Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impacts of Low-NOX Combustion and Activated Carbon Injection on Particulate Control Device Performance  

Science Conference Proceedings (OSTI)

This report summarizes the results of a computational fluid dynamics (CFD) model study of the re-entrainment of carbon from the hoppers of a typical utility electrostatic precipitator (ESP). During earlier phases of this study, hopper re-entrainment was identified as the principle mechanism responsible for the low collection efficiency of carbon by ESPs. This statement was found to be true for both unburned carbon from the boiler and activated carbon injected for mercury control. The results indicate tha...

2008-03-31T23:59:59.000Z

2

Cost Estimate of Activated Carbon Injection for Controlling Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

mercury reductions of between 60% and 70% at injection rates around 10-15 lbsmillion acf (see Figure 1). Although regression analysis of full-scale ACIESP data shows that it...

3

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

4

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

5

carbon sequestration via direct injection  

NLE Websites -- All DOE Office Websites (Extended Search)

SEQUESTRATION VIA DIRECT INJECTION SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams INTRODUCTION The build-up of carbon dioxide (CO 2 ) and other greenhouse gases in the Earth's atmosphere has caused concern about possible global climate change. As a result, international negotiations have produced the Framework Convention on Climate Change (FCCC), completed during the 1992 Earth Summit in Rio de Janeiro. The treaty, which the United States has ratified, calls for the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." The primary greenhouse gas is CO 2 , which is estimated to contribute to over two-thirds of any climate change. The primary source of CO

6

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

7

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

Change Special Report on Carbon Dioxide Capture and Storage,Probability of Injected Carbon Dioxide Plumes Encounteringthe probability of injected carbon dioxide encountering and

Jordan, P.D.

2013-01-01T23:59:59.000Z

8

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

9

NETL: Mercury Emissions Control Technologies - Long-Term Carbon Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Carbon Injection Field Test for > 90% Long-Term Carbon Injection Field Test for > 90% Mercury Removal for a PRB Unit with a Spray Drier and Fabric Filter The intent of DOE's Phase I and II field tests was to work with industry to evaluate the most promising mercury control technologies at full-scale in a variety of configurations. Although longer-term tests were conducted, the test period was not sufficient to answer many fundamental questions about long-term consistency of mercury removal and reliability of the system when integrated with plant processes. As the technologies move towards commercial implementation, it is critical to accurately define the mercury removal performance and costs so that power companies and policy makers can make informed decisions. Therefore, the overall objective of this Phase III project is to determine the mercury removal performance, long-term emissions variability, and associated O&M costs of activated carbon injection for >90% mercury control over a 10 to 12 month period on a unit that represents the combination of coal and emission control equipment that will be used for many new and existing power plants.

10

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

11

Calculating the probability of injected carbon dioxide plumes encountering faults  

Science Conference Proceedings (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

12

Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs  

E-Print Network (OSTI)

interface solution for carbon dioxide injection into porousJ.E. Fluid Dynamics of Carbon Dioxide Disposal into SalineGeologic storage of carbon dioxide as a climate change

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

13

Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION ISSUES RELATED TO SEISMIC ACTIVITY INDUCED BY THE INJECTION OF CO 2 IN DEEP SALINE AQUIFERS Joel Sminchak (sminchak@battelle.org; 614-424-7392) Neeraj Gupta (gupta@battelle.org; 614-424-3820) Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Charles Byrer (a) and Perry Bergman (b) National Energy Technology Laboratory (a) P.O. Box 880, Morgantown, WV, 26507-0880 (b) P.O. Box 10940, Pittsburgh, PA, 15236-0940 Abstract Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO 2 ) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO 2 make deep well injection of CO 2 an attractive option. While seismic implications must be considered for injection

14

Carbon Sequestration Monitoring Activities  

SciTech Connect

In its 'Carbon Sequestration Technology Roadmap and Program Plan 2007' the U.S. Department of Energy (DOE)'s Office of Fossil Energy National Energy Technology Laboratory (NETL) identified as a major objective extended field tests to fully characterize potential carbon dioxide (CO{sub 2}) storage sites and to demonstrate the long-term storage of sequestered carbon (p. 5). Among the challenges in this area are 'improved understanding of CO{sub 2} flow and trapping within the reservoir and the development and deployment of technologies such as simulation models and monitoring systems' (p. 20). The University of Wyoming (UW), following consultations with the NETL, the Wyoming State Geological Survey, and the Governor's office, identified potential for geologic sequestration of impure carbon dioxide (CO{sub 2}) in deep reservoirs of the Moxa Arch. The Moxa Arch is a 120-mile long north-south trending anticline plunging beneath the Wyoming Thrust Belt on the north and bounded on the south by the Uinta Mountains. Several oil and gas fields along the Moxa Arch contain accumulations of natural CO{sub 2}. The largest of these is the La Barge Platform, which encompasses approximately 800 square miles. Several formations may be suitable for storage of impure CO{sub 2} gas, foremost among them the Madison Limestone, Bighorn Dolomite, and Nugget Sandstone. This project responded to the challenges described above by preparing a geological site characterization study on the Moxa Arch. The project included four priority research areas: (A) geological characterization of geologic structure of the Arch, the fault, and fracture patterns of the target formations and caprocks, (B) experimental characterization of carbon dioxide-brine-rock reactions that may occur, (C) optimization of geophysical and numerical models necessary for measurement, monitoring and verification (MMV), and (D) a preliminary performance assessment. Research work to accomplish these goals was coordinated by one administrative task under the direction of Dr. Carol Frost, Professor of Geology and Geophysics (Task 1.0), and one task devoted to designing and creating an interdisciplinary, project-specific carbon cyberinfrastructure to support collaborative carbon dioxide sequestration research among University of Wyoming scientists and their collaborators, performed by Jeff Hammerlinck, Director of the Wyoming Geographic Information Science Center at the University of Wyoming (Task 1.5). The results of these tasks are presented in the Introduction and in Chapter 1, respectively.

Carol Frost

2010-11-30T23:59:59.000Z

15

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

16

Carbon Storage Partner Completes First Year of CO2 Injection Operations in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Partner Completes First Year of CO2 Injection Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in Illinois. Led by the Illinois State Geological Survey, the Illinois Basin-Decatur Project is the first demonstration-scale project in the United States to use CO2 from an industrial source and inject it into a saline reservoir. The CO2 is being captured from an ethanol production facility operated by the Archer Daniels Midland Company in Decatur, Ill., and is being injected

17

NETL: News Release - DOE Partner Begins Injecting 50,000 Tons of Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2009 February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of Carbon Dioxide in Michigan Basin Project Expected to Advance National Carbon Sequestration Program, Create Jobs Washington, DC-Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the

18

Injection of Alternative Carbon Containing Materials in the BF  

Science Conference Proceedings (OSTI)

By injection of the materials preparation methods in terms e.g. drying and/or ... Efficiency in recovery of valuable compounds as well as the behaviour of ...

19

Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores  

E-Print Network (OSTI)

Previous coreflood experiments show that CO2 sequestration in carbonate rocks is a win-win technology. Injecting CO2 into a depleted gas reservoir for storage also produces hitherto unrecoverable gas. This in turn helps to defray the cost of CO2 sequestration. This thesis reports the results from experiments conducted on a Berea sandstone core. The experiments include displacement experiments and unconfined compressive strength tests. The displacement experiments were conducted at cell pressures of 1500 psig and temperature of 60oC using a 1 foot long and 1 inch diameter Berea sandstone core. Pure CO2 and treated flue gas (99.433 % mole CO2) were injected into the Berea sandstone core initially saturated with methane at a pressure of 1500 psig and 800 psig respectively. Results from these experiments show that the dispersion coefficient for both pure CO2 and treated flue gas are relatively small ranging from 0.18-0.225 cm2/min and 0.28-0.30 cm2/min respectively. The recovery factor of methane at break-through is relatively high ranging from 71%-80% of original gas in place for pure CO2 and 90% to 92% OGIP for treated flue gas, the difference resulting from different cell pressures used. Therefore it would appear that, in practice injection of treated flue gas is a cheaper option compared to pure CO2 injection. For the unconfined compressive strength tests, corefloods were first conducted at high flowrates ranging from 5 ml/min to 20 ml/ min, pressures of 1700-1900 Psig and a temperature of 65oC. These conditions simulate injecting CO2 originating from an electric power generation plant into a depleted gas reservoir and model the near well bore situation. Results from these experiments show a 1% increase in porosity and changes in injectivity due to permeability impairment. The cores are then subjected to an unconfined compressive strength test. Results from these tests do not show any form of weakening of the rock due to CO2 injection.

Maduakor, Ekene Obioma

2006-08-01T23:59:59.000Z

20

Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration  

E-Print Network (OSTI)

This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

Israelsson, Peter H. (Peter Hampus), 1973-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Carbon nanotubes and other fullerenes produced from tire powder injected into an electric arc  

Science Conference Proceedings (OSTI)

A novel method of growing multiwall carbon nanotubes by injecting tire powder into an electric arc has been developed. The process is optimized using a DC electric arc in pressurized helium. The multiwall carbon nanotube product and the optimization process are characterized by transmission electron microscopy.

Murr, L.E. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: fekberg@utep.edu; Brown, D.K. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Esquivel, E.V. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ponda, T.D. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Martinez, F. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Virgen, A. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States)

2005-11-15T23:59:59.000Z

22

Predicting and Evaluating the Effectiveness of Ocean Carbon Sequestration by Direct Injection  

Science Conference Proceedings (OSTI)

Direct injection of CO{sub 2} into the ocean is a potentially effective carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection and develop the appropriate analytic framework to allow us to compare the effectiveness of this strategy with other carbon management options. Here, after a brief review of direct oceanic injection, we estimate the effectiveness of ocean carbon sequestration using one dimensional and three dimensional ocean models. We discuss a new measure of effectiveness of carbon sequestration in a leaky reservoir, which we denote sequestration potential. The sequestration potential is the fraction of global warning cost avoided by sequestration in a reservoir. We show how these measures apply to permanent sequestration and sequestration in leaky reservoirs, such as the oceans, terrestrial biosphere, and some geologic formations. Under the assumptions of a constant cost of carbon emission and a 4% discount rate, injecting 900 m deep in the ocean avoids {approx}90% of the global warming cost associated with atmospheric emission; an injection 1700 m deep would avoid > 99 % of the global warming cost. Hence, for discount rates in the range commonly used by commercial enterprises, oceanic direct injection may be nearly as economically effective as permanent sequestration at avoiding global warming costs.

Caldeira, K; Herzog, H J; Wickett, M E

2001-04-24T23:59:59.000Z

23

NETL: News Release - Frio Formation Test Well Injected With Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

19, 2004 19, 2004 Frio Formation Test Well Injected With Carbon Dioxide Researchers Perform Small Scale, Short Term Carbon Sequestration Field Test HOUSTON, TX - In the first U.S. field test to investigate the ability of brine formations to store greenhouse gasses, researchers funded by the U.S. Department of Energy are closely monitoring 1,600 tons of carbon dioxide that were injected into a mile-deep well in Texas in October. The test is providing unique data to help investigators understand the viability of geologic sequestration as a means of reducing greenhouse gas emissions. The Frio Brine Pilot experimental site is 30 miles northeast of Houston, in the South Liberty oilfield. Researchers at the University of Texas at Austin's Bureau of Economic Geology drilled a 5,753 foot injection well earlier this year, and developed a nearby observation well to study the ability of the high-porosity Frio sandstone formation to store carbon dioxide.

24

Groundwater Chemistry Changes as a Result of Carbon Dioxide Injection  

Science Conference Proceedings (OSTI)

This report provides final results from a combined field, laboratory, and modeling investigation into whether carbon dioxide (CO2) can have an adverse impact on potable groundwater. The investigation was undertaken by the Electric Power Research Institute (EPRI), Lawrence Berkeley National Laboratory, United States Geological Survey (USGS), and Montana State University (MSU).

2009-12-23T23:59:59.000Z

25

FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS  

SciTech Connect

Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

Kunc, Vlastimil [ORNL; Frame, Barbara J [ORNL; Nguyen, Ba N. [Pacific Northwest National Laboratory (PNNL); TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Velez-Garcia, Gregorio [Virginia Polytechnic Institute and State University

2007-01-01T23:59:59.000Z

26

JV Task 90 - Activated Carbon Production from North Dakota Lignite  

Science Conference Proceedings (OSTI)

The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

2008-03-31T23:59:59.000Z

27

MathematicalModelingofCarbonDioxide(CO2)Injection intheSubsurfaceforImprovedHydrocarbonRecoveryand  

E-Print Network (OSTI)

and Environmental Engineering, Yale University, New Haven, CT 06511, USA World Energy Demand Global energy demand from fossil fuels is expected to remain over 70% in 2035 [1]. Society must balance its high demand, CA, USA). Carbon Dioxide Injection for Improved Hydrocarbon Recovery Simulation of diffusion

Firoozabadi, Abbas

28

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

29

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

30

Carbon dioxide injection and resultant alteration of Weber Sandstone (Pennsylvanian-Permian), Rangely field, Colorado  

SciTech Connect

Geologic interpretations made during the current EOR (enhanced oil recovery) project at Rangely field (Rio Blanco County, Colorado), have made interesting connections between alteration of reservoir mineralogy and texture, changes in produced water composition, and increased production problems. Carbon dioxide is being injected into the Weber Sandstone in portions of Rangely field. The carbon dioxide injection is part of a very successful tertiary recovery project initiated in late 1986. The bottomhole pH of Weber brine has decreased from approximately 7.5 to 4.5 with the addition of CO/sub 2/. Changes in the chemistry of produced water are associated with alteration of reservoir mineralogy. The CO/sub 2/ flood has caused a substantial increase in the concentrations of iron, calcium, magnesium, and strontium in the produced brine. The amount of increase is directly related to the volume of CO/sub 2/ produced in each well. This increase resulted from the dissolution of carbonate cements, authigenic clays, and detrital feldspars. An increase in the calculated scaling potential of the produced water is a result of this change in chemistry. Hypotheses based on the water-chemistry changes were confirmed in pressure-cell and core-flood experiments. Core-flood experiments also indicate no net change in permeability following carbon dioxide injection: the increase in permeability due to the dissolution of carbonate cements is being offset by a decrease caused by migratory clays plugging pore throats. The clays, which coat the authigenic carbonates, are liberated when the carbonates are dissolved.

Bowker, K.A.; Shuler, P.J.

1989-03-01T23:59:59.000Z

31

Comparison of Numerical Simulators for Greenhouse Gas Storage in Coalbeds, Part I: Pure Carbon Dioxide Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Numerical Simulators for Greenhouse Gas Storage Comparison of Numerical Simulators for Greenhouse Gas Storage in Coalbeds, Part I: Pure Carbon Dioxide Injection David H.-S. Law (law@arc.ab.ca; 780-450-5034) Alberta Research Council (ARC) Inc. 250 Karl Clark Road, Edmonton, Alberta, Canada T6N 1E4 L.H.G. (Bert) van der Meer (l.vandermeer@nitg.tno.nl; +31-30-256-4635) Netherlands Institute of Applied Geoscience TNO P.O. Box 80015, 3508 TA Utrecht, The Netherlands W.D. (Bill) Gunter (gunter@arc.ab.ca; 780-450-5467) Alberta Research Council (ARC) Inc. 250 Karl Clark Road, Edmonton, Alberta, Canada T6N 1E4 Abstract The injection of carbon dioxide (CO 2 ) in deep, unmineable coalbeds is a very attractive option for geologic CO 2 storage: the CO 2 is stored and at the same time the recovery of

32

CO{sub 2} injection for enhanced gas production and carbon sequestration  

SciTech Connect

Analyses suggest that carbon dioxide (CO{sub 2}) can be injected into depleted gas reservoirs to enhance methane (CH{sub 4}) recovery for periods on the order of 10 years, while simultaneously sequestering large amounts of CO{sub 2}. Simulations applicable to the Rio Vista Gas Field in California show that mixing between CO{sub 2} and CH{sub 4} is slow relative to repressurization, and that vertical density stratification favors enhanced gas recovery.

Oldenburg, Curtis M.; Benson, Sally M.

2001-11-15T23:59:59.000Z

33

The Transport Properties of Activated Carbon Fibers  

DOE R&D Accomplishments (OSTI)

The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

1990-07-00T23:59:59.000Z

34

Energy efficient indoor VOC air cleaning with activated carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Title Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters...

35

Black Carbon Emission from Barbeque Activities during College...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Emission from Barbeque Activities during College Football Games Title Black Carbon Emission from Barbeque Activities during College Football Games Publication Type...

36

Natural gas storage on activated carbon  

SciTech Connect

Natural gas is a good fuel for internal combustion engines, but its low energy density is a significant drawback. The energy density can be increased by adsorption on a high surface area activated carbon. But with usage, some of the constituents in the natural gas composition accumulate on the carbon and reduce its adsorptivity. The adsorption desorption of natural gas on 9LXC activated carbon was investigated to 100 cycles at 21/sup 0/C and pressures of up to 12 MPa. The decrease in the capacity, G, as a function of the number of cycles, N, was found to follow the empirical correlation: G/G /SUB o/ = 1 - 0.085Log(N). Analysis of the activated carbon after 100 cycles showed accumulation of C/sub 4/ and higher hydrocarbons but not of C/sub 2/ and C/sub 3/. For automotive applications, activated carbon appears practical in a narrow pressure range, centering around 7 MPa (1000 psig). The preferred storage is at a pressure of 17 MPa or higher, without the use of activated carbons.

Golovoy, A.; Blais, E.J.

