Sample records for injection cxs applied

  1. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  2. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  3. Fuel injection

    SciTech Connect (OSTI)

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01T23:59:59.000Z

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  4. CX-008624: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Abandonment of the Western Sector Dynamic Underground Stripping (DUS) Project Steam Injection Wells CX(s) Applied: B3.1 Date: 06202012 Location(s): South Carolina...

  5. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  6. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  7. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  8. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03T23:59:59.000Z

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  9. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  10. Activated Carbon Injection

    SciTech Connect (OSTI)

    None

    2014-07-16T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  11. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  12. CX-010442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production... CX(s) Applied: B3.7 Date: 06/19/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  13. CX-012444: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanical Monitoring for CO2 Hub Storage: Production and Injection at Kevin Dome CX(s) Applied: A9Date: 41878 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  14. CX-012438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanical Monitoring for CO2 Hub Storage: Production and Injection at Kevin Dome CX(s) Applied: A1, A9Date: 41878 Location(s): MontanaOffices(s): National Energy Technology Laboratory

  15. CX-010396: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bioremediation Injection and Related Activities at the Pinellas Site, Largo, Florida CX(s) Applied: B3.1, B6.1 Date: 05/28/2013 Location(s): Florida Offices(s): Legacy Management

  16. CX-009854: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    SeismicityFluid Injection: Development of Strategies to Manage Fluid Disposal in Shale Plays CX(s) Applied: A9, A11 Date: 01222013 Location(s): Texas Offices(s): National...

  17. CX-011212: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Decommissioning of Shallow Injection Wells at the Advanced Test Reactor Complex CX(s) Applied: B5.3 Date: 08/29/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  18. CX-012295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 06/03/2014 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  19. CX-012296: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 06/03/2014 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  20. CX-011027: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin… CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  1. CX-011026: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin… CX(s) Applied: A1, A9 Date: 09/11/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  2. CX-011025: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin… CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  3. CX-005329: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fluid-Bed Testing of GreatPoint Energy's Direct Oxygen Injection Catalytic Gasification Process CX(s) Applied: B3.6 Date: 02282011 Location(s): Grand Forks, North Dakota...

  4. CX-002899: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process CX(s) Applied: B3.6 Date: 07082010 Location(s): Grand Forks, North Dakota...

  5. CX-010542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters CX(s) Applied: B5.2 Date: 06/24/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  6. CX-011199: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters Government Furnished Equipment CX(s) Applied: B5.2 Date: 09/17/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  7. Premixed direct injection disk

    DOE Patents [OSTI]

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23T23:59:59.000Z

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01T23:59:59.000Z

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  9. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  10. Optimization of Injection Scheduling in

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-I12 Optimization of Injection Scheduling in Geothermal Fields James Lovekin May 1987&injection optimization problem is broke$ into two subpmbkm:(1) choosing a configuration of injectorsfrom an existing set is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells

  11. Duct injection technology prototype development: Evaluation of engineering data

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The objective of the Duct Injection Technology Prototype Development Project is to develop a sound design basis for applying duct injection technology as a post-combustion SO{sub 2}emissions control method to existing coal-fired power plants. The necessary engineering design and scale-up criteria will be developed for the commercialization of duct injection technology for the control of SO{sub 2} emissions from coal-fired boilers in the utility industry. The primary focus of the analyses summarized in this Topical Report is the review of the known technical and economic information associated with duct injection technology. (VC)

  12. Pellet injection technology

    SciTech Connect (OSTI)

    Combs, S.K. (Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8071 (United States))

    1993-07-01T23:59:59.000Z

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures ([congruent]10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of [congruent]1--2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1--40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice.

  13. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18T23:59:59.000Z

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  14. Alkaline flooding injection strategy

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1992-03-01T23:59:59.000Z

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  15. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian Diesel Locomotive equipped with "Electronic Fuel Injection (EFI)" was turned out by the Diesel Loco

  16. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor manyInhibiting IndividualInjection

  17. BEAMS3D Neutral Beam Injection Model

    SciTech Connect (OSTI)

    Lazerson, Samuel

    2014-04-14T23:59:59.000Z

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  18. Premixed direct injection nozzle

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC); Johnson, Thomas Edward (Greer, SC); Lacy, Benjamin Paul (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC)

    2011-02-15T23:59:59.000Z

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  19. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  20. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  1. Common Rail Injection System Development

    SciTech Connect (OSTI)

    Electro-Motive,

    2005-12-30T23:59:59.000Z

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

  2. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01T23:59:59.000Z

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  3. Injection nozzle for a turbomachine

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11T23:59:59.000Z

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  4. Non-plugging injection valve

    DOE Patents [OSTI]

    Carey, Jr., Henry S. (Wilsonville, AL)

    1985-01-01T23:59:59.000Z

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  5. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  6. The energy injection and losses in the Monte Carlo simulations of a diffusive shock

    E-Print Network [OSTI]

    Wang, Xin

    2011-01-01T23:59:59.000Z

    Although diffusive shock acceleration (DSA) could be simulated by some well-established models, the assumption of the injection rate from the thermal particles to the superthermal population is still a contentious problem. But in the self-consistent Monte Carlo simulations, because of the prescribed scattering law instead of the assumption of the injected function, hence particle injection rate is intrinsically defined by the prescribed scattering law. We expect to examine the correlation of the energy injection with the prescribed multiple scattering angular distributions. According to the Rankine-Hugoniot conditions, the energy injection and the losses in the simulation system can directly decide the shock energy spectrum slope. By the simulations performed with multiple scattering law in the dynamical Monte Carlo model, the energy injection and energy loss functions are obtained. As results, the case applying anisotropic scattering law produce a small energy injection and large energy losses leading to a s...

  7. NEUTRAL-BEAM INJECTION

    SciTech Connect (OSTI)

    Kunkel, W.B.

    1980-06-01T23:59:59.000Z

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

  8. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16T23:59:59.000Z

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  9. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25T23:59:59.000Z

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  10. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  11. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  12. Injection system for small betatron

    SciTech Connect (OSTI)

    Zuorygin, V.P.; Chakhlov, V.L.; Pushin, U.S.

    1985-07-01T23:59:59.000Z

    In order to reduce the head loads on the injector electrodes and to raise the efficiency of electron capture during acceleration, small betatrons are provided with an injection system with a controlled three-electrode injector in which injection current pulse with steep leading and trailing edges is formed by the application of a voltage pulse to the control electrode from a separate circuit through a pulse transformer. In a betatron injection system described, elements of the controlled injector of the accelerating chamber are used to correct the shape of the current pulse. The circuit for correcting the current-pulse shape can increase the accelerated charge by the average of 75% per betatron cycle and decrease the heat loads on the electrodes of the injector without the use of a generator of controlling voltage pulses.

  13. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

  14. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  15. Sequential injection gas guns for accelerating projectiles

    DOE Patents [OSTI]

    Lacy, Jeffrey M. (Idaho Falls, ID); Chu, Henry S. (Idaho Falls, ID); Novascone, Stephen R. (Idaho Falls, ID)

    2011-11-15T23:59:59.000Z

    Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.

  16. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect (OSTI)

    Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

    2004-05-15T23:59:59.000Z

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  17. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  18. Status of NINJA: the Numerical INJection Analysis project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brügmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterjis; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mroué; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Röver; Lucía Santamaría; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Viceré; John T. Whelan; Yosef Zlochower

    2009-05-26T23:59:59.000Z

    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise.

  19. An environmental analysis of injection molding

    E-Print Network [OSTI]

    Thiriez, Alexandre

    2006-01-01T23:59:59.000Z

    This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

  20. Underground Injection Control Permits and Registrations (Texas)

    Broader source: Energy.gov [DOE]

    Chapter 27 of the Texas Water Code (the Injection Well Act) defines an “injection well” as “an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or...

  1. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  2. Continuous injection method controls downhole corrosion - 2

    SciTech Connect (OSTI)

    Bradburn, J.B.; Todd, R.B.

    1981-08-01T23:59:59.000Z

    In designing a continuous downhole corrosion inhibitor injection system, many interrelated factors must be considered: bottomhole pressure, inhibitor viscosity, injection rate, friction loss, hole geometry, cost, delivery time, annulus environment, elastomers, and corrosivity of well fluids. In view of the many variables associated with the design of a downhole injection system, the following design outline is presented. 8 refs.

  3. Numerical Simulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

  4. Phase diagram for injection locking a superradiant laser

    E-Print Network [OSTI]

    Kevin C. Cox; Joshua M. Weiner; James K. Thompson

    2014-06-19T23:59:59.000Z

    We experimentally and theoretically study the response of a superradiant or bad-cavity laser to an applied coherent drive. We observe two forms of synchronization (injection locking) between the superradiant ensemble and the applied drive: one attractive and one repulsive in nature. We explain the region of repulsion as arising from the higher three-dimensional description of the atomic spin state that stores the laser coherence in a superradiant laser, as opposed to a two-parameter description of the electric field in a traditional good-cavity laser. We derive a phase diagram of predicted behavior and experimentally measure the response of the system across various trajectories therein.

  5. Method for preventing bitumen backflow in injection wells when steam injection is interrupted

    SciTech Connect (OSTI)

    Freeman, D.C.; Djabbarah, N.F.

    1990-04-24T23:59:59.000Z

    This patent describes a method for preventing viscous hydrocarbonaceous fluids from backflowing into a well upon interruption of a steamflood. It comprises: detecting a substantial reduction in steam injection pressure in at least one injection well via a pressure sensing device; and causing automatically a pressurized fluid to be injected into the injection well in response to the reduction in pressure which prevents viscous hydrocarbonaceous fluids from backflowing into the injection well.

  6. Fuel injection device and method

    DOE Patents [OSTI]

    Carlson, L.W.

    1983-12-21T23:59:59.000Z

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  7. Ducts Sealing Using Injected Spray Sealant, Raleigh, North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques - manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.

  8. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  9. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  10. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25T23:59:59.000Z

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  11. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect (OSTI)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18T23:59:59.000Z

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  12. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  13. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  14. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  15. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  18. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  19. Experimental Investigation of Effect of Injection Parameters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Investigation of Effect of Injection Parameters, Compression Ratio and Ultra-cooled EGR on CI Engine Performance and Emissions Low temperature combustion,...

  20. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  1. CX-011049: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin... CX(s) Applied: B3.1, B5.3, B5.5, B5.13 Date: 09/09/2013 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

  2. Magnetohydrodynamic effects on pellet injection in tokamaks

    SciTech Connect (OSTI)

    Strauss, H.R. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States); Park, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    1998-07-01T23:59:59.000Z

    The location at which pellets are injected into a plasma can have a significant effect on what fraction of the pellet mass remains in the plasma for refueling purposes. Magnetohydrodynamic (MHD) simulations presented here, confirm the results of pellet injection experiments: toroidal curvature makes it favorable to inject pellets from the inboard side or from the top or bottom, rather than from the outboard side. Sufficiently large pellets injected at the inboard edge can reach the plasma center, and in the process drive magnetic reconnection to produce negative central shear. Injection at the top (or bottom) of the tokamak causes relatively little displacement of the pellet. A scaling law is obtained for pellet displacement which agrees well with the simulations. The MHD simulations were carried out with a new unstructured mesh finite element version of the MH3D full MHD code. {copyright} {ital 1998 American Institute of Physics.}

  3. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26T23:59:59.000Z

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (? 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ? 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (? 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  4. Characteristics of Microseismicity in the DV11 Injection Area, Southeast Geysers, California

    SciTech Connect (OSTI)

    Kirkpatrick, Ann; Peterson Jr., John E.; Majer, Ernest L.; Nadeau, Robe rt

    1998-11-01T23:59:59.000Z

    Microearthquake (MEQ) occurrence surrounding the injection well DV11 in Unit 18 of the Southeast (SE) Geysers is investigated. Seismicity rates are compared to the injection rate, and to flow rates in nearby steam extraction wells, which were monitored during the Unit 18 Cooperative Injection Test in 1994 and 1995. The seismicity rate is seen to mirror both injection and production rates, although a time lag sometimes occurs. Waveform cross-correlation is performed for the MEQs in the DV11 area, and the events grouped into clusters based on waveform similarity. Relative location techniques applied to the events in two of these clusters show 7 events grouped into a volume of about 25 m in diameter, at an elevation of about -0.65 km msl and 5 events grouped into a vertically-oriented linear feature about 100 m in length, at about -1.8 km msl.

