered in order to provide a precious tool for the knowledge-based design of a new generation of diesel particulate traps in the EURO VI regulation perspective. ...

D. Fino; N. Russo

2011-02-02T23:59:59.000Z

338

Application of Taguchi's orthogonal array in reducing the NOx emission of a stationary diesel engine  

Science Journals Connector (OSTI)

The main objective of this investigation is to reduce the NOx emission of a stationary diesel engine with less sacrifice on smoke intensity and brake thermal efficiency (BTE). Fuel injection timing, percentage of EGR and fuel injection pressure are chosen as factors influencing the objective. Three levels were chosen in each factor and design of experiments method was employed to design the experiments. Taguchi's L9 orthogonal array was used to conduct the engine tests with different levels of the chosen factors. Test results were analysed by analysis of variance (ANOVA) method and ANOVA table was formed for each response variable. From the ANOVA table the most influencing factor and also the significance of each factor affecting the NOx emission, smoke intensity and BTE was found out. Response graph was drawn for each response variable to determine the optimum combination of the factor levels. This optimum combination was confirmed experimentally. [Received: November 14, 2010; Accepted: March 17, 2011

S. Saravanan; G. Nagarajan; R. Ramanujam; S. Sampath

2011-01-01T23:59:59.000Z

339

Reduction of idle knock by EGR in a passenger car diesel engine  

SciTech Connect (OSTI)

In order to reduce the diesel idle knock, the effects of EGR on the idling characteristics were investigated on a passenger car equipped with an EGR Idle Knock Reduction System developed for practical use. It was found that EGR was effective not only for reducing idle knock but also for decreasing fuel consumption, smoke density, exhaust emissions and engine vibration. Moreover, the practical range and possibility of the EGR Idle Knock Reduction System were found by clarifying the relationship between EGR, injection timing, cooling water temperature, noise level and fuel consumption.

Fukutani, I.; Watanabe, E.

1984-01-01T23:59:59.000Z

340

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic Field Measurements of Submicron Particles from Diesel Engines  

Science Journals Connector (OSTI)

In general, the attachment coefficient scales with the Fuchs-surface (12), which is derived from the attachment coefficient for neutral atoms or molecules. ... Some of the legal emission tests on combustion engine emissions are performed in transient operating conditions, e.g., drive cycles on roller dynamometers. ... Figure 9 illustrates the PAS signal in comparison with the number concentration of 100 nm soot particles of a TDI diesel passenger car in an ECE?EUDC driving cycle on a roller dynamometer. ...

U. Matter; H. C. Siegmann; H. Burtscher

1999-04-24T23:59:59.000Z

342

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

343

Neural Modeling and Control of Diesel Engine with Pollution Constraints  

E-Print Network [OSTI]

The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

2009-01-01T23:59:59.000Z

344

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

345

Response surface methodology based prediction of engine performance and exhaust emissions of a diesel engine fuelled with canola oil methyl ester  

Science Journals Connector (OSTI)

The objective of this study was to investigate the effect of fuel injection timing and engine speed on engine performance and exhaust emission parameters using a diesel engine running on canola oil methyl ester (COME). COME was produced by means of the transesterification method and tested at full load with various engine speeds by changing fuel injection timing (12 15 and 18?°CA) in a turbocharged direct injection (TDI) diesel engine. The experiments were designed using response surface methodology (RSM) which is one of the well-known design of experiment technique for predicting the responses engine performance and exhaust emission parameters from a second order polynomial equation obtained by modeling the relation between fuel injection timing (t) and engine speed (n) parameters. By using the second order full quadratic RSM models obtained from experimental results responses brake power brake torque brake mean effective pressure brake specific fuel consumption brake thermal efficiency exhaust gas temperature oxygen (O2) oxides of nitrogen (NOx) carbon dioxide (CO2) carbon monoxide (CO) and light absorption coefficient (K) affected from factors t and n were able to be predicted by 95% confidence interval.

2013-01-01T23:59:59.000Z

346

Effect of hydrogen addition on criteria and greenhouse gas emissions for a marine diesel engine  

Science Journals Connector (OSTI)

Abstract Hydrogen remains an attractive alternative fuel to petroleum and a number of investigators claim that adding hydrogen to the air intake manifold of a diesel engine will reduce criteria emissions and diesel fuel consumption. Such claims are appealing when trying to simultaneously reduce petroleum consumption, greenhouse gases and criteria pollutants. The goal of this research was to measure the change in criteria emissions (CO, NOx, and PM2.5) and greenhouse gases such as carbon dioxide (CO2), using standard test methods for a wide range of hydrogen addition rates. A two-stroke Detroit Diesel Corporation 12V-71TI marine diesel engine was mounted on an engine dynamometer and tested at three out of the four loads specified in the ISO 8178-4 E3 emission test cycle and at idle. The engine operated on CARB ultra-low sulfur #2 diesel with hydrogen added at flow rates of 0, 22 and 220 SLPM. As compared with the base case without hydrogen, measurements showed that hydrogen injection at 22 and 220 SLPM had negligible influence on the overall carbon dioxide specific emission, EF CO 2 . However, in examining data at each load the data revealed that at idle EF CO 2 was reduced by 21% at 22 SLPM (6.9% of the added fuel energy was from hydrogen) and 37.3% at 220 SLPM (103.1% of the added fuel energy was from hydrogen). At all other loads, the influence of added hydrogen was insignificant. Specific emissions for nitrogen oxides, EF NO x , and fine particulate matters, EF PM 2.5 , showed a trade-off relationship at idle. At idle, EF NO x was reduced by 28% and 41% with increasing hydrogen flow rates, whilst EF PM 2.5 increased by 41% and 86% respectively. For other engine loads, EF NO x and EF PM 2.5 did not change significantly with varying hydrogen flow rates. One of the main reasons for the greater impact of hydrogen at idle is that the contribution of hydrogen to the total fuel energy is much higher at idle as compared to the other loads. The final examination in this paper was the system energy balance when hydrogen is produced by an on-board electrolysis unit. An analysis at 75% engine load showed that hydrogen production increased the overall equivalent fuel consumption by 2.6% at 22 SLPM and 17.7% at 220 SLPM.

Hansheng Pan; Sam Pournazeri; Marko Princevac; J. Wayne Miller; Shankar Mahalingam; M. Yusuf Khan; Varalakshmi Jayaram; William A. Welch

2014-01-01T23:59:59.000Z

347

Model Based Torque Control and Estimation for Common Rail Diesel Engine  

Science Journals Connector (OSTI)

A rapid control prototyping based on torque control algorithm using V-cycle mode for common rail diesel engine was developed, and a torque prediction model was present which including a feed-forward mean value engine model and a feedback correction of ... Keywords: common rail diesel engine, control strategies, torque control, torque estimation

Wang Hongrong; Wang Yongfu; Liu Zhi

2010-11-01T23:59:59.000Z

348

Independent components in acoustic emission energy signals from large diesel engines  

E-Print Network [OSTI]

Independent components in acoustic emission energy signals from large diesel engines Niels Henrik-Sørensen et al. [5], to acoustic emission (AE) energy signals obtained from a large diesel engine acquired from the two stroke MAN B&W test bed engine in Copenhagen. The signals were sampled at 20 KHz

349

Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines  

E-Print Network [OSTI]

Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines Philippe Komma phase complexity while retaining good generalization performance. I. INTRODUCTION In automotive engines T¨ubingen, Germany {philippe.komma, andreas.zell}@uni-tuebingen.de system for a diesel engine

Zell, Andreas

350

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

351

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

352

Reaction of Exhaust Gas in the Exhaust Gas Tube of Marine Diesel Engines  

E-Print Network [OSTI]

Reaction of Exhaust Gas in the Exhaust Gas Tube of Marine Diesel Engines }S"G"WjAS"O·u·� "¡"c ·_Zk

Ishii, Hitoshi

353

Characterization of four potential laser-induced fluorescence tracers for diesel engine applications  

Science Journals Connector (OSTI)

Four potential laser-induced fluorescence (LIF) tracers, 1-phenyloctane, 1-phenyldecane, 1-methylnaphthalene, and 2-methylnaphthalene, are characterized for diesel engine applications....

Trost, Johannes; Zigan, Lars; Leipertz, Alfred; Sahoo, Dipankar; Miles, Paul C

2013-01-01T23:59:59.000Z

354

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engine Overview Timeline Start: 1012010 End: 9312014 Complete: 60% Barriers GHG Requirements of 28 MPG CAFE in ton pickup truck Low emission - Tier2 Bin2 Cost...

355

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engine Overview Timeline Start: 1012010 End: 9312014 Complete: 80% Barriers GHG Requirements of 28 MPG CAFE in ton pickup truck Low emission - Tier2 Bin2 Cost...