1983-10-01T23:59:59.000Z

37

Nano Structured Activated Carbon for Hydrogen Storge  

Science Conference Proceedings (OSTI)

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

38

Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters  

E-Print Network (OSTI)

compound by activated carbon fiber. Carbon 2004, 42(14):of an activated carbon fiber cloth adsorber. Journal ofindoor VOCs – activated carbon fibers. Proceedings of IAQ’

Sidheswaran, Meera

2012-01-01T23:59:59.000Z

39

Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying  

E-Print Network (OSTI)

Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical August 2003) Activated carbon fiber/carbon aerogel (ACF/CA) composites were fabricated by gelling. The ACFs can reinforce the related carbon aerogels when they originally have low mass density and are weak

Liu, Jie

40

A Study of Activated Carbon Re-Entrainment from Electrostatic Precipitators  

Science Conference Proceedings (OSTI)

This report describes the research and findings from a study of the ability of several coal-fired units to capture carbon species, in particular, powdered activated carbon (PAC) injection for mercury capture, by various configurations of electrostatic precipitators (ESPs) and associated ductwork. The varied nature of the units studied offers a range of examples, indicating potential problems, solutions, and the projected performance of other units by association. Wide variations in ESP collection efficie...

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir  

SciTech Connect

The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

2007-06-30T23:59:59.000Z

42

Pressure buildup during supercritical carbon dioxide injection from a partially penetrating borehole into gas reservoirs  

E-Print Network (OSTI)

the vicinity of the injection well. While a large injectionby pumping it down into an injection well. While the actuala small part of the injection well (typically, a few meters

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

43

Nano Structured Activated Carbon for Hydrogen Storge  

SciTech Connect

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

44

Postcombustion measures for cleaner solid fuels combustion: activated carbons for toxic pollutants removal from flue gases  

SciTech Connect

In this work the efficiency of postcombustion measures (i.e., activated carbon utilization) to achieve cleaner solid fuels combustion was evaluated. Thus, two commercial activated carbons (Calgon F400 and RWE active coke) were tested for removing toxic polluting compounds (Hg, PCBs, PCDD/Fs) from the gas phase. The effects of the pore structure and surface chemistry of the activated carbons tested were investigated, along with the sorption temperature and sulfur addition in carbon matrix. Experiments were realized in a bench-scale adsorption unit and in a commercial solid fuels-fired hot water boiler. The results showed that both activated carbons tested are suitable for the removal of toxic compounds (i.e., Hg, PCBs, PCDD/Fs) from the gas phase. Due to differences in Hg adsorptive capacity and adsorption rate, which are attributed to the diversified pore structure and surface chemistry of the activated carbons, RWE active coke is, presumably, more suitable for continuous Hg removal (i.e., activated carbon injection), while Calgon F400 is more suitable for batch one (packed column). For both activated carbons, Hg adsorption capacity was reduced with temperature increase, while it was enhanced by the presence of sulfur. Oxygen surface functional groups seem to be involved in Hg adsorption mechanism. Lactones are believed to act as potential active sites for mercury adsorption, while phenols may act as inhibitors. The removal of PCBs and PCDD/Fs from the gas phase seems not to be a problem for the activated carbons tested, regardless of their pore structure or surface chemistry. 61 refs., 23 figs., 8 tabs.

G. Skodras; I. Diamantopoulou; P. Natas; A. Palladas; G.P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Department of Chemical Engineering

2005-12-01T23:59:59.000Z

45

NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE  

E-Print Network (OSTI)

project (cf. Sec. 3). The CO2 is assumed to move away from the injection well in a radially sym- metric illustrating saturations. Also two observation wells 50 m and 100 m away from the injection point are shown. The temperatures at the first observation well (50 m distance from the injection point, right underneath

Cirpka, Olaf Arie

46

Adsorbed natural gas storage with activated carbon  

SciTech Connect

Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

Sun, Jian; Brady, T.A.; Rood, M.J. [Univ. of Illinois, Urbana, IL (United States)] [and others

1996-12-31T23:59:59.000Z

47

2010 EPRI-Southern Company Services Activated Carbon Mercury Control Workshop Proceedings  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) proposed a maximum achievable control technology ruling for air toxics on March 16, 2011. The proposed rule would impose new emission limits on mercury, acid gases, and particulate matter (as a surrogate for non-mercury metallic pollutants such as arsenic) from coal-fired power plants. These new limits are in addition to already existing mercury emissions limits imposed by many states. Activated carbon injection (ACI) is one of the leading control options to...

2011-04-28T23:59:59.000Z

48

Activated Carbon Composites for Air Separation  

DOE Green Energy (OSTI)

Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

2011-09-01T23:59:59.000Z

49

Production of activated carbon within the indirect gasification process.  

E-Print Network (OSTI)

??III Abstract Activated carbon is one of the most attractive adsorbent which has a wide area of application. One of these areas of application is… (more)

Shabanzadeh, Amir

2012-01-01T23:59:59.000Z

50

Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection  

SciTech Connect

A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.

Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe

2009-11-15T23:59:59.000Z

51

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2 sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments, corefloods were conducted at 1,500 psig and 70??C, in which flue gas was injected into an Austin chalk core containing initially methane. Two types of flue gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas (N2, O2 and water removed) with 99.433 mole% CO2 (Gas B). The main results of this study are as follows. First, the dispersion coefficient increases with concentration of ??impurities??. Gas A exhibits the largest dispersion coefficients, 0.18-0.25 cm2/min, compared to 0.13-0.15 cm2/min for Gas B, and 0.15 cm2/min for pure CO2. Second, recovery of methane at breakthrough is relatively high, ranging from 86% OGIP for pure CO2, 74-90% OGIP for Gas B, and 79-81% for Gas A. Lastly, injection of Gas A would sequester the least amount of CO2 as it contains about 80 mole% nitrogen. From the view point of sequestration, Gas A would be least desirable while Gas B appears to be the most desirable as separation cost would probably be cheaper than that for pure CO2 with similar gas recovery. For UCS tests, corefloods were conducted at 1,700 psig and 65??C in such a way that the cell throughput of CO2 simulates near-wellbore throughput. This was achieved through increasing the injection rate and time of injection. Corefloods were followed by porosity measurement and UCS tests. Main results are presented as follows. First, the UCS of the rock was reduced by approximately 30% of its original value as a result of the dissolution process. Second, porosity profiles of rock samples increased up to 2.5% after corefloods. UCS test results indicate that CO2 injection will cause weakening of near-wellbore formation rock.

Nogueira de Mago, Marjorie Carolina

2005-08-01T23:59:59.000Z

52

PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS  

SciTech Connect

The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

Park, Sung-hong; Wang Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, 101 Tiernan Hall, Newark, NJ 07102 (United States); Chae, Jongchul, E-mail: sp295@njit.ed [Astronomy Program and FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

2010-07-20T23:59:59.000Z

53

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

54

Kinetics of Diuron Adsorption onto Activated Carbon Fiber  

Science Conference Proceedings (OSTI)

A study was conducted on the adsorption kinetics of diuron from aqueous solutions onto activated carbon fiber. The results showed that the formation of hydrogen bonds between diuron and water, and temperature variations may possibly affect the adsorption ... Keywords: activated carbon fiber, diuron adsorption, kinetic models, hydrogen bonds

Jianhua Xu; Yabing Sun; Zhenyu Li; Jingwei Feng

2011-03-01T23:59:59.000Z

55

Adsorption of DDT by Activated Carbon Fiber Electrode  

Science Conference Proceedings (OSTI)

DDT is detected in many river and lake in Zhejiang Province. As a kind of POPs and priority controlled substances of China, it is necessary to study how to dechlorinate it and treat it. This thesis discusses the absorption of DDT by activated carbon ... Keywords: DDT, activated carbon fiber electrode, adsorption

Yaping Guo; Jun Li; Chunmian Lin; JinRong Chen

2009-10-01T23:59:59.000Z

56

Activated carbon fibers and engineered forms from renewable resources  

DOE Patents (OSTI)

A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

Baker, Frederick S

2013-02-19T23:59:59.000Z

57

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:30 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34349,10956 34380,12444

58

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34515,142243 34880,194185 35246,258468

59

Production and characterization of activated carbons from cereal grains  

SciTech Connect

The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

Venkatraman, A.; Walawender, W.P.; Fan, L.T. [Kansas State Univ., Manhattan, KS (United States)

1996-12-31T23:59:59.000Z

60

Adsorption equilibria of propane on activated carbon and molecular sieves  

Science Conference Proceedings (OSTI)

Data of adsorption isotherm of propane on activated carbon (AC), molecular sieve carbon (MSC), MS13X and MS5A at 303K, 328K and 353K are acquired using constant volumetric method. Isosteric heats can be obtained indirectly from the isotherms using the ... Keywords: VOCs, adsorption, equilibrium models, isosteric heats, isotherm

Z. Yaakob; S. K. Kamarudin; I. Kamaruzaman; A. Ibrahim

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen storage on activated carbon. Final report  

DOE Green Energy (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

62

Selection and preparation of activated carbon for fuel gas storage  

DOE Green Energy (OSTI)

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

63

TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON  

SciTech Connect

CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

BYRNES ME

2010-09-08T23:59:59.000Z

64

DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION  

SciTech Connect

The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

2002-09-01T23:59:59.000Z

65

Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity  

DOE Green Energy (OSTI)

Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

2007-05-01T23:59:59.000Z

66

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2000-01-01T23:59:59.000Z

67

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2001-01-01T23:59:59.000Z

68

Continuous active-source seismic monitoring of CO2 injection in a brine aquifer  

E-Print Network (OSTI)

source deployed in the injection well. We first present thehas two wells, an injection well and a dedicated monitoringa sonic log of the injection well. We assumed the volume

Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

2008-01-01T23:59:59.000Z

69

A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths  

SciTech Connect

Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

1996-05-10T23:59:59.000Z

70

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

71

Potential of Malaysian activated carbon in dual purpose adsorption system  

Science Conference Proceedings (OSTI)

The adsorption capability of some locally produced activated charcoal (coconut shell) samples with methanol were taken under laboratory conditions. An experimental test rig was set up; data obtained from the experiments were fitted to Dubinin-Radushkevitch ... Keywords: Malaysian activated carbon, adsorption properties, coefficient of performance (COP), dual purpose system

M. A. Alghoul; M. Y. Sulaiman; K. Sopian; M. Yahya; Azami Zaharim

2008-11-01T23:59:59.000Z

72

A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits  

SciTech Connect

A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

Klasson, KT

2002-12-23T23:59:59.000Z

73

Adsorption near ambient temperatures of methane, carbon tetrafluoride, and sulfur hexafluoride on commercial activated carbons  

SciTech Connect

The adsorption isotherms for CH{sub 4}, CF{sub 4}, and SF{sub 6} are measured at three or four temperatures near ambient on three commercial activated carbons. The data are reduced using a virial-type equation of adsorption. Using this equation, isosteric heats of adsorption are calculated. It is shown that this fundamental thermodynamic quantity provides a basis for differentiating between the carbons` micropore structures.

Jagiello, J.; Bandosz, T.J.; Putyera, K.; Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1995-11-01T23:59:59.000Z

74

Carbon-based Supercapacitors Produced by Activation of Graphene  

Science Conference Proceedings (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

2011-12-31T23:59:59.000Z

75

Carbon-Based Supercapacitors Produced by Activation of Graphene  

DOE Green Energy (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

2011-06-24T23:59:59.000Z

76

Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results  

Science Conference Proceedings (OSTI)

CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 ºC, 27 ºC, and 32 ºC there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

2010-12-01T23:59:59.000Z

77

Experimental and Simulation Studies to Evaluate the Improvement of Oil Recovery by Different Modes of CO2 Injection in Carbonate Reservoirs  

E-Print Network (OSTI)

Experimental and numerical simulation studies were conducted to investigate the improvement of light oil recovery in carbonate cores during CO2 injection. The main steps in the study are as follows. First, the minimum miscibility pressure of 31ºAPI west Texas oil and CO2 was measured using the slimtube (miscibility) apparatus. Second, miscible CO2 coreflood experiments were carried out on different modes of injection such as CGI, WF, WAG, and SWAG. Each injection mode was conducted on unfractured and fractured cores. Fractured cores included two types of fracture systems creating two shape models on the core. Also, runs were made with different salinity levels for the injected water, 0 ppm, 60,000 ppm, and 200,000 ppm. Finally, based on the experimental results, a 2-D numerical simulation model was constructed and validated. The simulation model was then extended to conduct sensitivity studies on different parameters such as permeability variations in the core, WAG ratio and slug size, and SWAG ratio. The results of this study indicate that injecting water with CO2 either simultaneously or in alternating cycles increases the oil recovery by at least 10 percent and reduces the CO2 requirements by 50 percent. The salinity of the injected water has shown a detrimental effect on oil recovery only during WAG and SWAG injections. Lowering injected water salinity, which increases the CO2 solubility in water, increases oil recovery by up to 18 percent. Unfractured cores resulted in higher recovery than all fractured ones. CGI in fractured cores resulted in very poor recovery but WAG and SWAG injections improved the oil recovery by at least 25 percent over CGI. This is because of the better conformance provided by the injected water, which decreased CO2 cycling through the fracture. CO2 injection in layered permeability arrangements showed significant decrease in oil recovery (up to 40 percent) compared to the homogenous case. For all injection modes during the layered permeability arrangements, the best oil recovery was obtained when the flow barrier is in the middle of the core. When the permeability was arranged in sequence, each injection mode showed different preference to the permeability arrangements. The WAG ratio study in the homogenous case showed that a 1:2 ratio had the highest oil recovery, but the optimum ratio was 1:1 based on the amount of injected CO2. In contrast, layered permeability arrangements showed different WAG ratio preference depending on the location of the flow barrier.

Aleidan, Ahmed Abdulaziz S.

2010-12-01T23:59:59.000Z

78

Production Scale-Up or Activated Carbons for Ultracapacitors  

DOE Green Energy (OSTI)

Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

Dr. Steven D. Dietz

2007-01-10T23:59:59.000Z

79

Waste management activities and carbon emissions in Africa  

Science Conference Proceedings (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

80

Preparation of activated carbons from macadamia nut shell and coconut shell by air activation  

Science Conference Proceedings (OSTI)

A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

Tam, M.S.; Antal, M.J. Jr.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II  

Science Conference Proceedings (OSTI)

The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

2002-11-18T23:59:59.000Z

82

Production of charcoal and activated carbon at elevated pressure  

SciTech Connect

With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

83

System and method for coproduction of activated carbon and steam/electricity  

Science Conference Proceedings (OSTI)

A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

Srinivasachar, Srivats (Sturbridge, MA); Benson, Steven (Grand Forks, ND); Crocker, Charlene (Newfolden, MN); Mackenzie, Jill (Carmel, IN)

2011-07-19T23:59:59.000Z

84

An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue  

SciTech Connect

Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

Fukuyama, H.; Terai, S. [Toyo Engineering Corp., Chiba (Japan). Technological Research Center

2007-07-01T23:59:59.000Z

85

Matched boundary extrapolation solutions for CO2 well injection into a saline aquifer  

E-Print Network (OSTI)

interface solution for carbon dioxide injection  into Interface  Solutionfor  Carbon  Dioxide  Injection  into IPCC  Special  Report  on  Carbon  Dioxide  Capture  and 

Houseworth, J.

2012-01-01T23:59:59.000Z

86

4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir  

SciTech Connect

The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

2005-09-01T23:59:59.000Z

87

Physicochemical factors affecting ethanol adsorption by activated carbon  

SciTech Connect

Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25C as compared to 5, 15, and 40C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400C for 1 hour and 600C for 3 hours in N2 increased ethanol adsorptivity and heating to 1000C (1 hour) in CO2 decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 liter aqueous ethanol/min increased the adsorption rate. 16 references.

Bradley, K.J.; Hamdy, M.K.; Toledo, R.T.

1987-03-01T23:59:59.000Z

88

Continuous active-source seismic monitoring of CO2 injection in abrine aquifer  

SciTech Connect

Continuous crosswell seismic monitoring of a small-scale CO2injection was accomplished with the development of a noveltubing-deployed piezoelectric borehole source. This piezotube source wasdeployed on the CO2 injection tubing, near the top of the saline aquiferreservoir at 1657-m depth, and allowed acquisition of crosswellrecordings at 15-minute intervals during the multiday injection. Thechange in traveltime recorded at various depths in a nearby observationwell allowed hour-by-hour monitoring of the growing CO2 plume via theinduced seismic velocity change. Traveltime changes of 0.2 to 1.0 ms ( upto 8 percent ) were observed, with no change seen at control sensorsplaced above the reservoir. The traveltime measurements indicate that theCO2 plume reached the top of the reservoir sand before reaching theobservation well, where regular fluid sampling was occuring during theinjection, thus providing information about the in situ buoyancy ofCO2.

Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

2006-12-10T23:59:59.000Z

89

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

90

Carbon Dioxide Information Analysis Center: FY 1992 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

1993-03-01T23:59:59.000Z

91

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

92

Active Control of an Axial Flow Compressor via Pulsed Air Injection  

E-Print Network (OSTI)

This paper presents the use of pulsed air injection to control the onset of rotating stall in a low-speed, axial flow compressor. By measuring the unsteady pressures near the rotor face, a control algorithm determines the magnitude and phase of the first mode of rotating stall and controls the injection of air in the front of the rotor face. Experimental results show that this technique slightly extends the stall point of the compressor and eliminates the hysteresis loop normally associated with rotating stall. A parametric study is used to determine the optimal control parameters for suppression of stall. Analytic results---using a low-dimensional model developed by Moore and Greitzer combined with an unsteady shift in the compressor characteristic to model the injectors---give further insights into the operation of the controller. Based on this model, we show that the behavior of the experiment can be explained as a change in the bifurcation behavior of the system under non...