  5. Simple method of impurity injection into tokamak plasmas

    SciTech Connect (OSTI)

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.; Badalec, H.; Jakubka, K.

    1989-04-01T23:59:59.000Z

    Injection of test impurities into the edge plasma of tokamak discharges by erosion probes containing these impurities is described. By applying a short bias pulse to the probe inserted into the sol-plasma, the plasma density and temperature at the probe location can be deduced and the time of injection during the discharge can be controlled. By locating the probe at an appropriate position it is possible to release defined quantities of the material and to influence the fraction which penetrates into the core plasma. The injection of Li into hydrogen discharges of the small-sized tokamaks Castor and MT-1 is demonstrated. The nature of the main erosion process (ion sputtering or arcing) has been found to depend on the radial position of the probe and the probe potential. The lithium amount released by sputtering is determined, while in the case of arcing only an estimate can be given. The temporal evolution and the radial penetration of the Li influx into the plasma have been observed by monitoring the neutral emission line using a grating spectrometer and a CCD camera. In addition, Li transported through the plasma was collected on solid samples. An estimate is given on the fraction of the impurity efflux from the core plasma which is collected on the samples.

  6. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  7. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19T23:59:59.000Z

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  8. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01T23:59:59.000Z

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. HOUSING GUARANTEE Apply Online

    E-Print Network [OSTI]

    Mease, Kenneth D.

    THE UCI HOUSING GUARANTEE Apply Online 1 Log in to your MyAdmission account via the tab of Admission fee. 3 Complete the Online Housing Application and pay the $20 non-refundable fee. Freshmen apply for the residence halls. Transfer students apply for Arroyo Vista theme houses and on-campus apartments. Students 25

  11. Coupled-wave theory of multiple-stripe semiconductor injection lasers

    SciTech Connect (OSTI)

    Mehuys, D.; Yariv, A.

    1988-07-01T23:59:59.000Z

    We apply coupled-wave theory to describe the lateral modes of semiconductor lasers with a periodic gain and refractive-index variation across their widths. The model is relevant to devices whose complex index of refraction is determined by current injection from closely spaced parallel electrodes. Good agreement is observed between the analytical modes and those computed numerically for comparison.

  12. Trustworthy Evaluation of a Safe Driver Machine Interface through Software-Implemented Fault Injection

    E-Print Network [OSTI]

    Firenze, Università degli Studi di

    of the system under evaluation. Although guidelines and good practices exist and are often applied such guidelines and good practices in experimental evaluation, metrology principles can contribute in improving principles of metrology and good practices of fault injection. Trustfulness in results has been estimated

  13. Intradermal needle-free powdered drug injection

    E-Print Network [OSTI]

    Liu, John (John Hsiao-Yung)

    2012-01-01T23:59:59.000Z

    This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

  14. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  15. A case study of seawater injection incompatibility

    SciTech Connect (OSTI)

    Lindlof, J.C.; Stoffer, K.G.

    1983-07-01T23:59:59.000Z

    One of the primary concerns in the implementation of an effective waterflood is the compatibility between the formation water and the water to be injected. The Arabian American Oil Co. (ARAMCO) and the Saudi Arabian Ministry of Petroleum and Mineral Resources Technical Branch recognized a potential incompatibility problem and embarked on a comprehensive program to evaluate possible strontium sulfate and calcium sulfate scaling associated with the injection of seawater into the Arab-D reservoir in the northern areas of Ghawar field.

  16. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  17. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15T23:59:59.000Z

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  18. albumin ions injected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Hunt, Galen 3 Characterizing Oligosaccharides Using Injected-Ion MobilityMass Spectrometry Chemistry Websites Summary: Characterizing Oligosaccharides Using Injected-Ion...

  19. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  20. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  1. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  2. automated flow injection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the great majority the feasibility of our attack. The friend injection attack enables a stealth infiltra- tion of social networks Boyer, Edmond 7 Preventing injection attacks...

  3. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  4. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  5. Neutral Beam Injection Experiments and Related Behavior of Neutral Particles in the GAMMA 10 Tandem Mirror

    SciTech Connect (OSTI)

    Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Watanabe, K. [Plasma Research Center, University of Tsukuba (Japan); Higashizono, Y. [Plasma Research Center, University of Tsukuba (Japan); Ohki, T. [Plasma Research Center, University of Tsukuba (Japan); Ogita, T. [Plasma Research Center, University of Tsukuba (Japan); Shoji, M. [National Institute for Fusion Science(Japan); Kobayashi, S. [Institute of Advanced Energy, Kyoto University (Japan); Islam, M.K. [Plasma Research Center, University of Tsukuba (Japan); Kubota, Y. [Plasma Research Center, University of Tsukuba (Japan); Yoshikawa, M. [Plasma Research Center, University of Tsukuba (Japan); Kobayashi, T. [Plasma Research Center, University of Tsukuba (Japan); Yamada, M. [Plasma Research Center, University of Tsukuba (Japan); Murakami, R. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15T23:59:59.000Z

    Results of neutral beam injection (NBI) experiments in the GAMMA 10 tandem mirror plasmas are presented together with the neutral particle behavior observed in the experiments. A hydrogen neural beam was injected into the hot-ion-mode plasmas by using the injector installed in the central-cell for the plasma heating and fueling. High-energy ions produced by NBI were observed and its energy distribution was measured for the first time with a neutral particle analyzer installed in the central-cell. The temporal and spatial behavior of hydrogen was observed with axially aligned H{sub {alpha}} detectors installed from the central midplane to anchor-cell. Enhancement of hydrogen recycling due to the beam injection and the cause of the observed decrease in plasma diamagnetism are discussed. The Monte-Carlo code DEGAS for neutral transport simulation was applied to the GAMMA 10 central-cell and a 3-dimensional simulation was performed in the NBI experiment. Localization of neutral particle during the beam injection is investigated based on the simulation and it was found that the increased recycling due to the beam injection was dominant near the injection port.

  6. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect (OSTI)

    Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

    2012-08-08T23:59:59.000Z

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  7. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

  8. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  9. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  10. Supported-sorbent injection. Final report

    SciTech Connect (OSTI)

    Nelson, S. Jr.

    1997-07-01T23:59:59.000Z

    A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

  11. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  12. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01T23:59:59.000Z

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  13. Multistaged stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  14. Meren field water injection project offshore Nigeria

    SciTech Connect (OSTI)

    Adetoba, L.A.

    1984-04-01T23:59:59.000Z

    The Meren Water Injection Project, which is one of the largest in West Africa in terms of injection volume, secondary reserves to be recovered and cost, is located in the Meren field offshore Nigeria. This study presents an updated comprehensive plan to deplete 7 reservoir units in sands that have been producing under solution gas drive and gravity segregation with minimal water influx. The reservoir units contain ca 80% of the original oil-in-place in Meren field. Detailed studies have been undertaken to evaluate the performances of the 7 reservoirs with a view to developing a secondary recovery plan which has been brought into reality. Injection was to start in mid-1982 but was delayed until mid-1983. The effect of the delay and the changing of injector locations on recovery and cost is discussed.

  15. Injected Beam Dynamics in SPEAR3

    SciTech Connect (OSTI)

    Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

    2012-06-21T23:59:59.000Z

    For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

  16. Passive injection control for microfluidic systems

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21T23:59:59.000Z

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  17. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  18. Sample extraction and injection with a microscale preconcentrator.

    SciTech Connect (OSTI)

    Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Chan, Helena Kai Lun

    2007-09-01T23:59:59.000Z

    This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solvent filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.

  19. Essays in applied microeconomics

    E-Print Network [OSTI]

    Aron-Dine, Aviva

    2012-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics in applied microeconomics. In the first chapter. I investigate whether voters are more likely to support additional spending on local public services when they perceive ...

  20. Engineering and Applied

    E-Print Network [OSTI]

    Stowell, Michael

    > Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

  1. Applying for Research Awards

    E-Print Network [OSTI]

    ... 53.22 KB APPLYING FOR RESEARCH AWARDS The Eastern Bird Banding Association seeks applicants for its annual $500 research awards in aid of research using banding techniques or bird banding data. ...

  2. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  3. Accounting for Remaining Injected Fracturing Fluid

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  4. A study on Raman Injection Laser

    E-Print Network [OSTI]

    Liu, Debin

    2005-11-01T23:59:59.000Z

    The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman...

  5. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01T23:59:59.000Z

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  6. THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

  7. Ignition and fueling scenario calculations for neutral-beam-heated Tokamak reactors based on pellet injection

    SciTech Connect (OSTI)

    Lengyel, L.L.

    1986-11-01T23:59:59.000Z

    Results of ignition and continuous fueling scenario calculations are presented that were obtained in the framework of an assessment performed for the Next European Torus based on International Tokamak Reactors (INTOR) parameters. The results obtained with pellet injection are compared with results corresponding to gas puffing. Pellet injection transports fresh fuel to the reaction zone on a time scale that is much shorter than the diffusion time characterizing the gas puffing method, thus making the method flexible and readily adaptable to different situations. In the case of ignition by pellet injection, it may become possible to have deep neutral beam penetration and maintain favorable heat deposition profiles up to the moment of density ramp-up, thus substantially relaxing beam output requirements. The importance of a proper match between beam characteristics and pellet parameters is shown. In the case of continuous fueling of an already ignited discharge, the alpha power production notably increases if repetitive pellet injection, instead of gas puffing, is applied. The advantages of pellet injection are substantial, even at moderate pellet velocities.

  8. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    SciTech Connect (OSTI)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-10-15T23:59:59.000Z

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  9. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science and...

  10. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  11. Applied Microbiology and Biotechnology

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    1 23 Applied Microbiology and Biotechnology ISSN 0175-7598 Appl Microbiol Biotechnol DOI 10.1007/s-Cohen #12;1 23 Your article is protected by copyright and all rights are held exclusively by Springer in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version

  12. Terahertz graphene lasers: Injection versus optical pumping

    SciTech Connect (OSTI)

    Ryzhii, Victor; Otsuji, Taiichi [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, Maxim [Computational Nanoelectronics Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, Vladimir [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 14260-1920 (United States)

    2013-12-04T23:59:59.000Z

    We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The model used accounts for intraband and interband relaxation processes as well as deviation of the optical phonon system from equilibrium. As shown, optical pumping suffers from a significant heating of both the electron-hole plasma and the optical phonon system, which can suppress the formation of population inversion. In the graphene structures with p-i-n junction, the injected electrons and holes have relatively low energies, so that the effect of cooling can be rather pronounced, providing a significant advantage of the injection pumping in realization of graphene terahertz lasers.

  13. Waterflooding injectate design systems and methods

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2014-08-19T23:59:59.000Z

    A method of designing an injectate to be used in a waterflooding operation is disclosed. One aspect includes specifying data representative of chemical characteristics of a liquid hydrocarbon, a connate, and a reservoir rock, of a subterranean reservoir. Charged species at an interface of the liquid hydrocarbon are determined based on the specified data by evaluating at least one chemical reaction. Charged species at an interface of the reservoir rock are determined based on the specified data by evaluating at least one chemical reaction. An extent of surface complexation between the charged species at the interfaces of the liquid hydrocarbon and the reservoir rock is determined by evaluating at least one surface complexation reaction. The injectate is designed and is operable to decrease the extent of surface complexation between the charged species at interfaces of the liquid hydrocarbon and the reservoir rock. Other methods, apparatus, and systems are disclosed.