356

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engine Overview Timeline Start: 1012010 End: 9312014 Complete: 30% Barriers GHG Requirements of 28 MPG CAFE in ton pickup truck Low emission - Tier2 Bin2 Cost...

357

Identification and Digital Control of a Turbo-charged Marine Diesel Engine  

Science Journals Connector (OSTI)

This paper describes the identification of the dynamic response of a turbocharged marine diesel engine using parameter estimation techniques. The implementation of...

J. D. Forrest

1989-01-01T23:59:59.000Z

358

Failure Analysis of Cap Screws in a Diesel Engine Front Gear Train  

Science Journals Connector (OSTI)

Two failures of the front gear train cap screws of a diesel engine in a marine vessel are investigated. Fractured cap screws were...

E. W. Jones; R. S. Florea; D. K. Francis

2013-08-01T23:59:59.000Z

359

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

360

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Estimating diesel engine performance by indirect methods  

E-Print Network [OSTI]

was under taken with an instrumented John Deere 4440 tractor to investigate the feasibility of using indirect methods to measure engine power output and fuel consumption. Two indirectly related variables studied were exhaust gas temperature and injector... and assistance in the performance of research tasks. Steve Bandy and Costas Kotzabassis are also thanked for their contributions. The financial support of Deere 5 Company, the Center for Energy and Mineral Resources and the Texas Agricultural Experiment...

McKiernan, Michael

2012-06-07T23:59:59.000Z

362

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

363

The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts  

Science Journals Connector (OSTI)

Abstract The exhaust gases contain large amounts of unburned hydrocarbons during cranking without combustion. The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts were investigated using both experiments and simulations. Experiments were conducted on a single-cylinder DI (direct injection) diesel engine equipped with a common rail injection system. The amount of unburned hydrocarbon recirculation was jointly controlled by an EGR (exhaust gas recirculation) valve and a back pressure valve. The investigation showed that optimal opening of recirculation control valves allowed the first firing cycle to be advanced from 19 to 6 and reduced the duration of heavy smoke emission (opacity > 50%) by 77%. However, the enhancement to the in-cylinder LTR (low temperature reaction) decreased gradually as the amount of unburned hydrocarbon recirculation increased. An analysis of the chemical kinetics showed that the reaction intermediates present in unburned hydrocarbons, such as ketohydroperoxides, were the most significant factor in enhancing the LTR during non-firing cycles. At the same time, the substantial heat capacity of unburned hydrocarbons suppressed the LTR for higher recirculation rates.

Yi Cui; Haiyong Peng; Kangyao Deng; Lei Shi

2014-01-01T23:59:59.000Z

364

Integrated Rankine bottoming cycle for diesel truck engines  

SciTech Connect (OSTI)

This study assessed the feasibility of incorporating a Rankine bottoming cycle into a diesel truck engine. An organic Rankine bottoming cycle (ORBC) previously demonstrated by the US Department of Energy in a heavy-duty, long-haul truck reduced the truck's fuel consumption by about 12%. However, that system was considered too complex and costly to be commercialized. The integrated Rankine bottoming cycle (IRBC) described here is expected to be simpler and less costly than the ORBC. In the IRBC, one cylinder of a six-cylinder diesel truck engine will be used for power recovery, instead of the turbine and reduction gears of the ORBC; engine coolant will serve as the working fluid; and the engine radiator will also serve as the condenser. Toluene and steam were considered as working fluids in this assessment, and we concluded that steam (at 1000 psi, partially vaporized to about 33% saturation in the cylinder head, and superheated in an evaporator) would be the more practical of the two. Both heat exchangers are smaller than those of the ORBC system, but may pose a challenge in an under-the-hood installation. Overall, the concept appears feasible. 13 refs., 9 figs., 7 tabs.

Sekar, R.; Cole, R.L.

1987-09-01T23:59:59.000Z

365

(1) Land and Marine Diesel Engines (2) Diesel Enginesfor Land and Marine Work  

Science Journals Connector (OSTI)

... titles given above, it might be supposed that these two recently published treatises on the Diesel ...

A. J. M.

1916-04-20T23:59:59.000Z

366

Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol  

SciTech Connect (OSTI)

Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated.

Murayama, T.; Ogawa, H.; Miyamoto, N.; Chikahisa, T.

1984-01-01T23:59:59.000Z

367

2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations...  

Energy Savers [EERE]

5: Diesel and CNG Bus Emissions Update on Diesel Exhaust Emission Control Timothy Johnson Corning, Inc. (PDF 1.53 MB) Summary of Swedish Experiences on CNG and "Clean" Diesel...

368

Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter  

Science Journals Connector (OSTI)

In addition to minimized engine-out emissions, exhaust gas after-treatment systems such as diesel particle filter and chemical reduction of NOx will be necessary to meet the U.S. Federal (EPA) 2007 emission standards for heavy-duty diesel engines. ... While for the diesel fuel a reduction of the number of particles in the accumulation mode went in line with a shift of the mode diameter toward smaller values (see Figures 2 and 3), this was not a general observation for the water?diesel emulsion fuel. ... JSME International Journal, Series B: Fluids and Thermal Engineering (2001), 44 (1), 166-170 CODEN: JIJEEE; ISSN:1340-8054. ...

Urs Mathis; Martin Mohr; Ralf Kaegi; Andrea Bertola; Konstantinos Boulouchos

2005-02-04T23:59:59.000Z

369

Experimental investigation of DI diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode  

Science Journals Connector (OSTI)

Abstract With the gradual depletion of petroleum and environmental degradation, intensive research activity has been addressed to the utilization of alternative fuels in internal combustion engines. In the present work, an experimental investigation is carried out to study the effect of eucalyptus biodiesel and natural gas under dual fuel combustion mode on the performance and the exhaust emissions of a single cylinder DI diesel engine. The natural gas (NG) is inducted with the intake air through the inlet manifold. The liquid pilot fuel (eucalyptus biodiesel or diesel fuel) is injected into the combustion chamber to cover approximately 10% of the maximum power output. Then, keeping constant the pilot fuel flow rate, the power output is further increased using only natural gas. The combustion characteristics (cylinder pressure, ignition delay and heat release rate), performance and exhaust emissions of the dual fuel mode (NG–diesel fuel and NG–biodiesel) are compared with those of conventional diesel engine mode at various load conditions. The combustion analysis has shown that biodiesel as pilot fuel exhibits similar pressure–time history, with highest peak, as diesel fuel in conventional and dual fuel modes. The performance and pollutant emission results show that, compared to diesel fuel in dual fuel mode, the use of eucalyptus biodiesel as pilot fuel reduces the high emission levels of unburned hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) particularly at high engine loads. However this is accompanied by an increase in the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions, which can be explained by the lower calorific value and the oxygen presence in the molecule of the eucalyptus biodiesel, respectively.

L. Tarabet; K. Loubar; M.S. Lounici; K. Khiari; T. Belmrabet; M. Tazerout

2014-01-01T23:59:59.000Z

370

Diesel exhaust emissions from engines for use in underground mines  

SciTech Connect (OSTI)

Experimental data were obtained from two medium-duty diesel engines derated to qualify for use in underground mines. Gaseous and particulate emissions from these engines were measured and results provide information on the effect of exhaust treatment devices on the emissions. The devices in the study were a catalyst, a particulate trap, and an exhaust gas cooler of the water scrubber type. Emission levels of carbon monoxide and hydrocarbons were observed to be very low in comparison with emission levels of comparable engines in full-rated operation. Oxides of nitrogen and benzo(a)pyrene content of the exhaust also were found to be somewhat low in comparison with previous findings. For particulate reduction, the combination of a particulate trap and a scrubber was observed to be the most effective combination tried; in some cases, over 60% particulate reduction was effected by the trap-scrubber combination.

Eccleston, B.H.; Seizinger, D.E.; Clingenpeel, J.M.

1981-04-01T23:59:59.000Z

371

Structural durability validation of bearing girders in marine Diesel engines  

Science Journals Connector (OSTI)

The aim is to present the state-of-the-art methodology for structural durability evaluation of marine Diesel engines bearing girders and to describe the responsibility of engine designers, manufacturers and system suppliers. A real example of several engines of the same type, where fatigue cracks arose in certain areas of their bearing girders, has been presented. The extensive investigation revealed the cause of the damage. The proper design was proved by properly implemented state-of-the-art design methods and by experimental verification of calculations in two ships. Quality and test specifications prescribed by the licensor have been found correct. It is concluded that the damage cause was the impermissible quality of worldwide manufacture and improper production repair welding during manufacture.

Vatroslav Grubiši?; Nenad Vuli?; Samuel Sönnichsen

2008-01-01T23:59:59.000Z

372

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels  

Science Journals Connector (OSTI)

Reaction Profiles during Exhaust-Assisted Reforming of Diesel Engine Fuels ... The reforming efficiency was dependent on the fuel type and followed the general trend of bioethanol > rapeseed methyl ester > low-sulfur diesel fuel. ... The use of exhaust gas recirculation (EGR) in diesel engines reduces nitrogen oxide (NOx) emissions but results in an increased release of smoke and particulate matter (PM), as well as higher fuel consumption. ...

A. Tsolakis; A. Megaritis; S. E. Golunski

2005-03-10T23:59:59.000Z

373

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

374

The Thermal Fatigue Life Prediction of Diesel Engine Heating Components by the Strain-Range Partitioning Method  

Science Journals Connector (OSTI)

In this paper, first the loading condition of thermal load of marine diesel engine is analyzed, and then the stress-strain ... carried on the thermal fatigue life prediction of diesel engine heating components by...

Senior Engineer Gu Zetong; Hu Gan…

1987-01-01T23:59:59.000Z

375

Application of artificial intelligence methods for the diagnosis of marine diesel engines  

Science Journals Connector (OSTI)

The paper presents a diagnostic system for marine diesel engine based on an expert system model. The research relevant to knowledge acquisition for this system was done, knowledge base was built and general structures of the expert system was proposed. ... Keywords: expert system, marine diesel engines, technical diagnostic

Adam Charchalis; Rafa? Pawletko

2011-09-01T23:59:59.000Z

376

The Research of the Intelligent Fault Diagnosis System Optimized by GA for Marine Diesel Engine  

Science Journals Connector (OSTI)

The marine diesel engine is a complex system, which has the important function to guarantee the marine security. There is strong coupling relationship among the mapping process of fault diagnosis. An approach of intelligent fault diagnosis based on fuzzy ... Keywords: Fuzzy neural network, Genetic algorithm, Fault diagnosis, Marine diesel engine

Peng Li; Qi Jin; Haixia Gong

2008-12-01T23:59:59.000Z

377

Nanoparticle Emissions from a Heavy-Duty Engine Running on Alternative Diesel Fuels  

Science Journals Connector (OSTI)

Nanoparticle Emissions from a Heavy-Duty Engine Running on Alternative Diesel Fuels ... Neat vegetable oils or animal fats are not suitable for high-speed diesel engines, and thus a transesterification process is required to produce fatty acid methyl esters (FAME). ... General trends in size distribution measurements are shown in Figure 1. ...

Juha Heikkilä; Annele Virtanen; Topi Rönkkö; Jorma Keskinen; Päivi Aakko-Saksa; Timo Murtonen

2009-11-16T23:59:59.000Z

378

6 - Engine brake performance in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter provides a comprehensive theory on engine brake performance. It first discusses vehicle braking requirement and the impact on engine–vehicle matching in engine brake operation, followed by a comparison between engine brakes and drivetrain retarders. It then introduces drivetrain retarders in detail including their torque and cooling characteristics. The performance characteristics of exhaust brakes and compression brakes are elaborated including their mechanisms and the interactions with valvetrain, variable valve actuation (VVA) and turbocharger. The principles of engine brake design are introduced through comprehensive simulation analysis on engine thermodynamic cycles in braking operation. A braking gas recirculation (BGR) theory is developed.

Qianfan Xin

2013-01-01T23:59:59.000Z

379

Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Broader source: Energy.gov [DOE]

Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

380

Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines  

Broader source: Energy.gov [DOE]

Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx.

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine  

Science Journals Connector (OSTI)

The influence of a ferrous picrate based homogeneous combustion catalyst on the combustion characteristics and fuel efficiency was studied using a fully instrumented diesel engine. A naturally aspirated four stroke, single cylinder, air cooled, direct injection diesel engine was tested at engine speeds of 2800 rpm, 3200 rpm and 3600 rpm under variable load conditions, with different dosing ratio of the catalyst in a commercial diesel fuel. The results indicated that the brake specific fuel consumption decreased and the brake thermal efficiency increased with the addition of the catalyst. At the catalyst dosing ratio of 1:10,000, the brake specific fuel consumption was reduced by 3.3–4.2% at light engine load of 0.12 MPa and 2.0–2.4% at heavy engine load of 0.4 MPa due to the application of the catalyst. From the in-cylinder pressure and heat release rate analysis, it was found that the catalyst reduced ignition delay and combustion duration of fuel in the engine, resulting in slightly higher peak cylinder pressure and faster heat release rate.

Mingming Zhu; Yu Ma; Dongke Zhang

2012-01-01T23:59:59.000Z

382

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

383

Intelligent fault diagnosis method for marine diesel engines using instantaneous angular speed  

Science Journals Connector (OSTI)

The normal operation of marine diesel engines ensures the scheduled completion and efficiency of ... . It is therefore crucial to monitor the engine conditions in a reliable and timely manner ... previous work on...

Zhixiong Li; Xinping Yan; Chengqing Yuan…

2012-08-01T23:59:59.000Z

384

Investigations of an air starting motor of marine medium-speed diesel engine with numerical analyses  

Science Journals Connector (OSTI)

The marine medium-speed diesel engines are started by two methods; one is ... though air starting motor is dependent of the engine types and sizes, it has been widely...

Yeon Won Lee; Yoon Hwan Choi; Deog Hee Doh

2010-04-01T23:59:59.000Z

385

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy...

386

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine  

Broader source: Energy.gov [DOE]

Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

387

Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels  

Science Journals Connector (OSTI)

In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

Dong Zhen; Tie Wang; Fengshou Gu; Belachew Tesfa; Andrew Ball

2013-01-01T23:59:59.000Z

388

Concentration measurements of biodiesel in engine oil and in diesel fuel  

Science Journals Connector (OSTI)

This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

A Mäder; M Eskiner; C Burger; W Ruck; M Rossner; J Krahl

2012-01-01T23:59:59.000Z

389

Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**  

E-Print Network [OSTI]

1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose techniques are applied to model and control a turbocharged Diesel engine. The objective is to build a model

Paris-Sud XI, Université de

390

Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional Moment Closure  

E-Print Network [OSTI]

1 Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional-volume vessel under diesel engine conditions under different ambient densities (14.8 and 30 kg/m3 ) and ambient that the conditional moment closure approach is a promising framework for soot modelling under Diesel engine conditions

Daraio, Chiara

391

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

392

Diesel engine lubrication with poor quality residual fuel  

SciTech Connect (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

393

Mixing Correlations for Smoke and Fuel Consumption of Direct Injection Engines  

Science Journals Connector (OSTI)

The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operatin...

P. A. Lakshminarayanan; Yogesh V. Aghav

2010-01-01T23:59:59.000Z

394

Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits  

Broader source: Energy.gov [DOE]

Drastic reduction of engine-out emissions and complicated aftertreatment system comprising of oxidation catalyst, particulate filter, and DeNOx catalyst are implemented to meet Tier 2 Bin 5 limits for U.S. market diesel engines.

395

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect (OSTI)

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

396

Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol  

Science Journals Connector (OSTI)

Some of the diesel fuel properties were obtained from fuel certification tests conducted by the Alberta Research Council and established by the American Society for Testing and Materials, and the remainder are reported general properties. ... Clucas, D. M.Development of a Stirling engine battery charger based on a low cost wobble mechanism, Ph.D. Thesis, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 1993. ... investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' lab., which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. ...

Nicolas Farra; Tommy Tzanetakis; Murray J. Thomson

2012-01-27T23:59:59.000Z

397

Low-Load Dual-Fuel Compression Ignition (CI) Engine Operation with an On-Board Reformer and a Diesel Oxidation Catalyst: Effects on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Ideally, homogeneous air fuel mixtures ignited spontaneously exhibit less pollutants and can improve engine efficiency compared to standard diesel combustion, which is based on diffusion combustion. ... Although optimization of the injection timing of the in-cylinder DI fuel (e.g., diesel) aims to ignite the mixture and control the start of combustion (SOC) for the different premixed fuel ratios, the fuel ignition timing is complicated and problematic for a dual-fueled engine under a number of engine-operating conditions (e.g., low loads and use of residual gas trapping). ... Deactivation due to coking of a single Ni/Pt-based catalyst is significant, but operation using a platinum-ceria catalyst in line with a Ni-based steam-reforming catalyst allows acceptable efficiencies. ...

A. Tsolakis; R. Torbati; A. Megaritis; A. Abu-Jrai

2009-10-07T23:59:59.000Z

398

Controlling the turbocharger whistling noise in diesel engines  

Science Journals Connector (OSTI)

Turbochargers are now commonly used in passenger cars especially in application with diesel engines because of their numerous advantages. The use of this machine greatly improves engine performance, while at the same time allowing pollutant emissions to be reduced. However, one of the important issues to take into account when a turbocharger is used in passenger cars is the whistling noise due to unbalanced forces that can be perceived by the driver, which causes discomfort. The manufacturer's efforts to reduce the whistling noise are centred on reducing the unbalanced forces by a correct balance of rotating parts. However, improving the balance means increasing the manufacturing cost as this process is very expensive. Selecting the maximum unbalance admissible is a key activity during the development of a new application. In this paper, a procedure to control the turbocharger whistling noise vs. unbalanced forces variation has been suggested in order to maintain the acoustic comfort of the vehicle.

J.A. Calvo; V. Diaz; J.L. San Roman

2006-01-01T23:59:59.000Z

399

Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine  

Science Journals Connector (OSTI)

This work aims at the particle number concentrations and size distributions, sulfate and trace metals emitted from a diesel engine fueled with three different sulfur content fuels, operating with and without DOC. ... Figure 2. Sulfate emission rate and fuel consumption as a function of sulfur content at engine speed of 2690 rpm. ... Thus, the use of low metal fuels and lubricating oil is as important to the environment and human health as low sulfur fuels, especially for engines with after-treatment devices. ...

Hong Zhao; Yunshan Ge; Xiaochen Wang; Jianwei Tan; Aijuan Wang; Kewei You

2010-01-05T23:59:59.000Z

400

EPA Diesel Update  

Broader source: Energy.gov (indexed) [DOE]

engines - Diesel vehicles have been available in Europe for many years - Diesel market penetration increased significantly coincidental with new diesel technologies * Industry...

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Argonne Transportation - Diesel Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Team Receives DOE Award for Groundbreaking Diesel Fuel Spray Research Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti Recent DOE Award winners, (L-R) Jin Wang, Chris Powell, Yong Yue, and Steve Ciatti, stand in front of their fuel spray injection chamber. Using the synchrotron beam at the APS, the team is able to probe the fuel spray and study the process of combustion. A team of Argonne scientists (Jin Wang, Steve Ciatti, Chris Powell, and Yong Yue) recently won the 2002 National Laboratory Combustion and Emissions Control R&D Award for groundbreaking work in diesel fuel sprays. For the first time ever, the team used x-rays to penetrate through gasoline and diesel sprays and made detailed measurements of fuel injection systems for diesel engines. This technology uncovered a previously unknown

402

11 - Noise, vibration, and harshness (NVH) in diesel engine system design  

Science Journals Connector (OSTI)

Abstract: This chapter addresses NVH characteristics in diesel engine system design. By focusing on engine noise – a critical performance attribute for engine competitiveness, this chapter provides a comprehensive coverage of the NVH issues that a system engineer can evaluate by using engine system design/analysis tools. The chapter starts by introducing the fundamental principles of powertrain and diesel engine NVH, and establishes a three-level system modeling approach to engine noise. It summarizes the noise characteristics and noise-reduction design measures for both the overall engine and individual subsystems such as the noises from combustion, piston slap, valvetrain, geartrain, cranktrain, auxiliary, and aerodynamic sources.

Qianfan Xin

2013-01-01T23:59:59.000Z

403

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

404

Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine  

Science Journals Connector (OSTI)

The ability of an artificial neural network model, using a back propagation learning algorithm, to predict specific fuel consumption and exhaust temperature of a Diesel engine for various injection timings is studied. The proposed new model is compared with experimental results. The comparison showed that the consistence between experimental and the network results are achieved by a mean absolute relative error less than 2%. It is considered that a well-trained neural network model provides fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

Adnan Parlak; Yasar Islamoglu; Halit Yasar; Aysun Egrisogut

2006-01-01T23:59:59.000Z

405

A simultaneous parametric analysis of the in-cylinder processes for diesel engines  

Science Journals Connector (OSTI)

This paper describes the basic methodological principles and the results of development and practical application of simultaneous complex parametric analysis of the in-cylinder processes and thermal load on Cylinder Piston Units (CPU) in diesel engines. The application of this method to research and conceptualise engine design allows us to choose an optimal combination of the CPU parameters and diesel engine control. As a result, an admissible level of thermal stress in the CPU and low fuel consumption are achieved. The method was practically used for upgrading high-speed diesel engines of the trademarks CHN 16.5/18.5, BMD and D20.

S. Lebedevas; G. Lebedeva; A. Pikunas; B. Spruogis

2011-01-01T23:59:59.000Z

406

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

407

A comparative evaluation of Al 2 O 3 coated low heat rejection diesel engine performance and emission characteristics using fuel as rice bran and pongamia methyl ester  

Science Journals Connector (OSTI)

In this study for the first time a nanoceramic Al 2 O 3 was used as a coatingmaterial in the low heat rejection engine concept. Experiments were conducted on single cylinder four stroke water cooled and direct injection diesel engine. First the engine was tested at different load conditions without coating. Then combustion chamber surfaces (cylinder head cylinder liner valves and piston crown face) were coated with nanoceramic material of Al 2 O 3 using plasma spray method. Comparative evaluation on performance and emission characteristics using fuel as rice bran methyl ester pongamia methyl ester and biodiesel/diesel fuel mixtures was studied in the ceramiccoated and uncoated engines under the same running conditions. An increase in engine power and a decrease in specific fuel consumption as well as significant improvements in exhaust gas emissions (except NOx) and smoke density were observed in the ceramiccoated engines compared with those of the uncoated engine.

M. Mohamed Musthafa; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

408

Experimental investigations on diesel engine fuelled with methyl esters of cotton seed oil  

Science Journals Connector (OSTI)

In this investigation, cotton seed methyl ester (CSME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst. The engine performance was analysed with different blends of biodiesel and was compared with neat diesel. It was concluded that the lower blends of biodiesel are closer to diesel as far as thermal efficiency is concerned. In the lower blends, the brakes specific fuel consumption is also comparatively reduced. The smoke density also increases for the blends of methyl ester of cotton seed oil diesel compared to neat diesel operation. The oxides of nitrogen (NOx) emission level are decreased with the blends of methyl ester of cotton seed oil compared to neat diesel. The results proved that the use of biodiesel (produced from cotton seed oil) in compression ignition engine is a viable alternative to diesel.

M. Saravanan; A. Anbarasu; M. Loganathan

2013-01-01T23:59:59.000Z

409

Evaluation of Fuel Properties of Butanol?Biodiesel?Diesel Blends and Their Impact on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Values of specific fuel consumption of engine when fueled with different blends and pure diesel at different speeds are shown in Figure 4. ... Chandra, R.; Kumar, R. Fuel properties of some stable alcohol?diesel microemulsions for their use in compression ignition engines Energy Fuels 2007, 21, 3410– 3414 ... Liu, B.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K. Combustion and emissions of a DI diesel engine fuelled with diesel?oxygenate blends Fuel 2008, 87, 2691– 2697 ...

Rakhi N. Mehta; Mousumi Chakraborty; Pinakeswar Mahanta; Parimal A. Parikh

2010-07-15T23:59:59.000Z

410

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

411

Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine  

Science Journals Connector (OSTI)

An improved multi-dimensional model coupled with detailed chemical kinetics mechanism was applied to investigate the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. The fuel was supplied separately by directly injecting diesel fuel into cylinder well before top dead center, while premixing methanol through the intake port in the tested methanol/diesel RCCI engine. The effects of mass fraction of premixed methanol, start of injection (SOI) of diesel and initial in-cylinder temperature at intake valve closing (IVC) on engine combustion and emission were investigated in detail. The results show that both methanol mass fraction and SOI have a significant impact on cetane number (CN) distribution, i.e. fuel reactivity distribution, which determines the ignition delay and peak of heat release rate (HRR). Due to larger area with high-temperature region and more homogeneous fuel distribution with increased methanol, and the oxygen atom contained by methanol molecule, all the emissions are reduced with moderate methanol addition. Advanced SOI with high combustion temperature is favorable to hydrocarbon (HC) and soot reduction, yet not to the decrease of nitrogen oxide (NOx) and carbon monoxide (CO) emissions. Both increasing methanol fraction and advancing the SOI are beneficial to improve fuel economy and avoid engine knock. Moreover, it was revealed that the initial temperature must be increased with increased methanol fraction to keep the 50% burn point (CA50) constant, which results in decrease of the equivalent indicated specific fuel consumption (EISFC) and all emissions, except for slight increase in \\{NOx\\} due to the higher burning temperature.

Yaopeng Li; Ming Jia; Yaodong Liu; Maozhao Xie

2013-01-01T23:59:59.000Z

412

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

413

Diesel engine crankshaft journal bearings failures: Case study  

Science Journals Connector (OSTI)

Abstract Wear as a tribological process has major influence on the reliability and life of engine crankshaft bearings. The importance of field examinations of bearing failures due to wear is very well known. They point to the possible causes of wear and to the necessary treatment for its reduction or elimination. The paper presents the results obtained by examining 616 crankshaft bearings, damaged by different mechanisms. The bearings were installed in high-speed diesel engines, and were gathered for two years, during general repairs of the engines (overhaul), i.e. after 3000–5000 working hours. After the examination of the bearings, the fault tree analysis (FTA) was performed to determine the root causes for engine bearing failures. Each type of damage that was identified was illustrated with an appropriate high-resolution photograph. The investigations show that the basic and most conspicuous types of damage which cause bearing failures are abrasive, adhesive and surface fatigue wear. The paper also considers the effects of the place of installation and type of bearing material in respect to each type of wear.

Aleksandar Vencl; Aleksandar Rac

2014-01-01T23:59:59.000Z

414

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

415

2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...  

Energy Savers [EERE]

Agency (PDF 791 KB) Light-Duty Diesels in the United States - Some Perspectives Tim V. Johnson Corning Inc. (PDF 889 KB) Business Case for Light-Duty Diesel in the United States...

416

Impact of Real Field Diesel Quality Variability on Engine Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Diesel (GTL, NexBTL...) Artic Fuel Jet Fuel Synthetic Kero Europe Premium Diesels Africa Far East US Low Cetane SME RME US LC Mercosur US LC+20%SME Mercosur+40%SME...

417

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends  

SciTech Connect (OSTI)

Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

2005-11-01T23:59:59.000Z

418

Failure analysis of a cracked diesel engine clutch spring plate  

Science Journals Connector (OSTI)

A diesel engine clutch spring plate used in a truck cracked when testing was being performed. The crack initiated from the middle of the thickness direction of the plate and propagated toward the front and the back of the plate. Fractographic studies indicate that brittle intergranular fracture was the dominant failure mechanism. Many parallel band structures were observed along the radial direction of the plate in the intergranular fracture region; a high density of secondary cracks and fine intergranular particles were found in this banded region. Metallurgical examinations indicated segregation of elongated MnS inclusions and the presence of granular vanadium carbides along the radial direction of the plate, at the location of the crack origin. Segregation of the elongated MnS inclusions leads to a reduction in toughness, and the combined segregation of inclusions and impurity elements at grain boundaries result in weakening of the boundaries. These conditions led to the intergranular brittle fracture of the clutch spring plate.

Zhiwei Yu; Xiaolei Xu

2008-01-01T23:59:59.000Z

419

Oxygen-Enriched Combustion for Military Diesel Engine Generators  

Broader source: Energy.gov [DOE]

Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion

420

Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine  

Science Journals Connector (OSTI)

Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine ... United States Environmental Protection Agency’s (USEPA) emission standards for heavy-duty diesel engines have gradually evolved toward stringent emissions control policy. ... All diesel engines manufactured to be used in the US are subject to the Federal Test Procedure (FTP), which mandates exercising the engine over the FTP engine dynamometer cycle. ...

Arvind Thiruvengadam; Marc C. Besch; Daniel K Carder; Adewale Oshinuga; Mridul Gautam

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Combustion behaviour of a heavy duty common rail marine Diesel engine fumigated with propane  

Science Journals Connector (OSTI)

This paper presents results from the testing of a heavy duty common rail marine Diesel engine with electronically controlled two stage liquid fuel injection, operating under load on a test bench with propane mixed into the inlet air at various rates. Results are presented for a range of engine loads, with brake mean effective pressure up to 22 bar at 1800 rpm. The electronic engine control unit is not modified and allowed to respond to the addition of propane according to its inbuilt map. This results in retarded injection timing with increased propane addition at some test points. At each test point, constant engine speed and brake torque are maintained for various rates of propane addition. Cylinder pressure and the injector activation voltage are recorded with a high speed data acquisition system. Apparent heat release rate is calculated from the measured cylinder pressure. At high rates of propane addition very high pressure rise rates and severe knock are measured. At the high brake mean effective pressure conditions tested, knock limits propane supply rates to less than 20% by energy. Small increases in thermal efficiency are indicated with moderate rates of propane addition. Exhaust emissions of NOx, CO, HC and smoke are measured. CO, HC and smoke emissions increase significantly with increasing propane addition. For high propane supply rates, two distinct peaks in heat release rate are measured. Analysis is made of the flammability of the propane–air mixtures at the elevated temperatures at the end of the compression stroke, using the modified Burgess–Wheeler Law. At propane supply rates greater than 25%, the propane–air mixture is flammable in its own right at compression temperature. The apparent heat release rate, fuel injection timing and flammability data allow analysis of the mechanism of the combustion process with propane fumigation.

L. Goldsworthy

2012-01-01T23:59:59.000Z

422

Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract A systematic study was conducted to evaluate and compare the effects of blending five different oxygenated compounds, diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA) and butanol (Bu) with ultralow sulfur diesel (ULSD), on engine performance, particulate mass concentrations, organic (OC) and elemental (EC) carbon fractions of the particles and particle size distributions from a single cylinder, direct injection stationary diesel engine with the engine working at a constant engine speed and at three engine loads. A small increase in the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) was observed with the use of oxygenates blended with ULSD. All five oxygenates were found to be effective at reducing particulate mass emissions at medium and high engine loads, with butanol being the most effective and DGM being the least effective. Analysis of the relative contribution of changes in the OC and EC emissions to the reduction of particulate matter indicated that under the same oxygen content, EC made a dominant contribution to the reduction of particulate mass. The results also indicated that reduction in both particle mass and number emissions was affected not only by the oxygen content, but also by the chemical structure and thermophysical properties of oxygenates as well as engine operating conditions.

Zhi-Hui Zhang; Rajasekhar Balasubramanian

2015-01-01T23:59:59.000Z

423

REVIEW OF TRANSAMERICA DELAVAL INC. DIESEL GENERATOR OWNERS' GROUP ENGINE REQUALIFICATION PROGRAM  

SciTech Connect (OSTI)

In December 1983, 13 nuclear utilities that own TDI diesel generators formally established an Owners• Group to address concerns regarding the reliability and operability of these engines. The Owners' Group program for engine requalification consisted of four major elements: 1) resolution of known problems with potentially generic implications, 2) a design review and quality revalidation (DR/QR) effort aimed at identifying and correcting potential problems with the important engine components, 3) expanded engine testing and inspection, and 4) enhanced engine maintenance and surveillance (M/S) to maintain the qualification of the diesel engines for the lifetime of the nuclear plants that they service. In providing technical support to NRC, the PNL project staff, assisted by a number of diesel engine consultants, focused on the four major elements of the Owners' Group engine requalification program, addressing both generic and plant-specific areas.

Berlinger, C. H.

1985-12-01T23:59:59.000Z

424

Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis Overview Volvo Group Powertrain Engineering is interested will need to be constructed that can motor the engine and measure power losses using a torque sensor built

Demirel, Melik C.

425

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

426

STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm  

E-Print Network [OSTI]

STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study ......................................................................................12 Stationary engines for decentralised CHP or industrial CHP

427

Development and validation of a semi-empirical model for the estimation of particulate matter in diesel engines  

Science Journals Connector (OSTI)

Abstract A semi-empirical correlation for the estimation of PM (particulate matter) emissions in diesel engines, as a function of significant engine operating variables, has been developed and validated on a GM (General Motors) Euro 5 diesel engine. The experimental data used in the present study have been acquired at the dynamic test bench of ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino), in the frame of a research activity with GMPT-E (General Motors PowerTrain-Europe) for the calibration of a Euro 5 prototype 2.0 liter diesel engine equipped with a twin-stage turbine and a piezo-driven Common Rail injection system. The experimental data were acquired for six key-points representative of the engine working conditions over a NEDC (New European Driving Cycle). The experimental tests have been carried out according to the Design of Experiment approach and for each point several variation lists of the main engine variables have been considered. As a first step, the main engine variables which are expected to be related to the formation and oxidation of PM have been identified. An exponential mathematical model has then been introduced and a detailed statistical analysis has been carried out for each key-point in order to identify the most robust combination of the input variables among all the possible ones. It was verified that PM emissions are correlated to a great extent to the value of the chemical heat release at the end of the injection of the main pulse. This quantity is in fact related to the mass of burned gases which is generated by the oxidation of the pilot pulses that precede the main injection. Such a mass can have a large impact on the local oxygen concentration and temperature of the charge in which the fuel of the main pulse is injected, with a consequent effect on PM formation. Additional quantities have also been considered in the investigation: the relative air-to-fuel ratio ?, the intake charge oxygen concentration, the accumulated fuel mass, the equivalence ratio of the spray at the main pulse start of combustion and some combustion metrics related to the heat release rate. At the end of the statistical analysis, the most influencing parameters have been selected and a semi-empirical model to predict the in-cylinder formed PM mass has been developed. The model has hence been tested under both steady-state and transient conditions.

Roberto Finesso; Daniela Misul; Ezio Spessa

2014-01-01T23:59:59.000Z

428

Fuzzy modelling and control of the air system of a diesel engine  

Science Journals Connector (OSTI)

This paper proposes a fuzzy modelling approach oriented to the design of a fuzzy controller for regulating the fresh airflow of a real diesel engine. This strategy has been suggested for enhancing the regulator design that could represent an alternative ...

S. Simani; M. Bonfè

2009-01-01T23:59:59.000Z

429

Development of the diesel engine series i-CTDi by Honda  

Science Journals Connector (OSTI)

Since the beginning of 2003, Honda is using its first own-developed diesel engine i-CTDi in the Accord. To respond to the strong market demand and the resolve of producing environmentally...

Kenichi Nagahiro; Tomoya Abe; Kenichi Okawara; Masakazu Yamazaki…

2005-07-01T23:59:59.000Z

430

Pilot study: PAH fingerprints of aircraft exhaust in comparison with diesel engine exhaust  

Science Journals Connector (OSTI)

...In the course of a preliminary investigation the PAH fingerprints from diesel engines were compared with those from aircraft ... do not vary significantly. However, in turbine exhaust gas p-quaterphenyl was fo...

J. Krahl; H. Seidel; H.-E. Jeberien…

1998-03-01T23:59:59.000Z

431

Engine-External HC-Dosing for Regeneration of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heavy Duty and NRMM According to Annex XXVII StVZO This presentation discusses how a diesel particulate filter can be integrated in the exhaust piping of a heavy-duty engine....

432

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

433

ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation ace061ruth2011o.pdf More Documents & Publications ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

434

Dynamic feedback linearization applied to asymptotic tracking: generalization about the turbocharged diesel engine outputs choice  

Science Journals Connector (OSTI)

In this paper we apply dynamic feedback linearization to the tracking problem for a turbocharged diesel engine (TDE) equipped with exhaust gas recirculation (EGR) valve and variable geometry turbocharger (VGT). The model used here is the third-order ...

Marcelin Dabo; Nicolas Langlois; Houcine Chafouk

2009-06-01T23:59:59.000Z

435

Bakerian Lecture. Some Problems in Connexion with the Development of a High Speed Diesel Engine  

Science Journals Connector (OSTI)

27 May 1948 research-article Bakerian Lecture. Some Problems in Connexion with the Development of a High Speed Diesel Engine H. R. Ricardo The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1948-01-01T23:59:59.000Z

436

Improving the wear resistance of the cylinder assembly in compact marine diesel engines  

Science Journals Connector (OSTI)

The performance of bushes in the 4Ch8.5/11 diesel engine is optimized on the basis of mathematical experiment design. Their wear resistance may be improved by finishing on the basis of special roller burnishin...

N. K. Sanaev

2014-05-01T23:59:59.000Z

437

Advanced Diesel Engine Component Development Program, final report - tasks 4-14  

SciTech Connect (OSTI)

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

Kaushal, T.S.; Weber, K.E.

1994-11-01T23:59:59.000Z

438

The torsional vibrations of marine Diesel engines under fault operation of its cylinders  

Science Journals Connector (OSTI)

The torsional vibrations calculation of Diesel engines is usually performed for different speeds of revolutions but for uniform operation and behaviour of each cylinder. This condition is true only for new of ...

Dr.-Ing. Ioannis E. Margaronis

1992-01-01T23:59:59.000Z

439

Research on Fault Diagnosis of Marine Diesel Engine Based on Integrated Similarity  

Science Journals Connector (OSTI)

In order to guarantee the normal operation of marine, an effective fault diagnosis model need to ... to determine the reason causing the fault of marine diesel engine. According to the problem of fault diagnosis ...

Yanyou Chai; Xiuyan Peng; Liufeng Xu; Jiuyu Shi

2011-01-01T23:59:59.000Z

440

Research on H2 speed governor for diesel engine of marine power station  

Science Journals Connector (OSTI)

The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the ... disturbances and imp...

Man-lei Huang

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Underwater Noise Radiation Due to Transmission through the Cooling Water System of a Marine Diesel Engine  

Science Journals Connector (OSTI)

Diesel engines fitted in modern surface ships are nowadays frequently subject to thorough treatment for the control of noise radiated underwater. That treatment increasingly extends beyond the primary measures...

M. Purshouse

1986-01-01T23:59:59.000Z

442

Exhaust gas recirculation trials with high-speed marine and rail diesel engines  

Science Journals Connector (OSTI)

On diesel engines in particular, series production in both passenger and commercial vehicle sectors has long incorporated systems which introduce cooled exhaust gas into the charge air in order to lower peak c...

Dirk Bergmann; Christian Philipp; Helmut Rall; Rolf Traub

2006-01-01T23:59:59.000Z

443

Estimation and Control of Diesel Engine Processes Utilizing Variable Intake Valve Actuation  

Broader source: Energy.gov [DOE]

Air handling system model for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators

444

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine  

Broader source: Energy.gov [DOE]

Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

445

Diesel Engine Advanced Multi-Mode Combustion Control and Generalized Nonlinear Transient Trajectory Shaping Control Methods.  

E-Print Network [OSTI]

?? This dissertation addresses the Diesel engine advanced combustion mode switching transient control and the generalized nonlinear non-equilibrium transient trajectory shaping (NETTS) control problem.Control-oriented models… (more)

Yan, Fengjun

2012-01-01T23:59:59.000Z

446

Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

447

Effect of Machining Procedures on the Strength of Ceramics for Advanced Diesel Engine Applications  

Broader source: Energy.gov [DOE]

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

448

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode Island August...

449

Supplemental Information : Secondary Organic Aerosol Production from Modern Diesel Engine Emissions, Shar Samy and1 Barbara Zielinska2  

E-Print Network [OSTI]

Supplemental Information : Secondary Organic Aerosol Production from Modern Diesel Engine Emissions emissions. For more detail on compositional and toxicity changes produced from further29 diesel engine use, including: engine age or total engine lifetime operation,23 differences in the initial in-chamber toluene

Meskhidze, Nicholas

450

Hardware-in-the-Loop Testing of Electronically-Controlled Common-Rail Systems for Marine Diesel Engine  

Science Journals Connector (OSTI)

Tougher legislation on exhaust emissions reduction, more power and mobility and less fuel consumption, has led to stronger call for the electronic engine control units for marine diesel engines. Electronically-controlled common-rail systems for marine ... Keywords: Marine Diesel Engine, Common Rail System, Engine Controller Unit, Hardware-in-the-loop Testing, Simulation Interface Toolkit

Jiadong Zhou; Guangyao Ouyang; Minghe Wang

2010-05-01T23:59:59.000Z

451

An oxygenating additive for improving the performance and emission characteristics of marine diesel engines  

Science Journals Connector (OSTI)

Diesel engines provide the major power sources for marine transportation and contribute to the prosperity of the worldwide economy. However, the emissions from diesel engines also seriously threaten the environment and are considered one of the major sources of air pollution. The pollutants emitted from marine vessels are confirmed to cause the ecological environmental problems such as the ozone layer destruction, enhancement of the greenhouse effect, and acid rain, etc. Marine diesel engine emissions such as particulate matter and black smoke carry carcinogen components that significantly impact the health of human beings. Investigations on reducing pollutants, in particular particulate matter and nitrogen oxides are critical to human health, welfare and continued prosperity. The addition of an oxygenating agent into fuel oil is one of the possible approaches for reducing this problem because of the obvious fuel oil constituent influences on engine emission characteristics. Ethylene glycol monoacetate was found to be a promising candidate primarily due to its low poison and oxygen-rich composition properties. In this experimental study ethylene glycol monoacetate was mixed with diesel fuel in various proportions to prepare oxygenated diesel fuel. A four-cylinder diesel engine was used to test the engine performance and emission characteristics. The influences of ethylene glycol monoacetate ration to diesel oil, inlet air temperature and humidity parameters on the engine’s speed and torque were considered. The experimental results show that an increase in the inlet air temperature caused an increase in brake specific fuel consumption (BSFC), carbon monoxide, carbon dioxide emission, and exhaust gas temperature, while decreasing the excess air, oxygen and nitrogen oxide emission concentrations. Increasing the inlet air humidity increased the carbon monoxide concentration while the decreased excess air, oxygen and nitrogen oxide emission concentrations. In addition, increasing ethylene glycol monoacetate ratio in the diesel fuel caused an increase in the BSFC while the excess air and oxygen emission concentrations decreased.

C.-Y. Lin; J.-C. Huang

2003-01-01T23:59:59.000Z

452

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network [OSTI]

timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct...

McLean, James Elliott

2011-10-21T23:59:59.000Z

453

2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...  

Energy Savers [EERE]

with a Combined SCR and DPF Technology for Heavy-Duty Diesel Retrofit Ray Conway Johnson Matthey Environmental Catalysts & Technologies (PDF 287 KB) A Soot Formation Model...

454

Quantitative feedback design of air and boost pressure control system for turbocharged diesel engines  

Science Journals Connector (OSTI)

For modern diesel engines, variable geometry turbocharger (VGT) is used to boost engine power output. In addition, exhaust gas recirculation (EGR) is utilized to reduce engine out \\{NOx\\} emission. To realize these functions, a multivariable control system needs to control both VGT and EGR valve to deliver desired intake manifold (or boost) pressure, and desired EGR flow rate. This two-input and two-output system is nonlinear with cross-couplings between the boost and EGR responses to the input actuators, the system parameters are varying with different engine operating conditions. This paper proposes a closed loop design of a multivariable VGT/EGR control system for a turbocharged diesel engine. The control system is synthesized based on quantitative feedback theory to maintain robust stability and performance via sequential MIMO loop shaping in the frequency domain. Experiment results are included from a turbocharged diesel engine to show the effectiveness of the proposed control design.

Yue-Yun Wang; Ibrahim Haskara; Oded Yaniv

2011-01-01T23:59:59.000Z

455

New Method for Time-Resolved Diesel Engine Exhaust Particle Mass Measurement  

Science Journals Connector (OSTI)

The calculated time response data cannot be taken as general characteristic values of the instruments, as they are influenced by the behavior of the engine. ... Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. ...

U. Lehmann; V. Niemelä; M. Mohr

2004-09-29T23:59:59.000Z

456

Vaporizer design criteria for ethanol fueled internal combustion engines  

E-Print Network [OSTI]

been identified in conversion of diesel engines of farm tractors for using alcohol fuels. Distillation at atmospheric pressure does not yield 200 proof ethanol, (Winston, 1981), so with present technology, ethanol produced on farms is aqueous. A... engines 2. Modify diesel to tolerate straight ethanol injection. 3. Mix ethanol with diesel fuel. 4. Carburete the ethanol separately Converting Diesels To SI Engines Most diesel engines currently used in tractors operate with compression ratios...

Ariyaratne, Arachchi Rallage

2012-06-07T23:59:59.000Z

457

Evaluation of RME (rapeseed methyl ester) and mineral diesel fuels behaviour in quiescent vessel and EURO 5 engine  

Science Journals Connector (OSTI)

Abstract Alternative diesel fuels for internal combustion engines have grown significantly in interest in the last decade. This is due to the potential benefits in pollutant emissions and particulate matter reduction. Nevertheless at possible increase in nitrogen oxide (NOx), and almost certainly increase of fuel consumption have been observed. In this paper, mineral diesel and RME (rapeseed methyl ester) fuels have been characterized in a non-evaporative spray chamber and in an optically-accessible single-cylinder engine using a Common Rail injector (8 holes, 148° cone opening angle and 480 cc/30s@10 MPa flow number) to measure the spatial fuel distribution, the temporal evolution and the vaporization–combustion processes. The injection process and mixture formation have been investigated at the Urban Driving Cycle ECE R15: 1500 rpm at 0.2 MPa of break mean effective pressure. Characteristic parameters of the spray like penetration length and liquid fuel distribution have been analysed and they have been correlated with the exhaust gaseous and particulate matter emissions. In the spray-analysis in non-evaporative conditions, short events (pilot) are mostly affected by asymmetries in the fuel distributions with noticeable standard deviations at low injected quantities. In the engine tests, the jets reached immediately the stabilization. A comparative analysis on the liquid phase of the spray, in non-evaporative and evaporative conditions, has permitted to investigate better the mixture formation. Its effect on pollutant emissions has been analysed for both fuels.

Luigi Allocca; Ezio Mancaruso; Alessandro Montanaro; Luigi Sequino; Bianca Maria Vaglieco

2014-01-01T23:59:59.000Z

458

Experimental and Theoretical Investigation of the Effects of Gasoline Blends on Single-Cylinder Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Experiments presented in this study for gasoline blends and experiments of Bilgin et al. for ethanol blends have been performed in a single-cylinder diesel engine at Karadeniz Technical University, Engineering Faculty, Mechanical Engineering Department, Internal Combustion Engines Laboratory. ... However, to determine the most favorable blend ratio for any vehicle diesel engine, to achieve general results, and to give general recommendations, more systematic experimental and theoretical studies for actual vehicle diesel engines must be performed. ... Union of Chambers of Turkish Engineers and Architects, Chamber of Mechanical Engineer, 1991; Vol. 383, pp 18? 29 (in Turkish). ...

Z. ?ahin

2008-08-16T23:59:59.000Z

459

Application of advanced diesel technology to inland waterway towboats. variable timing, electronic fuel injection. Final report, September 1985-January 1989  

SciTech Connect (OSTI)

This report represents the test and evaluation of advanced diesel technology components on the DDC Series 149 Marine engine. The tests were conducted on an inland-waterways towboat and consist of over 20,000 engine hours of operation during the testing. The Detroit Diesel Series 16V-149 engine rated at 900 SHP was tested aboard the M/V ESCATAWPA owned and operated by Warrior and Gulf Navigation Company. Both port and starboard engines were instrumented to measure engine operating parameters, propeller-shaft torque, and fuel consumption. The data were collected by a computer-based data-acquisition system and written to floppy disc for analysis. The tasks included: (1) baseline evaluation of naturally-aspirated (NA) engines; (2) upgrade both engines to turbocharged intercooled and blower bypassed (TIB) configuration and measure performance; (3) upgrade port engine with Detroit Diesel electronic control (DDEC) and measure performance; (4) change port engine to high-torque rise governor setting and measure performance; (5) upgrade starboard engine with DDEC.

Rowland, D.P.

1989-03-01T23:59:59.000Z

460

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The use of auxiliary ignition devices to improve combustion of low centane-high volatility fuels in a diesel engine  

SciTech Connect (OSTI)

The use of auxiliary ignition devices to improve the combustion of low cetane-high volatility fuels in a Diesel engine is described. Previous combustion with a low cetane-high volatility fuel (with a spark plug located at the periphery of the cylinder) resulted in engine knock at heavy loads and poor engine operation at light loads. In the present investigation, several new ignition devices were used to ignite the fuel in the center of the cylinder, to allow combustion to be controlled by rate of injection. The devices used were an extended spark electrode, a fuel spray deflector, a nozzle glow ring, and a nozzle fuel cage. High speed photography and heat release were used to characterize the ignition and combustion process of the low cetane fuel in conjunction with the ignition devices. Combustion with all of the ignition devices was initiated in the center of the cylinder, significantly reducing engine knock. The use of the auxiliary ignition devices to ignite the fuel in the center of the chamber demonstrated extended operation of the Diesel engine for all of the devices tested.

Stroia, B.L.; Abata. D.L.

1988-01-01T23:59:59.000Z

462

An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study  

Science Journals Connector (OSTI)

Abstract The need for more efficient energy usage and a less polluted environment are the prominent research areas that are currently being investigated by many researchers worldwide. Water-in-diesel emulsion fuel (W/D) is a promising alternative fuel that could fulfills such requests in that it can improve the combustion efficiency of a diesel engine and reduce harmful exhaust emission, especially nitrogen oxides (NOx) and particulate matter (PM). To date, there have been many W/D emulsion fuel studies, especially regarding performance, emissions and micro-explosion phenomena. This review paper gathers and discusses the recent advances in emulsion fuel studies in respect of the impact of W/D emulsion fuel on the performance and emission of diesel engines, micro-explosion phenomena especially the factors that affecting the onset and strength of micro-explosion process, and proposed potential research area in W/D emulsion fuel study. There is an inconsistency in the results reported from previous studies especially for the thermal efficiency, brake power, torque and specific fuel consumption. However, it is agreed by most of the studies that W/D does result in an improvement in these measurements when the total amount of diesel fuel in the emulsion is compared with that of the neat diesel fuel. \\{NOx\\} and PM exhaust gas emissions are greatly reduced by using the W/D emulsion fuel. Unburnt hydrocarbon (UHC) and carbon monoxide (CO) exhaust emissions are found to be increased by using the W/D emulsion fuel. The inconsistency of the experimental result can be related to the effects of the onset and the strength of the micro-explosion process. The factors that affect these measurements consist of the size of the dispersed water particle, droplet size of the emulsion, water-content in the emulsion, ambient temperature, ambient pressure, type and percentage of surfactant, type of diesel engine and engine operating conditions. Durability testing and developing the fuel production device that requires no/less surfactant are the potential research area that can be explored in future.

Ahmad Muhsin Ithnin; Hirofumi Noge; Hasannuddin Abdul Kadir; Wira Jazair

2014-01-01T23:59:59.000Z

463

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel engineDiesel Idling diesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

464

Vibration diagnosis of main journal bearings for diesel engines  

Science Journals Connector (OSTI)

A comprehensive summary of the vibration diagnosis techniques used to detect the wear of the main journal bearings in a diesel engine is presented. The load of the main journal bearing, the minimum thickness of the oil film, the oil film pressure and the locus of the crankshaft centre have been calculated based on the measured thermal parameters. Simulated wear experiments for the main journal bearing have been carried out in laboratory conditions. The strain and vibration on the main journal pedestals in the vertical direction were measured under various working conditions. The strain signals on the main journal bearing pedestal are related to the oil film forces, damped by the lubricant oil. The excitation sources and the vibration characteristics of the main journal bearing pedestal system were analysed by measuring the vibration signals. The relationships between the feature parameters of the vibration signals and the wear conditions of the main journal bearing have been obtained. It is promising, therefore, to develop and apply the vibration diagnosis technique further to detect the wear conditions of the main journal bearings online.

Yonghua Yu; Jianguo Yang

2005-01-01T23:59:59.000Z

465

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect (OSTI)

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

466

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

467

Advanced Modeling of Direct-Injection Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

calculation. It strongly influences the atomization and break-up processes, the spray penetration, the inter-phase transfer processes, and the droplet-droplet interaction. The...

468

Development and application of a fully automatic troubleshooting method for large marine diesel engines  

Science Journals Connector (OSTI)

The diesel engine is the main propulsion system for marine vessels except for a small category using gas or steam turbines. This is the result of its high efficiency, power concentration and reliability that have been improved considerably during the current decade. Despite these advantages, the engineer usually has to overcome great difficulties and mainly operational problems arising during the engine's lifetime. In the case of large marine engines it is almost impossible to apply trial and error methods to solve engine operating problems. This is amplified by the fact that almost all large marine diesel engines are turbocharged ones making the problem even more severe because of the interaction between the engine and the exhaust gas turbocharger. For this reason various diagnosis methods have been proposed for diesel engine condition monitoring that are mainly statistical based on known engine operating curves. These systems provide general information only and do not reveal the actual cause for an engine fault or low performance. In the current work an advanced automatic troubleshooting method based mainly on thermodynamics is presented to monitor the engine condition and to detect the actual cause for an engine fault. The method is based on the processing of measured engine data using a simulation model and provides the current engine condition and its tuning. An application of the method on a marine vessel powered by a slow speed two stroke marine diesel engine suffering from high cylinder exhaust gas temperatures and low power output is given in the present work. The method is applied at sea under actual engine operating conditions. From the processing of measured data the diagnosis method provides the current engine condition and the cause for the low power output from which the engine suffered. After conducting the major repair/adjustments proposed by the diagnosis method a substantial improvement in engine behavior was observed providing a validation for the proposed method.

D.T. Hountalas; A.D. Kouremenos

1999-01-01T23:59:59.000Z

469

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating  

Science Journals Connector (OSTI)

Investigation of Combustion and Emission Characteristics of a Diesel Engine with Oxygenated Fuels and Thermal Barrier Coating ... Exhaust gas emissions from diesel engines have become a serious problem to the researchers; therefore, a method of reduction of gas emission is needed. ... Their results show that the engine can achieve ultra-low emission without fundamental change to the combustion system. ...

P. Ramu; C. G. Saravanan

2009-01-07T23:59:59.000Z

470

Investigation of the Performance and Emission Characteristics of Biodiesel Fuel Containing Butanol under the Conditions of Diesel Engine Operation  

Science Journals Connector (OSTI)

(17) However, emissions of engines fueled with multicomponent fuels containing fossil diesel, butanol, and rapeseed oil butyl/methyl esters have not been tested. ... Break specific fuel consumption when engine is fuelled with fossil diesel fuel (n = 1500 min?1). ... For all cases, engine torque was retained the same by adjusting fueling rate. ...

Sergejus Lebedevas; Galina Lebedeva; Egle Sendzikiene; Violeta Makareviciene

2010-07-23T23:59:59.000Z

471

Experience gained in a number of countries from using thermal power stations equipped with diesel and gas engines  

Science Journals Connector (OSTI)

Large-capacity thermal power stations and customer’s cogeneration stations equipped with diesel and gas engines, and their technical-economic and cost...

A. A. Salamov

2007-02-01T23:59:59.000Z

472

Pilot-Scale Aftertreatment Using Nonthermal Plasma Reduction of Adsorbed NOx in Marine Diesel-Engine Exhaust Gas  

Science Journals Connector (OSTI)

Regulations governing marine diesel engine NOx emissions have recently become more stringent. As it is difficult to fulfill these requirements by combustion improvements alone, effective aftertreatment technologi...

Takuya Kuwahara; Keiichiro Yoshida…

2014-01-01T23:59:59.000Z

473

Design of die forging process of thrust shaft for large marine diesel engine using floating die concept  

Science Journals Connector (OSTI)

Thrust shaft is one of the important components of the built-up type crankshaft for the large marine diesel engine. Conventionally, the thrust shaft has been...

Il-Keun Kwon; Hong-Seok Park

2011-06-01T23:59:59.000Z

474

Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation  

Broader source: Energy.gov [DOE]

A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

475

Renewable Diesel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Diesel Renewable Diesel Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan....

476

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

477

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

SciTech Connect (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

478

A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES  

SciTech Connect (OSTI)

The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

Blau, Peter Julian [ORNL

2009-11-01T23:59:59.000Z

479

The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel  

Science Journals Connector (OSTI)

An experimental investigation of the application of biodiesel (recycled cooking fat and vegetable oil) on small marine craft diesel engines was completed. The tests were performed on Perkins 404C-22 (Marinised) in Boat No. 1 (Fair Countess) and on Nanni Diesel 3.100HE in Boat No. 2 (Aimee 2). The tests were designed and carried out in accordance with the standardised test procedure described in ISO 8178-4 Test Cycle E5. The performance and gaseous emissions of the tested engines were compared and analysed. The test results show that the power output for both trial engines operating with biodiesel were comparable to that fuelled with fossil diesel, but with an increase in fuel consumptions. The \\{NOx\\} emissions were found to be reduced when fuelled with biodiesel. The CO emissions were found to be lower when the engines operated at higher loads using biodiesel.

A.P. Roskilly; S.K. Nanda; Y.D. Wang; J. Chirkowski

2008-01-01T23:59:59.000Z

480

Reducing the Emission of Particles from a Diesel Engine by Adding an Oxygenate to the Fuel  

Science Journals Connector (OSTI)

A small reduction of the engine power was also observed; however, the net effect was nevertheless a reduction in the emission of CO2 per European stationary cycle. ... A general finding is that the reduction of particles seems to be linearly dependent on the oxygen content, and, thus, the blend with the highest oxygen content results in the highest reduction of particles (14?16). ... Measure ments of NOx, HC, and CO content were performed in accordance with the ESC test cycles and were repeated nine times when the engine was operating on EC-1 diesel and five times when the engine was operating on A-diesel. ...

Kent E. Nord; Dan Haupt

2005-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "injection diesel engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Innovation, the diesel engine and vehicle markets: Evidence from OECD engine patents  

Science Journals Connector (OSTI)

Abstract This paper uses a patent data set to identify factors fostering innovation of diesel engines between 1974 and 2010 in the OECD region. The propensity of engine producers to innovate grew by 1.9 standard deviations after the expansion of the car market, by 0.7 standard deviations following a shift in the EU fuel economy standard, and by 0.23 standard deviations. The propensity to develop emissions control techniques was positively influenced by pollution control laws introduced in Japan, in the US, and in the EU, but not with the expansion of the car market. Furthermore, a decline in loan rates stimulated the propensity to develop emissions control techniques, which were simultaneously crowded out by increases in publicly-funded transport research and development. Innovation activities in engine efficiency are explained by market size, loan rates and by (Organisation for Economic Cooperation and Development) diesel prices, inclusive of taxes. Price effects on innovation, outweigh that of the US corporate average fuel economy standards. Innovation is also positively influenced by past transport research and development.

David Bonilla; Justin D.K. Bishop; Colin J. Axon; David Banister

2014-01-01T23:59:59.000Z

482

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect (OSTI)

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the