Raffaello D' Andrea; Robert L. Behnken; Richard M. Murray; Asme J. Turbomachinery

1996-01-01T23:59:59.000Z

93

The Role of Hydrate Films in the Effectiveness of Direct CO2 Injection as an Ocean Carbon Sequestration Strategy  

DOE Green Energy (OSTI)

About one-third of the carbon dioxide (2 Pg C/yr of 6 Pg C/yr) we emit into the atmosphere is already being sequestered naturally by the ocean by the process of CO{sub 2} gas transfer across the air-sea interface. Over twenty years ago Brewer (1978) and Chen and Millero (1979) presented the first fundamental estimates of anthropogenic CO{sub 2} in the ocean based the hypothesis of CO{sub 2} penetration along isopycnal surfaces and observations of total inorganic carbon (TCO2) and total alkalinity (TA). At that time the anthropogenic CO{sub 2} signal was not as large as today and given the uncertainty of the approach, the uncertainties of the results were generally regarded as relatively large. However, since then, variations of this approach have been used to estimate anthropogenic CO{sub 2} in many areas of the world ocean. A recent modeling study using the DOCS model, confirms that penetration along isopycnal surfaces is the dominate mode of natural carbon sequestration by the ocean.

Goyet, C

2004-05-06T23:59:59.000Z

94

The Reactive Light Yellow Dye Wastewater Treatment by Sewage Sludge-Based Activated Carbon  

Science Conference Proceedings (OSTI)

The paper is aim to discuss the dye wastewater treatment by sewage sludge-based adsorbent. The adsorbent derived from sewage sludge, which produced through phosphoric acid-microwave method, and commercia activated carbon (ACC) were tested in the process ... Keywords: Sewage Sludge-based Activated Carbon (ACSS), the Reactive Light Yellow, Dye Wastewater, Adsorption

Yang Lijun; Dai Qunwei

2011-02-01T23:59:59.000Z

95

Understanding the Adsorption of Polycyclic Aromatic Hydrocarbons from Aqueous Phase onto Activated Carbon.  

E-Print Network (OSTI)

??Non-competitive adsorption of polycyclic aromatic hydrocarbons (PAHs) from water onto activated carbon was studied alongside the performance of CO2-activated petroleum coke as a low-cost adsorbent.… (more)

Awoyemi, Ayodeji

2011-01-01T23:59:59.000Z

96

Carbon activation process for increased surface accessibility in electrochemical capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

2001-01-01T23:59:59.000Z

97

Production of Activated Carbon Fibers and Engineered Forms ...  

Carbon fibers are currently produced from non-renewable fossil sources, namely coal, oil, and natural gas, through energy-intensive processes.

98

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

99

Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation  

SciTech Connect

Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

2012-11-06T23:59:59.000Z

100

Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons  

E-Print Network (OSTI)

Abstract: An activated carbon, Carbochem TM —PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g ?1 for catechol aqueous solutions in a range of 20 at 1500 mg·L ?1.

Juan Carlos Moreno-piraján; Diego Blanco; Liliana Giraldo

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Applications of oxygen activation for injection and production profiling in the Kuparuk River field  

SciTech Connect

A new time-dependent method of oxygen-activation logging, now being used in the Kuparuk River field on the North Slope of Alaska, provides critical data for waterflood performance evaluation, assessment of ultimate recovery, and evaluation of potential for infill drilling and EOR projects without the use of radioactive tracer materials.

Pearson, C.M.; Renke, S.M. (Arco Alaska Inc., Anchorage, AK (United States)); McKeon, D.C.; Meisenhelder, J.P. (Schlumberger, Houston, TX (United States)); Scott, H.D.

1993-06-01T23:59:59.000Z

102

Enhancing As sup 5+ removal by a Fe sup 2+ -treated activated carbon  

SciTech Connect

The effectiveness of pretreating an activated carbon with iron-salt solution to improve its arsenic removal capacity was studied. Various factors such as type and concentration of salt, pH, and treating time were thoroughly investigated for their effects on the improvement of removal capacity. An effort was made to identify the optimal pretreatment conditions. A ten-fold increase, over the untreated activated carbon, in removal can be achieved under the optimal pretreatment procedure. The enhancement in removal by treatment occurs by adsorption of ferrous ions and formation of arsenate complexes. Ferrous salts can also be used to regenerate the activated carbon.

Huang, C.P.; Vane, L.M.

1989-09-01T23:59:59.000Z

103

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996  

SciTech Connect

The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

1997-05-01T23:59:59.000Z

104

Mercury Emissions from Curing Concretes that Contain Fly Ash and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the release of mercury from concrete containing fly ash and powdered activated carbon sorbents used to capture mercury. The concretes studied in this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing powdered activated carbon (PAC). Minute quantities of mercury were emitted from five concretes during the standard 28-day curing process and throughout an additional 28 days of curing for two of these concretes. Ge...

2006-09-07T23:59:59.000Z

105

Synthesis of a high-yield activated carbon by air gasification of macadamia nut shell charcoal  

Science Conference Proceedings (OSTI)

Macadamia nut shell charcoal was heated in an inert environment to temperatures above 1000 K (carbonized), reacted with oxygen (Po{sub 2} = 2.68--11.3 kPa) at temperatures between 525 and 586 K (oxygenated), and heated again in an inert environment to temperatures above 1000 K (activated) to produce an activated carbon. Carbons produced by this process possess surface areas and iodine numbers in the range of 400--550. Overall yields of these carbons (based on the dry, raw macadamia nut shell feed) ranged from 24 to 30 wt %. Under the conditions employed in this work, the rates of chemisorption and gasification were not mass transfer limited. Initially, the gasification reaction was first-order with respect to oxygen concentration but became independent of oxygen concentration as the surface sites of the carbon became saturated with oxygen.

Dai, X.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1999-09-01T23:59:59.000Z

106

Program or Field Office: Office of Legacy Management Project Title and I.D. No.: Bioremediation Injection and Related Activities at the Pinellas Site, Largo, Florida,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bioremediation Injection and Related Activities at the Pinellas Site, Largo, Florida, Bioremediation Injection and Related Activities at the Pinellas Site, Largo, Florida, LM 13-13 Location: Largo, Florida Proposed Action or Project Description: DOE proposes to use a Geoprobe to inject emulsified edible soybean oil (EEO) and anaerobic microbial solution into the surficial aquifer at the 4.5 Acre Site adjacent to the DOE Young - Rainey STAR Center (Pinellas Site) in Largo, Florida. The proposed action would enhance naturally occurring anaerobic biodegradation, thereby reducing vinyl chloride contamination along the southwest boundary of the 4.5 Acre Site. Dehalococcoides ethenogenes (DHE) is a type of microbe that occurs naturally in the aquifer. Bioaugmentation with a commercially available DHE culture used in conjunction with the EEO would maximize the efficiency of contaminant biodegradation. No genetically engineered or

107

Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags  

SciTech Connect

Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

Bernal, Susan A., E-mail: susana.bernal@gmail.co [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Mejia de Gutierrez, Ruby [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Provis, John L., E-mail: jprovis@unimelb.edu.a [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Rose, Volker [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2010-06-15T23:59:59.000Z

108

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-12-31T23:59:59.000Z

109

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-01-01T23:59:59.000Z

110

Chemical and biological systems for regenerating activated carbon contaminated with high explosives  

SciTech Connect

Activated carbon has been used as a substrate for efficiently removing high explosives (HEs) from aqueous and gaseous waste streams. Carbon that is saturated with HEs, however, constitutes a solid waste and is currently being stored because appropriate technologies for its treatment are not available. Because conventional treatment strategies (i.e., incineration, open burning) are not safe or will not be in compliance with future regulations, new and cost-effective methods are required for the elimination of this solid waste. Furthermore, because the purchase of activated carbon and its disposal after loading with HEs will be expensive, an ideal treatment method would result in the regeneration of the carbon thereby permitting its reuse. Coupling chemical and biological treatment systems, such as those described below, will effectively meet these technical requirements. The successful completion of this project will result in the creation of engineered commercial systems that will present safe and efficient methods for reducing the quantities of HE-laden activated carbon wastes that are currently in storage or are generated as a result of demilitarization activities. Biological treatment of hazardous wastes is desirable because the biodegradation process ultimately leads to the mineralization (e.g., conversion to carbon dioxide, nitrogen gas, and water) of parent compounds and has favorable public acceptance. These methods will also be cost- effective because they will not require large expenditures of energy and will permit the reuse of the activated carbon. Accordingly, this technology will have broad applications in the private sector and will be a prime candidate for technology transfer.

Knezovich, J.P.; Daniels, J.I. [Lawrence Livermore National Lab., CA (United States); Stenstrom, M.K.; Heilmann, H.M. [Univ. of California, Los Angeles, CA (United States). Civil and Engineering Dept.

1994-12-01T23:59:59.000Z

111

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

E-Print Network (OSTI)

Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

Zhou, R.

2010-01-01T23:59:59.000Z

112

Effect of Temperature on Biological Activated Carbon Performance  

Science Conference Proceedings (OSTI)

This experiment investigated the removal of CODMn, UV254, nitrate nitrogen and turbidity by the biological activated charcoal (BAC) reactor in the temperature of 4-18°C and 19 to 26°C. The result showed that the CODMn removal ability of BAC was limited ... Keywords: BAC, Nitrate nitrogen, turbidity, UV254

Yang Shidong; Liu Zhidong; Cui Fengguo; Zhang Lanhe

2011-08-01T23:59:59.000Z

113

Continuous, Non-Invasive, In-Field Soil Carbon Scanning System  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous, Non-Invasive, In-Field Soil Continuous, Non-Invasive, In-Field Soil Carbon Scanning System Background Earth generates and emits an enormous amount of carbon dioxide into the atmos- phere from its deep energy resources, its near-surface processes, and biotic activi- ties. Although anthropogenic carbon dioxide emissions increase global warming, global warming is also alleviated by human activities in sequestering carbon into the terrestrial ecosystem and injecting carbon dioxide deep into geological formations,

114

An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids  

SciTech Connect

Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole � including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite � at 1152�2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4�1535.6. The resultant 70.1-m test interval at 1535.6�1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tes

Richard Bowersox; John Hickman; Hannes Leetaru

2012-12-01T23:59:59.000Z

115

Perchlorate ion (C104) removal using an electrochemically induced catalytic reaction on modified activated carbon  

E-Print Network (OSTI)

Perchlorate is known to adversely affect the thyroid gland functions including iodide take up, thus perchlorate should be removed from drinking water. Bituminous coal-based activated carbon (AC) has been used for perchlorate removal in past years. Virgin carbon and carbon modified by oxidation with HNO3, NaOH and H2O2 were examined in this study for their ability to remove perchlorate by reduction or adsorption mechanisms. Surface functional groups formed on the modified AC (MAC) were examined with diffuse reflectance infrared spectrometry. Inhibition of perchlorate removal onto MAC by various anions ( - Cl , - 3 NO , and - 2 4 SO ) and solution pH (4.5, 7.2 and 10.5) were examined to characterize the MACs before an electrochemical reaction was performed. Surface functional groups were increased by oxidation. Groups that were found on the carbon include, but are not limited to lactone, quinine, carboxylate, and nitrogenoxygen groups. The effect of pH on removal of perchlorate by MAC was greatly affected by the change in the zero point charge (ZPC) induced on the carbon by modification. Virgin carbon also experienced difficulty in removing perchlorate when solution pH was above the ZPC. Anion inhibition varied with the modification process. - 3 NO inhibited perchlorate removal only by the virgin carbon. The other anions showed no major effects on the removal efficiency of perchlorate by the carbons. Electrochemical processes did not show favorable results in removal of perchlorate. The dominant mechanism of perchlorate removal during desorption tests was adsorption onto the carbon surfaces via ion exchange.

Langille, Meredith Caitlyn

2006-12-01T23:59:59.000Z

116

Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes  

E-Print Network (OSTI)

PtxNi1 - x nanoparticles (Pt:Ni; 1:0, 4:1, 3:1 and 0.7:1) of ~5 nm, were synthesized on carboxylic acid-functionalized multiwall carbon nanotubes (PtxNi1 - x NPs/MWNT). The oxygen reduction reaction (ORR) activity measurements ...

Kim, Junhyung

117

Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon  

E-Print Network (OSTI)

]. It is apparent that the LDF kinetic model is applicable for a wide variety of adsorbate­adsorbent systemsAdsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon are of fundamental importance in applications of adsorbents in real situations. The adsorption/desorption char

Thomas, Mark

118

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01T23:59:59.000Z

119

Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste  

SciTech Connect

Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N. [National Academy of Science Ukraine, Kiev (Ukraine). Institute of Coal Chemistry

2008-08-15T23:59:59.000Z

120

Thermodynamic properties of adsorbed mixtures of benzene and cyclohexane on graphitized carbon and activated charcoal at 30/degree/c  

SciTech Connect

Experimental data at 30/degree/C are reported for the adsorption of mixtures of benzene and cyclohexane on two types of carbon surface: graphitized carbon and activated charcoal. The properties of the adsorbed solution approach those of bulk liquid at vapor saturation for graphitized carbon, but not for activated charcoal. The mixtures adsorbed on graphitized carbon are nonideal, and the deviations from ideality increase with surface coverage. For activated charcoal, the adsorbed mixtures are nearly ideal at all coverages. Mixture behavior for both adsorbents can be predicted without using experimental data for the adsorbed mixtures. 11 refs.

Myers, A.L.; Minka, C.; Ou, D.Y.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characterizing the Effects of Air Injection on Compressor Performance for Use in Active Control of Rotating Stall  

E-Print Network (OSTI)

Previous work has developed an air injection controller for rotating stall based on the idea of a shifting compressor characteristic and the Moore--Greitzer three state compressor model. In order to demonstrate this form of control experimentally, a series of open loop tests were performed to measure the performance characteristics of a low speed axial flow compression system when air is injected upstream of the rotor face. The position of the air injection port relative to the hub and the rotor face and the angle relative to the mean axial flow were varied. The tests show that the injection of air has drastic effects on the stalling mass flow rate and on the size of the hysteresis loop associated with rotating stall. The stalling mass flow rate was decreased by 10% and the hysteresis loop was completely eliminated under some conditions. The results of the open loop parametric study were then used to implement a closed loop control strategy based on a shifting characteristic. 1 Introdu...

Robert Behnken; Mina Leung; Richard M. Murray

1997-01-01T23:59:59.000Z

122

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

123

Low pressure storage of methane on interlayered clays for potential vehicular applications. [Comparison with activated carbon  

SciTech Connect

Inexpensive, high surface area sorbents were prepared by treating naturally occurring hectorite and bentonite clays with aluminum chlorohydroxide, zirconium chlorohydroxide, or silica-sol solutions. Data were obtained comparing these interlayered clays with activated carbons and zeolites as sorbents for the low pressure storage of methane onboard natural gas powered vehicles. Methane sorption at pressures up to 7 MPa (1000 psig) resembled a Langmuir-type curve with a saturation sorption equal to about six micromoles of methane per square meter of surface area. Even at low pressures, methane sorption capacity was largely determined by surface area. At 2.2 MPa (300 psig), the best interlayered clay sorbed less than one-third the methane sorbed by an equal volume of Witco grade 9JXC activated carbon. Both the activated carbons and interlayered clays exhibited excellent release-on-demand capability. Driving ranges were calculated for a 2500-lb automobile equipped with three, 35-liter fuel tanks filled with sorbent and pressurized to 3.6 MPa (500 psig) with methane. Enough methane was stored with the best interlayered clay to travel 41 km (25 mi). With 9JXC carbon, one could travel 82 km (51 mi). The same vehicle equipped with high pressure (2400 psig) fuel tanks having the same volume but containing no sorbent would have a 190 km (118 mi) range.

Innes, R.A.; Lutinski, F.E.; Occelli, M.L.; Kennedy, J.V.

1984-07-01T23:59:59.000Z

124

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

125

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.

None

1997-08-01T23:59:59.000Z

126

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II  

SciTech Connect

The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

2002-02-21T23:59:59.000Z

127

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

SciTech Connect

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation process to design an integrated CO{sub 2} sequestration module. A parametric study was conducted to optimize conditions for mineral activation, in which serpentine and sulfuric acid were reacted. The study focused on the effects of varying the acid concentration, particle size, and reaction time. The reaction yield was as high as 48% with a 5 M acid concentration, with lower values directly corresponding to lower acid concentrations. Significant improvements in the removal of moisture, as well as in the dissolution, can be realized with comminution of particles to a D{sub 50} less than 125 ?m. A minimum threshold of 3 M concentration of sulfuric acid was found to exist in terms of removal of moisture from serpentine. The effect of reaction time was insignificant. The treated serpentine had low BET surface areas. Results demonstrated that acid concentration provided primary control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

128

Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program  

SciTech Connect

This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks: (1) develop laboratory and computational tools to understand CO{sub 2}-induced mechanical impacts and (2) use natural analog sites to determine potential groundwater impacts. We are using the Springerville-St. John Dome as a field site for collecting field data on CO{sub 2} migration through faults and groundwater impacts as well as developing and validating computational models. During the FY12 second quarter we have been working with New England Research Company to construct a tri-axial core-holder. We have built fluid control system for the coreflood system that can be ported to perform in-situ imaging of core. We have performed numerical simulations for groundwater impacts of CO{sub 2} and brine leakage using the reservoir model for Springerville-St John's Dome site. We have analyzed groundwater samples collected from Springerville site for major ion chemistry and isotopic composition. We are currently analyzing subsurface core and chip samples acquired for mineralogical composition.