  14. Proper Injection Techniques in Dairy Cattle 

    E-Print Network [OSTI]

    Villarino, Mario A.

    2009-05-04T23:59:59.000Z

    ? them in an insulated cooler with ice packs during the summer. In cold weather, use the same container to keep vaccines from freezing. Freezing makes some vaccines ineffective. If vaccines do not require ? refrigeration, store them out of direct... needle or a transfer needle. Use a clean needle for ? each animal to prevent the transmission of disease. for protecting meat quality. Always use this method if it is an option given on the label. Intramuscularly (IM). ? This injection goes...

  15. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  16. Evaluation of Profile Injection Attacks In Collaborative Recommender Systems

    E-Print Network [OSTI]

    Schaefer, Marcus

    Evaluation of Profile Injection Attacks In Collaborative Recommender Systems Chad Williams, Runa recommender systems. The open nature of collaborative filtering allows attackers to inject biased profile data identified attack profiles. Second, we analyze the effectiveness of a supervised classification approach

  17. Beam shaping element for compact fiber injection systems

    SciTech Connect (OSTI)

    Weichman, L.S.; Dickey, F.M.; Shagam, R.N.

    2000-01-05T23:59:59.000Z

    Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.

  18. STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm

    E-Print Network [OSTI]

    STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study...........................................................................................................................10 Gas turbine technology

  19. PEP-II injection timing and controls

    SciTech Connect (OSTI)

    Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

  20. SNS Laser Stripping for H- Injection

    SciTech Connect (OSTI)

    V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

    2009-05-01T23:59:59.000Z

    The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

  1. Stokes injected Raman capillary waveguide amplifier

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  2. INJECTION STRAIGHT PULSED MAGNET ERROR TOLERANCE STUDY FOR TOP-OFF INJECTION

    SciTech Connect (OSTI)

    Wang, G.M.; Shaftan; T.: Fliller; R.; Parker; B.; Heese; R.; Kowalski; S.; Willeke; F.

    2011-03-28T23:59:59.000Z

    NSLS II is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets. The pulsed magnet errors will excite a betatron oscillation. This paper gives the formulas of each error contribution to the oscillation amplitude at various source points in the ring. These are compared with simulation results. Based on the simple formulas, we can specify the error tolerances on the pulsed magnets with the goal to minimize the injection transient and scale it to similar machines. The NSLS-II is a 3 GeV third generation synchrotron light source under construction at Brookhaven National Laboratory. Due to its short lifetime, NSLS-II storage ring requires the top-off injection (once per minute) during which the stored beam orbit is highly desired as transparent. But the errors, from the SR pulsed magnets at the injection straight - kickers (non-closed injection bump) and pulsed septum (time-dependent stray field), excite a stored beam betatron oscillation. The magnitude of the perturbation can be large disturning some of the user experiments. In 2010 injection straight review, based on the experts experiences in ALS, DIAMOND, SLS and SPEAR, we came to the conclusion that the acceptable oscillation amplitude at the long straight is set as 100 {micro}m (i.e. 0.7 {sigma}x) in horizontal plane and 12 {micro}m, 2.5 {sigma}y, in vertical plane for NSLS II. This paper gives the analysis estimate of the different error source tolerance from the pulse magnets and scales it to our requirements. The result is compared with simulation.

  3. NumericalS imulation of Cooling Gas Injection Using

    E-Print Network [OSTI]

    NumericalS imulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen words:fi nite volume method,fi lm cooling, cooling gas injection, multiscale techniques, grid adaptation#ciency is investigated. Keywords: Finite Volum Method,Film cooling, Cooling gas injection, Multiscale techniques, Grid

  4. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01T23:59:59.000Z

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  5. Injection and acceleration of H at Earth's bow shock

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Injection and acceleration of H and He2 at Earth's bow shock M. Scholer1 , H. Kucharek1 , K the injection and subsequent acceleration of part of the solar wind ions at the Earth's bow shock. The shocks particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter

  6. Analysis of Power System Dynamics Subject to Stochastic Power Injections

    E-Print Network [OSTI]

    Liberzon, Daniel

    Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

  7. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect (OSTI)

    Petzoldt, R.W.

    1995-03-07T23:59:59.000Z

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  8. A study of steam injection in fractured media

    SciTech Connect (OSTI)

    Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

    1996-02-01T23:59:59.000Z

    Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

  9. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  10. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

    1996-12-31T23:59:59.000Z

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  11. Direct tuyere injection of oxygen for enhanced coal combustion

    SciTech Connect (OSTI)

    Riley, M.F. [Praxair, Inc., Tarrytown, NY (United States)

    1996-12-31T23:59:59.000Z

    Injecting oxygen directly into the tuyere blowpipe can enhance the ignition and combustion of injected pulverized coal, allowing the efficient use of higher coal rates at high furnace production levels. The effects of direct oxygen injection have been estimated from an analysis of the factors controlling the dispersion, heating, ignition, and combustion of injected coal. Injecting ambient temperature oxygen offers mechanical improvements in the dispersion of coal but provides little thermochemical benefit over increased blast enrichment. Injecting hot oxygen through a novel, patented thermal nozzle lance offers both mechanical and thermochemical benefits over increased enrichment or ambient oxygen injection. Plans for pilot-scale and commercial-scale testing of this new lance are described.

  12. Current generation by phased injection of pellets

    SciTech Connect (OSTI)

    Fisch, N.J.

    1983-08-01T23:59:59.000Z

    By phasing the injection of frozen pellets into a tokamak plasma, it is possible to generate current. The current occurs when the electron flux to individual members of an array of pellets is asymmetric with respect to the magnetic field. The utility of this method for tokamak reactors, however, is unclear; the current, even though free in a pellet-fueled reactor, may not be large enough to be worth the trouble. Uncertainty as to the utility of this method is, in part, due to uncertainty as to proper modeling of the one-pellet problem.

  13. Resonantly pumped optical pumping injection cavity lasers

    E-Print Network [OSTI]

    Santilli, Michael Robert; McAlpine, T. C.; Greene, K. R.; Olafsen, L. J.; Bewley, W. W.; Felix, C. L.; Vurgaftman, I.; Meyer, J. R.; Lee, H.; Martinelli, R. U.

    2004-11-01T23:59:59.000Z

    , the optically pumped devices have thus far produced much higher powers than their diode counterparts. 4–8 To en- sure the efficient injection of carriers, these optically pumped lasers have employed two main approaches to maximize the absorption of pump photons... of active QWs. The first OPIC lasers to be investigated 12,13 were de- signed for pumping by a Q-switched Ho:YAG laser emitting at 2100 nm. Whereas the cavity resonance wavelength sl cav d for normal incidence, as determined from the transmittance spectrum...

  14. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27T23:59:59.000Z

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  15. JET multi-pellet injection experiments

    SciTech Connect (OSTI)

    Kupschus, P.; Bartlett, D.V.; Behringer, K.; Campbell, D.J.; Cheetham, A.; Cordey, J.G.; Corti, S.; Gadeberg, M.; Gondhalekar, A.; Gottardi, N.A.; Jarvis, O.N.; Morgan, P.; O'Rourke, J.; Sadler, G.; Snipes, J.; Stubberfield, D.; Taroni, A.; Tubbing, B.; Von Hellermann, M. (JET Joint Undertaking, Abingdon (UK)); Baylor, L.R.; Houlberg, W.A.; Jernigan, T.C.; Milora, S.L. (Oak Ridge National Lab., TN (USA)); Galvao, R.

    1988-01-01T23:59:59.000Z

    The multiple injection of deuterium pellets into JET plasmas under various scenarios for limiter and X-point discharges with currents up to 5 MA with pure ohmic, neutral beam and RF heating has been undertaken in a collaborative effort between JET and an USDOE team under the umbrella of the EURATOM-USDOE (US Department of Energy) Fusion Agreement on Pellet Injection using an ORNL built 3-barrel, repetitive multi-pellet launcher. The best plasma performance with pellet injection and additional heating so far has been obtained by injecting early into 3 MA, 3.1 T pulses while centrally depositing the pellet mass, with N{sub eo} initially well in excess of 10{sup 20} m{sup {minus}3}. Subsequent central heating of this dense and clean core by ion cyclotron resonance heating (ICRH) with H and {sup 3}He minorities in the 10 MW range yields T{sub eo} up to 12 keV and T{sub io} up to more than 10 keV, while n{sub eo} is decreasing (within up to 1.5s) decaying to 0.6 {times} 10{sup 20} m{sup {minus}3}, suggesting an enhanced central energy confinement in limiter discharges with only modestly improved global L-mode confinement. In this plasma core electron pressures of more than 1 bar with gradients in the order of 4 bar*m{sup {minus}1} have been reached with the total pressure approaching ballooning stability limits. The resulting total neutron rate from D-D reactions of up to 4.5*10{sup 15} s{sup {minus}1} so far increases strongly with RF power and can exceed that of similar non-enhanced shots by factors of 3 to 5. n{sub D}(O)*T{sub i}(O)*{tau}{sub E}(a) products in the range of 1 to 2*10{sup 20} m{sup {minus}3} keVs are obtained but combined power with neutral beams (up to 28 MW total), generally degrades the performance though leading to higher neutron rates of up to 7*10{sup 15} s{sup {minus}1}. 10 refs., 8 figs.

  16. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  17. Optimizing injected solvent fraction in stratified reservoirs 

    E-Print Network [OSTI]

    Moon, Gary Michael

    1993-01-01T23:59:59.000Z

    , . . . 22 4. 2 Water-Oil and Water-Solvent Fractional Flow Curves . . 4. 3 Mobility of Water-Oil-Solvent Mixtures. . . . . . . . 25 5. 1 Injected Solvent Displacing Formation Oil at 0. 5 PVI . . . . 31 5. 2 Comparison of Simulator Results and Buckley...-Levcrctt Analytic Solution at 0. 3 PVI . 5. 3 Comparison of Simulator Results and Walsh-Lake Analytic Solution for Secondary Flood (S, =- S;?= 0. 2) at "Equal Velocity" f?& (f, & ? 0. 35) and 0. 3 PVI?. . . . . . . . . . . . . . . . . 5. 4 Saturation Plot...

  18. Proper Injection Techniques in Dairy Cattle

    E-Print Network [OSTI]

    Villarino, Mario A.

    2009-05-04T23:59:59.000Z

    labeled for use in dairy ? cattle. Refer to the vaccine label for this information. Using a vaccine in an animal species for which it is not labeled is illegal. Give the proper dosage as indicated on the label. ? Always give an injection in the body... for consumption is called the withdrawal time. The withdrawal times for meat and milk may be different. It is illegal to sell meat or milk that contains medicine residue and sellers are subject to large fines. If there is a withdrawal time ? on the label...

  19. Category:Injectivity Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?sourcehelp ispage?Injectivity

  20. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30T23:59:59.000Z

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  1. Well injection valve with retractable choke

    SciTech Connect (OSTI)

    Pringle, R.E.

    1986-07-22T23:59:59.000Z

    An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

  2. Ejector device for direct injection fuel jet

    DOE Patents [OSTI]

    Upatnieks, Ansis (Livermore, CA)

    2006-05-30T23:59:59.000Z

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  3. Impurity pellet injection experiments at TFTR

    SciTech Connect (OSTI)

    Marmar, E.S.

    1992-01-01T23:59:59.000Z

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ( lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li[sup +] line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li[sup +] emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from [approximately]0.3 to [approximately]7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper.