Pawar, Rajesh J. [Los Alamos National Laboratory

2012-04-17T23:59:59.000Z

129

A model comparison initiative for a CO2 injection field test: An introduction to Sim-SEQ  

E-Print Network (OSTI)

IPCC Special Report on Carbon Dioxide Capture and Storage,buildup during supercritical carbon dioxide injection from asequestration of carbon dioxide, Environmental Science &

Mukhopadhyay, S.

2013-01-01T23:59:59.000Z

130

Elastic and elastoplastic finite element simulations of injection into porous reservoirs.  

E-Print Network (OSTI)

??Underground gas injection has attracted remarkable attention for natural gas storage and carbon dioxide (CO2) geologic sequestration applications. Injection of natural gas into depleted hydrocarbon… (more)

Chamani, Amin

2013-01-01T23:59:59.000Z

131

Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction  

DOE Patents (OSTI)

A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Westmont, IL); Wang, Xiaoping (Naperville, IL)

2010-08-03T23:59:59.000Z

132

How carbon-based sorbents will impact fly ash utilization and disposal  

Science Conference Proceedings (OSTI)

The injection of activated carbon flue gas to control mercury emissions will result in a fly ash and activated carbon mixture. The potential impact of this on coal combustion product disposal and utilization is discussed. The full paper (and references) are available at www.acaa-usa.org. 1 tab., 2 photos.

Pflughoeft-Hassett, D.F.; Hassett, D.J.; Buckley, T.D.; Heebink, L.V.; Pavlish, J.H. [Energy and Environmental Research Center (United States)

2008-07-01T23:59:59.000Z

133

The potential for leakage of injected CO2 at carbon seques-tration sites is a significant concern in the design and deploy-  

E-Print Network (OSTI)

distinct northeast- and north- west-trending lineament sets. The GPR survey reveals a nearly continuous are traceable over distances of 25-200 m and their aerial distri- bution shows some association with the pattern-penetrating radar survey. A detailed GPR survey was conducted of the area surrounding the injection well (Figure 1

Wilson, Thomas H.

134

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

J. Scott Bles; Kimberly B. Dollens.

1998-04-28T23:59:59.000Z

135

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

136

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

137

Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

Harpole, K.J.; Dollens, K.B.; Durrett, E.G.; Bles, J.S

1997-10-31T23:59:59.000Z

138

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion  

SciTech Connect

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

NONE

1996-08-09T23:59:59.000Z

139

Solution-reactor-produced Mo-99 using activated carbon to remore I-131  

SciTech Connect

The production of {sup 99}Mo in a solution reactor was explored. Activated charcoal was used to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba; the carbon trapped a diminutive amount of {sup 99}Mo. The results promote the idea of solution-reactor-produced {sup 99}Mo. Solution reactors are favorable both energetically and environmentally. A solution reactor could provide enough {sup 99}Mo/{sup 99m}Te to support both the current and future radiopharmaceutical needs of the U.S.

Kitten, S.; Cappiello, C.

1998-06-01T23:59:59.000Z

140

PERGAMON Carbon 38 (2000) 17571765 High temperature hydrogen sulfide adsorption on activated  

E-Print Network (OSTI)

directly, as in a traditional H , 23.1% CO, 5.8% CO , 6.6% H O, 0.5% H S, and2 2 2 2 coal-fired power plant was activated using coal-fired power plants. With improved gas turbine tech- steam by replacing the N flow temperature was examined as a2 function of carbon surface chemistry (oxidation, thermal desorption, and metal

Cal, Mark P.

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

142

NETL: News Release - CO2 Injection Begins in Illinois  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 2011 CO2 Injection Begins in Illinois Large-Scale Test to Inject 1 Million Metric Tons of Carbon Dioxide in Saline Formation Washington, D.C. - The Midwest Geological...

143

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated… (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

144

OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS  

SciTech Connect

Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

Nick Soelberg

2007-05-01T23:59:59.000Z

145

Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Injectivity Test Injectivity Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Injectivity Test Details Activities (7) Areas (6) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Permeability of the well Thermal: Dictionary.png Injectivity Test: A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can

146

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

147

Quantification of substitutional carbon loss from Si0.998C0.002 due to silicon self-interstitial injection during oxidation  

E-Print Network (OSTI)

of crystalline silicon. The Si1 xCx layer was grown at 550 °C and 10 Torr using 50 sccm of a disilane mixture 10% disilane in hydrogen and 20 sccm of methylsilane 1% methylsilane in hydrogen as the silicon and carbon

148

On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds  

SciTech Connect

Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

2009-10-15T23:59:59.000Z

149

NETL: News Release - DOE Technology Monitors CO2 Injection in...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 DOE Technology Monitors CO2 Injection in Australian Gas Field CSLF Project Demonstrates Unique Carbon Sequestration Technologies WASHINGTON, D.C. - Australia has launched...

150

THE CHEMISTRY OF THE REACTION OF URANIUM HEXAFLUORIDE WITH ACTIVATED CARBON  

SciTech Connect

The effects of temperature, time and other variables on the rate and extent of reaction between UF/sub 6/ and various types, grades and particle sizes of commercial activated carbon have been studied experimentally. It is shown that both hydrolysis and reduction of the UF/sub 6/ occur, the latter more slowly than the former. Reduction leads to the formation of a mixture of fluorocarbons ranging from CF/sub 4/ to a wax-like maternial volatile only above 250 deg C. There is also evidence for the adsorption of UF/sub 6/ on an undetermined substrate. (auth)

Wilson, T.P.; Schuman, S.C.; Simons, E.L.

1946-04-12T23:59:59.000Z

151

Solution-reactor-produced-{sup 99}Mo using activated carbon to remove {sup 131}I  

SciTech Connect

This research explores the idea of producing {sup 99}Mo in a solution reactor. The Solution High Energy Burst Assembly (SHEBA), located at the Los Alamos Critical Assembly Facility, was used to facilitate this study. The goal of this study was to build on work previously completed and to investigate a possible mode of radioactive contaminant removal prior to a {sup 99}Mo extraction process. Prior experiments, performed using SHEBA and a single-step sorption process, showed a significant amount of {sup 131}I present along with the {sup 99}Mo on the alumina that was used to isolate the {sup 99}Mo. A high concentration of {sup 131}I and/or other contaminants present in a sample prohibits the Food and Drug Administration from approving an extraction of that nature for radiopharmaceutical use. However, if it were possible to remove the {sup 131}I and other contaminants prior to a {sup 99}Mo extraction, a simple column extraction process might be feasible. Activated charcoal was used to try to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of the {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba. Most importantly, the carbon traps a diminutive amount of {sup 99}Mo.

Kitten, S.; Cappiello, C. [Los Alamos National Lab., NM (United States)

1998-09-01T23:59:59.000Z

152

CarbFix CO2 Injection Pilot Project, J. M. Matter, M. Stute & W. Broecker  

E-Print Network (OSTI)

Fix Injection Site #12;A Conceptual Carbonation Model Injec8on well: CO2 fully dissolvedCarbFix CO2 Injection Pilot Project, Iceland J. M. Matter, M. Stute & W. Broecker Lamont Pétursson #12;CarbFix Injection Site #12;CarbFix CO2 Injection Site #12;CarbFix Injection Site 2

153

LIFAC Sorbent Injection Desulfurization Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the flue gas in a separate activation reactor, which increases SO 2 removal. An electrostatic precipitator downstream from the point of injection captures the reaction...

154

Biofiltration of benzene contaminated air streams using compost-activated carbon filter media  

Science Conference Proceedings (OSTI)

Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

Zhu, L.; Kocher, W.M. [Cleveland State Univ., OH (United States). Civil Engineering Dept.; Abumaizar, R.J. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mechanical Engineering

1998-12-31T23:59:59.000Z

155

Polymer flotation and activated carbon adsorption treatment for in situ tar sand process water  

SciTech Connect

Tar sand deposits in the United States are estimated to exceed thirty billion barrels, and offer long term potential for satisfying future energy needs. At present there is no commercial scale tar sand extraction industry in the United States, although several bench and pilot scale research projects have been completed. Three of the larger field scale experiments were completed by the Department of Energy (DOE) at a site near Vernal, Utah. The first two of these efforts involved in situ combustion while the third used steam drive. This paper reviews some of the flotation configurations which were used to generate a large (350 L) volume of treated effluent as well as describing some toxicology and analytical chemistry protocols used to characterize these fluids. Additional emphasis is placed upon a series of activated carbon adsorption experiments undertaken to detoxify the flotation effluents.

Mc Ternan, W.F.; Kocornik, D.J.; Nolan, B.T.; Blanton, W.E.; Boardman, G.D.

1985-01-01T23:59:59.000Z

156

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

157

EA-1886: Big Sky Regional Carbon Sequestration Partnership -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA,...

158

Comparison of equilibria and kinetics of high surface area activated carbon produced from different precursors and by different chemical treatments  

Science Conference Proceedings (OSTI)

Activated carbons prepared by chemical activation of coal and macadamia nutshell precursors with KOH and ZnCl{sub 2} have been studied in terms of their equilibrium and dynamic characteristics. These characteristics were then related to the micropore properties: surface area, volume, and half-width. Volumetric techniques were used for equilibria characterization and an FT-IR batch adsorber for dynamics. Carbons activated by KOH resulted in a more microporous structure, while those activated by zinc chloride were more mesoporous. High surface area samples were further studied in terms of their methane adsorption uptake. It was found that nutshell-derived activated carbons have a higher adsorption capacity per unit mass than those derived from coal; however, this was offset by lower particle density (mass/volume). High-pressure (2 GPa) pelletization of the carbons used for dynamic testing had a detrimental effect on capacity, presumably from pore collapse. Dynamic characteristics were found to be rather similar between the samples, with those treated with KOH displaying slower adsorption time scales.

Ahmadpour, A.; King, B.A.; Do, D.D. [Univ. of Queensland, St. Lucia, Queensland (Australia)

1998-04-01T23:59:59.000Z

159

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

160

Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium  

DOE Patents (OSTI)

A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

Bakajin, Olgica (San Leandro, CA); Noy, Aleksandr (Belmont, CA)

2007-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

8 GeV H- ions: Transport and injection  

DOE Green Energy (OSTI)

Fermilab is working on the design of an 8 GeV superconducting RF H{sup -} linac called the Proton Driver. The energy of H{sup -} beam will be an order of magnitude higher than the existing ones. This brings up a number of technical challenges to transport and injection of H{sup -} ions. This paper will focus on the subjects of stripping losses (including stripping by blackbody radiation, field and residual gas) and carbon foil stripping efficiency, along with a brief discussion on other issues such as Stark states lifetime of hydrogen atoms, single and multiple Coulomb scattering, foil heating and stress, radiation activation, collimation and jitter correction, etc.

Chou, W.; Bryant, H.; Drozhdin, A.; Hill, C.; Kostin, M.; Macek, R.; Ostiguy, J.-F.; Rees, G.H.; Tang, Z.; Yoon, P.; /Fermilab /New Mexico U. /Los Alamos /Rutherford

2005-05-01T23:59:59.000Z

162

Carbon-Supported IrNi Core-Shell Nanoparticles: Synthesis Characterization and Catalytic Activity  

Science Conference Proceedings (OSTI)

We synthesized carbon-supported IrNi core-shell nanoparticles by chemical reduction and subsequent thermal annealing in H{sub 2}, and verified the formation of Ir shells on IrNi solid solution alloy cores by various experimental methods. The EXAFS analysis is consistent with the model wherein the IrNi nanoparticles are composed of two-layer Ir shells and IrNi alloy cores. In situ XAS revealed that the Ir shells completely protect Ni atoms in the cores from oxidation or dissolution in an acid electrolyte under elevated potentials. The formation of Ir shell during annealing due to thermal segregation is monitored by time-resolved synchrotron XRD measurements, coupled with Rietveld refinement analyses. The H{sub 2} oxidation activity of the IrNi nanoparticles was found to be higher than that of a commercial Pt/C catalyst. This is predominantly due to Ni-core-induced Ir shell contraction that makes the surface less reactive for IrOH formation, and the resulting more metallic Ir surface becomes more active for H{sub 2} oxidation. This new class of core-shell nanoparticles appears promising for application as hydrogen anode fuel cell electrocatalysts.

K Sasaki; K Kuttiyiel; L Barrio; D Su; A Frenkel; N Marinkovic; D Mahajan; R Adzic

2011-12-31T23:59:59.000Z

163

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

164

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

SciTech Connect

Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

Oldenburg, Curtis M.

2003-04-08T23:59:59.000Z

165

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

166

Commercial Activated Carbon for the Catalytic Production of Hydrogen via the Sulfur-Iodine Thermochemical Water Splitting Cycle  

DOE Green Energy (OSTI)

Eight activated carbon catalysts were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. No statistically significant correlation was found between catalyst sample properties and catalytic activity. Four of the eight samples were examined for one week of continuous operation at 723 K. All samples appeared to be stable over the period of examination.

Daniel M. Ginosar; Lucia M. Petkovic; Kyle C. Burch

2011-07-01T23:59:59.000Z

167

New Carbon Activation Process for Increased Surface Accessibility in Electrochemical Capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm{sup 3} is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350 C for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H.; Eisenmann, Erhard T.

1999-03-16T23:59:59.000Z

168

Carbon dioxide adsorption and activation on Ceria (110): A density functional theory study  

E-Print Network (OSTI)

Ceria (CeO2) is a promising catalyst for the reduction of carbon dioxide (CO2) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO2 adsorption and initial activation on CeO2 surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (DFT+U), to explore various adsorption sites and configurations for CO2 on stoichiometric and reduced CeO2 (110). Our model of reduced CeO2 (110) contains oxygen vacancies at the topmost atomic layer and undergoes surface reconstruction upon introduction of these vacancies. We find that CO2 adsorption on reduced CeO2 (110) is thermodynamically favored over the corresponding adsorption on stoichiometric CeO2 (110). The most stable adsorption configuration consists of CO2 adsorbed parallel to the reduced CeO2 (110) surface, with the molecule situated near the site of the oxygen vacancy. Structural changes in the CO2 molecule are also observed upon adsorption, so t...

Cheng, Zhuo; Lo, Cynthia S

2012-01-01T23:59:59.000Z

169

Thermal removal of mercury in spent powdered activated carbon from TOXECON process  

SciTech Connect

This research developed and demonstrated a technology to liberate Hg adsorbed onto powdered activated carbon (PAC) by the TOXECON process using pilot-scale high temperature air slide (HTAS) and bench-scale thermogravimetric analyzer (TGA). The HTAS removed 65, 83, and 92% of Hg captured with PAC when ran at 900{sup o}F, 1,000{sup o}F, and 1,200 {sup o}F, respectively, while the TGA removed 46 and 100% of Hg at 800 {sup o}F and 900{sup o}F, respectively. However, addition of CuO-Fe{sub 2}O{sub 3} mixture and CuCl catalysts enhanced Hg removal and PAC regeneration at lower temperatures. CuO-Fe{sub 2}O{sub 3} mixture performed better than CuCl in PAC regeneration. Scanning electron microscopy images and energy dispersive X-ray analysis show no change in PAC particle aggregation or chemical composition. Thermally treated sorbents had higher surface area and pore volume than the untreated samples indicating regeneration. The optimum temperature for PAC regeneration in the HTAS was 1,000{sup o}F. At this temperature, the regenerated sorbent had sufficient adsorption capacity similar to its virgin counterpart at 33.9% loss on ignition. Consequently, the regenerated PAC may be recycled back into the system by blending it with virgin PAC.

Okwadha, G.D.O.; Li, J.; Ramme, B.; Kollakowsky, D.; Michaud, D. [University of Wisconsin, Milwaukee, WI (United States)

2009-10-15T23:59:59.000Z

170

Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity  

SciTech Connect

When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

Lokey, Elizabeth

2009-08-15T23:59:59.000Z

171

INJECTING CARBON DIOXIDE INTO UNCONVENTIONAL STORAGE RESERVOIRS...  

NLE Websites -- All DOE Office Websites (Extended Search)

CBM wells over a one-year period Perform a small Huff and Puff test in a Devonian shale gas well Duration: 4 years (October 1, 2011 - September 30, 2015) Research...

172

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

173

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

174

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

175

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

176

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

177

Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon  

SciTech Connect

The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.

David Werner; Upal Ghosh; Richard G. Luthy [University of Newcastle upon Tyne, Newcastle (United Kingdom)

2006-07-01T23:59:59.000Z

178

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

179

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

Science Conference Proceedings (OSTI)

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, 185 C, >13 MPa, and control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

180

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Controlled air injection for a fuel cell system  

DOE Patents (OSTI)

A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

Fronk, Matthew H. (Honeove Falls, NY)

2002-01-01T23:59:59.000Z

182

MODELING POWDERED SORBENT INJECTION IN COMBINATION WITHE FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

POWDERED SORBENT INJECTION IN POWDERED SORBENT INJECTION IN COMBINATION WITH FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS Joseph R. V. Flora Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208 Richard A. Hargis, William J. O'Dowd, Henry W. Pennline National Energy Technology Laboratory, U.S. Department of Energy P.O. Box, 10940, Pittsburgh, PA 15236 Radisav D. Vidic * Department of Civil and Environmental Engineering University of Pittsburgh, Pittsburgh, PA 15261 ABSTRACT A two-stage mathematical model for mercury removal using powdered activated carbon injection upstream of a baghouse filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal due to the

183

Removal of RDX and HMX from an artificial groundwater by granular activated carbon  

E-Print Network (OSTI)

Granular activated carbon (GAC) adsorption was efficient at removing high explosive contaminants such as Hexahydro-1,3,5-trinitro-1,3,5-tririne (RDX) and Octahydro-1,3,5,7-tetrritro-1,3,5,7-tetruocine (HMX) from an artificial groundwater (AGW). A completely mixed batch reactor (CMBR) system was selected for all rate and isotherm experiments. A number of rate and isotherm experiments were conducted to measure performance in the removal of RDX and HMX using GAC depending on dissolved oxygen, natural organic matter (NOM) preloading and GAC pretreatment. The investigation of competitive adsorption of RDX and Cr(VI) on GAC was conducted. In addition, IAST model predictions were made for RDX and HMX bisolute isotherms. When oxygen was excluded in the experimental system, there was enhancement in the removal of RDX from AGW using Fe[] pretreated GAC. However, in spite of this enhancement, it was still lower than the level of removal using virgin GAC as discussed below. According to the screening experiment results, dissolved Fe[]alone could not chemically reduce RDX. Despite expectations to the contrary based on the screening results, there was indeed some increase in the removal of RDX by Fe[] pretreated GAC under anaerobic conditions. It was suspected that in regard to the removal of RDX using GAC, there may have been chemical reactions occurring between RDX and the chemically reduced GAC surface under anaerobic conditions. Overall, the sorption capacity of GAC for RDX and HMX decreased as preloaded humid acid concentration increased. GAC procreated with a strong reluctant such as Fe[] or dithionite did not result in the enhancement of RDX removal from AGW compared with isotherms of virgin GAC under both aerobic and anaerobic conditions. Experimental values showed that for RDX, the single-solute isotherm data, bisolute isotherm data in the presence of Cr(VI) exhibited similar results. This suggests that the presence of Cr(VI) had negligible effect on RDX removal by GAC, indicating that competitive effects between RDX and Cr(VI) were minimal. Also, Cr(VI) removal was not significantly affected by the presence of RDX. IAST model predicted that the presence of HMX would reduce the adsorption of RDX compared to the single-solute isotherm of RDX. In the same manner, similar effects were obtained for HMX.

Im, Jeong Ran

1999-01-01T23:59:59.000Z

184

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

185

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

186

Effects of adsorbed water vapor on the Wheeler kinetic rate constant and kinetic adsorption capacity for activated carbon adsorbents  

SciTech Connect

Activated carbon plays a key role reducing organic vapor emissions to the environment from synthetic chemical manufacturing, pesticide manufacturing, in odor control, for removal of contaminant vapors during remediation of hazardous waste sites, and as an adsorption matrix for collection of organic vapors from ambient air in occupational and environmental settings to assess exposure. The Wheeler dynamic adsorption model has been evaluated under laboratory conditions and has shown potential for predicting activated carbon bed penetration. Water vapor is a normal constituent of ambient air that is present at concentrations 1-2 orders of magnitude greater than the concentrations of potentially toxic air contaminants. Many investigations have shown that adsorbed water vapor can reduce the breakthrough-time of activated charcoal beds. The effect of adsorbed water vapor on the predictive power of the Wheeler model has not been evaluated. The research evaluated the effect of water vapor adsorbed on activated charcoal on the subsequent adsorption of four air contaminants, carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, and 1-propanol. The adsorbent used in this research had a large surface area, 1200 m[sup 2]/g and that 95% of the surface area was associated with micropores (pores with diameters less than 2 micrometers). Kinetic adsorption capacities for all four adsorbates were not affected by the presence of water vapor except for some observed enhancement. The kinetic trial data suggest that the primary effect of adsorbed water vapor was to reduce the effective pore radius of the smaller mesopores thus restricting pore diffusion. This results in an increase in the critical bed capacity with shorter breakthrough times for adsorbent beds.

Hall, T.A.

1992-01-01T23:59:59.000Z

187

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

188

POTENTIAL USE OF ACTIVATED CARBON TO RECOVER TC-99 FROM 200 WEST AREA GROUNDWATER AS AN ALTERNATIVE TO MORE EXPENSIVE RESINS HANFORD SITE RICHLAND WASNINGTON  

SciTech Connect

Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite{reg_sign} A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO{sub 4}{sup -}) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO{sub 4}{sup -} selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions (< 0.01 molarity). The column leaching studies confirmed a high adsorption capacity and selectivity of activated carbon for TCO{sub 4}{sup -}. Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

BYRNES ME; ROSSI AJ; TORTOSO AC

2009-12-03T23:59:59.000Z

189

Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria  

E-Print Network (OSTI)

is centered on one CO 2 injection well and consists of about1.5 km) horizontal injection wells. In an ongoing researchabove active CO 2 injection wells and the uplift pattern

Rutqvist, J.

2010-01-01T23:59:59.000Z

190

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

191

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

192

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

193

THE RHIC INJECTION SYSTEM.  

SciTech Connect

The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

1999-03-29T23:59:59.000Z

194

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel  

E-Print Network (OSTI)

The large volume of water produced during the extraction of oil presents a significant problem due to the high cost of disposal in an environmentally friendly manner. On average, an estimated seven barrels of water is produced per barrel of oil in the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. Besides making oil-water separation more complex, produced water also causes problems such as corrosion in the wellbore, decline in production rate and ultimate recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross-flow between high and low permeability layers and early water breakthrough from high permeability layers. Some of the different technologies that can be used to counteract this involve reducing the mobility of water or using a permeability block in the higher permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance of DDG, its injection was modeled, sensitivities run for a range of reservoir characteristics and conditions and an economic analysis was also performed. The performance of the DDG was then compared to other recovery methods, specifically waterflooding and polymer flooding from a technical and economic perspective. A literature review was performed on the background of injection profile control methods, their respective designs and technical capabilities. For the methods selected, Schlumberger's Eclipse software was used to simulate their behavior in a reservoir using realistic and simplified assumptions of reservoir characteristics and fluid properties. The simulation results obtained were then used to carry out economic analyses upon which conclusions and recommendations are based. These results show that the factor with the largest impact on the economic success of this method versus a polymer flood was the amount of incremental oil produced. By comparing net present values of the different methods, it was found that the polymer flood was the most successful with the highest NPV for each configuration followed by DDG.

Okeke, Tobenna

2012-05-01T23:59:59.000Z

195

Application of Metal Injection Molding to Soft Magnetic Materials  

Science Conference Proceedings (OSTI)

Advances in Current Activated Tip-Based Sintering (CATS) · Advances in Synthesis and Densification of Heterogeneous Materials · Application of Metal Injection ...

196

Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas  

Science Conference Proceedings (OSTI)

The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

197

Direct liquid injection of liquid petroleum gas  

SciTech Connect

A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

Lewis, D.J.; Phipps, J.R.

1984-02-14T23:59:59.000Z

198

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

199

Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology  

SciTech Connect

The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

Swanson, Michael; Henderson, Ann

2012-04-01T23:59:59.000Z

200

Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl  

Science Conference Proceedings (OSTI)

Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity of RAC toward aqueous 2-chlorobiphenyl (2-ClBP), and its aging and longevity under various oxidizing environments. RAC containing 14.4% Fe and 0.68% Pd used in this study could adsorb 122.6 mg 2-ClBP/g RAC, and dechlorinate 56.5 mg 2-ClBP/g RAC which corresponds to 12% (yield) of its estimated dechlorination capacity. Due to Fe0 oxidation to form oxide passivating layers, Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} (oxide-water interface) and FeOOH/FeO (oxide-metal interface), RAC reactivity decreased progressively over aging under N{sub 2} tab.

Hyeok Choi; Souhail R. Al-Abed; Shirish Agarwal [U.S. Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

2009-06-15T23:59:59.000Z

202

Removal of Mercury from SBW Vitrification Off-Gas by Activated Carbon  

SciTech Connect

Radioactive, acidic waste stored at the Idaho Nuclear Technology and Engineering Center (INTEC) have been previously converted into a dry, granular solid at the New Waste Calcining Facility (NWCF). As an alternative to calcination, direct vitrification of the waste, as well as the calcined solids in an Idaho Waste Vitrification Facility (IWVF) is being considered to prepare the waste for final disposal in a federal repository. The remaining waste to be processed is Sodium-Bearing Waste (SBW). Off-gas monitoring during NWCF operations have indicated that future mercury emissions may exceed the proposed Maximum Achievable Control Technology (MACT) limit of 130 ug/dscm (micrograms/dry standard cubic meter) @ 7% O2 for existing Hazardous Waste Combustors (HWC) if modifications are not made. Carbon monoxide and hydrocarbon emissions may also exceed the MACT limits. Off-gas models have predicted that mercury levels in the off-gas from SBW vitrification will exceed the proposed MACT limit of 45 ug/dscm @ 7% O2 for new HWCs. NO2/44% H2O.

Deldebbio, John Anthony; Watson, T. T.; Kirkham, Robert John

2001-09-01T23:59:59.000Z

203

PERGAMON Carbon 38 (2000) 17671774 High temperature hydrogen sulfide adsorption on activated  

E-Print Network (OSTI)

.e. an activation energy is required for chemi- cal adsorption to occur and once that energy is supplied and gas-phase regeneration experiments were [1] Cal MP, Strickler BW, Lizzio AA. High temperature hydro, PA: US Department of Energy/Federal removal requirement set at one of the DOE's IGCC plants. Energy

Cal, Mark P.

204

Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers  

SciTech Connect

The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1995-11-01T23:59:59.000Z

205

Optimization of Injection Scheduling in  

E-Print Network (OSTI)

- of wells,and (2) allocating a total speci6cd injection rate among chosen injectors. The alloca- tion is defined as the fieldwide break- through lindex, B. Injection is optimized by choosing injection wells questions: (1) Which wells should be made injectors? (2) How should the total nquired injection rate

Stanford University

206

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

207

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

208

Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent  

Science Conference Proceedings (OSTI)

Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2008-09-15T23:59:59.000Z

209

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

210

Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage  

Science Conference Proceedings (OSTI)

In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

2011-01-01T23:59:59.000Z

211

Calculation of the performance of activated carbon at high relative humidities  

SciTech Connect

The Dubinin-Radushkevich potential theory was extended to include a term giving the effect of relative humidity on the uptake of adsorbate. This extended equation permit the adsorptive capacity of the activated charcoal in a respirator cartridge to be estimated for any combination of temperature, relative humidity, and concentration of contaminant. Application of this theory to previously published data of Werner showed a good correlation between theory and experiment. This equation is consistent with the experimental observations that 1) below a certain value, the relative humidity has little effect on the uptake of adsorbate, and 2) the effect of relative humidity, if observed, is more severe for lower than for higher concentration of contaminant.

Underhill, D.W.

1987-11-01T23:59:59.000Z

212

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Technical progress report  

SciTech Connect

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a CO{sub 2} project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

Chimahusky, J.S.

1996-04-19T23:59:59.000Z

213

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

214

NETL: News Release - Carbon Sequestration Partner Initiates CO2...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 18 , 2008 Carbon Sequestration Partner Initiates CO2 Injection into Michigan Basin Test Part of DOE's National Strategy to Mitigate Greenhouse Gas Emissions Washington, DC...

215

NETL: Carbon Storage - Upcoming Small-Scale Field Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Response Staff Bios CONTACT NETL Visiting NETL People Search Go to US DOE Carbon Storage Upcoming Small-Scale Field Projects Injection well with monitoring equipment at...

216

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA's Proposed Greenhouse Gas Reporting Rule for Carbon Dioxide Injection and Geologic Sequestration Mark de Figueiredo U.S. Environmental Protection Agency RCSP Annual Review...

217

Carbon-particle generator  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, A.J.

1982-09-29T23:59:59.000Z

218

Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology  

DOE Green Energy (OSTI)

The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

Hessel, R P; Aceves, S M; Flowers, D L

2006-03-06T23:59:59.000Z

219

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

the injection well to^ production wells along high conductivity fractures. A powerful method for investigat- ing fields typically choose a configuration for injection wells after a number of development wells have of cooler injected fluids at producing wells. The goal of the current #12;- 10 - work is to provide

Stanford University

220

Interphase power controller with voltage injection  

Science Conference Proceedings (OSTI)

This paper introduces a new family of Interphase Power Controllers (IPC) based on the principle of voltage injection commonly used in phase-shifting transformers (PST). The voltage injection IPC exhibits power (active and reactive) control characteristics similar to previously defined IPC's and retains their inherent qualities: passive control, short circuit limitation and voltage decoupling. It also provides more flexibility for the adjustment of the operating points. Two promising topologies are described in more detail. One of them offers the potential of retrofitting existing phase-shifting transformers into full-fledged IPC's.

Beauregard, F.; Brochu, J.; Morin, G.; Pelletier, P. (Centre d'Innovation sur le Transport d'Energie du Quebec, Varennes, Quebec (Canada))

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis  

Science Conference Proceedings (OSTI)

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung [National Sun Yat-Sen University, Taiwan (China). Institute of Environmental Engineering

2006-11-15T23:59:59.000Z

222

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

223

A study on Raman Injection Laser  

E-Print Network (OSTI)

The Raman Injection Laser is a new type of laser which is based on triply resonant stimulated Raman scattering between quantum confined states within the active region of a Quantum Cascade Laser that serves as an internal optical pump. The Raman Injection Laser is driven electrically and no external laser pump is required. Triple resonance leads to an enhancement of orders of magnitude in the Raman gain, high conversion efficiency and low threshold. We studied this new type of laser and conclude some basic equations. With reasonable experimental parameters, we calculated the laser gain, losses and the output power of the Raman Injection Laser by using Mathematica and FEMLab. Finally we compared the theoretical and experimental results.

Liu, Debin

2005-08-01T23:59:59.000Z

224

DOE Regional Partner Initiates CO2 Injection Study in Virginia | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Initiates CO2 Injection Study in Virginia Partner Initiates CO2 Injection Study in Virginia DOE Regional Partner Initiates CO2 Injection Study in Virginia February 11, 2009 - 12:00pm Addthis Washington, D.C. -- A U.S. Department of Energy (DOE) team of regional partners has begun injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced coalbed methane recovery. The results of the study will be vital in assessing the potential of carbon storage in coal seams as a safe and permanent method to mitigate greenhouse gas emissions while enhancing production of natural gas. DOE's Southeast Regional Carbon Sequestration Partnership (SECARB) began injecting CO2 at the test site in Russell County, Virginia, in mid January.

225

Carbon Nanotubes Grown on Various Fibers - Oak Ridge National ...  

fiber materials inlcuding quartz wool fibers, carbon fibers, and activated carbon fibers. In each example a chloride solution of Fe, ...

226

Adaptable Inverter for Injection of Fuel Cell and Photovoltaic Power  

E-Print Network (OSTI)

important to apply renewable energies and efficient technologies. For power injection of photovoltaic with different energy sources such as photovoltaic, fuel cell and battery. It is possible to adjust active inverter. These inverters for injection of photovoltaic energy are developed only for this purpose

Kulig, Stefan

227

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

228

CarbonNanotubeActive ...  

intensively explored for enabling new applications otherwise ... Of particular importance, a high mobility, such as those obtained here, ...

229

DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Completes Successful CO2 Injection Test in the Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone October 21, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership (MRCSP), one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest. Preliminary results indicate that the formation has good CO2 storage potential and could possibly serve as a repository for CO2 emissions captured from stationary sources in the region. Carbon capture and storage

230

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

231

Synthesis and Oxygen Reduction Reaction Activity of Atomic and Nanoparticle Gold on Thiol-Functionalized Multiwall Carbon Nanotubes  

E-Print Network (OSTI)

We demonstrated the self-assembly of atomic Au on thiol-functionalized multiwall carbon nanotubes through covalent bonding and the formation of Au nanoparticles (NPs) upon a subsequent thermal treatment. Au NPs of 3.4 nm ...

Kim, Junhyung

232

Synthesis, Activity and Durability of Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes for Oxygen Reduction  

E-Print Network (OSTI)

Carbon nanotube supported metal nanoparticles (NPs) have attracted considerable attention due to their great potential for heterogeneous catalysis. In this paper, surfactant-free and well dispersed platinum (Pt) NPs supported ...

Massachusetts Institute of Technology. Dept. of Chemistry; Massachusetts Institute of Technology. Dept. of Mechanical Engineering; Massachusetts Institute of Technology. Dept. of Materials Science and Engineering; Sheng, Wenchao; Lee, Seung Woo; Crumlin, Ethan J.; Chen, Shuo; Shao-Horn, Yang

233

Particle beam injection system  

SciTech Connect

This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

Jassby, Daniel L. (Princeton, NJ); Kulsrud, Russell M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

234

The reduction of supersonic jet noise using pulsed microjet injection  

E-Print Network (OSTI)

This thesis is concerned with the active control of supersonic jet noise using pulsed microjet injection at the nozzle exit. Experimental investigations were carried out using this control method on an ideally expanded ...