  4. Duct injection technology prototype development: Nozzle development Subtask 4. 1, Atomizer specifications for duct injection technology

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Babcock Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  5. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

    2008-01-01T23:59:59.000Z

    INTERPRETATION The injection of CO 2 causes a decrease in seismicseismic monitoring during injection. Although quantitative interpretation

  6. Replenishing data descriptors in a DMA injection FIFO buffer

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Cernohous, Bob R. (Rochester, MN); Heidelberger, Philip (Cortlandt Manor, NY); Kumar, Sameer (White Plains, NY); Parker, Jeffrey J. (Rochester, MN)

    2011-10-11T23:59:59.000Z

    Methods, apparatus, and products are disclosed for replenishing data descriptors in a Direct Memory Access (`DMA`) injection first-in-first-out (`FIFO`) buffer that include: determining, by a messaging module on an origin compute node, whether a number of data descriptors in a DMA injection FIFO buffer exceeds a predetermined threshold, each data descriptor specifying an application message for transmission to a target compute node; queuing, by the messaging module, a plurality of new data descriptors in a pending descriptor queue if the number of the data descriptors in the DMA injection FIFO buffer exceeds the predetermined threshold; establishing, by the messaging module, interrupt criteria that specify when to replenish the injection FIFO buffer with the plurality of new data descriptors in the pending descriptor queue; and injecting, by the messaging module, the plurality of new data descriptors into the injection FIFO buffer in dependence upon the interrupt criteria.

  7. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    E-Print Network [OSTI]

    Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

    2014-12-02T23:59:59.000Z

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

  8. Secondary air injection system and method

    DOE Patents [OSTI]

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19T23:59:59.000Z

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  9. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Franklin M. Orr, Jr.

    2004-05-01T23:59:59.000Z

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference compositional simulation.

  10. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  11. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  12. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

  13. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

  14. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  15. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry (Columbia, MO)

    1982-01-01T23:59:59.000Z

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  16. V-170: Apache Subversion Hook Scripts Arbitrary Command Injection...

    Broader source: Energy.gov (indexed) [DOE]

    script while processing filenames and can be exploited to inject and execute arbitrary shell commands via a specially crafted request. Successful exploitation requires that...

  17. assembly injection moulding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management of moulds and dies : a contribution to improved design and manufacture of tooling for injection moulding. Open Access Theses and Dissertations Summary: ??Thesis (PhD...

  18. SLOW DEGRADATION AND ELECTRON INJECTION IN SODIUM-B ALUMINAS

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2013-01-01T23:59:59.000Z

    transfer of 703 XBB 804 4126 Degradation of sulfur side ofsilver staining. The degradation layer becomes more uniformMaterials Science SLOW DEGRADATION AND ELECTRON INJECTION IN

  19. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  20. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

  1. Advanced Diesel Common Rail Injection System for Future Emission...

    Broader source: Energy.gov (indexed) [DOE]

    all rights of disposal such as copying and passing on to third parties. 1 Advanced Diesel Common Rail Injection System for Future Emission Legislation Roger Busch Common Rail...

  2. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Broader source: Energy.gov (indexed) [DOE]

    Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California, Geothermal Field; 2010...

  3. Investigation of injection-induced seismicity using a coupled fluid ...

    E-Print Network [OSTI]

    2012-01-23T23:59:59.000Z

    injection of fluid for the extraction of geothermal heat: Journal of Geo- physical ... earthquakes: Disposal of waste fluids into a deep well has triggered earth-.

  4. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Broader source: Energy.gov (indexed) [DOE]

    100 bar injection pressure Simulated turbocharging based on hydrogen PFI turbo results Operation limited due to peak cylinder pressure Only early DI possible...

  5. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    * Motivation and background * Adaptive Injection Strategy (AIS) * Simulation and optimization - Two-Stage Combustion (TSC -- HCCI + Diffusion combustion) optimization using AIS...

  6. Advanced Modeling of Direct-Injection Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

  7. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    problems 20 2.3.1 Classes 20 2.3.2 Types of classi cation problems 20 2.3.3 Learning and test sets 21 2Applied inductive learning Louis Wehenkel University of Li`ege Faculty of Applied Sciences Course;#12;APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li#12;ege

  8. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    .3.2 Types of classification problems 20 2.3.3 Learning and test sets 21 2.3.4 Decision or classificationApplied inductive learning Louis Wehenkel University of Liâ??ege Faculty of Applied Sciences Courseâ??e'' #12; #12; APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li

  9. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  10. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  11. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  12. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

    2011-01-01T23:59:59.000Z

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

  13. Calculation of Neutral Beam Injection into SSPX

    SciTech Connect (OSTI)

    Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S

    2006-06-13T23:59:59.000Z

    The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.

  14. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2006-04-30T23:59:59.000Z

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

  15. A computational study of an HCCI engine with direct injection during gas exchange

    SciTech Connect (OSTI)

    Su, Haiyun; Vikhansky, Alexander; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Kim, Kyoung-Oh; Kobayashi, Tatsuo [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan); Mauss, Fabian [Division of Combustion Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)

    2006-10-15T23:59:59.000Z

    We present a new probability density function (PDF)-based computational model to simulate a homogeneous charge compression ignition (HCCI) engine with direct injection (DI) during gas exchange. This stochastic reactor model (SRM) accounts for the engine breathing process in addition to the closed-volume HCCI engine operation. A weighted-particle Monte Carlo method is used to solve the resulting PDF transport equation. While simulating the gas exchange, it is necessary to add a large number of stochastic particles to the ensemble due to the intake air and EGR streams as well as fuel injection, resulting in increased computational expense. Therefore, in this work we apply a down-sampling technique to reduce the number of stochastic particles, while conserving the statistical properties of the ensemble. In this method some of the most important statistical moments (e.g., concentration of the main chemical species and enthalpy) are conserved exactly, while other moments are conserved in a statistical sense. Detailed analysis demonstrates that the statistical error associated with the down-sampling algorithm is more sensitive to the number of particles than to the number of conserved species for the given operating conditions. For a full-cycle simulation this down-sampling procedure was observed to reduce the computational time by a factor of 8 as compared to the simulation without this strategy, while still maintaining the error within an acceptable limit. Following the detailed numerical investigation, the model, intended for volatile fuels only, is applied to simulate a two-stroke, naturally aspirated HCCI engine fueled with isooctane. The in-cylinder pressure and CO emissions predicted by the model agree reasonably well with the measured profiles. In addition, the new model is applied to estimate the influence of engine operating parameters such as the relative air-fuel ratio and early direct injection timing on HCCI combustion and emissions. The qualitative trends observed in the parametric variation study match well with experimental data in literature. (author)

  16. Numerical simulation of cooling gas injection using adaptive multiscale techniques

    E-Print Network [OSTI]

    Numerical simulation of cooling gas injection using adaptive multiscale techniques Wolfgang Dahmen is investigated. Keywords: Finite Volume Method, Film cooling, Cooling gas injection, Multiscale techniques, Grid Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen Abstract The interaction of a jet of cooling gas

  17. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  18. Assessing the Impact of Cache Injection on Parallel Application Performance

    E-Print Network [OSTI]

    Maccabe, Barney

    ´on University of New Mexico leon@cs.unm.edu 1 Introduction The memory wall [13], the continuing disparity by the NIC (producer). This producer-initiated model makes cache injection prone to cache pollution to inject into the cache to minimize pollution. In Section 4, I character- ize application sensitivity

  19. The Human Plutonium Injection Experiments William Moss and Roger Eckhardt

    E-Print Network [OSTI]

    Massey, Thomas N.

    177 The Human Plutonium Injection Experiments William Moss and Roger Eckhardt T he human plutonium that was pertinent to those and LouisHempelmann #12;similar radiation experi- ments with humans. This article injection experiments carried out during and after the Manhattan Project have received tremendous noto

  20. Experimental investigation of caustic steam injection for heavy oils 

    E-Print Network [OSTI]

    Madhavan, Rajiv

    2010-01-16T23:59:59.000Z

    An experimental study has been conducted to compare the effect of steam injection and caustic steam injection in improving the recovery of San Ardo and Duri heavy oils. A 67 cm long x 7.4 cm O.D (outer diameter), steel ...

  1. How the world's largest seawater injection system was designed

    SciTech Connect (OSTI)

    Morrison, J.B.; Jorque, M.A.

    1981-07-01T23:59:59.000Z

    The world's largest seawater injection system went on stream in Saudi Arabia in June 1978 to furnish 4.2 million bpd of water for pressure maintenance in the Uthmaniyah sector of the giant Ghawar Field. The operator, Aramco, first began water injection along the flanks in this field in 1966 using gravity injection wells. This gravity system gave way to a pressurized system under a program started in 1973. During this period, the primary source for injection was saline water from the Wasia Aquifer in the Uthmaniyah area. In 1974 it was determined that this aquifer could not supply the design requirement of 4.2 million bpd of saline water. Therefore, it was decided to convert the injection system to seawater obtained from the Arabian Gulf. This required the design and construction of a seawater treating plant and installation of pipelines and intermediate pump stations to transport the water from the treating plant to the existing Uthmaniyah Water Supply Station.

  2. Economics of dry FGD by sorbent injection

    SciTech Connect (OSTI)

    Naulty, D.J.; Hooper, R.G.; McDowell, D.A.; Scheck, R.W.

    1983-06-01T23:59:59.000Z

    The body of information in this paper is directed to engineers involved in desulfurization of boiler flue gas. The problems of wet scrubbing SO/sub 2/ from power plant flue gases have been well documented. The utility industry has been interested in developing new processes that would overcome problems associated with wet slurry systems. While spray dryer technology for FGD may alleviate many of these problems, this concept has problems as well. Dry injection FGD takes the development process one step further to a totally dry system, thus eliminating the difficulties of wet slurry handling. The concept of using the fabric filter as a chemical contactor for the SO/sub 2/ absorption was proposed in the late 1960s by Chaffee and Hill. In the early 1970s, Superior Oil Company, Wheelabrator Frye, Carborundum, and others investigated the use of nahcolite for SO/sub 2/ removal. Nahcolite is a natural occurring sodium bicarbonate found in great quantities in the oil shale regions of Colorado. In general, these developments were found viable in certain circumstances, but commercialization was hampered by the lack of nahcolite suppliers.

  3. Dynamic Feed Control For Injection Molding

    DOE Patents [OSTI]

    Kazmer, David O. (San Francisco, CA)

    1996-09-17T23:59:59.000Z

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  4. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-06-30T23:59:59.000Z

    ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

  5. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  6. A fast model for spreading of neutral particles injected locally into hot plasma

    SciTech Connect (OSTI)

    Tokar, M. Z. [Institut für Energie- und Klimaforschung - Plasmaphysik, Forschungszentrum Jülich GmbH, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2014-08-15T23:59:59.000Z

    A fast model for calculation of non-stationary 3-D profiles of the density for neutral particles locally released into a hot plasma is elaborated. The approach reduces non-stationary three-dimensional transport equations to a set of one-dimensional ones describing the time evolution of the radial profiles for several parameters characterizing adequately the three-dimensional structure. The method is applied to model the spreading process of carbon atoms released by laser desorption in an experimental device and the local injection of working gas into a fusion reactor. The associated heat loads onto the first wall are assessed.

  7. Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine

    E-Print Network [OSTI]

    Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

    2012-01-01T23:59:59.000Z

    In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

  8. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil 

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  9. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17T23:59:59.000Z

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  10. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect (OSTI)

    Bloß, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jüttner, G., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Jacob, S., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Löser, C., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Michaelis, J., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P., E-mail: bloss@kuz-leipzig.de, E-mail: juettner@kuz-leipzig.de, E-mail: jacob@kuz-leipzig.de, E-mail: loeser@kuz-leipzig.de, E-mail: michaelis@kuz-leipzig.de, E-mail: krajewsky@kuz-leipzig.de [Kunststoff-Zentrum in Leipzig gGmbH (KuZ), Leipzig (Germany)

    2014-05-15T23:59:59.000Z

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  11. Analysis of Injection-Backflow Tracer Tests in Fractured Geothermal Reservoirs

    SciTech Connect (OSTI)

    Kocabas, I.; Horne, R.N.