Ragaller, Paul Aaron

2007-01-01T23:59:59.000Z

235

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

236

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

237

Combustion oscillation control by cyclic fuel injection  

SciTech Connect

A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

Richards, G.A.; Yip, M.J. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E. [EG& G Technical Services of West Virginia, Morgantown Energy Technology Center, WV (United States); Cowell, L.; Rawlins, D. [Solar Turbines, Inc., San Diedgo, CA (United States)

1995-04-01T23:59:59.000Z

238

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

239

NETL: News Release - Alabama Injection Project Aimed at Enhanced Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

March 1, 2010 March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage DOE-Sponsored Citronelle Project Appears Ideal Location for Concurrent CO2 Sequestration and EOR Operations Washington, D.C. - Carbon dioxide (CO2) injection - an important part of carbon capture and storage (CCS) technology - is underway as part of a pilot study of CO2 enhanced oil recovery (EOR) in the Citronelle Field of Mobile County, Alabama. A project team led by the University of Alabama at Birmingham is conducting the injection. Study results of the 7,500-ton CO2 injection will provide estimates of oil yields from EOR and CO2 storage capacity in depleted oil reservoirs. In the United States, CO2 injection has already helped recover nearly 1.5 billion barrels of oil from mature oil fields, yet the technology has not been deployed widely. It is estimated that nearly 400 billion barrels of oil still remain trapped in the ground. Funded through the Department of Energy's Office of Fossil Energy, the primary goal of the Citronelle Project is to demonstrate that remaining oil can be economically produced using CO2-EOR technology in untested areas of the United States, thereby reducing dependency on oil imports, providing domestic jobs, and preventing the release of CO2 into the atmosphere.

240

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy recovery by water injection  

DOE Green Energy (OSTI)

Several analytical and numerical studies that address injection and thermal breakthrough in fractured geothermal reservoirs are described. The results show that excellent thermal sweeps can be achieved in fractured reservoirs, and that premature cold water breakthrough can be avoided if the injection wells are appropriately located.

Witherspoon, P.A.; Bodvarsson, G.S.; Pruess, K.; Tsang, C.F.

1982-07-01T23:59:59.000Z

242

The Evaluation of Fly Ash Carbon and Coal Additives for Mercury Control at AmerenUE's Labadie and Meramec Power Plants  

Science Conference Proceedings (OSTI)

Tests at AmerenUE's Labadie and Meramec Power Plants evaluated the effectiveness of the bromine-based coal additive, KNX (Alstom), on mercury removal and speciation. The effect of carbon content in the ash, both unburned and from activated carbon injection, was also evaluated. These plants fire a variety of coals from the Powder River Basin (PRB) that typically contain low level of halogens. The unburned carbon in the fly ash at Labadie was < 0.5%, which was lower than at Meramec where it was 0.86 8212 2...

2008-01-22T23:59:59.000Z

243

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

244

Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems  

DOE Green Energy (OSTI)

The following topics are covered: thermodynamic instability of brine, injectivity loss during regular production and injection operations, injectivity loss caused by measures other than regular operations, heat mining and associated reservoir problems in reinjection, pressure maintenance through imported make-up water, suggested solutions to injection problems, and suggested solutions to injection problems: remedial and stimulation measures. (MHR)

Vetter, O.J.; Crichlow, H.B.

1979-02-14T23:59:59.000Z

245

NEUTRAL-BEAM INJECTION  

SciTech Connect

The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

Kunkel, W.B.

1980-06-01T23:59:59.000Z

246

The study of neutron activation yields in spallation reaction of 400 MeV/u carbon on a thick lead target  

E-Print Network (OSTI)

The spallation-neutron yield was studied experimentally by bombarding a thick lead target with 400 MeV/u carbon beam. The data were obtained with the activation analysis method using foils of Au, Mn, Al, Fe and In. The yields of produced isotopes were deduced by analyzing the measured {\\gamma} spectra of irradiated foils. According to the isotopes yields, the spatial and energy distributions of the neutron field were discussed. The experimental results were compared with Monte Carlo simulations performed by the GEANT4 + FLUKA code.

F. Ma; H. L. Ge; X. Y. Zhang; H. B. Zhang; Y. Q. Ju; L. Chen; L. Yang; F. Fu; Y. L. Zhang; J. Y. LI; T. J. Liang; B. Zhou; S. L. Wang; J. Y. Li; J. K. Xu; X. G. Leir; Z. Qin; L. Gu; G. M. Jin

2013-09-03T23:59:59.000Z

247

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

248

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

249

Injection nozzle for a turbomachine  

Science Conference Proceedings (OSTI)

A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

2012-09-11T23:59:59.000Z

250

D/sub 2/ - pellet injection system  

Science Conference Proceedings (OSTI)

For density build-up of a target plasma for neutral injection in the stellarator ''Wendelstein W VIIA''and for refuelling of the divertor tokamak ASSDEX, pellet light gas guns have been developed. In a continuous flow cryostat cooled by liquid helium with a comsumption of 2 - 3 liter liquid helium per hour deuterium was condensed and solidified. To prevent the propeller gas entering the torus was used. In one system a 3.6 mm guiding tube following the barrel was applied successfully. By optical diagnostics pellet velocity, pellet size and pellet trajectory is measured. For a pellet centrifuge system investigations of carbon fiber rotors were made up to surface velocities of 1500 m/s.

Buechl, K.; Andelfinger, C.; Kollotzek, H.; Lang, R.; Ulrich, M.

1981-01-01T23:59:59.000Z

251

-OGP 04 (1) -Predicting Injectivity Decline  

E-Print Network (OSTI)

- OGP 04 (1) - Predicting Injectivity Decline in Water Injection Wells by Upscaling On-Site Core, resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt on permeability. These data were then processed, upscaled to model injection wells and, finally, history matched

Abu-Khamsin, Sidqi

252

Program on Technology Innovation: Sorbent Activation Process (SAP) Development  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the University of Illinois at Urbana-Champaign (UIUC) have developed a technology (U.S. Patents 6,451,094 and 6,558,454) that can significantly reduce the cost of activated carbon (AC) for controlling mercury from coal-fired power plants. The technology involves the on-site production of AC at the power plant using the site coal and then direct injection of the freshly produced sorbent into the flue gas to capture mercury. The AC is injected upstream ...

2012-11-14T23:59:59.000Z

253

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

254

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

255

Optoelectronic device with nanoparticle embedded hole injection/transport layer  

DOE Patents (OSTI)

An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

2012-01-03T23:59:59.000Z

256

Adaptive engine injection for emissions reduction  

DOE Patents (OSTI)

NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

2008-12-16T23:59:59.000Z

257

Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide  

Science Conference Proceedings (OSTI)

A series of zinc phenoxides of the general formula (2,6-R{sub 2}C{sub 6}H{sub 3}O){sub 2}Zn(base){sub 2} [R = Ph, {sup t}Bu, {sup i}Pr, base = Et{sub 2}O, THF, or propylene carbonate] and (2,4,6-Me{sub 3}C{sub 6}H{sub 2}O){sub 2}Zn(pyridine){sub 2} have been synthesized and characterized in the solid state by X-ray crystallography. All complexes crystallized as four-coordinate monomers with highly distorted tetrahedral geometry about the zinc center. The angles between the two sterically encumbering phenoxide ligands were found to be significantly more obtuse than the corresponding angles between the two smaller neutral base ligands, having average values of 140{degree} and 95{degree}, respectively. In a noninteracting solvent such as benzene or methylene chloride at ambient temperature, the ancillary base ligands are extensively dissociated from the zinc center, with the degree of dissociation being dependent on the base as well as the substituents on the phenolate ligands. That is, stronger ligand binding was found in zinc centers containing electron-donating tert-butyl substituents as opposed to electron-withdrawing phenyl substituents. In all instances, the order of ligand binding was pyridine > THF > epoxides. These bis(phenoxide) derivatives of zinc were shown to be very effective catalysts for the copolymerization of cyclohexene oxide and CO{sub 2} in the absence of strongly coordinating solvents, to afford high-molecular-weight polycarbonate (M{sub w} ranging from 45 x 10{sup 3} to 173 x 10{sup 3} Da) with low levels of polyether linkages. However, under similar conditions, these zinc complexes only coupled propylene oxide and CO{sub 2} to produce cyclic propylene carbonate. Nevertheless, these bis(phenoxide) derivatives of zinc were competent at terpolymerization of cyclohexene oxide/propylene oxide/CO{sub 2} with little cyclic propylene carbonate formation at low propylene oxide loadings. While CO{sub 2} showed no reactivity with the sterically encumbered zinc bis(phenoxides), e.g., (2,6-di-tert-butylphenoxide){sub 2}Zn(pyridine){sub 2} to provide the corresponding aryl carbonate zinc derivative. At the same time, both sterically hindered and sterically nonhindered phenoxide derivatives of zinc served to ring-open epoxide, i.e., were effective catalysts for the homopolymerization of epoxide to polyethers. The relevance of these reactivity patterns to the initiation step of the copolymerization process involving these monomeric zinc complexes is discussed.

Darensbourg, D.J.; Holtcamp, M.W.; Struck, G.E.; Zimmer, M.S.; Niezgoda, S.A.; Rainey, P.; Robertson, J.B.; Draper, J.D.; Reibenspies, J.H.

1999-01-13T23:59:59.000Z

258

Chemically modified carbonic anhydrases useful in carbon capture systems  

Science Conference Proceedings (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

259

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

260

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

122, 457-469. Division of Oil Gas and Geothermal Resources (DOGGR), 1998. California Oil and Gas Fields, Volume 1. 507and geologic assessment of oil and gas in the San Joaquin

Jordan, P.D.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

DOGGR), 1998. California Oil and Gas Fields, Volume 1. 507geologic assessment of oil and gas in the San Joaquin Basinstructure maps for the oil and gas fields shown on Figure 4.

Jordan, P.D.

2013-01-01T23:59:59.000Z

262

Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986  

DOE Green Energy (OSTI)

This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

Not Available

1987-07-01T23:59:59.000Z

263

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

264

EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

265

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

What are people doing now to manage CO2? What are people doing now to manage CO2? SECARB's injection operations at the Mississippi test site in Escatawpa, Mississippi SECARB's injection operations at the Mississippi test site in Escatawpa, Mississippi. A combined portfolio of carbon management options is being implemented to reduce current emission levels associated with energy production while enhancing energy security and building the technologies and knowledge base for export to other countries faced with reducing emissions. The U.S. portfolio includes: (1) use fuels with reduced carbon intensity - renewables, nuclear, and natural gas; (2) adopt more efficient technologies on both the energy demand and supply sides; and (3) use carbon capture and storage (CCS) technology. CCS is a viable emission management option

266

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

267

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01T23:59:59.000Z

268

Staged direct injection diesel engine  

DOE Patents (OSTI)

A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

Baker, Quentin A. (San Antonio, TX)

1985-01-01T23:59:59.000Z

269

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

270

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

271

Assessment of durability of carbon/epoxy composite materials after exposure to elevated temperatures and immersion in seawater for navy vessel applications  

E-Print Network (OSTI)

effectiveness of carbon fiber polymer–matrix compositeby using activated carbon fibers. Carbon, 2002. 40: p. 445-Oxidative resistance of carbon fibers and their composites.

Hong, SoonKook

2010-01-01T23:59:59.000Z

272

NETL: Gasifipedia - Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

273

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

274

DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiates CO2 Injection in Lignite Coal Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately, geologic carbon sequestration is expected to play an important role in mitigating greenhouse gas emissions and combating climate change. The Lignite Field Validation Test is being conducted by the Plains CO2 Reduction (PCOR) Partnership, one of seven regional partnerships under DOE's Regional Carbon Sequestration Partnership Program. The seven

275

Interpretation of self-potential measurements during injection tests at  

Open Energy Info (EERE)

self-potential measurements during injection tests at self-potential measurements during injection tests at Raft River, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of self-potential measurements during injection tests at Raft River, Idaho. Final report Details Activities (1) Areas (1) Regions (0) Abstract: Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the protection system. Furthermore, similar changes are observed for two

276

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Project Hits 1-Million-Ton Milestone for Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration

277

Effect of Surface Oxygen Containing Groups on the Catalytic Activity of Multi-walled Carbon Nanotube Supported Pt Catalyst  

Science Conference Proceedings (OSTI)

Multi-walled carbon nanotubes (MWNT) supported platinum catalysts were employed to study the support functionalization on their catalytic performances. The MWNT were subjected to HNO{sub 3} functionalization, in which oxygen-containing-groups (OCGs) were introduced to improve Pt dispersion. The MWNT supports were characterized by nitrogen physisorption and NEXAFS, and the Pt supported on differently functionalized MWNT characterized by X-ray absorption, TEM and both hydrogen and CO chemisorption. Compared to the as received MWNT supports, Pt dispersion is improved on the HNO3 treated MWNT supports, but the turnover frequency (TOF) of aqueous phase reforming decreases by half. The TOF can be recovered by removing the OCGs via high temperature annealing. To further investigate the OCGs effect, different probe reactions, including both steam reforming and liquid phase reforming of hydrocarbon oxygenates and dehydrogenation of alkanes in the liquid and gas phases, have been performed on the MWNT supported catalysts with different OCGs. A comparison of these reaction results suggests that OCGs are only detrimental to reactions in a binary mixture with two components of different hydrophilicity due to their competitive adsorption on the catalyst supports.

X Wang; N Li; J Webb; L Pfefferle; G Haller

2011-12-31T23:59:59.000Z

278

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

279

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

280

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 5, 2009 November 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. October 21, 2009 DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest. October 13, 2009 Secretary Chu Announces Up To $55 Million in Funding to Develop Advanced

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

886: Big Sky Regional Carbon Sequestration Partnership - Phase 886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

282

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Big Sky Regional Carbon Sequestration Partnership - Phase 6: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

283

NETL: News Release - Underground Monitoring of Carbon Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the reduction of greenhouse gas emissions." Innovative real-time monitoring of the CO2 injection is being led by the Gulf Coast Carbon Center at the Bureau of Economic...

284

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

285

GRR/Section 4-OR-d - Exploration Injection Permit | Open Energy Information  

Open Energy Info (EERE)

4-OR-d - Exploration Injection Permit 4-OR-d - Exploration Injection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-d - Exploration Injection Permit 04ORDExplorationInjectionPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-044-0012: Authorization of Underground Injection Triggers None specified Click "Edit With Form" above to add content 04ORDExplorationInjectionPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-d.1 - Is this New Injection Activity or a Renewal? The developer must follow one of two different procedures if the developer

286

Enhanced Performance Assessment System (EPAS) for carbon sequestration.  

SciTech Connect

Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for a hypothetical CS system. Through this FEP analysis, relevant scenarios for CO{sub 2} release were defined. (2) A prototype of EPAS was developed by wrapping an existing multi-phase, multi-component reservoir simulator (TOUGH2) with an uncertainty quantification and optimization code (DAKOTA). (3) For demonstration, a probabilistic PA analysis was successfully performed for a hypothetical CS system based on an existing project in a brine-bearing sandstone. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. At a top-level, the work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture and sequestration activities (both research and development as well as operational), and it greatly enhances the technical capability to address this national problem. The next phase of the work will include (1) full capability demonstration of the EPAS, especially for data fusion, carbon storage system optimization, and process optimization of CO{sub 2} injection, and (2) application of the EPAS to actual carbon storage systems.

Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

2010-09-01T23:59:59.000Z

287

TiO{sub 2}/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity  

Science Conference Proceedings (OSTI)

MWCNT/TiO{sub 2} hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO{sub 2} nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO{sub 2} was 20%, MWCNT/TiO{sub 2} hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO{sub 2} nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO{sub 2} nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: > Anatase TiO{sub 2} nanoparticles were anchored on CNTs surface uniformly via solvothermal method {yields} The morphology facilitated the electron transfer between CNTs and TiO{sub 2} {yields} Ti-C bonds extended the absorption of MWCNT/TiO{sub 2} to the whole visible light region. > The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

Tian Lihong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Ye Liqun [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2011-06-15T23:59:59.000Z

288

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

289

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

Folta, James A. (Livermore, CA)

1997-01-01T23:59:59.000Z

290

Miniaturized flow injection analysis system  

DOE Patents (OSTI)

A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

Folta, J.A.

1997-07-01T23:59:59.000Z

291

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

292

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

293

Radial lean direct injection burner  

Science Conference Proceedings (OSTI)

A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

2012-09-04T23:59:59.000Z

294

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

295

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

296

An environmental analysis of injection molding  

E-Print Network (OSTI)

This thesis investigates injection molding from an environmental standpoint, yielding a system-level environmental analysis of the process. There are three main objectives: analyze the energy consumption trends in injection ...

Thiriez, Alexandre

2006-01-01T23:59:59.000Z

297

Experience with Zinc Injection in European PWRs  

Science Conference Proceedings (OSTI)

Zinc injection is an effective technique for lowering shutdown dose rates in pressurized water reactors (PWRs). This report compiles information about zinc injection experience at Siemens PWRs and compares the results with the use of zinc injection at U.S. PWRs. The plant data confirm that even low concentrations of zinc in the reactor water can indeed lower shutdown dose rates, but plants should make a concerted effort to inject zinc on a continuous basis to achieve the best results.

2002-11-01T23:59:59.000Z

298

Evaluation of active transport membranes for carbon dioxide removal from hydrogen containing streams. Approved final topical report  

SciTech Connect

Air Products and Chemicals, Inc. is developing a new class of gas separation membranes called Active Transport Membranes (ATM). ATMs are unique in that they permeate acid gas components, via a reactive pathway, to the low pressure side of the membrane while retaining lighter, non-reactive gases at near feed pressure. This feature is intuitively attractive for hydrogen and synthesis gas processes where CO{sub 2} removal is desired and the hydrogen or synthesis gas product is to be used at elevated pressure. This report provides an overview of the technology status and reports on preliminary, order of magnitude assessments of ATMs for three applications requiring CO{sub 2} removal from gas streams containing hydrogen. The end uses evaluated are: CO{sub 2} removal in the COREX{reg_sign} Steel making process--upgrading export gas for a Direct Reducing Iron (DRI) process; CO{sub 2} removal for onboard hydrogen gas generators for mobile fuel cell applications; Bulk CO{sub 2} removal from hydrogen plant synthesis gas--a plant de-bottlenecking analysis for ammonia production. For each application, an overview of the process concept, rough equipment sizing and techno-economic evaluation against competing technologies is provided. Brief descriptions of US and world market conditions are also included.

Cook, P.J.; Laciak, D.V.; Pez, G.P.; Quinn, R.

1995-11-01T23:59:59.000Z

299

Injectivity Testing for Vapour Dominated Feed Zones  

DOE Green Energy (OSTI)

Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

Clotworthy, A.W.; Hingoyon, C.S.

1995-01-01T23:59:59.000Z

300

Agricultural Carbon Mitigation in Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

302

Fuel injection device and method  

DOE Patents (OSTI)

A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

Carlson, L.W.

1983-12-21T23:59:59.000Z

303

INJECTIVE COGENERATORS AMONG OPERATOR BIMODULES  

E-Print Network (OSTI)

Abstract. Given C ?-algebras A and B acting cyclically on Hilbert spaces H and K, respectively, we characterize completely isometric A, B-bimodule maps from B(K, H) into operator A, B-bimodules. We determine cogenerators in some classes of operator bimodules. For an injective cogenerator X in a suitable category of operator A, B-bimodules we show: if A, regarded as a C ?-subalgebra of A?(X) (adjointable left multipliers on X), is equal to its relative double commutant in A?(X), then A must be a W ?-algebra. 1.

Bojan Magajna

2005-01-01T23:59:59.000Z

304

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511318

305

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

306

Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater  

Science Conference Proceedings (OSTI)

A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-08-01T23:59:59.000Z

307

The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface  

SciTech Connect

Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

2013-12-02T23:59:59.000Z

308

Operational experience during the LHC injection tests  

E-Print Network (OSTI)

Following the LHC injection tests of 2008. two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI 2 transfer line into sector 23 of ring 1 and through TI 8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

Fuchsberger, K; Arduini, G; Assmann, R; Bailey, R; Bruning, O; Goddard, B; Kain, V; Lamont, M; MacPherson, A; Meddahi, M; Papotti, G; Pojer, M; Ponce, L; Redaelli, S; Solfaroli Camillocci, M; Venturini Delsolaro, W; Wenninger, J

2010-01-01T23:59:59.000Z

309

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

310

Allergy Injection Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Allergy Injection Policy Allergy Injection Policy Allergy Injection Policy Millions of Americans suffer from perennial and seasonal allergic rhinitis. Allergy immunotherapy is an effective way to reduce or eliminate the symptoms of allergic rhinitis by desensitizing the patient to the allergen(s) by giving escalating doses of an extract via regular injections. Receiving weekly injections at a private physician's office is time consuming, reduces productivity, and can quickly deplete an employee's earned leave. FOH offers the convenience of receiving allergy injections at the OHC as a physician-prescribed service, reducing time away from work for many federal employees. Allergy Injection Policy.pdf More Documents & Publications Physician Treatment Order Handicapped Parking Guidance

311

Analysis of PWR RCS Injection Strategy During Severe Accident  

Science Conference Proceedings (OSTI)

Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

Wang, S.-J. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, K.-S. [Institute of Nuclear Energy Research, Taiwan (China); Chiang, S.-C. [Taiwan Power Company, Taiwan (China)

2004-05-15T23:59:59.000Z

312

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

313

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET ...

314

Injection with seawater: problems in the operation of a seawater treatment plant  

Science Conference Proceedings (OSTI)

Reservoir pressure elevation by means of water injection in the production formation is a technique that improves production efficiency. In offshore activities, seawater is available for injection, but it has a high level of solids in suspension and also ions and dissolved gases that may cause problems in the water injection system. Therefore, a seawater treatment plant is necessary for preparation of the injection water. The treatment system has the following components for physical treatment: colander, which prevents the intake of large objects to the system; filters, which include flocculation for coagulation means for the removal of microscopic particles that can pass through the colander; deaerator; and system controls.

Garbis, S.J.

1982-05-01T23:59:59.000Z

315

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies |  

Open Energy Info (EERE)

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Details Activities (2) Areas (2) Regions (0) Abstract: Injection-backflow tracer testing on a single well is not a commonly used procedure for geothermal reservoir evaluation, and, consequently, there is little published information on the character or interpretation of tracer recovery curves. Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection

316

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

317

Cobalt-polypyrrole-carbon black (Co-PPY-CB) Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Fuel Cells: Composition and Kinetic Activity  

DOE Green Energy (OSTI)

Electrocatalysts consisting of polypyrrole (PPY) and Co deposited on carbon black (CB) at several compositions were prepared and tested for the oxygen reduction reaction (ORR) in a HClO4 buffer (pH = 1) using a rotating ring-disk electrode (RRDE). It was determined that the most favorable catalyst composition (prior to calcination) had a CB:PPY weight ratio of 2 and a pyrrole:Co (i.e., PY:Co) molar ratio of 4. This catalyst had an onset potential of 0.785 V (vs. RHE) and a mass activity of ca. 1 A/g{sub cata} at the fuel cell relevant voltage of 0.65 V. Furthermore, it was found that the number of electrons exchanged during the ORR with the catalyst was ca. 3.5 and resulted in 28% yield of H{sub 2}O{sub 2} at 0.65 V, which hints to an indirect 4e{sup -} reduction of O{sub 2} to H{sub 2}O, with H{sub 2}O{sub 2} as an intermdiate. From energy dispersive spectroscopy (EDS) and extended X-ray absorption fine structure (EXAFS) analysis, it is proposed that a PY:Co ratio of 4 favors the formation, prior to calcination, in the catalyst precursor of Co-N complexes in which Co is coordinated to 3 or 4 N atoms, resulting in strong Co-N interactions that limit the formation upon calcination of low ORR activity Co nanoparticles. These Co-N complexes give rise upon calcination to CoN{sub x-2} sites in which the coordination of Co could favor the adsorption on them of O{sub 2}, which would make those sites particularly active and selective. At the same mass acitivity of 1 A/g{sub cata}, the voltage yielded by the catalyst was 200 mV lower than that for a state-of-the-art Pt (10 wt.%) catalyst, whoch H{sub 2}O{sub 2} output at 0.85 V was 39% and involves the exchange of 3.2 e{sup -}, overall making our material an attractive substitute to noble metal ORR electrocatalysts.

D Nguyen-Thanh; A Frenkel; J Wang; S OBrien; D Akins

2011-12-31T23:59:59.000Z

318

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

319

Sample extraction and injection with a microscale preconcentrator.  

SciTech Connect

This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solvent filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.

Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Chan, Helena Kai Lun

2007-09-01T23:59:59.000Z

320

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

temperature measurements conducted by the Gulf Coast Carbon Center  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature measurements conducted by the Gulf Coast Carbon Center temperature measurements conducted by the Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology, University of Texas at Austin. The effort will examine the instrumentation necessary to ensure safe CO 2 storage by verifying CO 2 retention in the injection zone, quantify storage capacity, and quantify near- and far-field pressure response to injection. SECARB began injecting CO 2 on July 15, 2008, at a depth of 10,300 feet for enhanced oil recovery (EOR) at the Cranfield oilfield near Natchez, Mississippi. The naturally occurring CO 2 is obtained from Jackson Dome and transported by pipeline to the injection site. SECARB plans to inject CO

322

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

323

Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas  

Science Conference Proceedings (OSTI)

The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

324

Development of the High-Pressure Direct-Injection ISX G Natural Gas Engine  

DOE Green Energy (OSTI)

Fact sheet details work by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Not Available

2004-08-01T23:59:59.000Z

325

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

326

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

327

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

328

NSLS-II INJECTION STRAIGHT DIAGNOSTICS  

Science Conference Proceedings (OSTI)

The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In this paper we present the diagnostics installed in the injection straight. Its use for commissioning and tuning of the injection cycle is also described. The NSLS-II storage ring will utilize a 9.3 meter long injection straight section shown in Fig. 1. Injection will be preformed with two septa (one pulsed, one DC) and four kickers. The stored beam will be shifted towards the pulsed septum up to IS mm and the nominal distance between centers of the injected and the bumped beam is 9.5mm. The NSLS-II beam position monitors will have turn-by-turn and first-turn capabilities and will be used for the commissioning and tuning the injection process. However, there are three additional BPMs and two beam intercepting OTR screens (flags) installed in the injection straight.

Pinayev, I.; Blednykh, A.; Ferreira, M.; Fliller, R.; Kosciuk, B.; Shaftan, T.V.; Wang, G.

2011-03-28T23:59:59.000Z

329

Powder Injection Molding - Available Technologies - PNNL  

Summary. Presented here is a novel and innovative means of powder injection molding (PIM) of reactive refractory metals, such as titanium and its ...

330

Energy-efficient control in injection molding.  

E-Print Network (OSTI)

??xviii, 209 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2008 Yao As an energy-intensive process, in injection molding, energy cost is… (more)

Yao, Ke

2008-01-01T23:59:59.000Z

331

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

332

Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the InSalah CO2 Storage Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection and Reservoir Hazard Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the In Salah CO 2 Storage Project Background Safe and permanent storage of carbon dioxide (CO 2 ) in geologic reservoirs is critical to geologic sequestration. The In Salah Project (joint venture of British Petroleum (BP), Sonatrach, and StatoilHydro) has two fundamental goals: (1) 25-30 years of 9 billion cubic feet per year (bcfy) natural gas production from 8 fields in the Algerian

333

Carbon Footprinting for the Food Industry  

E-Print Network (OSTI)

174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

Balasundaram, Balabhaskar "Baski"

334

NETL: News Release - Carbon Sequestration Partner Initiates Drilling of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 7, 2009 Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Large-Scale Test to Inject One Million Metric Tonnes of Carbon Dioxide into Saline Formation Washington, DC-The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change.

335

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

336

Aluminum-carbon composite electrode  

DOE Patents (OSTI)

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

1998-07-07T23:59:59.000Z

337

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

338

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

339

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

340

Electrically injected visible vertical cavity surface emitting laser diodes  

DOE Patents (OSTI)

Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

Schneider, R.P.; Lott, J.A.

1994-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

342

Overview of Recent Developments in Pellet Injection for ITER  

Science Conference Proceedings (OSTI)

Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

Combs, Stephen Kirk [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Caughman, John B [ORNL; Rasmussen, David A [ORNL; Maruyama, So [ITER Organization, Cadarache, France

2012-01-01T23:59:59.000Z

343

Injection Molding of Plastics from Agricultural Materials  

SciTech Connect

The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

Bhattacharya, M.; Ruan, R.

2001-02-22T23:59:59.000Z

344

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

345

Development of a linear predictive model for carbon dioxide sequestration in deep saline carbonate aquifers  

Science Conference Proceedings (OSTI)

CO"2 injection into deep saline aquifers is a preferred method for mitigating CO"2 emission. Although deep saline aquifers are found in many sedimentary basins and provide very large storage capacities, several numerical simulations are needed before ... Keywords: CO2 sequestration, Deep saline carbonate aquifer, Latin hypercube space filling design, Predictive model

Sultan Anbar; Serhat Akin

2011-11-01T23:59:59.000Z

346

Bibliography: injection technology applicable to geothermal utilization  

DOE Green Energy (OSTI)

This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

Darnell, A.J.; Eichelberger, R.L.

1982-03-19T23:59:59.000Z

347

Resistivity measurements before and after injection Test 5 at Raft River  

Open Energy Info (EERE)

measurements before and after injection Test 5 at Raft River measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Resistivity measurements before and after injection Test 5 at Raft River KGRA, Idaho. Final report Details Activities (2) Areas (1) Regions (0) Abstract: Resistivity measurements were made prior to, and after an injection test at Raft River KGRA, Idaho. The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the

348

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

DOE Green Energy (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

349

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

350

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

351

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

352

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

353

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

1991-02-19T23:59:59.000Z

354

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1991-01-01T23:59:59.000Z

355

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

356

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

357

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

358

Reaction Injection Molded 7.5 Meter Wind Turbine Blade  

DOE Green Energy (OSTI)

An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

David M. Wright; DOE Project Officer - Keith Bennett

2007-07-31T23:59:59.000Z

359

The lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network (OSTI)

In carbon capture and storage (CCS), CO[subscript 2] is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued ...

Szulczewski, Michael Lawrence

360

Intradermal needle-free powdered drug injection  

E-Print Network (OSTI)

This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

Liu, John (John Hsiao-Yung)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Injection of Electrons and Holes into Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection of Electrons and Holes into Nanostructures Injection of Electrons and Holes into Nanostructures This program targets fundamental understanding of nanoscale charge transfer processes. The proposed work draws on the strengths of the Brookhaven Chemistry Department in the areas of electron transfer experiment and theory, and extends the area of inquiry to nanoscale processes. Electron/hole injection into a wire, a nanocrystal, a nanotube or other nanostructure in solution may be brought about by light absorption, by an electron pulse (pulse radiolysis, LEAF), by a chemical reagent, or through an electrode. These processes are being studied by transient methods by following conductivity, current, but most generally, spectroscopic changes in the solutions to determine the dynamics of charge injection. The observed transient spectra can also provide values for electron-transfer coupling elements and energetics. Theoretical/computational studies can help in materials design and in the interpretation of the experimental results. The experimental systems being examined include molecular wires and metal nanoclusters.

362

Studies of injection into naturally fractured reservoirs  

DOE Green Energy (OSTI)

A semi-analytical model for studies of cold water injection into naturally fractured reservoirs has been developed. The model can be used to design the flow rates and location of injection wells in such systems. The results obtained using the model show that initially the cold water will move very rapidly through the fracture system away from the well. Later on, conductive heat transfer from the rock matrix blocks will retard the advancement of the cold water front, and eventually uniform energy sweep conditions will prevail. Where uniform energy sweep conditions are reached the cold waer movement away from the injection well will be identical to that in a porous medium; consequently maximum energy recovery from the rock matrix will be attained. The time of uniform energy sweep and the radial distance from the injection well where it occurs are greatly dependent upon the fracture spacing, but independent of the fracture aperture.

Boedvarsson, G.S.; Lai, C.H.

1982-10-01T23:59:59.000Z

363

Efficient Spin Injection using Tunnel Injectors  

Science Conference Proceedings (OSTI)

Semiconductor spintronics aims to develop novel sensor, memory and logic devices by manipulating the spin states of carriers in semiconducting materials. This talk will focus on electrical spin injection into semiconductors, which is a prerequisite for ...

Xin Jiang

2005-07-01T23:59:59.000Z

364

Injectivity Test At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Reese River Area (Henkle & Ronne, Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown Notes On March 22, 2007 a brief injectivity test was preformed after the slotted liner had been installed. Water was injected at flow rates of 6.3 l/s, 13 l/s and 19 l/s and the pressure and temperature was recorded down hole at a depth of 926 m. At the higher flow rate, the test was interrupted several times to repair leaks at the surface. From the recorded pressure an approximate injectivity index of 10 l/s/MPa was calculated. References William R. Henkle, Joel Ronne (2008) Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Retrieved from

365

Smart Materials for Fuel Injection Actuation  

DOE Green Energy (OSTI)

The demands of stringent emissions and a robust engine dynamic torque response characteristic require innovative, accurate and repeatable control of the fuel injection event. Recent advances in piezo-material actuators have warranted the pursuit of its application to advanced heavy-duty truck fuel injection systems. This presentation will report on design and testing of an advanced electronic unit injector for the Detroit Diesel Series 60 truck engine.

Hakim, Nabil

2000-08-20T23:59:59.000Z

366

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

367

NETL: News Release - CO2 Injection in Kansas Oilfield Could Greatly  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2011 31, 2011 CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says Near-Miscible Flooding in Arbuckle Formation Would Help Small Producers Tap Additional Domestic Resources Washington, D.C. - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas. Miscibility refers to the pressure at which the CO2 and oil are completely soluble in one another or form a single phase. Below the minimum miscibility pressure (MMP) the injected CO2 mixes with and swells the oil to reduce its viscosity, increasing its ability to flow through the reservoir more easily to the production well.

368

Cerro Prieto cold water injection: effects on nearby production wells  

E-Print Network (OSTI)

reservoir wells close to injection well E-6 along with theMeeting. Most of the injection wells are open to the Alphaand completing new injection wells is lower than in the East

Truesdell, A.H.

2010-01-01T23:59:59.000Z

369

Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas  

SciTech Connect

A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

2010-03-07T23:59:59.000Z

370

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

Science Conference Proceedings (OSTI)

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

371

Sorbent Activation Process for Mercury Control: Field Testing at the Ameren Meredosia Power Plant  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Illinois State Geological Survey have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas upstream of the particulate control device for mercury adsorption. The SAP process is designed to help significantly reduce the cost of AC for power plant mercury control. This report summa...