    1987-01-20T23:59:59.000Z

    Tracer tests have been an important technique for determining the flow and reservoir characteristics in various rock matrix systems. While the interwell tracer tests are aimed at the characterization of the regions between the wells, single-well injection-backflow tracer tests may be useful tools of preliminary evaluation, before implementing long term interwell tracer tests. This work is concerned with the quantitative evaluation of the tracer return profiles obtained from single well injection-backflow tracer tests. First, two mathematical models of tracer transport through fractures, have been reviewed. These two models are based on two different principles: Taylor Dispersion along the fracture and simultaneous diffusion in and out of the adjacent matrix. Then the governing equations for the transport during the injection-backflow tests have been solved. Finally the results were applied to field data obtained from Raft River and East Mesa geothermal fields. In order to determine the values of the parameters of the models that define the transport mechanisms through fractures a non-linear optimization technique was employed. 26 refs., 10 figs.

  12. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01T23:59:59.000Z

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  13. Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes

    SciTech Connect (OSTI)

    Puder, Markus G.; Bryson, Bill; Veil, John A.

    2003-03-03T23:59:59.000Z

    This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

  14. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, Ray A. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.

  15. Pressurized feed-injection spray-forming apparatus

    DOE Patents [OSTI]

    Berry, R.A.; Fincke, J.R.; McHugh, K.M.

    1995-08-29T23:59:59.000Z

    A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.

  16. Thermal Particle Injection in Nonlinear Diffusive Shock Acceleration

    E-Print Network [OSTI]

    Donald C. Ellison; Pasquale Blasi; Stefano Gabici

    2005-07-05T23:59:59.000Z

    Particle acceleration in collisionless astrophysical shocks, i.e., diffusive shock acceleration (DSA), is the most likely mechanism for producing cosmic rays, at least below 10^{15} eV. Despite the success of this theory, several key elements, including the injection of thermal particles, remains poorly understood. We investigate injection in strongly nonlinear shocks by comparing a semi-analytic model of DSA with a Monte Carlo model. These two models treat injection quite differently and we show, for a particular set of parameters, how these differences influence the overall acceleration efficiency and the shape of the broad-band distribution function.

  17. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  18. Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes

    E-Print Network [OSTI]

    Sandoval Rodriguez, Angelica Patricia

    2002-01-01T23:59:59.000Z

    condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

  19. Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands

    E-Print Network [OSTI]

    Mazzini, Adriano

    Abstract Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands fluids escape from hydrocarbon reservoirs through permeable networks of fractures, injected sands. Within fractures and injected sands, oxidation of chained hydrocarbons supplies bicarbonate to the co

  20. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01T23:59:59.000Z

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  1. Feasibility study of a laser ion source for primary ion injection into the Relativistic Heavy Ion Collider electron beam ion sourcea...

    E-Print Network [OSTI]

    chamber to be able to change ion species on a pulse by pulse basis. The optimal plasma drift length variesFeasibility study of a laser ion source for primary ion injection into the Relativistic Heavy Ion Collider electron beam ion sourcea... Takeshi Kanesue Department of Applied Quantum Physics and Nuclear

  2. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal Injection Well - Form 4003-3 Form Type ApplicationNotice Form...

  3. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01T23:59:59.000Z

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  4. Premixed direct injection nozzle for highly reactive fuels

    DOE Patents [OSTI]

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24T23:59:59.000Z

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  5. Power dependence of pure spin current injection by quantum interference

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Zhao, Hui

    2009-04-01T23:59:59.000Z

    We investigate the power dependence of pure spin current injection in GaAs bulk and quantumwell samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition...

  6. The feasibility of deep well injection for brine disposal

    E-Print Network [OSTI]

    Spongberg, Martin Edward

    1994-01-01T23:59:59.000Z

    feasibility. The methodology is utilized to make a preliminary evaluation of a proposed brine injection project in the Dove Creek area of King and Stonewall Counties, North Central Texas. Four known deep aquifers are modeled, using the SWIFT/486 software...

  7. Collagen scaffolds and injectable biopolymer gels for cardiac tissue engineering

    E-Print Network [OSTI]

    Ng, Karen Kailin

    2012-01-01T23:59:59.000Z

    Three-dimensional biomaterial scaffolds have begun to shown promise for cell delivery for cardiac tissue engineering. Although various polymers and material forms have been explored, there is a need for: injectable gels ...

  8. The design, manufacturing and use of economically friendly injection molds

    E-Print Network [OSTI]

    Buchok, Aaron (Aaron J.)

    2008-01-01T23:59:59.000Z

    Much of the polymer manufacturing done today involves the process of injection molding. It can be difficult to gain experience in the art of designing and building tooling for this process outside of industry. The goal of ...

  9. Lithium pellet injection into high pressure magnetically confined plasmas

    E-Print Network [OSTI]

    Böse, Brock (Brock Darrel)

    2010-01-01T23:59:59.000Z

    The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High ...

  10. Resistivity measurements before and after injection Test 5 at...

    Open Energy Info (EERE)

    measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Resistivity...

  11. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  12. Enhanced Heavy Oil Recovery by Emulsification With Injected Nanoparticles

    E-Print Network [OSTI]

    Martinez Cedillo, Arturo Rey

    2013-11-26T23:59:59.000Z

    In-situ oil-in-water emulsion generation, using modified silica hydrophilic nanoparticles as emulsifier, has been proposed as an enhanced oil recovery process. The nanoparticles are injected as an aqueous dispersion; its hydrophilic character allows...

  13. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  14. Microseismic Study with LBNL - Monitoring the Effect of Injection...

    Broader source: Energy.gov (indexed) [DOE]

    9 4.5.3 Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers, California, Geothermal Field...

  15. Transport of Injected Isobutane by Thermal Groundwater in Long...

    Open Energy Info (EERE)

    Injected Isobutane by Thermal Groundwater in Long Valley Caldera, California, USA, In- Water-Rock Interaction-11 Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Development of an injection augmentation program at the Dixie...

    Open Energy Info (EERE)

    and constructing a polyethylene pipeline to a dedicated injector.During the first two years of this program four different injectors have been utilized and tested.An injection...

  17. Injectivity and stability for a generic class of generalized Radon ...

    E-Print Network [OSTI]

    2014-12-15T23:59:59.000Z

    then show injectivity and stability for an open, dense subset of smooth generalized Radon ..... ei(s??(y,?))s w(y, ?)J(y, ?)f(y) dVol(y) ds. = ?. M1. KRw (s

  18. Underground Injection Control Program Rules and Regulations (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

  19. CTI in NSTX, Proposal for Compact Toroid Injection in NSTX

    SciTech Connect (OSTI)

    R. Raman

    2008-11-04T23:59:59.000Z

    This is the final Report summarizing the activities of the proposal to invetigate the potential of deep fueling a spherical torus or tokamak using high velocity injection of compact toroids.

  20. The reduction of supersonic jet noise using pulsed microjet injection

    E-Print Network [OSTI]

    Ragaller, Paul Aaron

    2007-01-01T23:59:59.000Z

    This thesis is concerned with the active control of supersonic jet noise using pulsed microjet injection at the nozzle exit. Experimental investigations were carried out using this control method on an ideally expanded ...

  1. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

  2. Department of Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    , computational mathematics, discrete applied mathematics, and stochas- tics. More detailed descriptions of Philosophy in Collegiate Mathematics Education (joint program with the Department of Mathematics and Science Education) Research Facilities The department provides students with office space equipped with computers

  3. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

    2012-01-03T23:59:59.000Z

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  4. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01T23:59:59.000Z

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  5. The Armco/B and W coal injection technology

    SciTech Connect (OSTI)

    Sexton, J.R. [AK Steel Corp., Ashland, KY (United States)

    1994-12-31T23:59:59.000Z

    A general presentation is given of the development of pulverized coal injection at the Ashland Works from the initial installation in 1963 to the present. An explanation of the flow sheets for pulverization and injection along with safety and explosion prevention will be discussed. The unique parameters of the Armco/B and W system will be explained and the operations at various steel plants presented.

  6. Heat transfer and film cooling with steam injection 

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...

  7. Dynamic model and control of the injection molding process

    E-Print Network [OSTI]

    Gardner, Anthony Nickolas

    1970-01-01T23:59:59.000Z

    HOLDING PROCESS I. INTRODUCTION One widely used technique for forming raw polymer materials into finished parts, is the injection molding process, In a normal operation sequence the equipment intakes a small volume of plastic pellets and heats them... volume of plastic pellets, heat them till they form a viscous liquid mass, and then ram them into the mold under high pressures. Nest modern injection molding machines employ a screw-ram device enclosed in a barrel for the injector mechanism. In a...

  8. An investigation of thermal spray structural reaction injection molded composites

    E-Print Network [OSTI]

    Hill, Bryan William

    1996-01-01T23:59:59.000Z

    AN INVESTIGATION OF THERMAL SPRAY STRUCTURAL REACTION INJECTION MOLDED COMPOSITES A Thesis BRYAN WILLIAM HILL, IH Submitted to the Office of Graduate Studies of Texas AJtM University in partial fulfilhnent of the requirements for the degree... of MASTER OF SCIENCE December 1996 Major Subject: Mechanical Engineering AN INVESTIGATION OF THERMAL SPRAY STRUCTURAL REACTION INJECTION MOLDED COMPOSITES A Thesis by BRYAN WILLIAM HILL, III Submitted to Texas A&M University in partial fulfillment...

  9. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01T23:59:59.000Z

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  10. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15T23:59:59.000Z

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  11. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are...

  12. Injection efficiency in a cyclic induction accelerator with constant driving field

    SciTech Connect (OSTI)

    Simukhin, N.; Chakhlov, V.

    1981-10-01T23:59:59.000Z

    The injection efficeincy as a function of the accelerating voltage for injection currents of varying duration and amplitudes for the cyclic induction electron accelerator has been determined. (AIP)

  13. Evaluation of the effects of contaminant injection location and injection method on the determination of overall relative room ventilation efficiency

    E-Print Network [OSTI]

    Pierce, Stephen Dale

    1994-01-01T23:59:59.000Z

    The purpose of this research is to evaluate an emerging concept called ventilation effectiveness at several points in a real room. Ventilation effectiveness was calculated using the pulse and step-up injection methods which were performed in four...

  14. Modeling applied to problem solving

    E-Print Network [OSTI]

    Pawl, Andrew

    We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

  15. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

  16. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  17. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect (OSTI)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G. [Accelerators Department, Nuclear Research Center, AEA, Cairo 13759 (Egypt)] [Accelerators Department, Nuclear Research Center, AEA, Cairo 13759 (Egypt); El Fiki, S. A.; Nouh, S. A. [Faculty of Science, Ain Shams University, Cairo 11566 (Egypt)] [Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); El Disoki, T. M. [Faculty of Girls, Ain Shams University, Cairo 11566 (Egypt)] [Faculty of Girls, Ain Shams University, Cairo 11566 (Egypt)

    2013-08-15T23:59:59.000Z

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, ?= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ?0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  18. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  19. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  20. CX-010574: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

  1. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  2. Experimental study of curved guide tubes for pellet injection

    SciTech Connect (OSTI)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Milora, S.L.

    1997-12-01T23:59:59.000Z

    The use of curved guide tubes for transporting frozen hydrogen pellets offers great flexibility for pellet injection into plasma devices. While this technique has been previously employed, an increased interest in its applicability has been generated with the recent ASDEX Upgrade experimental data for magnetic high-field side (HFS) pellet injection. In these innovative experiments, the pellet penetration appeared to be significantly deeper than for the standard magnetic low-field side injection scheme, along with corresponding greater fueling efficiencies. Thus, some of the major experimental fusion devices are planning experiments with HFS pellet injection. Because of the complex geometries of experimental fusion devices, installations with multiple curved guide tube sections will be required for HFS pellet injection. To more thoroughly understand and document the capability of curved guide tubes, an experimental study is under way at the Oak Ridge National Laboratory (ORNL). In particular, configurations and pellet parameters applicable for the DIII-D tokamak and the International Thermonuclear Experimental Reactor (ITER) were simulated in laboratory experiments. Initial test results with nominal 2.7- and 10-mm-diam deuterium pellets are presented and discussed.

  3. Fueling efficiency of pellet injection on DIII-D

    SciTech Connect (OSTI)

    Baylor, L.R.; Jernigan, T.C.; Maingi, R. [Oak Ridge National Lab., TN (United States); Lasnier, C.J. [Lawrence Livermore National Lab., CA (United States); Ali Mahdavi, M. [General Atomics, San Diego, CA (United States)

    1998-05-01T23:59:59.000Z

    Pellet injection has been used on the DIII-D tokamak to study density limits and particle transport in H-mode and inner wall limited L-mode plasmas. These experiments have provided a variety of conditions in which to examine the fueling efficiency of pellets injected into DIII-D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel atoms, is determined by measurements of density profiles before and just after pellet injection. The authors have found that there is a decrease in the pellet fueling efficiency with increased neutral beam injection power. The pellet penetration depth also decreases with increased neutral beam injection power so that, in general, fueling efficiency increases with penetration depth. The fueling efficiency is generally 25% lower in ELMing H-mode discharges than in L-mode due to an expulsion of particles with a pellet triggered ELM. A comparison with fueling efficiency data from other tokamaks shows similar behavior.

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  5. Review of the CRIP (Controlled Retracting Injection Point) process

    SciTech Connect (OSTI)

    Hill, R.W.

    1986-07-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory has been working in the field of underground coal gasification since 1976. We have had a balanced program of modeling, laboratory experiments and field experiments. We have developed several cavity growth and gas composition models. These are designed to be as simple and modular as possible because of the lack of detailed input information and the need to keep computing time low. Our laboratory program is designed to complement and support the modeling effort and the field program. We conducted three field tests at Hoe Creek, Wyoming; each one using a different linking method. We did a series of five small field tests at Centralia, Washington, to study burn cavity development as a function of injection parameters. These were followed a year later by a larger test of the Controlled Retracting Injection Point, or CRIP, process. This concept is used in the design of the Belgian-German test and in the coming Rocky Mountain-1 test. It utilizes injection through a horizontal drilled hole to hold the injection point on the bottom of the seam and a controlled destruction of the injection pipe to move the burn zone when the product gas quality deteriorates. 16 refs., 12 figs.

  6. Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

    E-Print Network [OSTI]

    Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

  7. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  8. Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

    E-Print Network [OSTI]

    Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

  9. NON-ISOTHERMAL INJECTION MOULDING WITH RESIN CURE AND PREFORM DEFORMABILITY

    E-Print Network [OSTI]

    Preziosi, Luigi

    Transfer Molding), SRIM (Structural Resin Injection Molding), SCRIMP (Seeman Com- posite Resin Infusion

  10. Interaction between Injection Points during Hydraulic Fracturing Kjetil M. D. Hals1,

    E-Print Network [OSTI]

    Santos, Juan

    fluid to create fracture networks in rock layers with low permeabilities. A fracking fluid is injected

  11. The application of high frequency seismic monitoring methods for the mapping of fluid injections

    SciTech Connect (OSTI)

    Majer, E.L.

    1987-04-01T23:59:59.000Z

    This paper describes experimental work using seismic methods for monitoring the path of fluid injections. The most obvious application is the high pressure fluid injections for the purpose of hydrofracturing. Other applications are the injection of grout into shallow subsurface structures and the disposal of fluids in the geothermal and toxic waste industries. In this paper hydrofracture monitoring and grout injections will be discussed.

  12. Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

    E-Print Network [OSTI]

    Measurement of the Fractional Thermonuclear Neutron Yield during Deuterium Neutral-Beam Injection into Deuterium Plasmas

  13. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  14. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  15. Injection and acceleration of Au31+ in the BNL AGS.

    SciTech Connect (OSTI)

    Fischer,W.; Ahrens, L.; Brown, K.; Gardner, C.; Glenn, W.; Huang, H.; Mapes, M.; Smart, L.; Thieberger, P.; Tsoupas, N.; Zhang, S.Y.; Zeno, K.; Omet, C.; Spiller, P.

    2008-06-23T23:59:59.000Z

    Injection and acceleration of ions in a lower charge state reduces space charge effects, and, if further elcctron stripping is needed, may allow elimination of a stripping stage and the associated beam losses. The former is of interest to the accelerators in the GSI FAIR complex, the latter for BNL RHIC collider operation at energies lower than the current injection energy. Lower charge state ions, however, have a higher likelihood of electron stripping which can lead to dynamic pressures rises and subsequent beam losses. We report on experiments in the AGS where Au{sup 31+} ions were injected and accelerated instead of the normally used Au{sup 77+} ions. Beam intensities and the average pressure in the AGS ring are recorded, and compared with calculations for dynamic pressures and beam losses. The experimental results will be used to benchmark the StrahlSim dynamic vacuum code and will be incorporated in the GSI FAIR SIS100 design.

  16. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van [Department of Physics and Astronomy, University of California at Irvine, CA, 92697 (United States); Binderbauer, M. [Tri Alpha Energy Inc., Foothill Ranch, CA, 92610 (United States); Isakov, I. [Institute of High Voltage Technology, Tomsk, 634050 (Russian Federation)

    2005-10-15T23:59:59.000Z

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  17. Injection Related Background due to the Transverse Feedback

    SciTech Connect (OSTI)

    Decker, F.J.; Akre, R.; Fisher, A.; Iverson, R.; Weaver, M.; /SLAC

    2008-03-18T23:59:59.000Z

    The background in the BaBar detector is especially high during injection, when most components are actually having reduced voltages. The situation is worse for the beam in High Energy Ring (HER) when the LER beam is present. It was found that the transverse feedback system plays an important role when stacking more charge on top of existing bunches. Lowering the feedback gain helped and it was realized later that the best scenario would be to gate off the feedback for only the one bunch, which got additional charge injected into it. The explanation is that the blown-up, but centered, original HER bunch plus the small injected off-axis bunch (each with half the charge) would stay in the ring if not touched, but the feedback system sees half the offset and wants to correct it, therefore disturbing and scraping the blown-up part.

  18. D-ERDWZLG ETH Certificate of Advanced Studies (CAS) in Applied Earth Sciences Eidgenssische Technische Hochschule Zrich

    E-Print Network [OSTI]

    Picasso, Marco

    the past few years extraction of shale gas by hydraulic fracturing has evolved rapidly to become standard pressures. Further major topics are injection techniques, hydraulic fracturing design, modellingD-ERDWZLG ETH Certificate of Advanced Studies (CAS) in Applied Earth Sciences Eidgenössische

  19. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  20. Journal of Applied Ecology 2006

    E-Print Network [OSTI]

    Thomas, Len

    Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

  1. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  2. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  3. California Energy Commission Apply Today!

    E-Print Network [OSTI]

    including HVAC and thermal energy storage system upgrades, stadium light conversion and a microturbineCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

  4. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  5. Heat transfer and film cooling with steam injection

    E-Print Network [OSTI]

    Conklin, Gary Eugene

    1982-01-01T23:59:59.000Z

    . The cooling medium was injected through the side of the test section into the blade. The apparatus and test section are shown in Figure 3. Great care was taken in the design of the wind tunnel which was designed to be subsonic with uniform flow and a low... 48 inch overall length. The blade was positioned 24 inches from the leading edge of the test section. D. Test Material The aluminum blade was a straight airfoil with a cir- cular leading edge and three staggered rows of injection holes. Using...

  6. Dynamical switching characteristics of a bistable injection laser

    SciTech Connect (OSTI)

    Lau, K.Y.; Harder, C.; Yariv, A.

    1982-02-01T23:59:59.000Z

    The switching characteristics of a bistable injection laser with very large hysteresis is examined. Switch-on delays are shown to exhibit a ''critical'' part and a ''noncritical'' part, both of which can be reduced by increasing the overdrive current. It is possible to obtain fairly fast switching time (<20 ns) with a strong overdrive. Nominal delays of 100--200 ns result under moderate overdrives. These long time scales are due to long carrier lifetimes in the carrier-depleted absorption section, a property intrinsic to these bistable injection lasers.

  7. Turbomachine injection nozzle including a coolant delivery system

    DOE Patents [OSTI]

    Zuo, Baifang (Simpsonville, SC)

    2012-02-14T23:59:59.000Z

    An injection nozzle for a turbomachine includes a main body having a first end portion that extends to a second end portion defining an exterior wall having an outer surface. A plurality of fluid delivery tubes extend through the main body. Each of the plurality of fluid delivery tubes includes a first fluid inlet for receiving a first fluid, a second fluid inlet for receiving a second fluid and an outlet. The injection nozzle further includes a coolant delivery system arranged within the main body. The coolant delivery system guides a coolant along at least one of a portion of the exterior wall and around the plurality of fluid delivery tubes.

  8. A bulk-flow model of angled injection Lomakin bearings

    E-Print Network [OSTI]

    Soulas, Thomas Antoine Theo

    2001-01-01T23:59:59.000Z

    of cross-coupled stiffness coefficients and null or even negative whirl frequency ratios. K i m and Lee [24] present rotordynamic coefficients and leakage test results for annular seals which use an anti-swirl self- injection concept to yield significant... of cross-coupled stiffness coefficients and null or even negative whirl frequency ratios. K i m and Lee [24] present rotordynamic coefficients and leakage test results for annular seals which use an anti-swirl self- injection concept to yield significant...

  9. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  10. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31T23:59:59.000Z

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  11. Thermophoretic effects on soot distribution in a direct-injection diesel engine

    SciTech Connect (OSTI)

    Abraham, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-09-01T23:59:59.000Z

    A recently developed stochastic particle approach for computing soot particle dynamics is implemented in a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. The model is applied to study the distribution of soot particles in a direct-injection Diesel engine. In particular, the effect of thermophoresis on soot distribution is examined. It is shown that thermophoresis could be important once the soot particles are brought close to the walls, i.e. within the boundary layer, by turbulent eddy convection or as a result of the orientation of the sprays. Thermophoresis does not appear to result in a change in the distribution of soot in the regions outside the boundary layer as the characteristic time associated with turbulent eddy convection is at least an order of magnitude shorter than that associated with thermophoresis and it and bulk convection are by far the dominant factors in determining the soot distribution.

  12. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  13. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  14. Production and Injection data for NV Binary facilities

    SciTech Connect (OSTI)

    Mines, Greg

    2013-12-24T23:59:59.000Z

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  15. Apparatus for adjustably controlling valve movement and fuel injection

    SciTech Connect (OSTI)

    Miller, C.R.; Shyu, T.P.; Weber, J.R.

    1993-08-24T23:59:59.000Z

    Apparatus is described for adjustably controlling valve movement and fuel injection of an engine having at least one fuel injection system, one exhaust valve system, one intake valve system, a microprocessor controller for receiving input signals and delivering engine controlling electrical signals, and a liquid pressure system, comprising: a single piezoelectric motor connectable to the microprocessor controller and the liquid pressure system and being adapted to receive engine controlling electrical signals from the microprocessor and controllably delivering pressurized liquid signals to the liquid pressure system in response to the received signal; and a spool valve having a single spool, the valve having a plurality of inlets and outlets and being connectable to the liquid pressure system for receiving pressurized liquid signals therefrom and controllably moving the single spool of the spool valve and delivering valve and injection controlling signals to the valve systems and injector system and controlling both valve movement and fuel injection responsive to engine controlling electrical signals received by the piezoelectric motor.

  16. Mutually injecting semiconductor lasers: simulations for short and zero delay

    E-Print Network [OSTI]

    Wünsche, Hans-Jürgen "Ede"

    Mutually injecting semiconductor lasers: simulations for short and zero delay Nikolay Korneyev a und Stochastik, Mohrenstr. 39, 10117 Berlin, Germany ABSTRACT Distant lasers with mutual optical the relaxation oscillation period. In order to illuminate the role of these short delays, the ultimate zero

  17. Acceleration Rates and Injection Efficiencies in Oblique Shocks

    E-Print Network [OSTI]

    D. C. Ellison; M. G. Baring; F. C. Jones

    1995-06-12T23:59:59.000Z

    The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \\teq{\\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \\teq{\\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \\mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.

  18. Compendium of regulatory requirements governing underground injection of drilling waste.

    SciTech Connect (OSTI)

    Puder, M. G.; Bryson, B.; Veil, J. A.

    2002-11-08T23:59:59.000Z

    Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

  19. September 26th, 2006 The Use of Water Injection for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    methane Coal surface Desorption of Methane and Gas Production #12;Coal surface Abandoned CBM Well Depleted Reservoir #12;Coal surface CO2 Injection Process CO2 molecule #12;Coal surface Free CO2 on the Cleat System for Reservoir Data Model Design Conclusions, Publications, Redesign #12;Defining the Model #12;Model Design

  20. EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-57 SGP-TR-57 EFFECTS OF WATER INJECTION INTO FRACTURED GEOTHERMAL RESERVOIRS: A SUMMARY INTO FRACTURED GEOTHERMAL RESERVOIRS A SUMMARY OP EXPERImCE WORtDWIDE Roland N. Horne Stanford University ABSTRACT Reinjection of water i n t o fractured geothermal reservoirs holds potential both f o r

  1. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17T23:59:59.000Z

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  2. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23T23:59:59.000Z

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  3. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  4. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA)

    2002-01-01T23:59:59.000Z

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  5. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

    1993-01-01T23:59:59.000Z

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  6. Flow monitoring and control system for injection wells

    DOE Patents [OSTI]

    Corey, J.C.

    1993-02-16T23:59:59.000Z

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  7. New Pellet Injection Schemes on DIII-D

    SciTech Connect (OSTI)

    Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

    1999-11-13T23:59:59.000Z

    The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

  8. Overview of Recent Developments in Pellet Injection for ITER

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

    2012-01-01T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

  9. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    SciTech Connect (OSTI)

    Srinivasan, Sanjay

    2014-09-30T23:59:59.000Z

    In-depth understanding of the long-term fate of CO2 in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO2 in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO2 plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO2 plume migration in two field projects – the In Salah CO2 Injection project in Algeria and CO2 injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO2 plume, the effect of CO2-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.

  10. Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles

    SciTech Connect (OSTI)

    Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei [Department of Mechanical System Engineering, University of Hiroshima, Higashi-Hiroshima, 739-8527 (Japan); Zhang, Yuyin [Department of Mechanical Engineering, Tokyo Denki University, Tokyo, 101-8457 (Japan)

    2009-06-15T23:59:59.000Z

    This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  12. Duct injection technology prototype development: Nozzle development Subtask 4.1, Atomizer specifications for duct injection technology. Topical report 8

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    Babcock & Wilcox has conducted a program to identify atomizers appropriate for successful in-duct injection of humidification water and lime slurries. The purpose of this program was to identify and quantify atomizer spray and performance criteria that affect the operations and reliability of the in-duct SO{sub 2} removal process, and compare commercially available atomizers to these criteria.

  13. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect (OSTI)

    Chi, Yuan, E-mail: jtext@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China) [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)] [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-02-15T23:59:59.000Z

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  14. Applying to Teacher Education Program at Purdue

    E-Print Network [OSTI]

    David Drasin

    2012-12-02T23:59:59.000Z

    Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

  15. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:Applied

  16. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    SciTech Connect (OSTI)

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Dan Weber; Ximing Liang; T.F. Edgar; Nazli Demiroren; Danial Kaviani

    2007-03-31T23:59:59.000Z

    This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A revised method, called the 'segmented capacitance model', identifies times when production changes might not be caused strictly by water injection changes. Application to data from Monument Butte Field shows encouraging results. Our results show the CM and its modified forms can be an important tool for waterflood management. We have moved beyond the proof of principle stage to show it can actually be applied to assess connectivity in field situations. Several shortcomings, however, remain to be addressed before the CM can be routinely applied by field operators. The CM and its modifications analyze well rates in the time domain. We also explored the assessment of interwell connectivity in the spectral domain. We applied conventional methods, based on analyzing passive linear electrical networks, to the analysis of injection and production data. In particular, we assessed the effects of near-wellbore gas on the apparent connectivity. With only oil and water in the system, the results were as expected, giving good connectivity estimates. In the presence of gas, however, the methods could not produce useful estimates of connectivity.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  18. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  19. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect (OSTI)

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daedeok-daro 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  20. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    SciTech Connect (OSTI)

    Cappa, F.; Rutqvist, J.

    2010-06-01T23:59:59.000Z

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

  1. Apparatus and method for controlling the secondary injection of fuel

    DOE Patents [OSTI]

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05T23:59:59.000Z

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  2. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21T23:59:59.000Z

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  3. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28T23:59:59.000Z

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  4. Injection/Extraction Studies for the Muon FFAG

    SciTech Connect (OSTI)

    Pasternak, J. [Imperial College London, Department of Physics, London (United Kingdom); STFC/RAL/ISIS, Chilton, Didcot, Oxon (United Kingdom); Aslaninejad, M. [Imperial College London, Department of Physics, London (United Kingdom); Berg, J. Scott [BNL, Upton, Long Island, New York (United States); Kelliher, D. J.; Machida, S. [STFC/ASTeC/RAL, Chilton, Didcot, Oxon (United Kingdom)

    2010-03-30T23:59:59.000Z

    The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FFAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated.

  5. Control of cooling losses at high pulverized coal injection rates

    SciTech Connect (OSTI)

    Bonte, L.; Nieuwerburgh, H. Van [Sidmar N.V., Gent (Belgium)

    1996-12-31T23:59:59.000Z

    One of the problems which is encountered by many blast furnace operators is the appropriate control of the cooling losses of the blast furnace. This problem has been aggravated by the introduction of pulverized coal injection. Even with equal burden and coke composition, both Sidmar furnaces behave differently with respect to the cooling losses. This phenomenon is possibly attributable to the different profile and cooling circuitry of the furnaces. Among other parameters the angles of bosh and stack may favor the formation of scabs or not. Some operators experience a decrease of their cooling losses, other operators have problems to limit their cooling losses to an acceptable level. As a result, different operating practices exist with respect to the burden distribution. The increase of the ore to coke ratio with pulverized coal injection suggests that the coke and sinter quality has to be monitored very carefully in order to avoid permeability problems.

  6. End-fire injection of guided light into optical microcavity

    E-Print Network [OSTI]

    Liu, Shuai; Zhang, Nan; Wang, Kaiyang; Xiao, Shumin; Lyu, Quan; Song, Qinghai

    2015-01-01T23:59:59.000Z

    Coupling light into microdisk plays a key role in a number of applications such as resonant filters and optical sensors. While several approaches have successfully coupled light into microdisk efficiently, most of them suffer from the ultrahigh sensitivity to the environmental vibration. Here we demonstrate a robust mechanism, which is termed as end-fire injection. By connecting an input waveguide to a circular microdisk directly, the mechanism shows that light can be efficiently coupled into optical microcavity. The coupling efficiency can be as high as 0.75 when the input signals are on resonances. Our numerical results reveal that the high coupling efficiency is attributed to the constructive interference between the whispering gallery modes and the input signals. We have also shown that the end-fire injection can be further extended to the long-lived resonances with low refractive index such as n = 1.45. We believe our results will shed light on the applications of optical microcavities.

  7. Pulser injection with subsequent removal for gamma-ray spectrometry

    DOE Patents [OSTI]

    Hartwell, Jack K. (Idaho Falls, ID); Goodwin, Scott G. (Idaho Falls, ID); Johnson, Larry O. (Blackfoot, ID); Killian, E. Wayne (Idahoe Falls, ID)

    1990-01-01T23:59:59.000Z

    An improved system for gamma-ray spectroscopy characterized by an interface module that controls the injection of electronic pulses as well as separation logic that enables storage of pulser events in a region of the spectrum of a multichannel analyzer distinct from the region reserved for storage of gamma-ray events. The module accomplishes this by tagging pulser events (high or low) injected into the amplification circuitry, adding an offset to the events so identified at the time the events are at the output of the analog to digital converter, and storing such events in the upper portion of the spectrum stored in the multichannel analyzer. The module can be adapted for use with existing gamma-ray spectroscopy equipment to provide for automatic analyses of radioisotopes.

  8. Deposition of fuel pellets injected into tokamak plasmas

    SciTech Connect (OSTI)

    Baylor, L.R.; Jernigan, T.C. [Oak Ridge National Lab., TN (United States); Hsieh, C. [General Atomics, San Diego, CA (United States)

    1998-06-01T23:59:59.000Z

    Pellet injection has been used on tokamak devices in a number of experiments to provide plasma fueling and density profile control. The mass deposition of these fuel pellets defined as the change in density profile caused by the pellet, has been found to show an outward displacement of the ablated material from that expected by mapping the theoretical ablation rate onto the flux surfaces. This suggests that fast transport of the pellet ablatant occurs during the flow along field lines that may be driven by {del}B drift effects. A comparison of the deposition of pellets from different machines shows similar behavior. Initial results from alternative injection locations designed to take advantage of the outward ablatant drift is presented.

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  11. Numerical analysis of a microwave torch with axial gas injection

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Kulumbaev, E. B. [National Research University Belgorod State University (Russian Federation)] [National Research University Belgorod State University (Russian Federation); Lelevkin, V. M. [Kyrgyz-Russian Slavic University (Kyrgyzstan)] [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2013-07-15T23:59:59.000Z

    The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.

  12. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27T23:59:59.000Z

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  13. Conceptual design for the ZEPHYR neutral-beam injection system

    SciTech Connect (OSTI)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01T23:59:59.000Z

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  14. Measurement of axial injection displacement with trim coil current unbalance

    SciTech Connect (OSTI)

    Covo, Michel Kireeff, E-mail: mkireeffcovo@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2014-08-15T23:59:59.000Z

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  15. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01T23:59:59.000Z

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  16. Flue gas injection control of silica in cooling towers.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01T23:59:59.000Z

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  17. U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection...

    Energy Savers [EERE]

    U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and Directory Traversal Attacks U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and...

  18. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

  19. Experimental studies of steam-propane injection for the Duri intermediate crude oil 

    E-Print Network [OSTI]

    Hendroyono, Arief

    2003-01-01T23:59:59.000Z

    Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection...

  20. Calibraton of a Directly Injected Natural Gas HD Engine for Class...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This...

  1. Assessing the hydrocarbon emissions in a homogeneous direct injection spark ignited engine

    E-Print Network [OSTI]

    Radovanovic, Michael S

    2006-01-01T23:59:59.000Z

    For the purpose of researching hydrocarbon (HC) emissions in a direct-injection spark ignited (DISI) engine, five experiments were performed. These experiments clarified the role of coolant temperature, injection pressure, ...

  2. Knock limits in spark ignited direct injected engines using gasoline/ethanol blends

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2011-01-01T23:59:59.000Z

    Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

  3. Investigation of Hybrid Steam/Solvent Injection to Improve the Efficiency of the SAGD Process

    E-Print Network [OSTI]

    Ardali, Mojtaba

    2013-05-09T23:59:59.000Z

    but also reservoir properties and operational conditions such as operating pressure and injection strategy. Pure heated solvent injection requires significant quantities. A vaporized solvent chamber is not sustainable due to low latent heat of the solvents...

  4. Soot formation in direct injection spark ignition engines under cold-idle operating conditions

    E-Print Network [OSTI]

    Ketterer, Justin Edward

    2013-01-01T23:59:59.000Z

    Direct injection spark ignition engines are growing rapidly in popularity, largely due to the fuel efficiency improvements in the turbo-downsized engine configuration that are enabled by direct injection technology. ...

  5. Fault prophet : a fault injection tool for large scale computer systems

    E-Print Network [OSTI]

    Tchwella, Tal

    2014-01-01T23:59:59.000Z

    In this thesis, I designed and implemented a fault injection tool, to study the impact of soft errors for large scale systems. Fault injection is used as a mechanism to simulate soft errors, measure the output variability ...

  6. Experimental studies of steam-propane injection for the Duri intermediate crude oil

    E-Print Network [OSTI]

    Hendroyono, Arief

    2003-01-01T23:59:59.000Z

    Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection...

  7. The Future of Injection Molding in Food Packaging for the United States

    E-Print Network [OSTI]

    Meissbach, Kenneth

    2005-05-20T23:59:59.000Z

    threaten the future of injection molding. Continued development of materials, and processing equipment as well as the use of in mold labeling and integrated tamper evident packaging are opportunities for injection molding. The environmental issues...

  8. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery 

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a ...

  9. Tritium flow through a non-symmetrical source. Simulation of gas flow through an injection hole

    E-Print Network [OSTI]

    Sharipov, Felix

    Tritium flow through a non-symmetrical source. Simulation of gas flow through an injection hole of source in injection rarefaction parameter µ0 viscosity of tritium at T0 Pa s 2 #12;Ll = 5074.5 Lr = 5007

  10. Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery

    E-Print Network [OSTI]

    Lambers, James

    Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

  11. V-075: EMC AlphaStor Command Injection and Format String Flaws...

    Broader source: Energy.gov (indexed) [DOE]

    5: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users Execute Arbitrary Code V-075: EMC AlphaStor Command Injection and Format String Flaws Let Remote Users...

  12. Design and characterization of a compact voice coil for a needle-free injection device

    E-Print Network [OSTI]

    Lui, Diana, S.B. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Conventional needle-free injection (NFI) devices are driven by a pressure source generated by either a compressed spring mechanism or compressed inert gas, which have fixed injection (pressure versus time) profiles. The ...

  13. A Lorentz-force actuated needle-free intraocular injection device

    E-Print Network [OSTI]

    White, James E

    2012-01-01T23:59:59.000Z

    Intravitreal injection is a common treatment in ophthalmology, but it can lead to considerable patient anxiety and numerous complications. Lorentz-force actuated needle-free jet injection has been shown to successfully ...

  14. CFD Validation of Gas Injection into Stagnant Water

    SciTech Connect (OSTI)

    Abdou, Ashraf A [ORNL

    2007-01-01T23:59:59.000Z

    Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant water have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX was used to simulate the unsteady two-phase flow of gas injection into stagnant water. Flow visualization data were obtained with a high-speed camera for the comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. The CFD model is validated with these experimental measurements at different gas flow rates. The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The acoustic signature aspect of this validation is particularly interesting since it has applicability to the injection of gas into liquid mercury, which is opaque.

  15. Coanda injection system for axially staged low emission combustors

    DOE Patents [OSTI]

    Evulet, Andrei Tristan (Clifton Park, NY); Varatharajan, Balachandar (Cincinnati, OH); Kraemer, Gilbert Otto (Greer, SC); ElKady, Ahmed Mostafa (Niskayuna, NY); Lacy, Benjamin Paul (Greer, SC)

    2012-05-15T23:59:59.000Z

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  16. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect (OSTI)

    Li, Tingwen [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Pannala, Sreekanth [ORNL

    2010-01-01T23:59:59.000Z

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  17. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01T23:59:59.000Z

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  18. Pellet injection in the RFP (Reversed Field Pinch)

    SciTech Connect (OSTI)

    Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.

    1988-01-01T23:59:59.000Z

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub ..cap alpha../ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 ..mu..sec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs.

  19. Simulations of plasma behavior during pellet injection in ITER

    SciTech Connect (OSTI)

    Klaywittaphat, P., E-mail: thawatchai@siit.tu.ac.th; Onjun, T. [Thammasat University, School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology (Thailand)

    2012-06-15T23:59:59.000Z

    Plasma behavior during pellet injection in ITER is investigated using a 1.5D BALDUR integrated predictive modeling code. In these simulations, the pellet ablation is described using the neutral gas shielding (NGS) model developed by Parks and Turnbull [Phys. Fluids 21, 1735 (1978)]. The NGS pellet ablation model that includes the {nabla}B drift effect is coupled with a plasma core transport model, which is a combination of an MMM95 anomalous transport model and an NCLASS neoclassical transport model. The combination of core transport models, together with pellet model, is used to simulate the time evolution of plasma current, ion and electron temperatures, and density profiles for ITER standard type-I ELMy H-mode discharges during the pellet injection. It is found that the injection of pellet can result in either enhancement or degradation of plasma performance. The {nabla}B drift effect on the pellet deposition is very strong in ITER. The plasma density with high field side pellets, which favorable with the {nabla}B drift effect, is much higher and pellet can penetrate much deeper than that with low field side pellets.

  20. Factors affecting the recovery of petroleum in projects involving the injection of liquefied petroleum gases (LPG)

    E-Print Network [OSTI]

    Graham, Gerry A

    1961-01-01T23:59:59.000Z

    , CONCLUSIONS 6. ACKNOWLEDGEMENT 7. APPENDIX 8. REFERENCES 9. BIBLIOGRAPHY 25 26 33 337588 LIST OF FIGURES AND TABLES Figures Flow Diagram of Displacement Equipment Oil Production vs Slug Size for various injection rates , (Sand Coluxnn No. 1) 15... Oil Production vs. Slug Size for various injection rates , (Sand Column No. 2) 16 Oil Production vs Slug Size for various injection rates , (Sand Column No. 3) 17 Oil Production vs Slug Size for various injection rates , (Sand Column No. 4) 18...

  1. Summary and comments on the month's production and injection................. Using the production table...................................................................................

    E-Print Network [OSTI]

    #12;Summary and comments on the month's production and injection................. Using the production table................................................................................... Monthly Oil and Gas Production........................................................................ Using

  2. Imaging of CO2 injection during an enhanced-oil-recovery experiment

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-01-01T23:59:59.000Z

    Injection during an Enhanced-Oil-Recovery Experiment RolandEnergy (DOE) as an enhanced oil recovery (EOR) project, was

  3. Treatment of Inadvertent Pericardial Placement of a Tunneled Dialysis Catheter by Direct Thrombin Injection

    SciTech Connect (OSTI)

    Costantino, Mary Marcelle [Oregon Health and Science University, Department of Diagnostic Radiology, L-340 (United States); Barton, Robert [Oregon Health and Science University, Dotter Interventional Institute L-605 (United States); Slater, Matthew [Oregon Health and Science University, Department of Cardiothoracic Surgery, L-353 (United States); McAnulty, John H. [Legacy Clinic Northwest (United States); Keller, Frederick S. [Oregon Health and Science University, Department of Diagnostic Radiology, L-605 (United States)], E-mail: kellerf@ohsu.edu

    2006-08-15T23:59:59.000Z

    An inadvertent case of pericardial placement of a central venous catheter was successfully treated by direct thrombin injection.

  4. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  5. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  6. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  7. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  8. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  9. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  10. CX-004196: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-004196: Categorical Exclusion Determination Infrared and Raman Spectroscopy of Biological Safety Level-1 Biological Samples CX(s) Applied:...

  11. CX-000331: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5,...

  12. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  13. CX-012089: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012089: Categorical Exclusion Determination Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04172014...

  14. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  15. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  16. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  17. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  18. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  19. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  20. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  1. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-006471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08042011 Location(s): Greenville, South...

  4. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  5. CX-012015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012015: Categorical Exclusion Determination Enhanced Wind Resource Assessment with Sonic Ranging and Detection at Tooele Army Depot CX(s) Applied:...

  6. CX-012110: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Defense Logistics Agency, Tracy, California, Wind Resource Assessment CX(s) Applied: A9, B3.1 Date: 05072014 Location(s): California...

  7. CX-002753: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002753: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment CX(s) Applied: B3.1 Date: 06212010 Location(s): Deadwood, South...

  8. CX-002823: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

  9. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  10. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  11. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  12. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  13. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  14. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  15. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  16. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  17. CX-002964: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002964: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions CX(s) Applied: B3.11, A9 Date: 07092010...

  18. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  19. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  20. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  1. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  2. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  3. CX-001724: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-001724: Categorical Exclusion Determination Recovery Act City of Boise Energy Efficiency and Conservation Block Grant (EECBG) CX(s) Applied: B5.1 Date: 04122010...

  4. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  5. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  6. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-009465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  8. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  9. CX-011295: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011295: Categorical Exclusion Determination Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10172013 Location(s): Pennsylvania...

  10. CX-009463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  11. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  12. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  13. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  14. CX-011535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Grangeville Substation Sale CX(s) Applied: B1.24 Date: 11/14/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  15. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  16. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  17. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  19. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  20. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  1. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  2. CX-012664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office

  3. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  4. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9...

  5. CX-004374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

  6. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  7. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  8. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  9. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  10. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  11. CX-009326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009326: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1 Date: 09282012...

  12. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  13. CX-003037: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003037: Categorical Exclusion Determination Mercury Removal from Clean Coal Processing Air Stream CX(s) Applied: B3.6 Date: 07132010 Location(s): Butte,...

  14. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  16. CX-011115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9 Date: 08/29/2013 Location(s): New Mexico Offices(s): Golden Field Office

  17. CX-007844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Rhode Island Offices(s): Energy Efficiency and Renewable Energy

  18. CX-007689: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 1118...

  19. CX-000734: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000734: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s):...

  20. CX-000733: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin, Texas Office(s): Fossil...

  1. CX-010941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010941: Categorical Exclusion Determination Assessing the Response of Methane Hydrates to Environmental Change at the Svalbard Continental Margin CX(s) Applied: B3.6,...

  2. CX-007388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15,...

  3. CX-012245: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-012245: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Carnegie Mellon CX(s) Applied: A9 Date:...

  4. CX-012253: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-012253: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05272014...

  5. CX-012252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Categorical Exclusion Determination CX-012252: Categorical Exclusion Determination Hydro Research Foundation University Research Awards- Cornell CX(s) Applied: A9, B3.16 Date:...

  6. CX-012254: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Categorical Exclusion Determination CX-012254: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05...

  7. CX-003904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1...

  8. CX-012246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-012246: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - University of Tennessee CX(s) Applied:...

  9. CX-012241: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Categorical Exclusion Determination CX-012241: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - MIT CX(s) Applied: A9, B3.6 Date: 06...

  10. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  11. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  12. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  13. CX-003403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

  14. CX-002745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

  15. CX-006681: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

  16. CX-006682: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

  17. CX-008486: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

  18. CX-007941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

  19. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  20. CX-007940: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

  1. CX-005582: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

  2. CX-000855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

  3. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  4. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  5. CX-010739: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  6. CX-011044: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011044: Categorical Exclusion Determination High Hydrogen, Low Methane Syngas from Low Ranked Coals for Coal-to-Liquids Production CX(s) Applied: A9 Date: 0910...

  7. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  8. CX-004015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004015: Categorical Exclusion Determination Arizona Balance of State- Energy Efficiency and Conservation Block Grant Wickenburg CX(s) Applied:...

  9. CX-009555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

  10. CX-000835: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

  11. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  12. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  13. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  14. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-011384: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

  16. CX-011537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-011538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-011536: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  20. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  1. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  2. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  3. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  4. CX-003706: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6...

  5. CX-004217: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Replacement Facets for Central Receiver Test Facility Heliostats at the National Solar Thermal Test Facility (American Recovery and Reinvestment Act Funded) CX(s) Applied:...

  6. CX-003222: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

  7. CX-004251: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

  8. CX-003208: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

  9. CX-003471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

  10. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  11. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  12. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  13. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  14. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  15. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  16. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  17. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  18. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  19. CX-007925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

  20. CX-006048: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...