2009-12-03T23:59:59.000Z

372

300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report  

Science Conference Proceedings (OSTI)

The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

2009-06-30T23:59:59.000Z

373

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

374

Shale caprock integrity under carbon sequestration conditions  

Science Conference Proceedings (OSTI)

Carbon sequestration technology requires injection and storage of large volumes of carbon dioxide ( CO 2 ) in subsurface geological formations. Shale caprock which constitutes more than 60% of effective seals for geologic hydrocarbon bearing formations are therefore of considerable interest in underground CO 2 storage into depleted oil and gas formations. This study investigated experimentally shale caprock’s geophysical and geochemical behavior when in contact with aqueous CO 2 over a long period of time. The primary concern is a potential increase in hydraulic conductivity of clay-rich rocks as a result of acidic brine-rock minerals geochemical interactions. Both

Abiola Olabode; Lauren Bentley; Mileva Radonjic

2012-01-01T23:59:59.000Z

375

Microfabricated injectable drug delivery system  

DOE Patents (OSTI)

A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

Krulevitch, Peter A. (Pleasanton, CA); Wang, Amy W. (Oakland, CA)

2002-01-01T23:59:59.000Z

376

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

377

Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection  

DOE Green Energy (OSTI)

A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

2010-12-03T23:59:59.000Z

378

U-058: Apache Struts Conversion Error OGNL Expression Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Apache Struts Conversion Error OGNL Expression Injection Vulnerability U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability December 12, 2011 - 9:00am...

379

Texas Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Injections into Underground Storage (Million Cubic Feet) Texas Natural Gas Injections into Underground...

380

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Trona Injection Tests: Mirant Potomac River Station, Unit 1,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

382

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

383

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

384

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

385

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

386

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

387

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

388

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

389

South Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

390

North Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

391

Illinois Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Illinois Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

392

Epidemiology of HIV Among Injecting and Non-injecting Drug Users: Current Trends and Implications for Interventions  

E-Print Network (OSTI)

might inject drugs worldwide [1•]. China, the United States,China, the United States, and Russia, the three leading countries for injecting drugChina Russia USA Fig. 1 Number and proportion of HIV infection among injecting drug

Strathdee, Steffanie A.; Stockman, Jamila K.

2010-01-01T23:59:59.000Z

393

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

394

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network (OSTI)

Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.

Alotaibi, Mohammed

2011-12-01T23:59:59.000Z

395

Letters to the Editor Synthesis of nanoporous carbon with pre-graphitic domains  

E-Print Network (OSTI)

of carbons by gasification with CO2-III. Uniformity of gasification. Carbon 1971;9:79­85. [21] Marsh H, Rand B. The process of activation of carbons by gasification with CO2-I. Gasification of pure

Powles, Rebecca

396

NETL: News Release - Critical Carbon Sequestration Assessment Begins:  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2006 2, 2006 DOE Project Injects 700 Tons of Carbon Dioxide Into Texas Sandstone Formation Researchers to Determine the Ability of Brine Formations to Sequester Greenhouse Gas WASHINGTON, DC - When scientists recently pumped 700 metric tons of the greenhouse gas carbon dioxide (CO2) a mile underground as a follow-up to a 2004 effort, they initiated a series of tests to determine the feasibility of storing the CO2 in brine formations, a major step forward in the U.S. Department of Energy's carbon sequestration program. MORE INFO Read the University of Texas at Austin press release 11.19.04 Techline : Frio Formation Test Well Injected with Carbon Dioxide The Frio Brine project, funded by the U.S. Department of Energy and managed by DOE's National Energy Technology Laboratory, is designed to

397

Model study of historical injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. the migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. while both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injectate as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

398

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-08-01T23:59:59.000Z

399

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

400

Supported-sorbent injection. Final report  

Science Conference Proceedings (OSTI)

A new retrofitable, wastefree acid-rain control concept was pilot-tested at Ohio Edison`s high-sulfur coal-fired R.E. Burger generating station at the 2-MWe level. During the project, moistened {open_quotes}supported{close_quotes} sorbents, made from a combination of lime and vermiculite or perlite, were injected into a humidified 6,500-acfm flue-gas slipstream. After the sorbents reacted with the sulfur dioxide in the flue gas, they were removed from ductwork with a cyclone and baghouse. The $1.0 million project was co-funded by Sorbent Technologies Corporation, the Ohio Edison Company, and the Ohio Coal Development Office. The project included a preliminary bench-scale testing phase, construction of the pilot plant, parametric studies, numerous series of recycle tests, and a long-term run. The project proceeded as anticipated and achieved its expected results. This duct injection technology successfully demonstrated SO{sub 2}-removal rates of 80 to 90% using reasonable stoichiometric injection ratios (2:1 Ca:S) and approach temperatures (20-25F). Under similar conditions, dry injection of hydrated lime alone typically only achieves 40 to 50% SO{sub 2} removal. During the testing, no difficulties were encountered with deposits in the ductwork or with particulate control, which have been problems in tests of other duct-injection schemes.

Nelson, S. Jr.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. As of April 2011, the database contained 254 CCS projects worldwide. The 254 projects include 65 capture, 61 storage, and 128 for capture and storage in more than 27 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 20 are actively capturing and injecting CO2. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.[copied from http://www.netl.doe.gov/technologies/carbon_seq/global/database/index.html

402

Device for staged carbon monoxide oxidation  

DOE Patents (OSTI)

A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

Vanderborgh, Nicholas E. (Los Alamos, NM); Nguyen, Trung V. (College Station, TX); Guante, Jr., Joseph (Denver, CO)

1993-01-01T23:59:59.000Z

403

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

404

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

405

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

406

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells  

E-Print Network (OSTI)

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells in the Nine Township Area ­ 2009 September 2009 Prepared by Delaware Basin Drilling from EPA to DOE dated 7/16/2009) 1 Solution Mining Practices 1 Recent Well Failures 2 The Mechanism

407

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

408

Definition: Injectivity Test | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Injectivity Test Jump to: navigation, search Dictionary.png Injectivity Test A well testing technique conducted upon completion of a well. Water is pumped into the well at a constant rate until a stable pressure is reached then the pump is turned off and the rate at which pressure decreases is measured. The pressure measurements are graphed and well permeability can be calculated.[1] References ↑ https://pangea.stanford.edu/ERE/pdf/IGAstandard/ISS/2008Croatia/Hole03.pdf Ret LikeLike UnlikeLike You and one other like this.One person likes this. Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Injectivity_Test&oldid=688681"

409

Energy Injection in GRB Afterglow Models  

E-Print Network (OSTI)

We extend the standard fireball model, widely used to interpret gamma-ray burst (GRB) afterglow light curves, to include energy injections, and apply the model to the afterglow light curves of GRB 990510, GRB 000301C and GRB 010222. We show that discrete energy injections can cause temporal variations in the optical light curves and present fits to the light curves of GRB 000301C as an example. A continuous injection may be required to interpret other bursts such as GRB 010222. The extended model accounts reasonably well for the observations in all bands ranging from X-rays to radio wavelengths. In some cases, the radio light curves indicate that additional model ingredients may be needed.

Gudlaugur Johannesson; Gunnlaugur Bjornsson; Einar H. Gudmundsson

2006-05-11T23:59:59.000Z

410

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

411

DOE Partner Begins Carbon Storage Test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Carbon Storage Test Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration Consortium (MGSC). The project is part of the RCSP's "validation phase," where field tests are being conducted nationwide to assess the most promising sites to deploy carbon capture and storage technologies. This project is expected to create 13 full time jobs which will be

412

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

Tan, M.X.

1999-07-29T23:59:59.000Z

413

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

414

Neutral beam injection in 2XIIB  

SciTech Connect

Integrated into the operation of the 2XIIB controlled fusion experiment is a 600-A, 20-keV neutral injection system: the highest neutral-beam current capacity of any existing fusion machine. This paper outlines the requirements of the injection system and the design features to which they led. Both mechanical and electrical aspects are discussed. Also included is a brief description of some operational aspects of the system and some of the things we have learned along the way, as well as a short history of the most significant developments. (auth)

Hibbs, S.M.

1975-11-01T23:59:59.000Z

415

Injected Beam Dynamics in SPEAR3  

SciTech Connect

For the top-off operation it is important to understand the time evolution of charge injected into the storage ring. The large-amplitude horizontal oscillation quickly filaments and decoheres, and in some cases exhibits non-linear x-y coupling before damping to the stored orbit. Similarly, in the longitudinal dimension, any mismatch in beam arrival time, beam energy or phase-space results in damped, non-linear synchrotron oscillations. In this paper we report on measurements of injection beam dynamics in the transverse and longitudinal planes using turn-by-turn BPMs, a fast-gated, image-intensified CCD camera and a Hamamatsu C5680 streak camera.

Corbett, Jeff; /SLAC; Fisher, Alan; /SLAC; Huang, Xiaobiao; /SLAC; Safranek, James; /SLAC; Westerman, Stuart; /SLAC; Cheng, Weixing; /Brookhaven; Mok, Walter; /Unlisted

2012-06-21T23:59:59.000Z

416

Mixed Mode Fuel Injector And Injection System  

DOE Patents (OSTI)

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

417

Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., 1999) Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes After circulating the mud out of the hole and replacing it with clear water, we attempted two injection tests; one into the open hole section (51 16'- 5360') below the HQ liner, and one into the annulus outside the uncemented part (2748' - -4800') of the liner. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

418

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, C.D.; Shores, D.A.

1984-05-23T23:59:59.000Z

419

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, Charles D. (Schenectady, NY); Shores, David A. (Minneapolis, MN)

1985-01-01T23:59:59.000Z

420

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

Note: This page contains sample records for the topic "inject activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Non-isothermal CO2 flow through an injection well  

E-Print Network (OSTI)

Non-isothermal CO2 flow through an injection well Orlando SilvaOrlando Silva #12; The Problem CO2 or gas injection well Questions Injection of scCO2 vs. gaseous CO2. Other relevant examples: - gas and therefore the CO2 injection rate. caprock reservoir geothermal gradient hydrostatic gradient well CO2 bubble

Politècnica de Catalunya, Universitat

422

Discussion on Cycle Water Injection Effect and Its Influencing Factors  

Science Conference Proceedings (OSTI)

Cyclic waterflooding is a kind of waterflood technique, which can improve the waterflood efficiency in low-permeability and fracture-porosity reservoir by changing periodically injected water volume. This article gives the principle and the applied conditions ... Keywords: water flooding, principle, the opportunity of water injection, water injection efficiency, water injection period

Shan Wuyi, Zhang Xue

2013-06-01T23:59:59.000Z

423

Injection and Reservoir Hazard Management: The Role of Injection-Induced Mechanical Deformation and Geochemical Alteration at In Salah CO2 Storage Project: Status ReportQuarter end, June 2009  

Science Conference Proceedings (OSTI)

The In Salah Gas Project (ISG), a joint venture (JV) of BP, Sonatrach, and StatoilHydro, has two fundamental goals: (1) 25-30 years of 9 bcfy natural gas production from 8 fields in the Algerian Central Sahara, and (2) successful minimization of the associated environmental footprint by capture and subsurface isolation of the excess CO{sub 2} extracted from production streams and subsurface isolation in the Krechba sandstone reservoir. The In Salah project provides an opportunity to study key physical and chemical processes in operational deployment of geological carbon sequestration. The objectives of the research are to study two components relevant to storage effectiveness and operational success at In Salah: Reactive chemistry of the brine-CO{sub 2}-reservoir-caprock-wellbore system, and the geomechanical effects of large-scale injection on crustal deformation and fault leakage hazards. Results from this work will enhance predictive capability of field performance, provide a new basis for interpretation of geophysical monitoring at In Salah, and provide additional information relevant to the creation of geological sequestration standards. The Joint Industry Partners (JIP: BP, StatoilHydro, Sonatrach) and LLNL will share data and results to achieve the objectives of the proposed work. The objective of the work performed at LLNL is to integrate LLNL core strengths in geochemistry and geomechanics to better understand and predict the fate of injected CO{sub 2} in the field. The mechanical, chemical and transport properties of the reservoir-caprock system are coupled. We are using LLNL-developed quantitative tools to assess the potential for CO{sub 2} migration/leakage caused by injection-induced deformation. The geomechanical work is focused upon fault activation, fluid induced fracturing of the caprock and permeability field evolution of the fractured reservoir. These results will be used in concert with reactive transport calculations to predict the ultimate fate of the CO{sub 2}. We will integrate laboratory and reactive transport modeling to assess CO{sub 2} plume migration and partitioning between different trapping mechanisms. Geochemical reactive transport modeling will be used to address multiphase flow (supercritical CO{sub 2} and water), CO{sub 2} dissolution, mineral sequestration, and porosity/permeability changes. The reactive transport portion of the work ultimately couples with geomechanical modeling. In particular, the distribution of the pressure perturbation induced by injection drives the geomechanical response. Subsequently, the geochemical work determines if water-rock interactions eventually enhance or suppress fractures. A key focus of this work is to establish the site specific interactions of geomechanics, reactive flow and transport. This involves building and refining models of the reservoir and overburden. The models will undergo continual refinement in response to data collected in the field and experiments performed at LLNL and elsewhere. This project commenced in FY08, with DOE funding starting in April, FY08. We have successfully initiated a cross-disciplinary study of the In Salah CO{sub 2} sequestration project and have met all FY08 and FY09 Q1, Q2 and Q3 milestones. During the reporting period, we continued to acquire and process data from the JIP to import into our own geomechanical and geochemical computational tools. The lab testing program continued using both locally formulated cements and field samples from Krechba. The geomechanical studies indicate that pore fluid pressures induced by injection will lead to significant permeability enhancement of the combination of fracture network and fault network within the reservoir in the vicinity of the injectors. We continued reactive transport calculations for CO{sub 2} rich fluids flowing through fractures. These calculations demonstrate that although porosity and permeability changes are expected in response to CO{sub 2} injection they are not anticipated to have a significant effect upon transport properties within the reservoir or c

Morris, J P; McNab, W W; Carroll, S K; Hao, Y; Foxall, W; Wagoner, J L

2009-07-30T23:59:59.000Z

424

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

425

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

426

Molten carbonate fuel cell research at ORNL  

DOE Green Energy (OSTI)

The activities at ORNL during the period July 1976 to February 1977 on the molten carbonate fuel cell program, funded by the ERDA Division of Conservation Research and Technology, are summarized. This period marks the initiation of molten carbonate fuel cell research at ORNL, making use of the extensive background of expertise and facilities in molten salt research. The activities described include a literature survey on molten carbonates, design, acquisition and installation of apparatus for experimental studies of molten carbonates, initial experiments on materials compatibility with molten carbonates, electrolysis experiments for the determination of transference numbers, and theoretical studies of transport behavior and the coupling of mass flows in molten carbonate mixtures. Significant accomplishments were the theoretical prediction of a possibly appreciable change in the alkali ion ratio at molten carbonate fuel cell electrodes, operated at high current densities, as a result of mobility differences of the alkali ions; design, construction and assembly of an electrolysis cell, and initiation of measurements of composition profiles in mixed alkali carbonate electrolytes; initiation of differential scanning calorimetry of pure alkali carbonates for quantitative measurement of transition enthalpies, eventually leading to new, more reliable values of the enthalpies and free energies of formation of the pure and mixed carbonates.

Braunstein, J.; Bronstein, H. R.; Cantor, S.; Heatherly, D.; Vallet, C. E.

1977-05-01T23:59:59.000Z

427

Numerical modeling of injection and mineral trapping of CO2 withH2S and SO2 in a Sandstone Formation  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO{sub 2}) injection into deep geologic formations could decrease the atmospheric accumulation of this gas from anthropogenic sources. Furthermore, by co-injecting H{sub 2}S or SO{sub 2}, the products respectively of coal gasification or combustion, with captured CO{sub 2}, problems associated with surface disposal would be mitigated. We developed models that simulate the co-injection of H{sub 2}S or SO{sub 2} with CO{sub 2} into an arkose formation at a depth of about 2 km and 75 C. The hydrogeology and mineralogy of the injected formation are typical of those encountered in Gulf Coast aquifers of the United States. Six numerical simulations of a simplified 1-D radial region surrounding the injection well were performed. The injection of CO{sub 2} alone or co-injection with SO{sub 2} or H{sub 2}S results in a concentrically zoned distribution of secondary minerals surrounding a leached and acidified region adjacent to the injection well. Co-injection of SO{sub 2} with CO{sub 2} results in a larger and more strongly acidified zone, and alteration differs substantially from that caused by the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Precipitation of carbonates occurs within a higher pH (pH > 5) peripheral zone. Significant quantities of CO{sub 2} are sequestered by ankerite, dawsonite, and lesser siderite. The CO{sub 2} mineral-trapping capacity of the formation can attain 40-50 kg/m{sup 3} medium for the selected arkose. In contrast, secondary sulfates precipitate at lower pH (pH simulations.

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2004-09-07T23:59:59.000Z

428

Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation  

Science Conference Proceedings (OSTI)

Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral-trapping capability can reach 80 kg per cubic meter of medium. Most sulfur is trapped through alunite precipitation, although some is trapped by anhydrite precipitation and minor amount of pyrite. The addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.

Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

2004-09-07T23:59:59.000Z

429

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

430

Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?  

DOE Green Energy (OSTI)

Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

2002-04-30T23:59:59.000Z

431

Diesel engine emissions reduction by multiple injections having increasing pressure  

DOE Patents (OSTI)

Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

2003-01-01T23:59:59.000Z

432

Passive safety injection system using borated water  

DOE Patents (OSTI)

A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

Conway, Lawrence E. (Allegheny, PA); Schulz, Terry L. (Westmoreland, PA)

1993-01-01T23:59:59.000Z

433

Optimization of injection scheduling in geothermal fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

Lovekin, J.

1987-05-01T23:59:59.000Z

434

Type-checking injective pure type systems  

Science Conference Proceedings (OSTI)

Injective pure type systems form a large class of pure type systems for which one can compute by purely syntactic means two sorts elmt(?∣M) and sort(?∣M), where ? is a pseudo-context and M is a pseudo-term, ...

Gilles Barthe

1999-11-01T23:59:59.000Z

435

Optimization of Injection Scheduling in Geothermal Fields  

DOE Green Energy (OSTI)

This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly