National Library of Energy BETA

Sample records for initiatives solid state

  1. Clean Energy Manufacturing Initiative Solid-State Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solid-State Lighting Clean Energy Manufacturing Initiative Solid-State Lighting Addthis Description Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the United States. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase

  2. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  3. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  4. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  5. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2015Building Technologies Office Peer Review Lynn Davis, ... life testing methodologies that help lighting manufacturers and key stakeholders and ...

  6. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2014 Building Technologies Office Peer Review Lynn Davis, ... DOE : 370 K methodologies to help lighting manufacturers and key stakeholders ...

  7. Solid state switch

    DOE Patents [OSTI]

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  8. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  9. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  10. Solid state optical microscope

    DOE Patents [OSTI]

    Young, I.T.

    1983-08-09

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

  11. Solid state optical microscope

    DOE Patents [OSTI]

    Young, Ian T. (Pleasanton, CA)

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  12. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  13. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  14. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  15. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  16. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  17. Solid-State NMR | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State NMR Solid-State NMR Our team is well-known for its work in the following areas: - Using multi-dimensional solid-state NMR of quadrupolar nuclei to study spin-12 nuclei...

  18. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  19. Solid-state radioluminescent compositions

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  20. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  1. Outdoor Solid-State Lighting Technology Deployment | Department of Energy

    Energy Savers [EERE]

    Products & Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The Federal Energy Management Program (FEMP) Outdoor SSL Initiative offers a unique opportunity for the Federal sector to lead large-scale imple-mentation

  2. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  3. Solid-state membrane module

    DOE Patents [OSTI]

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  4. Solid-State Lighting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Princeton's approach to solid-state lighting. Read more A Comprehensive Program Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by...

  5. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  6. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  7. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  8. Solid state electrochromic light modulator

    DOE Patents [OSTI]

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  9. Solid-state optical microscope

    DOE Patents [OSTI]

    Young, I.T.

    1981-01-07

    A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  10. Solid State Lighting FAQ Tip Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting FAQ Tip Sheet Solid State Lighting FAQ Tip Sheet Contains information on solid state lighting applications for energy efficiency in buildings. PDF icon ...

  11. State and Regional Hydrogen Initiatives Meeting, Challenges for State and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Hydrogen Initiatives | Department of Energy and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives State and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives These notes from the State and Regional Hydrogen Initiatives Meeting in March 2007 provides discussion points from the Coalition Management Breakout Session. PDF icon coalition_management_nordstrom.pdf More Documents & Publications

  12. Solid State Gas Sensors - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Solid State Gas Sensors Los Alamos National Laboratory Contact LANL About This Technology LANLs...

  13. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting Energy, Energy Efficiency, Materials Science, Partnership, Research & Capabilities, Solid-State Lighting...

  14. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  15. Solid-State Lighting Program Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    James R. Brodrick, Ph.D. April 22, 2014 U.S. Department of Energy Solid-State Lighting Program Strategy MARKET * Many companies * Semiconductors :: Lighting * Large business ...

  16. NREL: Energy Sciences - Solid-State Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Printable Version Solid-State Theory Image showing a roughly spherical red shape that looks like an apple that is floating within a yellow hemispherical shell....

  17. Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Solid-State Lighting Solid-State Lighting Register now for DOE's 13th Annual R&D Workshop Register now for DOE's 13th Annual R&D Workshop Join DOE and our nation's top researchers and lighting industry experts February 2-4, 2016. Read more DOE Announces Funding Opportunity for Solid-State Lighting R&D DOE Announces Funding Opportunity for Solid-State Lighting R&D A total of up to $10.5M in funding is directed toward all three existing R&D

  18. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  19. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  20. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  1. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, James W. (353 Church Rd., Beech Island, SC 29841)

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  2. High temperature solid state storage cell

    DOE Patents [OSTI]

    Rea, Jesse R. (Burlington, MA); Kallianidis, Milton (Brockton, MA); Kelsey, G. Stephen (Nashua, NH)

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  3. About the Solid-State Lighting Program | Department of Energy

    Energy Savers [EERE]

    About the Solid-State Lighting Program About the Solid-State Lighting Program The Energy Policy Act of 2005 (EPACT 2005) and the Energy Independence and Security Act of 2007 (EISA 2007) issued directives to the Secretary of Energy to carry out a Next Generation Lighting Initiative to support SSL R&D. The legislation directs DOE to support research, development, demonstration, and commercial application activities related to advanced SSL technologies. In order to effectively fulfill the

  4. Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    Lighting Solid-State Lighting 2013 DOE Solid-State Lighting Program Overview PDF icon ssl-overview_brochure_feb2013.pdf More Documents & Publications January 2016 POSTINGS Emerging Lighting Technology INNOVATIVE PHOSPHORESCENT OLED TECHNOLOGY IS HELPING TO MAKE OLED LIGHTING MARKET-READY

  5. Energy Efficient State Building Initiative

    Broader source: Energy.gov [DOE]

    The DOA has incorporated the requirements of the Executive Order into Indiana's standard instructions to designers for projects on state-owned buildings. Efficiency can be demonstrated through...

  6. On the initial state and consistency relations

    SciTech Connect (OSTI)

    Berezhiani, Lasha; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2014-09-01

    We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. We then investigate the precise ways in which modified initial states can lead to violations of the consistency relations. We find two independent sources of violations: i) the state can include initial non-Gaussianities; ii) even if the initial state is Gaussian, such as a Bogoliubov state, the modified 2-point function can modify the q-vector ?0 analyticity properties of the vertex functional and result in violations of the consistency relations.

  7. State Energy Risk Assessment Initiative - State and Regional...

    Broader source: Energy.gov (indexed) [DOE]

    OE is leading a State Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed...

  8. State and Regional Energy Risk Assessment Initiative

    Broader source: Energy.gov [DOE]

    OE is leading a State and Regional Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed decisions about their investments, resilience and hardening strategies, and asset management. As part of this Initiative, OE has developed a series of State and Regional Energy Risk Profiles that examine the relative magnitude of the risks that each State's energy infrastructure routinely encounters in comparison with the probable impacts.

  9. FEMP Exterior Solid-State Lighting Technology Pilot | Department of Energy

    Energy Savers [EERE]

    Exterior Solid-State Lighting Technology Pilot FEMP Exterior Solid-State Lighting Technology Pilot Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the Federal Energy Management Program's (FEMP's) exterior solid-state lighting initiative and technology pilot. PDF icon fupwg_fall12_mccullough.pdf More Documents & Publications Federal Technology Deployment Pilot: Exterior Solid State Lighting Leveraging Lighting for Energy Savings: GSA

  10. Solid-State Lighting Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

  11. Solid-state diffusion in amorphous zirconolite

    SciTech Connect (OSTI)

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  12. Grating enhanced solid-state laser amplifiers

    DOE Patents [OSTI]

    Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  13. solid state lighting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Solid-State Lighting (SSL) is an emerging technology with the potential to address the urgent challenges of revitalizing America's economy, strengthening our national energy security, and reducing our country's greenhouse gas emissions. SSL will mean greener homes and businesses that use substantially less electricity, making them less dependent on fossil fuels. In the coming decade, SSL will become a key to affordable high-performance buildings - buildings that consume less

  14. DOE Solid-State Lighting Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    James R. Brodrick, Ph.D. April 16, 2015 U.S. Department of Energy DOE Solid-State Lighting Program 2 DOE Solid-State Lighting Program Mission and Goal By 2025, develop advanced SSL technologies that - compared to conventional lighting technologies - are much more energy efficient, longer lasting, and cost competitive, by targeting a product system efficiency of 50 percent with lighting that accurately reproduces sunlight spectrum. Guided by a government-industry partnership, DOE's mission is to

  15. State and Regional Hydrogen Initiatives Meeting, Challenges for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives State and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional...

  16. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL

    Office of Environmental Management (EM)

    Applications | Department of Energy Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Fact sheet describes the Federal Energy Management Program's (FEMP) solid-state lighting (SSL) initiatives that provide information and resources for the application of SSL lighting in exterior spaces. PDF icon outdoor_ssl_initiative.pdf More Documents & Publications Federal Technology

  17. Solid State Processing of Fully Dense Anistropic Nanocomposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Processing of Fully Dense Anistropic Nanocomposition Magnets Research Personnel Characterization The project proposes a new solid state processing technology which will...

  18. Design of solid state neutral particle analyzer array for National...

    Office of Scientific and Technical Information (OSTI)

    Design of solid state neutral particle analyzer array for National Spherical Torus Experiment-Upgrade Citation Details In-Document Search Title: Design of solid state neutral ...

  19. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate ...

  20. Solid-State Lighting Manufacturing Research and Development ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 (DE-FOA-0000561) Solid-State Lighting Manufacturing Research and Development - Round 3 ... is achieve cost reduction of solid-state lighting for general illumination through ...

  1. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Strategy Overview - 2014 BTO Peer Review Solid-State Lighting Program Strategy ... of the Building Technologies Office's Solid-State Lighting Program Strategy activities. ...

  2. The Kanatzidis - Chang Cell: dye sensitized all solid state solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state...

  3. 2014 DOE SOLID-STATE LIGHTING MARKET DEVELOPMENT WORKSHOP | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE SOLID-STATE LIGHTING MARKET DEVELOPMENT WORKSHOP 2014 DOE SOLID-STATE LIGHTING MARKET DEVELOPMENT WORKSHOP PDF icon DOE SSL Market Development Workshop Agenda.pdf More...

  4. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Fact sheet...

  5. DOE Joint Solid-State Lighting Roundtables on Science Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Joint Solid-State Lighting Roundtables on Science Challenges DOE Joint Solid-State Lighting Roundtables on Science Challenges PDF icon 2014BES-EEREroundtables...

  6. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility...

  7. Solid-State Sensors for Monitoring Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Sensors for Monitoring Hydrogen Solid-State Sensors for Monitoring Hydrogen New Sensors Rapidly and Accurately Detect Hydrogen, Improving Industrial Safety and ...

  8. Passivation-free solid state battery

    DOE Patents [OSTI]

    Abraham, K.M.; Peramunage, D.

    1998-06-16

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li{sub 4}Ti{sub 5}O{sub 12} anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2} and LiV{sub 2}O{sub 5} and their derivatives. 5 figs.

  9. Passivation-free solid state battery

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Peramunage, Dharmasena (Norwood, MA)

    1998-01-01

    This invention pertains to passivation-free solid-state rechargeable batteries composed of Li.sub.4 Ti.sub.5 O.sub.12 anode, a solid polymer electrolyte and a high voltage cathode. The solid polymer electrolyte comprises a polymer host, such as polyacrylonitrile, poly(vinyl chloride), poly(vinyl sulfone), and poly(vinylidene fluoride), plasticized by a solution of a Li salt in an organic solvent. The high voltage cathode includes LiMn.sub.2 O.sub.4, LiCoO.sub.2, LiNiO.sub.2 and LiV.sub.2 O.sub.5 and their derivatives.

  10. FEMP Exterior Solid-State Lighting Technology Pilot

    Office of Environmental Management (EM)

    FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov FUPWG Fall 2012 FEMP Exterior Solid-State Lighting Technology Pilot Jeff McCullough, LC October 17, 2012 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * State of SSL Technology - Introducing MOBLI * Federal Energy Management Program (FEMP) - Technology Deployment Matrix - Federal Exterior Market Size - FEMP Exterior SSL Initiative - FEMP-designated Efficiency Requirements - Plans

  11. Solid state division progress report, period ending February 29, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  12. Solid-State Lighting Program Overview Brochure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview Brochure Solid-State Lighting Program Overview Brochure PDF icon Solid-State Lighting Program Overview Brochure.pdf More Documents & Publications Solid-State Lighting Emerging Lighting Technology Solid-State Lighting R&D Plan

  13. Solid-state NMR imaging system

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Dieckman, Stephen L. (Elmhurst, IL); Ellingson, William A. (Naperville, IL)

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  14. Coordinated garbage collection for raid array of solid state disks

    DOE Patents [OSTI]

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  15. State Energy Risk Assessment Initiative | Department of Energy

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative State Energy Risk Assessment Initiative OE is leading a State Energy Risk...

  16. Final Report: Multi-State Sharing Initiative

    SciTech Connect (OSTI)

    Begoli, Edmon; Boehmann, Brant; DeNap, Frank A

    2012-04-01

    In 2003 a joint effort between the U.S. Department of Homeland Security (DHS) and the U.S. Department of Justice created state and metropolitan intelligence fusion centers. These fusion centers were an effort to share law enforcement, disaster, and terrorism related information and intelligence between state and local jurisdictions and to share terrorism related intelligence between state and local law enforcement agencies and various federal entities. In 2006, DHS commissioned the Oak Ridge National Laboratory to establish and manage a groundbreaking program to assist local, state, and tribal leaders in developing the tools and methods required to anticipate and forestall terrorist events and to enhance disaster response. This program, called the Southeast Region Research Initiative (SERRI), combines science and technology with validated operational approaches to address regionally unique requirements and suggest regional solutions with the potential for national application. In 2009, SERRI sponsored the Multistate Sharing Initiative (MSSI) to assist state and metropolitan intelligence fusion centers with sharing information related to a wider variety of state interests than just terrorism. While these fusion centers have been effective at sharing data across organizations within their respective jurisdictions, their organizational structure makes bilateral communication with federal entities convenient and also allows information to be further disbursed to other local entities when appropriate. The MSSI-developed Suspicious Activity Report (SAR) sharing system allows state-to-state sharing of non-terrorism-related law enforcement and disaster information. Currently, the MSSI SAR system is deployed in Alabama, Kentucky, Tennessee, and South Carolina. About 1 year after implementation, cognizant fusion center personnel from each state were contacted to ascertain the status of their MSSI SAR systems. The overwhelming response from these individuals was that the MSSI SAR system was an outstanding success and contributed greatly to the security and resiliency of their states. At least one state commented that SERRI's implementation of the MSSI SAR actually 'jump started' and accelerated deployment and acceptance of the Nationwide Suspicious Activity Reporting Initiative (NSI). While all states were enthusiastic about their systems, South Carolina and Tennessee appeared to be the heaviest users of their respective systems. With NSI taking the load of sharing SARs with other states, Tennessee has redeployed the MSSI SAR system within Tennessee to allow SAR sharing between state and local organizations including Tennessee's three Homeland Security Regions, eleven Homeland Security Districts, and more than 500 police and sheriff offices, as well as with other states. In one success story from South Carolina, the Economy SAR System was used to compile similar SARs from throughout the state which were then forwarded to field liaison officers, emergency management personnel, and law enforcement officers for action.

  17. Solid state synthesis of poly(dichlorophosphazene)

    DOE Patents [OSTI]

    Allen, Christopher W. (Essex Junction, VT); Hneihen, Azzam S. (Burlington, VT); Peterson, Eric S. (Idaho Falls, ID)

    2001-01-01

    A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.

  18. solid-state hydrogen storage gaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid-state hydrogen storage gaps - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Municipal Solid-State Street Lighting Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Solid-State Street Lighting Consortium 2014 Building Technologies Office Peer Review Day Burners in Detroit, December 2013 Marc Ledbetter, Marc.Ledbetter@pnnl.gov Pacific Northwest National Laboratory Project Summary Timeline: Start date: April, 2010 Planned end date: FY19 Key Milestones 1. Detroit joining MSSLC and deciding to pursue an LED-based system, November, 2013 2. Model Controls Specification V2.0 released; April, 2014 3. Street Lighting Controls Demonstration Established,

  20. Thermoelectrics | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermoelectrics One of the central themes of S3TEC is to develop more efficient thermoelectric materials to directly convert heat into electricity via the Seebeck effect, or provide cooling via the Peltier effect. Their ability to harvest waste heat and deliver cooling power through solid-state devices without moving parts makes them important candidates of sustainable energy technologies in the future. Despite the benefits, the current bottleneck of thermoelectric technology is its relatively

  1. Solid-state-laser-rod holder

    DOE Patents [OSTI]

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  2. State and Regional Energy Risk Assessment Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission Energy Infrastructure Modeling and Analysis State and Regional Energy Risk Assessment Initiative State and Regional Energy Risk Assessment Initiative The Office of...

  3. Enhanced electrodes for solid state gas sensors

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  4. Exterior Solid-State Lighting Solutions for Municipalities | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Exterior Solid-State Lighting Solutions for Municipalities Webinar. PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications Interior Lighting Efficiency for Municipalities Solid State Lighting: GATEWAY and CALiPER interiorlightingefficiencyformunicipalities.doc

  5. Friction Stir and Ultrasonic Solid State Joining of Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Ultrasonic Solid State Joining of Magnesium to Steel Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  6. Heat Pump Water Heater using Solid-State Energy Converters |...

    Energy Savers [EERE]

    Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its ...

  7. Energy Department Provides $7 Million for Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Million for Solid-State Lighting Product Development Energy Department Provides 7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to ...

  8. Solid-State Lighting Manufacturing Research and Development ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 (DE-FOA-0000792) Solid-State Lighting Manufacturing Research and Development - Round 4 ... to achieve cost reduction of solid-state lighting (SSL) for general illumination through ...

  9. Solid-State Lighting (SSL) Manufacturing Workshops Report

    SciTech Connect (OSTI)

    none,

    2009-10-01

    The final report from the U.S. Department of Energy 2009 Solid-State Lighting Manufacturing Workshops.

  10. 2014 Solid-State Lighting Project Portfolio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Project Portfolio 2014 Solid-State Lighting Project Portfolio This report contains an overview of SSL projects currently funded by DOE, and those completed. PDF icon 2014_ssl-project-portfolio.pdf More Documents & Publications 2015 Project Portfolio Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects

  11. Federal Technology Deployment Pilot: Exterior Solid State Lighting |

    Office of Environmental Management (EM)

    Department of Energy Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-provides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project. PDF icon fupwg_fall11_mccullough.pdf More Documents & Publications FEMP Exterior

  12. State and Regional Hydrogen Initiatives Meeting, Challenges for State and Regional Hydrogen Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives Meeting March 19, 2007 Notes from "Coalition Management Breakout" FACILITATOR: Rolf Nordstrom, Upper Midwest Hydrogen Initiative, Great Plains Institute: www.umhi.org, Rnordstrom@gpisd.net, 612-278-7156. Challenges for State and Regional Hydrogen Initiatives: 1. Hard to get money to do much when we're out in front of mass commercialization. We're all trying to serve an industry that is not yet profitable. 2. State programs are very self-focused. If you, as a private

  13. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  14. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  15. Pulsed Power for Solid-State Lasers

    SciTech Connect (OSTI)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

  16. Solid State Marx Modulators for Emerging Applications

    SciTech Connect (OSTI)

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  17. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOFC

    SciTech Connect (OSTI)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; H. Skip Mieney

    2003-06-09

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with piped-in water (Demonstration System A); and Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July through December 2002 under Department of Energy Cooperative Agreement DE-FC-02NT41246 for the 5 kW mass-market automotive (gasoline) auxiliary power unit. This report highlights technical results of the work performed under the following tasks for the automotive 5 kW system: Task 1--System Design and Integration; Task 2--Solid Oxide Fuel Cell Stack Developments; Task 3--Reformer Developments; Task 4--Development of Balance of Plant (BOP) Components; Task 5--Manufacturing Development (Privately Funded); Task 6--System Fabrication; and Task 7--System Testing.

  18. 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights

    Broader source: Energy.gov [DOE]

    Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

  19. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  20. Compact high voltage solid state switch

    DOE Patents [OSTI]

    Glidden, Steven C.

    2003-09-23

    A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

  1. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  2. Solid State Processing of Fully Dense Anistropic Nanocomposition Magnets |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Solid State Processing of Fully Dense Anistropic Nanocomposition Magnets Research Personnel Publications Characterization The project proposes a new solid state processing technology which will transform how current magnets are fabricated, resulting in a dramatic cost decrease and significant reduction of the rare earth (RE) content while actually enhancing the magnetic performance of the magnets. This will be accomplished by a revolutionary solid-state processing

  3. 2012 Solid-State Lighting Market Introduction Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Market Introduction Workshop Presentations and Materials 2012 Solid-State Lighting Market Introduction Workshop Presentations and Materials This page provides links to the presentations and materials from the 2012 Solid-State Lighting Market Introduction Tutorials and Workshop, held July 17-19 in Pittsburgh, Pennsylvania. Presentations Pre-Workshop Tutorials Solid-State Lighting 101 Jack Curran, LED Transformations CALiPER: How Well Do LED Products Perform in

  4. 2013 Solid-State Lighting Market Introduction Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Market Introduction Workshop Presentations and Materials 2013 Solid-State Lighting Market Introduction Workshop Presentations and Materials This page provides links to the presentations and materials from the 2013 Solid-State Lighting Market Introduction Workshop and Pre-Workshop LED Education, held November 12-14 in Portland, OR. Presentations Pre-Workshop LED Education Solid-State Lighting: The New Basics Jack Curran, LED Transformations Controls

  5. 2015 DOE Solid-State Lighting Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PORTFOLIO: SOLID-STATE LIGHTING January 2015 DOE Solid-State Lighting Project Portfolio January 2015 Executive Summary The U.S. Department of Energy (DOE) partners with businesses, universities, and national laboratories to accelerate improvements in solid-state lighting (SSL) technology. These collaborative, cost-shared efforts focus on developing highly energy-efficient, low cost, white light sources for general illumination. DOE supports SSL research for both light-emitting diode

  6. Energy Department Announces $4 Million Solicitation for Solid-State

    Energy Savers [EERE]

    Lighting Research | Department of Energy 4 Million Solicitation for Solid-State Lighting Research Energy Department Announces $4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis Technology has Potential to Double Lighting Efficiency in U.S., Lowering Energy Bills WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a $4 million solicitation for research into solid-state lighting (SSL) that has the potential to create light with virtually

  7. Design of solid state neutral particle analyzer array for National

    Office of Scientific and Technical Information (OSTI)

    Spherical Torus Experiment-Upgrade (Journal Article) | SciTech Connect Design of solid state neutral particle analyzer array for National Spherical Torus Experiment-Upgrade Citation Details In-Document Search Title: Design of solid state neutral particle analyzer array for National Spherical Torus Experiment-Upgrade A new compact, multi-channel Solid State Neutral Particle Analyzer (SSNPA) diagnostic based on silicon photodiode array has been designed and is being fabricated for the National

  8. Solid-State Lighting Consortia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Consortia Solid-State Lighting Consortia Presenter: Marc Ledbetter, Pacific Northwest National Laboratory Most potential users of light-emitting diode (LED) lighting do not have large training budgets to independently educate themselves; participation in the Solid-State Lighting (SSL) Consortia is a low-cost-low-risk way to benefit from the knowledge and experience of others. The goal of the SSL Consortia is to help specific members of the lighting community-including

  9. DOE Announces Selections from Solid-State Lighting Core Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement and Laboratory Call | Department of Energy from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State

  10. DOE Announces Selections from Solid-State Lighting Product Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement | Department of Energy from Solid-State Lighting Product Development Funding Opportunity Announcement DOE Announces Selections from Solid-State Lighting Product Development Funding Opportunity Announcement The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of five (5) applications in response to the Solid-State Lighting Product Development Funding Opportunity Announcement

  11. Municipal Solid-State Street Lighting Consortium Kickoff Webcast |

    Energy Savers [EERE]

    Department of Energy Webcasts » Municipal Solid-State Street Lighting Consortium Kickoff Webcast Municipal Solid-State Street Lighting Consortium Kickoff Webcast This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest National Laboratory discussed the Consortium's mission and goals, and provided an overview of its first steps, and opportunities to

  12. Solid-state lithium battery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid-state lithium battery Citation Details In-Document Search Title: Solid-state lithium battery The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate

  13. System Reliability Model for Solid-State Lighting Luminaires | Department

    Energy Savers [EERE]

    of Energy System Reliability Model for Solid-State Lighting Luminaires System Reliability Model for Solid-State Lighting Luminaires Lead Performer: RTI International - Research Triangle Park, NC Partners: Auburn University - Auburn, AL DOE Total Funding: $2,848,942 Cost Share: $712,234 Project Term: 9/16/2011 - 9/30/2016 Funding Opportunity: Solid State Lighting Core Technology Funding Opportunity Announcement (DE-FOA- 0000329) Project Objective The primary objectives of the proposed work

  14. THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP |

    Energy Savers [EERE]

    Department of Energy THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP More than 230 lighting leaders from across North America gathered in Portland, OR, November 17-18, 2015, for the tenth annual Solid-State Lighting Technology Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing lighting, control, and components companies as well as research

  15. Standards Development for Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    Research & Development » Technology Application R&D » Standards Development for Solid-State Lighting Standards Development for Solid-State Lighting To accelerate the development and implementation of needed standards for solid-state lighting products, DOE works closely with a network of standards-setting organizations and offers technical assistance and support. Since 2006, DOE has facilitated ongoing dialogue with key standards development organizations to foster greater coordination

  16. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  17. DOE Announces Selections for Solid-State Lighting Core Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Selections for Solid-State Lighting Core Technology and Product Development ... to employ this understanding in the design and growth of high-efficiency LEDs ...

  18. DOE Announces Selections from Solid-State Lighting Product Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market application with fully defined price, efficacy, and other performance ... Recipient: Color Kinetics Incorporated Title: An Integrated Solid-State LED Luminaire for ...

  19. Solid-State Lighting Commercial Product Development Resulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Commercial Product Development Resulting from DOE-Funded Projects Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects PDF icon ...

  20. 2012 Solid-State Lighting Market Introduction Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Market Introduction Workshop Presentations and Materials This page provides links to the presentations and materials from the 2012 Solid-State Lighting Market ...

  1. 2013 Solid-State Lighting Market Introduction Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Market Introduction Workshop Presentations and Materials This page provides links to the presentations and materials from the 2013 Solid-State Lighting Market ...

  2. System Reliability Model for Solid-State Lighting Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact The primary objectives of the proposed work will be to develop and validate ... for predicting the lifetime of integrated solid-state lighting (SSL) luminaires. ...

  3. A Rising Star: Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. ... Many consumers have been saving money and helping the environment for years by using LED ...

  4. Solid State Lighting LED Core Technology R&D Roundtable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The document should be referenced as: DOE SSL Program, "Solid State Lighting LED Core Technology R&D Roundtable," November 2015. Authors Monica Hansen LED Lighting Advisors Nnamnor ...

  5. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive...

  6. Solid-State Lighting News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results of Public Street and Area Lighting Inventory Survey DOE's Municipal Solid-State Street Lighting Consortium (MSSLC) has released the results of a voluntary web-based...

  7. FEMP Exterior Solid-State Lighting Technology Pilot | Department...

    Office of Environmental Management (EM)

    & Publications Federal Technology Deployment Pilot: Exterior Solid State Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico Achieves 85% Savings...

  8. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  9. Photon-counting solid-state photomultiplier

    SciTech Connect (OSTI)

    Petroff, M.D.; Stapelbroek, M.G.

    1989-02-01

    The Solid-State Photomultiplier is a silicon device capable of continuous detection of individual photons in the wave length range from 0.4 to 28 ..mu..m. Operated with an applied bias near 7 volts the device responds to the absorption of an incident photon with a submicrosecond-rise-time current pulse with a narrow amplitude distribution well above the electronic readout noise level. Optimal photon-counting performance occurs between 6 and 10 K and for count rates less than 10/sup 10/ counts/s per cm/sup 2/ of detector area. A 60% counting quantum efficiency has been demonstrated at 20 ..mu..m, and near 60% was observed in the visible light region. The underlying mechanism involves extremely fast internal charge amplification by impact ionization of impurity-band electrons and results in a pulse for each photoelectrically or thermally induced free carrier. The thermally induced dark pulse rate at 7 K is sufficiently low that background limited detector performance is obtained at a background of less than 10/sup 6/ photons/cm/sup 2/s.

  10. Solid-State Lighting Webcasts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts Solid-State Lighting Webcasts Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available. CONNECTED OUTDOOR LIGHTING SYSTEMS FOR MUNICIPALITIES October 22, 2015 A presentation on the current state of connected outdoor lighting system technology and where it is heading. A TECHNICAL DISCUSSION OF TM-30-15 September 22, 2015 A presentation on why and how TM-30-15

  11. State and Regional Initiatives Meeting Series Archive | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State and Regional Initiatives Meeting Series Archive State and Regional Initiatives Meeting Series Archive Learn about past state and regional initiatives webinars, calls, meetings, and presentations through the descriptions and linked materials below. Also view Fuel Cell Technologies Office webinar archives. 2011 2010 2009 2008 2007 2006 2011 December 7, 2011 Topic: Fuel Cells and Telecom: Reports from the Field Watch a recording of the webinar Speakers: Moderator, Ronda Mosley,

  12. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  13. High Extraction Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Chris Summers; Hisham Menkara; Brent Wagner

    2011-09-30

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the ??anti-quenching? behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, ??large? nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

  14. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    SciTech Connect (OSTI)

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

  15. Informational Webinar Series for State and Regional Initiatives

    Broader source: Energy.gov [DOE]

    DOE's Fuel Cell Technologies Office and partners co-host a series of informational webinars on various topics to help states and state and regional hydrogen and fuel cell initiative leaders network...

  16. Doing Business with DOE's Solid-State Lighting Program

    Energy Savers [EERE]

    Doing Business with DOE's Solid-State Lighting Program Solid-state lighting (SSL) is an emerging technology that promises to make a significant impact on solving our nation's energy and environmental challenges. With the promise of being more than ten times as effcient as incandescent lighting and twice as effcient as fuorescent light- ing, SSL products using light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) will mean "greener" homes and businesses that use

  17. Solid-State Lighting Commercial Product Development Resulting from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-Funded Projects | Department of Energy Commercial Product Development Resulting from DOE-Funded Projects Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects PDF icon comm-product-factsheet_jun2015.pdf More Documents & Publications Lumileds R&D Impacts Summary SSL Selections Descriptions v6.xls Solid-State Lighting Recovery Act Award Selections

  18. Solid-State Lighting Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Videos Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. photo of a man standing at a podium. Control System Interoperability View the video of a presentation on lighting control system interoperability, given by Michael Poplawski at the DOE SSL Market Development Workshop in Detroit. close-up photo of a man standing in front of a large building San Francisco Workshop Highlights View the video showing highlights from the twelfth annual DOE

  19. Solid-State Lighting-Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Facts Solid-State Lighting-Lighting Facts Presenter: Marc Ledbetter, Pacific Northwest National Laboratory The LED Lighting Facts program provides credible, verified performance information about light-emitting diode (LED) lighting products to retailers, utilities, specifiers, energy efficiency program sponsors, and lighting users. The goal is to enable widespread market adoption of energy-efficient LED products by removing the lack-of-information market barrier. For the solid-state

  20. Novel Solid State Magnetocaloric Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Magnetocaloric Air Conditioner Novel Solid State Magnetocaloric Air Conditioner Lead Performer: Oak Ridge National Laboratory, Oak Ridge, TN Partners: Vaccumschmelze GmbH & Co. KG., Hanau, Germany DOE Total Funding: $1,360,000 Cost Share: $340,000 Project Term: 09/01/2015 - 08/31/2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 PROJECT OBJECTIVE Current magnetocaloric cooling/heating prototypes employ a heat transfer

  1. Solid State Lighting: GATEWAY and CALiPER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs * IDs 10 key

  2. Solid State Vehicular Generators and HVAC Development | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicular Generators and HVAC Development Solid State Vehicular Generators and HVAC Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_1_fairbanks.pdf More Documents & Publications Solid-State Energy Conversion Overview Vehicular Thermoelectric Applications Session DEER 2009 Thermoelectrics: The New Green Automotive Technology

  3. DOE Solid-State Lighting Program: Modest Investments, Extraordinary Impacts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate grocery display cases, make parking garages and streets brighter and safer, and proliferate on retail shelves. Homeowners and businesses are making the switch to SSL at an ever-faster pace, as product costs fall and performance keeps improving. The result: Americans are already saving hundreds of millions of dollars on

  4. Solid-State Lighting Manufacturing Research and Development - Round 3

    Energy Savers [EERE]

    (DE-FOA-0000561) | Department of Energy 3 (DE-FOA-0000561) Solid-State Lighting Manufacturing Research and Development - Round 3 (DE-FOA-0000561) September 23, 2011 - 6:44pm Addthis This funding opportunity is closed. The objective of this Funding Opportunity Announcement (FOA) is achieve cost reduction of solid-state lighting for general illumination through improvements in manufacturing equipment, processes, or techniques. It is anticipated that success will lead to a more rapid

  5. Solid-State Lighting Manufacturing Research and Development - Round 4

    Energy Savers [EERE]

    (DE-FOA-0000792) | Department of Energy 4 (DE-FOA-0000792) Solid-State Lighting Manufacturing Research and Development - Round 4 (DE-FOA-0000792) November 29, 2012 - 12:00pm Addthis This funding opportunity is closed. The objective of this Funding Opportunity Announcement (FOA) is to achieve cost reduction of solid-state lighting (SSL) for general illumination through improvements in manufacturing equipment, processes, or techniques. It is anticipated that success will lead to a more rapid

  6. Sandia Energy - Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EC InAs Quantum Dot Transitions March 1, 2011 The fundamental interaction governing light emission from semiconductor materials is the coupling between electronic states in the...

  7. Solid State Division progress report, September 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  8. Solid-State Lighting R&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting R&D Plan May 2015 Prepared for: Solid-State Lighting Program Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy DOE/EE-1228 R&D Plan Page 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes

  9. Advisors | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisors Robert Armstrong Director, MIT Energy Initiative Visit Website George W. Crabtree Senior Scientist, Argonne National Laboratory Argonne Distinguished Fellow Visit Website Yi Cui Associate Professor of Materials Science & Engineering and of Photon Science, Stanford University Visit Website Boris Kozinsky Principal Scientist, Research and Technology Center North America, Robert Bosch LLC Visit Website Venky Narayanamurti Benjamin Peirce Research Professor of Technology and Public

  10. Solid State Division progress report for period ending September 30, 1990

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1991-03-01

    This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

  11. ENERGY STAR Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Workshop Purpose: To prepare manufacturers for the launch of the ENERGY STAR SSL program in late September by sharing information on the state of the SSL market, status of relevant test procedures,...

  12. SOLID-STATE LIGHTING BUILDING TECHNOLOGIES OFFICE Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING TECHNOLOGIES OFFICE Solid-State Lighting Patents Resulting from DOE-Funded Projects As of January 2015, 96 solid-state lighting (SSL) patents have been awarded to research projects fund- ed by the U.S. Department of Energy. Since December 2000, when DOE began funding SSL research projects, a total of 247 patent applications have been submitted, ranging from large businesses (79) and small businesses (90) to universities (66) and national laboratories (12). DOE tracks three types of

  13. Energy Savings Forecast of Solid-State Lighting in General Illuminatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast of Solid-State Lighting in General Illumination Applications Energy Savings Forecast of Solid-State Lighting in General Illumination Applications PDF icon...

  14. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Solid-State Lighting in General Illumination Applications - Report Energy Savings Potential of Solid-State Lighting in General Illumination Applications - Report A...

  15. Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Soraa, Inc. Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Mike Krames, Chief Technology Officer, Soraa, Inc." and footage of a man in a lab. Mike Krames: The Department of Energy has done a great job in supporting solid-state lighting in the United States.

  16. Novel QCD Effects from Initial and Final State Interactions

    SciTech Connect (OSTI)

    Brodsky, Stanley J.

    2007-09-12

    Initial-state and final-state interactions which are conventionally neglected in the parton model, have a profound effect in QCD hard-scattering reactions. The effects, which arise from gluon exchange between the active and spectator quarks, cause leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and the breakdown of the Lam-Tung relation in Drell-Yan reactions. Diffractive deep inelastic scattering also leads to nuclear shadowing and non-universal antishadowing of nuclear structure functions through multiple scattering reactions in the nuclear target. Factorization-breaking effects are particularly important for hard hadron interactions since both initial-state and final-state interactions appear. Related factorization breaking effects can also appear in exclusive electroproduction reactions and in deeply virtual Compton scattering. None of the effects of initial-state and final-state interactions are incorporated in the light-front wavefunctions of the target hadron computed in isolation.

  17. Solid state NMR spectrometer. Final project report

    SciTech Connect (OSTI)

    Jensen, C.M.

    1997-11-01

    The new Varian Unity INOVA 400 is being utilized on a daily basis. The instrument is available 24 hours a day seven days a week for scheduled experiments. In addition, a limited amount of time is available on a walk-in basis for researchers on the project. The instrument has operated with no down time since the end of the Varian installation process. Minor problems have been corrected by the facility staff (spent fused, malfunctioning boards and components and interrupted data transfers). Most of the initial problems were covered under the warrantee period. Since the end of this period there have been no major operational problems. This report discusses two research projects using the new spectrometer: dynamics of dihydrogen and alkane complexes of iridium and catalytic dehydrogenation by iridium hydride complexes.

  18. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  19. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  1. Solid State Division Progress Report for period ending March 31, 1986

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1986-08-01

    This report is divided into: theoretical solid-state physics, surface and near-surface properties of solids, defects in solids, transport properties of solids, neutron scattering, and synthesis and properties of novel materials. (DLC)

  2. Informational Webinar Series for State and Regional Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Education » For Students & Educators » Grades 5-12 » Informational Webinar Series for State and Regional Initiatives Informational Webinar Series for State and Regional Initiatives Here you'll find student resources on competitions that promote awareness about energy technologies and issues. Middle School DOE's Middle School Science Bowl - This competition consists of two contests: (1) a fast-paced question-and-answer academic competition where students answer

  3. United States and International Partners Initial ITER Agreement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Partners Initial ITER Agreement United States and International Partners Initial ITER Agreement May 24, 2006 - 10:48am Addthis Paves the Way for Large-Scale, Clean Fusion Energy Project BRUSSELS, BELGIUM - Representing the United States, Dr. Raymond L. Orbach, Director of the U.S. Department of Energy's (DOE) Office of Science, joined counterparts from China, the European Union, India, Japan, the Republic of Korea, and the Russian Federation today to

  4. DOE Joint Solid State Lighting Roundtables on Science Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Solid State Lighting Roundtables on Science Challenges Basic Energy Sciences/Energy Efficiency and Renewable Energy October 7, 2014 Washington, D.C. Prepared For: Basic Energy Sciences Office of Science U.S. Department of Energy Prepared By: LED Lighting Advisors Navigant Consulting, Inc. SB Consulting SSLS, Inc. December 8, 2014 i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any

  5. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect (OSTI)

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  6. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  7. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, Clifford B. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  8. Space-time complexity in solid state models

    SciTech Connect (OSTI)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter.

  9. Solid-State Lighting News | Department of Energy

    Energy Savers [EERE]

    Solid-State Lighting News Solid-State Lighting News March 16, 2016 New DOE Resources on Understanding IES TM-30 The U.S. Department of Energy (DOE) has created a number of useful new resources to help stakeholders understand IES TM-30-15, which describes a new method for evaluating light-source color rendition. Created by an Illuminating Engineering Society (IES) task group to address the widely acknowledged limitations of CRI, which is simpler to use but less accurate, TM-30 encompasses several

  10. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cree, Inc. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "John Edmond, Director of Advanced Opto Electronics Technology, Cree, Inc." and footage of a man in a showcase room. John Edmond: We should care as a country about creating jobs, and solid-state

  11. Controls for Solid-State Lighting

    SciTech Connect (OSTI)

    Rubinstein, Francis

    2007-06-22

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

  12. Roundtable Discussions of the Solid State Lighting R&D Task Priorities Nov. 2009

    SciTech Connect (OSTI)

    2010-01-01

    A document for the Department of Energy, Energy Efficiency and Renewable Energy, Solid State Lighting

  13. Energy Savings Forecast of Solid-State Lighting in General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Forecast of Solid-State Lighting in General Illumination Applications Energy Savings Forecast of Solid-State Lighting in General Illumination Applications PDF icon energysavingsforecast14.pdf More Documents & Publications Energy Savings Potential of Solid-State Lighting in General Illumination Applications - Report LED ADOPTION REPORT Solid-State Lighting R&D

  14. Energy Department Solid-State Lighting Efforts Spark New Paradigm

    Broader source: Energy.gov [DOE]

    Breakthroughs in solid-state lighting (SSL) technology, driven in part by Energy Department research investments, are leading to sweeping changes in the way lighting experts view the vast economic potential of future lighting systems and their growing benefits to society.

  15. Solid state lift for micrometering in a fuel injector

    DOE Patents [OSTI]

    Milam, David M. (Metamora, IL); Carroll, Thomas S. (Peoria, IL); Lee, Chien-Chang (Rochester Hills, MI); Miller, Charles R. (Metamora, IL)

    2002-01-01

    A fuel injector performs main fuel injection by raising fuel pressure in a nozzle chamber to lift a check valve member to a fully open position, and performs preinjection or microinjection by operating a solid state motor to lift the check valve member a much smaller distance.

  16. Solid-State Lighting Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Calendar January 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27...

  17. Solid-State Lighting Patents Resulting from DOE-Funded Projects |

    Energy Savers [EERE]

    Department of Energy Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2013 DOE Solid-State Lighting Program Fact Sheet PDF icon patents_factsheet_feb2013.pdf More Documents & Publications Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2014 Solid-State Lighting Project Portfolio

  18. Solid-State Lighting Patents Resulting from DOE-Funded Projects |

    Energy Savers [EERE]

    Department of Energy Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2014 DOE Solid-State Lighting Program Fact Sheet PDF icon patents_factsheet_jan2014.pdf More Documents & Publications Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2015

  19. Interconnection-Wide Transmission Planning Initiative: Topic B, State

    Office of Environmental Management (EM)

    Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection | Department of Energy State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection A description of the requirements for Topic B for the Texas Interconnect under the Interconnection-Wide

  20. Solid State NMR Investigations of Zeolite - Intercalate Structures

    SciTech Connect (OSTI)

    Fyfe, Colin A.; Diaz, Anix; Brouwer, Darren H.; Lee, Joseph; Schneider, Celine M.; Scheffler, Franziska A.; Darton, Richard J.

    2006-07-24

    We will describe two topics in which structural information on complexes of zeolites is obtained from solid state NMR. In the first, recent work on the determination of the complete three-dimensional structures of the complexes of zeolites with organic sorbates will be briefly reported. The method has been optimized and the presentation of the results systematized. In the second topic, we will describe how solid state NMR can be used in the reverse sense to probe for the existence and structures of nanocrystals whose dimensions are too small to give proper Bragg scattering and which have been proposed to be the synthesis route for the formation of zeolite ZSM-5. In this study, the spectral parameters of probe template molecules are used as being diagnostic of whether the local environment of the framework has been formed. These are independent of the crystal dimensions and this general approach may be applicable to other similar nano systems.

  1. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  2. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  3. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  4. developing viable solid-state materials to store hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developing viable solid-state materials to store hydrogen - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  5. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1984-12-21

    A solid-state transition metal oxide device comprising a plurality of layers having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  6. Low voltage solid-state lateral coloration electrochromic device

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Ruth, Marta R. (Boulder, CO)

    1987-01-01

    A solid-state transition metal oxide device comprising a plurality of lay having a predisposed orientation including an electrochromic oxide layer. Conductive material including anode and cathode contacts is secured to the device. Coloration is actuated within the electrochromic oxide layer after the application of a predetermined potential between the contacts. The coloration action is adapted to sweep or dynamically extend across the length of the electrochromic oxide layer.

  7. Solid state laser media driven by remote nuclear powered fluorescence

    DOE Patents [OSTI]

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  8. Dual Layer Solid State Thin Film Deposition - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Dual Layer Solid State Thin Film Deposition National Renewable Energy Laboratory Contact NREL About This Technology <em>The dual-layered electrolyte material can be deposited at different vacuum pressures to suit desired physical properties such as high ionic conductivity, mechanical fracture toughness, and low diffusion constant for atmospheric gases. </em> The dual-layered electrolyte material can be deposited at

  9. Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Flexible Thin Film Solid State Lithium Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are electrochemical cells which store and supply electrical energy as a product of a chemical reaction. In their simplest conceptualization, batteries have two electrodes, one that supplies electrons by virtue of an

  11. Position sensitive solid-state photomultipliers, systems and methods

    DOE Patents [OSTI]

    Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel

    2014-11-11

    An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.

  12. (Lighting and) Solid-State Lighting: Science, Technology, Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  13. Webcast: Municipal Solid-State Street Lighting Consortium Retrofit

    Broader source: Energy.gov (indexed) [DOE]

    Financial Analysis Tool | Department of Energy This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest National Laboratory provided a guided walk-through of what the tool can do and how to use it to evaluate costs and benefits associated with converting to LED street and roadway lighting. The webcast showed how city and other government agencies,

  14. Solid state photosensitive devices which employ isolated photosynthetic complexes

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  15. Signatures of initial state modifications on bispectrum statistics

    SciTech Connect (OSTI)

    Meerburg, P Daniel; Schaar, Jan Pieter van der; Corasaniti, Pier Stefano E-mail: j.p.vanderschaar@uva.nl

    2009-05-15

    Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. We focus on the bispectrum statistics of the primordial curvature perturbation and its projection on the CMB. For a canonical single-field action the three-point correlator enhancement is localized, maximizing in the collinear limit, corresponding to enfolded or squashed triangles in comoving momentum space. We show that the available local and equilateral template are very insensitive to this localized enhancement and do not generate noteworthy constraints on initial-state modifications. On the other hand, when considering the addition of a dimension 8 higher order derivative term, we find a dominant rapidly oscillating contribution, which had previously been overlooked and whose significantly enhanced amplitude is independent of the triangle under consideration. Nevertheless, the oscillatory nature of (the sign of) the correlation function implies the signal is nearly orthogonal to currently available observational templates, strongly reducing the sensitivity to the enhancement. Constraints on departures from the standard Bunch-Davies vacuum state can be derived, but also depend on the next-to-leading terms. We emphasize that the construction and application of especially adapted templates could lead to CMB bispectrum constraints on modified initial states already competing with those derived from the power spectrum.

  16. Single ion implantation for solid state quantum computer development

    SciTech Connect (OSTI)

    Schenkel, Thomas; Meijers, Jan; Persaud, Arun; McDonald, Joseph W.; Holder, Joseph P.; Schneider, Dieter H.

    2001-12-18

    Several solid state quantum computer schemes are based on the manipulation of electron and nuclear spins of single donor atoms in a solid matrix. The fabrication of qubit arrays requires the placement of individual atoms with nanometer precision and high efficiency. In this article we describe first results from low dose, low energy implantations and our development of a low energy (<10 keV), single ion implantation scheme for {sup 31}P{sup q+} ions. When {sup 31}P{sup q+} ions impinge on a wafer surface, their potential energy (9.3 keV for P{sup 15+}) is released, and about 20 secondary electrons are emitted. The emission of multiple secondary electrons allows detection of each ion impact with 100% efficiency. The beam spot on target is controlled by beam focusing and collimation. Exactly one ion is implanted into a selected area avoiding a Poissonian distribution of implanted ions.

  17. The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANSER Center | Argonne-Northwestern National Laboratory The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell Home > Research > ANSER Research Highlights > The Kanatzidis - Chang Cell: dye sensitized all solid state solar cell

  18. Sandia Energy - "Solid-state Lighting: 'The case' 10 Years After...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'The case' 10 Years After and Future Prospects" paper will be translated in Chinese Home Energy Solid-State Lighting EC Energy Efficiency News & Events "Solid-state Lighting: 'The...

  19. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the...

  20. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 ... Through research and development of solid-state lighting (SSL),including both ...

  1. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding ... The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding ...

  2. Solid-State Lighting Patents Resulting from DOE-Funded Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects 2013 DOE Solid-State Lighting Program Fact Sheet PDF icon ...

  3. 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials This page provides ...

  4. Phase-field Modeling of Nucleation in Solid-State Phase Transformation...

    Office of Scientific and Technical Information (OSTI)

    Phase-field Modeling of Nucleation in Solid-State Phase Transformations Citation Details In-Document Search Title: Phase-field Modeling of Nucleation in Solid-State Phase...

  5. Funding Opportunity for Solid-State Lighting Advanced Technology R&D – 2014

    Broader source: Energy.gov [DOE]

    On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

  6. Doing Business with DOE's Solid-State Lighting Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy PDF icon Doing Business Factsheet January 2015 More Documents & Publications Doing Business with DOE's Solid-State Lighting Program Guiding SSL Technology Advances Solid-State Lighting Program Overview Brochure

  7. Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects

    SciTech Connect (OSTI)

    2015-06-30

    Nnapshot of commercialized products directly developed or enabled by DOE Solid-State Lighting Program R&D funding.

  8. Energy Savings Potential of Solid-State Lighting in General Illumination Applications 2010 to 2030

    SciTech Connect (OSTI)

    none,

    2010-02-01

    A report on the energy savings potential of solid-state lighting in general illumination applications from 2010 to 2030.

  9. Energy Savings Potential of Solid-State Lighting in General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications - Report | Department of Energy Potential of Solid-State Lighting in General Illumination Applications - Report Energy Savings Potential of Solid-State Lighting in General Illumination Applications - Report A U.S. DOE SSL report on Energy Savings Potential of Solid-State Lighting in General Illumination Applications. PDF icon ssl_energy-savings-report_jan-2012.pdf More Documents & Publications Energy Savings Forecast of Solid-State Lighting in General Illumination

  10. Solid-State Lighting Patents Resulting from DOE-Funded Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects PDF icon Patents Factsheet January 2015 More Documents & Publications Solid-State Lighting Patents Resulting from DOE-Funded Projects Solid-State Lighting Patents Resulting from DOE-Funded Projects Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts

  11. Solid State Lighting: GATEWAY and CALiPER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting: GATEWAY and CALiPER Solid State Lighting: GATEWAY and CALiPER Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech08_ledbetter_040313.pdf More Documents & Publications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Emerging Lighting Technology Guiding Market Introduction of High-Performance SSL Products

  12. Solid-State Lighting Recovery Act Award Selections | Department of Energy

    Energy Savers [EERE]

    Solid-State Lighting Recovery Act Award Selections Solid-State Lighting Recovery Act Award Selections A chart highlighting core technology research projects and product development projects. PDF icon Solid-State Lighting Recovery Act Award Selections More Documents & Publications SSL Selections Descriptions v6.xls 2015 Project Portfolio 2016 Project Portfolio

  13. FTIR spectrometer with solid-state drive system

    DOE Patents [OSTI]

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  14. Event Archives | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Archives Seminar S3TEC Seminar - Dr. Cliff Ho, Sandia National Laboratories Wednesday, Mar 2, 2016 12:00 pm 1-150 S3TEC welcomes Dr. Cliff Ho for our monthly seminar Workshop S3TEC Annual Workship Saturday, Feb 13, 2016 9:00 am to 8:00 pm MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT Faculty Club and Conference Center, 50 Memorial Drive, Cambridge, MA Seminar S3TEC Pre-Workshop Seminar Friday, Feb 12, 2016

  15. Solid-State Lighting | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Our goal is to advance the fundamental science and technology to both understand factors that limit efficiencies for light emitting diode-based lighting and to provide innovative and viable solutions to current roadblocks. We intend to achieve these goals by: (1) control and elucidation of the carrier loss mechanisms on nonpolar/semipolar GaN LEDs; (2) growth of defect-free bulk GaN crystals; and (3) full-spectrum lighting using an all semiconductor-based emission region;

  16. Heat Pump Water Heater Using Solid-State Energy Converters

    Office of Environmental Management (EM)

    Heat Pump Water Heater Using Solid-State Energy Converters 2015 Building Technologies Office Peer Review Uttam Ghoshal, ghoshal@sheetak.com Sheetak Inc. Project Summary Timeline: Start date: 11/15/2012 Planned end date: 5/14/2016 Key Milestones: 1. Development of Bottom Mount 4-Engine Thermoelectric Heat Pump; 5/14/2014 2. Development of High Cooling Power Thermoelectric Modules for Heat Pumps; 5/14/2015 3. Performance (COP > 1.1) and Reliability of 4- and 8-Engine Thermoelectric Heat Pumps ;

  17. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect (OSTI)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  18. Tritium and neutron measurements of a solid state cell

    SciTech Connect (OSTI)

    Claytor, T.N.; Seeger, P.A.; Rohwer, R.K.; Tuggle, D.G.; Doty, W.R.

    1989-01-01

    A solid state cold fusion'' cell was constructed to test for non-equilibrium fusion in a solid. The stimulus for the design was the hypothesis that the electrochemical surface layer in the Pons- Fleischmann cell could be replaced with a metal-insulator- semiconductor (MIS) barrier. Cells were constructed of alternating layers of palladium and silicon powders pressed into a ceramic form and exposed to deuterium gas at 110 psia resulting in a D/Pd ratio of 0.7. Pulses of current were passed through the cells to populate non-equilibrium states at the MIS barriers. One cell showed neutron activity and was found to have a large amount of tritium, other cells have produced tritium at a low rate consistent with neutron emission below the threshold of observability. The branching ratio for n/p has been about 1 {times} 10{sup {minus}9} in all the experiments where a substantial amount of tritium has been found. 11 refs., 9 figs., 2 tabs.

  19. Solid State Division: Progress report for period ending September 30, 1987

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1988-03-01

    This paper contains a collection of articles on research done at the Solid State Division of ORNL. General topics covered are: theoretical solid state physics; neutron scattering; physical properties of superconductors and ceramics; synthesis and characterization of solids; ion beam and laser processing; and surface and defect studies. (LSP)

  20. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  1. Muon Spin Rotation Spectroscopy - Utilizing Muons in Solid State Physics

    SciTech Connect (OSTI)

    Suter, Andreas

    2012-10-17

    Over the past decades muon spin rotation techniques (mSR) have established themselves as an invaluable tool to study a variety of static and dynamic phenomena in bulk solid state physics and chemistry. Common to all these approaches is that the muon is utilized as a spin microprobe and/or hydrogen-like probe, implanted in the material under investigation. Recent developments extend the range of application to near surface phenomena, thin film and super-lattice studies. After briefly summarizing the production of so called surface muons used for bulk studies, and discussing the principle differences between pulsed and continuous muon beams, the production of keV-energy muon sources will be discussed. A few topical examples from different active research fields will be presented to demonstrate the power of these techniques.

  2. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  3. Solid state cloaking for electrical charge carrier mobility control

    DOE Patents [OSTI]

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  4. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  5. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    SciTech Connect (OSTI)

    Lima Sharma, Ana L.; Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  6. The NSLS 100 element solid state array detector

    SciTech Connect (OSTI)

    Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Beren, J. ); Cramer, S.P. . Dept. of Applied Science)

    1991-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500,000 counts per second are now in routine use. Since x-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10*10 matrix of 4mm * 4mm elements laid out on a single piece of ultra-high purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A to D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection.

  7. The NSLS 100 element solid state array detector

    SciTech Connect (OSTI)

    Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Beren, J.; Cramer, S.P.

    1991-12-31

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500,000 counts per second are now in routine use. Since x-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10*10 matrix of 4mm * 4mm elements laid out on a single piece of ultra-high purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A to D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection.

  8. Direct Solid-State Conversion of Recyclable Metals and Alloys

    SciTech Connect (OSTI)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  9. On the initial state and consistency relations (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect On the initial state and consistency relations Citation Details In-Document Search Title: On the initial state and consistency relations We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the

  10. The Initial State of a Primordial Anisotropic Stage of Inflation

    SciTech Connect (OSTI)

    Blanco-Pillado, Jose J.; Minamitsuji, Masato

    2015-06-12

    We investigate the possibility that the inflationary period in the early universe was preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest model of this kind, where the spacetime is described by a non-singular Kasner solution that quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension of this metric to the region behind the horizon contains a timelike singularity which will be visible by cosmological observers. This makes it impossible to have a reliable prediction of the quantum state of the cosmological perturbations in the region of interest. In this paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result of a quantum tunneling process effectively substituting the region behind the horizon by an anisotropic parent vacuum state, namely a 1+1 dimensional spacetime compactified over an internal flat torus, T{sub 2}, which we take it to be of the form de Sitter{sub 2}×T{sub 2} or Minkowski{sub 2}×T{sub 2}. As a first approximation to understand the effects of this anisotropic initial state, we compute the power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum converges at small scales to the isotropic scale invariant form and only present important deviations from it at the largest possible scales. We find that the decompactification scenario from M{sub 2}×T{sub 2} leads to a suppressed and slightly anisotropic power spectrum at large scales which could be related to some of the anomalies present in the current CMB data. On the other hand, the spectrum of the universe with a dS{sub 2}×T{sub 2} parent vacuum presents an enhancement in power at large scales not consistent with observations.

  11. Solid State Division progress report for period ending September 30, 1993

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  12. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect (OSTI)

    Fazio, M.V.; Erickson, G.A. [Los Alamos National Laboratory (United States)

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  13. Secretary of Energy Announces $5 Million for Solid State Lighting Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy $5 Million for Solid State Lighting Research Secretary of Energy Announces $5 Million for Solid State Lighting Research October 5, 2006 - 9:08am Addthis ALBUQUERQUE, NM - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of seven projects, valued at nearly $5 million, for Solid State Lighting (SSL) research in nanotechnology. SSL has the potential to more than double the efficiency of general lighting systems, reducing overall

  14. High Efficiency Solid-State Heat Pump Module | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Solid-State Heat Pump Module High Efficiency Solid-State Heat Pump Module Lead Performer: United Technologies Research Center - East Hartford, CT DOE Total Funding: $1,090,000 Cost Share: $365,000 Project Term: August 2015 - Sept 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Project Objective United Technologies Research Center (UTRC) proposes to demonstrate a solid state (refrigerant-free), high efficiency, compact,

  15. Design of defect spins in piezoelectric aluminum nitride for solid-state

    Office of Scientific and Technical Information (OSTI)

    hybrid quantum technologies (Journal Article) | SciTech Connect Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies Citation Details In-Document Search Title: Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been

  16. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Program Strategy Overview - 2014 BTO Peer Review Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review Presenter: James Broderick, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting Program Strategy activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the Presentation PDF icon Solid-State

  17. The Department of Energy's Solid-State Lighting Program, OAS-RA-L-13-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid- State Lighting Program OAS-RA-L-13-03 February 2013 Department of Energy Washington, DC 20585 February 28, 2013 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Solid-State Lighting Program" BACKGROUND The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy established the Solid-State

  18. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review Presenter: James Broderick, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting Program Strategy activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. View the Presentation

  19. Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Ultrasonic Solid State Joining of Magnesium to Steel Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm030_hovanski_2012_o.pdf More Documents & Publications FSW & USW Solid State Joining of Magnesium to Steel Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of Magnesium to Steel

  20. FSW & USW Solid State Joining of Magnesium to Steel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FSW & USW Solid State Joining of Magnesium to Steel FSW & USW Solid State Joining of Magnesium to Steel 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm031_feng_2011_o.pdf More Documents & Publications Friction Stir and Ultrasonic Solid State Joining of Magnesium to Steel Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of Magnesium to Steel FY 2009

  1. DOE Awards Five Small Business Innovation Research Grants for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Technology | Department of Energy Five Small Business Innovation Research Grants for Solid-State Lighting Technology DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase the participation of small businesses in federal research and development.

  2. DOE Awards Seven Small Business Innovation Research Grants for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Technology | Department of Energy Seven Small Business Innovation Research Grants for Solid-State Lighting Technology DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase the participation of small businesses in federal R&D. Five Phase I

  3. Solid-State Lighting Overview - 2015 BTO Peer Review | Department of Energy

    Energy Savers [EERE]

    Overview - 2015 BTO Peer Review Solid-State Lighting Overview - 2015 BTO Peer Review Presenter: Jim Brodrick, U.S. Department of Energy View the Presentation PDF icon Solid-State Lighting Overview - 2015 BTO Peer Review More Documents & Publications Solid-State Lighting Program Strategy Overview - 2014 BTO Peer Review Materials for R&D Workshop 2016 DOE SSL R&D Workshop Agenda

  4. Solid-State Lighting: Early Lessons Learned on the Way to Market |

    Energy Savers [EERE]

    Department of Energy Webcasts » Solid-State Lighting: Early Lessons Learned on the Way to Market Solid-State Lighting: Early Lessons Learned on the Way to Market This February 20, 2014 webinar presented information from a new DOE report, Solid-State Lighting: Early Lessons Learned on the Way to Market. The SSL market continues to evolve rapidly and LED lighting products are now available for virtually all general illumination applications. With this groundbreaking new technology everyone

  5. Lighting Designer Roundtable on Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    Lighting Designer Roundtable on Solid-State Lighting Lighting Designer Roundtable on Solid-State Lighting Roundtable meeting in Chicago of a group of lighting designers focused on examining solid-state lighting (SSL) market and technology issues and encouraging a discussion of designers' experiences, ideas, and recommendations regarding SSL & SSL industry. PDF icon designer_roundtable_report_final_apr08.pdf More Documents & Publications Recessed LED Downlights Next Generation Luminaire

  6. DOE Municipal Solid-State Street Lighting Consortium | Department of Energy

    Energy Savers [EERE]

    Research & Development » Technology Application R&D » DOE Municipal Solid-State Street Lighting Consortium DOE Municipal Solid-State Street Lighting Consortium The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and

  7. Frequently Asked Questions About the Municipal Solid-State Street Lighting

    Office of Environmental Management (EM)

    Consortium | Department of Energy Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium. How does my organization become a member? How do members participate and where? How are demonstration sites selected? How is information on demonstration sites shared? How is the

  8. Energy Savings Potential of Solid-State Lighting in General Illumination Applications- Factsheet

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination Applications.

  9. A high dynamic range data acquisition system for a solid-state...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A high dynamic range data acquisition system for a solid-state electron ... CEEM, Physics Department, Indiana University, Bloomington, Indiana 47408 (United ...

  10. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium Kickoff webcast, held May 6, 2010.

  11. Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool" webcast, held April 3, 2012.

  12. Roundtable Discussions of the Solid-State Lighting R&D Task Structure

    SciTech Connect (OSTI)

    2008-09-01

    A report of a roundtable discussion addressing the R&D task structure for the DOE Solid-State Lighting Program.

  13. 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 3 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials 2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2013 Solid-State Lighting Manufacturing R&D Workshop, held June 5-6 in Boston. Presentations Day 1 Welcome James Brodrick, Solid-State Lighting Program Manager, U.S. Department of Energy Introduction David Danielson,

  14. Energy Department Provides $7 Million for Solid-State Lighting Product

    Energy Savers [EERE]

    Development | Department of Energy 7 Million for Solid-State Lighting Product Development Energy Department Provides $7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to total $10 million with industry contribution WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide a total of $7 million for five cost-shared projects for solid-state lighting (SSL) product development. Solid-state

  15. 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Manufacturing R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2014 Solid-State Lighting ...

  16. 2012 Solid-State Lighting Manufacturing R&D Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Manufacturing R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2012 Solid-State Lighting ...

  17. Solid State eBurner for Supplying Power to Laptops, Cellphones...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Solid State eBurner for Supplying Power to Laptops, Cellphones Oak Ridge National Laboratory...

  18. Miniature all-solid-state heterostructure nanowire Li-ion batteries...

    Office of Scientific and Technical Information (OSTI)

    all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes Citation Details In-Document...

  19. Miniature All-solid-state Heterostructure Nanowire Li-ion Batteries...

    Office of Scientific and Technical Information (OSTI)

    All-solid-state Heterostructure Nanowire Li-ion Batteries as a Toll for Engineering and Structural Diagnostics of Nanoscale Electrochemical Processes Citation Details In-Document...

  20. SESAME 96170, a solid-liquid equation of state for CeO2

    SciTech Connect (OSTI)

    Chisolm, Eric D.

    2014-05-02

    I describe an equation of state (EOS) for the low-pressure solid phase and liquid phase of cerium (IV) oxide, CeO2. The models and parameters used to calculate the EOS are presented in detail, and I compare with data for the full-density crystal. Hugoniot data are available only for high-porosity powders, and I discuss difficulties in comparing with such data. I have constructed SESAME 96170, an EOS for cerium (IV) oxide that includes the ambient solid and liquid phases. The EOS extends over the full standard SESAME range, but should not be used at low temperatures and high densities because of the lack of a high-pressure solid phase. I have described the models used to compute the three terms of the EOS (cold curve, nuclear, and thermal electronic), and I have given the parameters used in the models. They were determined by comparison with experimental data at P = 1 atm, including the constant-pressure specific heat, coefficient of thermal expansion, and melting and boiling points. The EOS compares well with data in its intended range of validity, but the presence of high-frequency optical modes in its phonon spectrum limits the agreement of our models with thermal data. The next step is to construct a multiphase EOS that includes the low- and high-pressure solid phases and the liquid. The DAC data from Duclos will most strongly constrain the parameters of the high-pressure solid. A remaining issue is the comparison of the crystal-density EOS with experimental Hugoniot data, which are taken at much lower initial data because the samples are porous powders. A satisfactory means of modeling porosity, allowing comparison of theory and experiment, has not yet been produced.

  1. Gratings for Increasing Solid-State Laser Gain and Efficiency

    SciTech Connect (OSTI)

    Erlandson, A C; Britten, J A; Bonlie, J D

    2010-04-16

    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used.

  2. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    SciTech Connect (OSTI)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas; Clark, Blythe; Diantonio, Christopher

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  3. 2010 Ceramics, Solid State Studies in Gordon Research Conference

    SciTech Connect (OSTI)

    John Halloran

    2010-08-20

    The 2010 Gordon Conference on Solid State Studies in Ceramics will present forefront research on ceramic materials in energy conversion, storage, and environmental sustainability. Oxide materials in advanced Li-ion batteries will be featured, including first principles computational methods, new experimental methods, novel synthesis, and the design of batteries that exploit nanoscale cathode materials. Several speakers address advances in oxides for solar applications, including photo-catalysts for solar hydrogen production and dye sensitized solar cells, along with thin film photovoltaics. Fast ionic conducting ceramics in electrochemical energy conversion and storage will be addressed for fuel cells and electrochemical storage. New concepts for electrochemical capacitor materials will be addressed, as will thermoelectric, geopolymers, and ceramics in nuclear energy. The Conference will bring together investigators at the forefront of their field as well as junior scientists in a collegial atmosphere, with programmed discussion sessions and informal gatherings in the afternoons and evenings. Poster presentations provide opportunities for junior scientists and graduate students to present their work and exchange ideas with leaders in the field. This Conference provides an avenue for scientists from different disciplines to explore new ideas and promotes cross-disciplinary collaborations in the various research areas represented.

  4. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  5. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  6. Solid State Division progress report for period ending September 30, 1984

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  7. Novel Materials and Devices for Solid-State Neutron Detection

    SciTech Connect (OSTI)

    Manginell, Ronald P.; Pfeifer, Kent B.

    2015-11-01

    There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in energy production, nonproliferation and medicine.

  8. Arabidopsis thalianafrom Polarization Transfer Solid-State NMR

    SciTech Connect (OSTI)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that waterpectin polarization transfer is much faster than watercellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the waterpolysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Waterpectin spin diffusion precedes watercellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  9. Coordinating Garbage Collection for Arrays of Solid-state Drives

    SciTech Connect (OSTI)

    Kim, Youngjae; Lee, Junghee; Oral, H Sarp; Dillow, David A; Wang, Feiyi; Shipman, Galen M

    2014-01-01

    Although solid-state drives (SSDs) offer significant performance improvements over hard disk drives (HDDs) for a number of workloads, they can exhibit substantial variance in request latency and throughput as a result of garbage collection (GC). When GC conflicts with an I/O stream, the stream can make no forward progress until the GC cycle completes. GC cycles are scheduled by logic internal to the SSD based on several factors such as the pattern, frequency, and volume of write requests. When SSDs are used in a RAID with currently available technology, the lack of coordination of the SSD-local GC cycles amplifies this performance variance. We propose a global garbage collection (GGC) mechanism to improve response times and reduce performance variability for a RAID of SSDs. We include a high-level design of SSD-aware RAID controller and GGC-capable SSD devices and algorithms to coordinate the GGC cycles. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase counts for various workloads. Our simulations show that GC coordination by a reactive scheme improves average response time and reduces performance variability for a wide variety of enterprise workloads. For bursty, write-dominated workloads, response time was improved by 69% and performance variability was reduced by 71%. We show that a proactive GC coordination algorithm can further improve the I/O response times by up to 9% and the performance variability by up to 15%. We also observe that it could increase the lifetimes of SSDs with some workloads (e.g. Financial) by reducing the number of block erase counts by up to 79% relative to a reactive algorithm for write-dominant enterprise workloads.

  10. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  11. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  12. Doing Business with DOE's Solid-State Lighting Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2014 DOE Solid-State Lighting Program Fact Sheet PDF icon doingbusiness_factsheet_jan2014.pdf More Documents & Publications Doing Business with DOE's Solid-State Lighting Program CX-010821: Categorical Exclusion Determination CX-010822: Categorical Exclusion Determination

  13. Solid-State Division progress report for period ending March 31, 1983

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)

  14. The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in Boston April 12–13, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  15. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  16. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in San Jose, CA, June 13–14, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  17. The Fifth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 150 industry leaders from across the country, representing every link in the supply chain—chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment—gathered in Boston June 5–6, 2013, to share insights, ideas, and updates at the fifth annual Solid-State Lighting Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  18. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOE Patents [OSTI]

    Lupinetti, Anthony J. (Los Alamos, NM); Garcia, Eduardo (Los Alamos, NM); Abney, Kent D. (Los Alamos, NM)

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  19. Small Island States Green Energy Initiative. Final report

    SciTech Connect (OSTI)

    Khattak, Nasir

    1999-10-15

    This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.

  20. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect (OSTI)

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA Roadmap objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by pure enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH pretreatment provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  1. Solid State NMR Investigations of Chain Dynamics and Network...

    Office of Scientific and Technical Information (OSTI)

    The initial results are in good agreement with what is known from standard network theory and will serve as a basis for the study of progressively increasing structural...

  2. Tunable, rare earth-doped solid state lasers

    DOE Patents [OSTI]

    Emmett, John L. (Pleasanton, CA); Jacobs, Ralph R. (Livermore, CA); Krupke, William F. (Pleasanton, CA); Weber, Marvin J. (Danville, CA)

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  3. All-optical quantum computing with a hybrid solid-state processing unit

    SciTech Connect (OSTI)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-10-15

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  4. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  5. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  6. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (S3TEC ) | Department of Energy from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion PDF icon chen.pdf More Documents & Publications Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion DOE Office of Basic

  7. Three SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Three SBIR Grants Awarded for Solid-State Lighting Technology Three SBIR Grants Awarded for Solid-State Lighting Technology June 19, 2015 - 10:49am Addthis The U.S. Department of Energy Office of Science has awarded Three Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. (Phase II)-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System MoJo Labs Inc.(Phase

  8. Heat Pump Water Heater using Solid-State Energy Converters | Department of

    Energy Savers [EERE]

    Energy Heat Pump Water Heater using Solid-State Energy Converters Heat Pump Water Heater using Solid-State Energy Converters Sheetak will work on developing a full scale prototype of its low cost heat pump water heater. These solid state heat pumping elements can be implemented in low cost manner which have the potential to dramatically change the way in which he heat water.<BR />Image: Sheetak Sheetak will work on developing a full scale prototype of its low cost heat pump water

  9. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy 5 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm Addthis This funding opportunity is closed. The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, "Solid-State Lighting Advanced Technology R&D - 2015"), a total of up to $10 million in funding is

  10. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 11:25am Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. - Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp. - Integrating

  11. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 4:39pm Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc.-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp.-Integrating Energy

  12. Solid-state dosimeters: A new approach for mammography measurements

    SciTech Connect (OSTI)

    Brateman, Libby F.; Heintz, Philip H.

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 2830 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within ?1.2 and +1.1 kVp) for all instruments over a wide range of set kVps and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by ?6.5% to +3.5% depending on the SStD and TF. AK measurements over limited (2830) kVps ranged from ?6% to +7% for SStDs, compared with IC reference values. Relative AGDs for each SStD using its associated measurements of kVp, HVL and AK underestimated AGD in nearly all cases, compared with reference IC values, with discrepancies of

  13. Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives

    Broader source: Energy.gov (indexed) [DOE]

    Conference Call | Department of Energy Presentation by US Fuel Cell Council on legislative updates to state and regional hydrogen and fuel cell representatives PDF icon usfcc_legislative_update.pdf More Documents & Publications U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Connecticut Fuel Cell Activities: Markets, Programs, and Models The Hydrogen Tax Incentive Act of 2008

  14. THE TWELFTH ANNUAL SOLID-STATE LIGHTING R&D WORKSHOP

    Broader source: Energy.gov [DOE]

    Nearly 300 researchers, manufacturers, and other industry insiders and observers gathered in San Francisco January 27–29, 2015, to participate in DOE's 12th annual Solid-State Lighting (SSL) R&...

  15. Solid-State Lighting Early Lessons Learned on the Way to Market

    Energy Savers [EERE]

    EARLY LESSONS LEARNED On the Way to Market Solid-State Lighting (SSL) has made impressive progress over the past decade, emerging as a promising new technology that could...

  16. Transformations in Lighting: The Eighth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 350 researchers, manufacturers, and other industry insiders and observers gathered in San Diego February 1–3, 2011, to participate in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop.

  17. Transformations in Lighting: The Ninth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Nearly 300 researchers, manufacturers, and other industry insiders and observers gathered in Atlanta January 31–February 2, 2012, to participate in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop.

  18. MidAmerican Energy (Electric)- Municipal Solid-State Lighting Grant Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible...

  19. Insights into capacity loss mechanisms in Li-ion all-solid-state...

    Office of Scientific and Technical Information (OSTI)

    Insights into capacity loss mechanisms in Li-ion all-solid-state batteries with Al anodes Citation Details In-Document Search Title: Insights into capacity loss mechanisms in...

  20. Text-Alternative Version: Solid-State Lighting Early Lessons Learned Webinar

    Broader source: Energy.gov [DOE]

    Linda Sandahl: Welcome, ladies and gentlemen. I'm Linda Sandahl with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, Solid-State Lighting: Early Lessons...

  1. The Thirteenth Annual Solid-State Lighting R&d Workshop

    Broader source: Energy.gov [DOE]

    More than 250 researchers, manufacturers, industry insiders, and observers gathered in Raleigh, North Carolina, February 2–4, 2016, to participate in DOE's 13th annual Solid-State Lighting R&D...

  2. 2008 Annual Merit Review Results Summary - 6. Solid State Energy Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6. Solid State Energy Conversion 2008 Annual Merit Review Results Summary - 6. Solid State Energy Conversion DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_6.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 12. Propulsion Materials 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics

  3. 2012 Solid-State Lighting R&D Workshop Presentations and Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Solid-State Lighting R&D Workshop Presentations and Materials 2012 Solid-State Lighting R&D Workshop Presentations and Materials Workshop Report 2012 DOE SSL R&D Workshop Report Presentations Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy A Lighting Transformation Josh Baribeau, Canaccord Genuity Fueling Technology Advancements and Innovations Fred Maxik, Lighting Science Group Panel 1: Insights from Installations Bruce Kinzey,

  4. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a

    Office of Scientific and Technical Information (OSTI)

    tool for engineering and structural diagnostics of nanoscale electrochemical processes. (Journal Article) | SciTech Connect Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes. Citation Details In-Document Search Title: Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

  5. Phase Behavior and Solid State Chemistry in Olivines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior and Solid State Chemistry in Olivines Phase Behavior and Solid State Chemistry in Olivines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_25_richardson.pdf More Documents & Publications Cell Analysis … High-Energy Density Cathodes and Anodes First Principles Calculations of Electrode Materials Development of High Energy Cathode for Li-ion Batteries

  6. The Fifth Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 300 lighting leaders from across the continent gathered in Philadelphia July 20–22, 2010, for the fifth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The audience was diverse, spanning the spectrum from industry, to government, to efficiency organizations, to utilities, to municipalities, to designers and specifiers, to retailers and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  7. The Seventh Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting leaders from across North America gathered in Pittsburgh July 17–19, 2012, for the seventh annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum: industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  8. The Sixth Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 275 lighting leaders from across North America gathered in Seattle July 12–14, 2011, for the sixth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum from industry, to government, to efficiency organizations, to utilities, to municipalities, to designers and specifiers, to retailers and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  9. The Eighth Annual DOE Solid-State Lighting Market Introduction Workshop

    Broader source: Energy.gov [DOE]

    More than 200 lighting leaders from across North America gathered in Portland, OR, November 12–14, 2013, for the eighth annual Solid-State Lighting (SSL) Market Introduction Workshop, hosted by DOE. The diverse audience spanned the spectrum: industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The purpose was to share the latest insights, updates, and strategies for the successful market introduction of high-quality solid-state lighting products.

  10. Development of A Self Biased High Efficiency Solid-State Neutron Detector

    Office of Scientific and Technical Information (OSTI)

    for MPACT Applications (Technical Report) | SciTech Connect Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Citation Details In-Document Search Title: Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications;

  11. A high dynamic range data acquisition system for a solid-state electron

    Office of Scientific and Technical Information (OSTI)

    electric dipole moment experiment (Journal Article) | SciTech Connect Journal Article: A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment Citation Details In-Document Search Title: A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the

  12. High-efficiency solid-state lighting and superconductor research receives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding High-efficiency solid-state lighting and superconductor High-efficiency solid-state lighting and superconductor research receives funding Each project will be funded for up to three years. August 28, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  13. Coordinated Garbage Collection for RAID Array of Solid State Disks - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Coordinated Garbage Collection for RAID Array of Solid State Disks Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00261_ID2411-final.pdf (734 KB) Technology Marketing SummaryAn ORNL invention that replaces existing magnetic disks with solid state disks, which have no mechanical moving parts,

  14. DOE Announces Selection of National Laboratory Center for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology | Department of Energy Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy

  15. DOE Announces Selections for Solid-State Lighting Core Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development Funding Opportunities (Round 3) | Department of Energy 3) DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core Technology Research and Product Development Funding Opportunity Announcements (Round 3). These selections

  16. DOE Announces Selections for Solid-State Lighting Core Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development Funding Opportunities (Round 4) | Department of Energy 4) DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core Technology Research and Product Development Funding Opportunity Announcements (Round 4). These selections

  17. Solid State NMR Investigations of Chain Dynamics and Network Order in Model

    Office of Scientific and Technical Information (OSTI)

    Poly(dimethylsiloxane) Elastomers (Conference) | SciTech Connect Conference: Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers Citation Details In-Document Search Title: Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers This work is at a relatively early stage, however it has been demonstrated that we can reliably probe basic network architectures using the MQ-NMR

  18. Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an

    Office of Scientific and Technical Information (OSTI)

    Alternative Energy Carrier (Journal Article) | SciTech Connect Journal Article: Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier Citation Details In-Document Search Title: Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier As an alternative to conventional methods of conveying and delivering energy in mobile applications or to remote locations, we have examined the combustion of

  19. The effect of carbon on surface quality of solid-state-sintered silicon

    Office of Scientific and Technical Information (OSTI)

    carbide as optical materials (Journal Article) | SciTech Connect The effect of carbon on surface quality of solid-state-sintered silicon carbide as optical materials Citation Details In-Document Search Title: The effect of carbon on surface quality of solid-state-sintered silicon carbide as optical materials The microstructure and the distribution of carbon (C) in silicon carbide (SiC) ceramics were investigated by scanning electron microscopy and transmission electron microscopy. The

  20. About the DOE Municipal Solid-State Street Lighting Consortium | Department

    Energy Savers [EERE]

    of Energy D » Municipal Consortium » About the DOE Municipal Solid-State Street Lighting Consortium About the DOE Municipal Solid-State Street Lighting Consortium Numerous cities and organizations around the nation are announcing plans to conduct large scale retrofits/comparisons of LED street and area lighting products with their conventional street lights. The relative newness of LED lighting raises a number of concerns: A significant and unnecessary duplication of effort is likely if

  1. Probing the Silica/Polysiloxane Interface: A Solid State NMR...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 38 RADIATION CHEMISTRY,...

  2. Solid State Lighting LED Product Development and Manufacturing Roundtable Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 8, 2014 Washington, D.C. Prepared For: U.S. Department of Energy Prepared By: LED Lighting Advisors Navigant Consulting, Inc. SB Consulting SSLS, Inc. December 8, 2014 i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes

  3. Initial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scattering a... W. S. Harris, 1 D. J. Den Hartog, 1,2 and N. C. Hurst 1 1 Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ͑Presented 17 May 2010; received 12 May 2010; accepted 31 May 2010; published online 1 October 2010͒ A

  4. Policy Flash – Recent State Initiatives on “Recreational” Marijuana use

    Broader source: Energy.gov [DOE]

    Recent State Initiatives on “Recreational” Marijuana Use. A growing number of states have legalized marijuana for recreational use. Marijuana as a Schedule I drug under the Controlled Substance Act, therefore, any use of marijuana is illegal under federal law, regardless of state law.

  5. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOE Patents [OSTI]

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  6. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOE Patents [OSTI]

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  7. Solid State Division progress report for period ending March 31, 1997

    SciTech Connect (OSTI)

    Green, P.H.; Hinton, L.W.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  8. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOE Patents [OSTI]

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  9. Cr.sup.3+ -doped colquiriite solid state laser material

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Chase, Lloyd L. (Livermore, CA); Newkirk, Herbert W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  10. The Ninth Annual DOE Solid-State Lighting Market Development Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting leaders from across North America gathered in Detroit from November 12–13, 2014, for the ninth annual Solid-State Lighting (SSL) Market Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing industry, government, efficiency organizations, utilities, municipalities, designers, specifiers, retailers, and distributors. The workshop’s purpose was to create a forum for airing issues and questions regarding today’s solid-state lighting products, and identifying strategies that will speed market adoption.

  11. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOE Patents [OSTI]

    Zapata, Luis E. (Livermore, CA)

    1994-01-01

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.

  12. Parasitic oscillation suppression in solid state lasers using absorbing thin films

    DOE Patents [OSTI]

    Zapata, L.E.

    1994-08-02

    A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.

  13. 2012 Solid-State Lighting Manufacturing R&D Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Manufacturing R&D Workshop Presentations and Materials 2012 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2012 Solid-State Lighting Manufacturing R&D Workshop, held June 13-14 in San Jose, California. Workshop Report 2012 DOE SSL Manufacturing R&D Workshop Report Presentations Day 1 Welcome and Introduction James Brodrick, U.S. Department of

  14. 2013 Solid-State Lighting R&D Workshop Presentations and Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy R&D Workshop Presentations and Materials 2013 Solid-State Lighting R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2013 Solid-State Lighting R&D Workshop, held January 29-31 in Long Beach, California. Presentations Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy City of Los Angeles: Changing Our Glow for Efficiency Ed Ebrahimian, City of Los Angeles National Research

  15. 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Manufacturing R&D Workshop Presentations and Materials 2014 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2014 Solid-State Lighting Manufacturing R&D Workshop, held May 7-8 in San Diego, California. Presentations Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy Smart Streetlights: A Key Building Block for a Smart City Lorie

  16. 2014 Solid-State Lighting R&D Workshop Presentations and Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy R&D Workshop Presentations and Materials 2014 Solid-State Lighting R&D Workshop Presentations and Materials This page provides links to the presentations and materials from the 2014 Solid-State Lighting R&D Workshop, held January 28-30 in Tampa, Florida. Presentations Day 1 Welcome and Introduction James Brodrick, U.S. Department of Energy The Next Frontier in SSL: Creating New Value with Intelligent, Effective Lighting Brian Chemel, Digital Lumens The

  17. Phase-field Modeling of Nucleation in Solid-State Phase Transformations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Phase-field Modeling of Nucleation in Solid-State Phase Transformations Citation Details In-Document Search Title: Phase-field Modeling of Nucleation in Solid-State Phase Transformations Authors: Heo, T W ; Chen, L Q Publication Date: 2014-02-19 OSTI Identifier: 1212137 Report Number(s): LLNL-JRNL-650216 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: JOM, vol. 66, no. 8, June 25, 2014, pp. 1520

  18. Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation

    Office of Scientific and Technical Information (OSTI)

    of y-Irradiated Composite Materials (Journal Article) | SciTech Connect Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation of y-Irradiated Composite Materials Citation Details In-Document Search Title: Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation of y-Irradiated Composite Materials Authors: Mayer, B P ; Chinn, S C ; Maxwell, R S ; Reimer, J A Publication Date: 2011-04-06 OSTI Identifier: 1213656 Report Number(s): LLNL-JRNL-479454 DOE

  19. Solid-State Lighting R&D Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Plan Solid-State Lighting R&D Plan The Solid-State Lighting (SSL) R&D Plan is a consolidation of the Department of Energy (DOE) SSL Multi-Year Program Plan (MYPP) and the DOE SSL Manufacturing R&D Roadmap that DOE has published and updated in previous years. The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The Roadmap also reviews SSL technology status and trends for both LEDs and OLEDs

  20. Solid-State Solar-Thermal Energy Conversion Center (S3TEC) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Solid-State Solar-Thermal Energy Conversion Center (S3TEC) Print Text Size: A A A FeedbackShare Page S<sup>3</sup>TEC Header Director Gang Chen Lead Institution Massachusetts Institute of Technology Year Established 2009

  1. DOE Announces Selections for Solid-State Lighting Core Technology Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Call (Round 6) | Department of Energy Research Call (Round 6) DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core Technology Research Call (Round 6) DE-PS26-09NT013775. These selections are expected to fill key technology gaps, provide enabling knowledge or data, and

  2. Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects

    Energy Savers [EERE]

    Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects The U.S. Department of Energy (DOE) Solid-State Lighting (SSL) Program began funding SSL R&D in 2000, and to date has supported 230 cost-shared SSL projects in the areas of applied research, product development, and manufacturing R&D. This support has directly advanced the understanding and performance of SSL through the publication of articles in technical journals, the creation of intellectual

  3. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DE-FOA-0000973) | Department of Energy 4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of this opportunity are to: Maximize the energy-efficiency of SSL products in the marketplace Remove market

  4. DOE Announces Funding Opportunity for Solid-State Lighting R&D | Department

    Office of Environmental Management (EM)

    of Energy 14, 2014 - 12:00pm Addthis The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, "Solid-State Lighting Advanced Technology R&D - 2015"), a total of up to $10 million in funding is directed toward all three existing DOE SSL R&D program areas: Core Technology Research-the application of fundamental scientific concepts to SSL technology Product

  5. DOE Announces Funding Opportunity for Solid-State Lighting R&D | Department

    Office of Environmental Management (EM)

    of Energy 29, 2015 - 3:43pm Addthis The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 29, 2015. Under this funding opportunity (DE-FOA-0001364, "Solid-State Lighting Advanced Technology R&D-2016"), a total of up to $10.5 million in funding is directed toward all three existing DOE SSL R&D program areas: Core Technology Research-the application of fundamental scientific concepts to SSL technology Product

  6. Composition and method of preparation of solid state dye laser rods

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM)

    1992-01-01

    The present invention includes solid polymeric-host laser rods prepared using bulk polymerization of acrylic acid ester comonomers which, when admixed with dye(s) capable of supporting laser oscillation and polymerized with a free radical initiator under mild thermal conditions, produce a solid product having the preferred properties for efficient lasing. Unsaturated polymerizable laser dyes can also be employed as one of the comonomers. Additionally, a method is disclosed which alleviates induced optical stress without having to anneal the polymers at elevated temperatures (>85.degree. C.).

  7. Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star

    SciTech Connect (OSTI)

    Bastrukov, S.; Xu, R.-X.; Molodtsova, I.; Takata, J.; Chang, H.-K.

    2010-11-15

    Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.

  8. Policy FLash 2014-07 Recent State Initiatives on "Recreational"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marijuana use | Department of Energy FLash 2014-07 Recent State Initiatives on "Recreational" Marijuana use Policy FLash 2014-07 Recent State Initiatives on "Recreational" Marijuana use Questions concerning this policy flash should be directed to Jacqueline D. Rogers of the Office of Worker Safety & Health Policy on 202-586-4714, or by e-mail at jackie.rogers@hq.doe.gov PDF icon Flash_Recreational.pdf More Documents & Publications Policy Flash - Recent State

  9. Solid-State Lighting. Early Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, L. J.; Cort, K. A.; Gordon, K. L.

    2014-01-01

    Analysis of issues and lessons learned during the early stages of solid-state lighting market introduction in the U.S., which also summarizes early actions taken to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps.

  10. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  11. System efficiency analysis for high power solid state radio frequency transmitter

    SciTech Connect (OSTI)

    Jain, Akhilesh, E-mail: ajain@rrcat.gov.in; Sharma, D. K.; Gupta, A. K.; Lad, M. R.; Hannurkar, P. R. [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Pathak, S. K. [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)] [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)

    2014-02-15

    This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8?MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.

  12. Theory of the electronic and structural properties of solid state oxides

    SciTech Connect (OSTI)

    Chelikowsky, J.R.

    1990-01-01

    Studies on electronic and structural properties of solid state oxides continued. This quarter, studies have concentrated on silica. Progress is discussed in the following sections: interatomic potentials and the structural properties of silica; chemical reactivity and covalent/metallic bonding on Si clusters; and surface and thermodynamic interatomic forces fields for silicon. 64 refs., 20 figs., 5 tabs. (CBS)

  13. S3TEC Annual Workship | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Workship Workshop Saturday Feb 13, 2016 9:00am to 8:00pm Location: MIT Faculty Club Annual Workshop - Solid State Solar Thermal Energy Conversion February 13, 2016 9:00 am-8:00 pm Location: MIT Faculty Club and Conference Center, 50 Memorial Drive, Cambridge, MA

  14. DOE Hydrogen and Fuel Cell Overview: 2010 State and Regional Initiatives Informational Call and Meeting Series Relaunch

    Broader source: Energy.gov [DOE]

    Presented at the State and Regional Initiatives Informational Call and Meeting Series Relaunch Introduction on December 14, 2010.

  15. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect (OSTI)

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this high-voltage (i.e. 5 V) cathode material was the focus of the project. ORNL had also shown in prior work that photonic annealing can be used to anneal conventionally coated cathode metal oxide structures into the active crystalline phase. Planar Energy Devices also had demonstrated SPEED with solid electrolyte layers consisting of LiGaAlSPO4 prior to the start of the project.

  16. Scale-dependent hemispherical asymmetry from general initial state during inflation

    SciTech Connect (OSTI)

    Firouzjahi, Hassan; Namjoo, Mohammad Hossein; Gong, Jinn-Ouk E-mail: jinn-ouk.gong@apctp.org

    2014-11-01

    We consider a general initial state for inflation as the mechanism for generating scale-dependent hemispherical asymmetry. An observable scale-dependent non-Gaussianity is generated that leads to observable hemispherical asymmetry from the super-horizon long mode modulation. We show that the amplitude of dipole asymmetry falls off exponentially on small angular scales which can address the absence of dipole asymmetry at these scales. In addition, depending on the nature of non-vaccum initial state, the amplitude of the dipole asymmetry has oscillatory features which can be detected in a careful CMB map analysis. Furthermore, we show that the non-vacuum initial state provides a natural mechanism for enhancing the super horizon long mode perturbation as required to generate the dipole asymmetry.

  17. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  18. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOE Patents [OSTI]

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  19. Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bi-Monthly Informational Call and Meeting Series for State and Regional Initiatives Call-in number: 301-903-7076 Topic: Fuel cell policy plan-the U.S. Fuel Cell Council (USFCC) has prepared a six-point plan to advance fuel cell research and commercialization over the next five years. Presenters: Bob Rose, Executive Director, USFCC; Bud DeFlaviis, Dir. of Gov't Affairs, USFCC CEG Announcements 2 NHA Announcements * Program now online: www.HydrogenConference.org 3 State/Regional H2FC Initiatives

  20. Solid-State Lighting Technology: Current State of the Art and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology: Current State of the Art and Grand Challenges ... Energy Conversion Efficiency Solar Energy Wind Energy Water ... Hydrogen Production Market Transformation ...

  1. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    Reports and Publications (EIA)

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  2. High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

  3. Solid state research. Quarterly technical report 1 February--30 April 1999

    SciTech Connect (OSTI)

    Shaver, D.C.

    1999-09-01

    This report covers in detail the research work of the Solid State Division at Lincoln Laboratory for the period 1 February--30 April 1999. The topics covered are Quantum Electronics, Electro-optical Materials and Devices, Submicrometer Technology, Biosensor and Molecular Technologies, Microelectronics, Analog Device Technology, and Advanced Silicon Technology. Funding is provided by several DoD organizations--including the Air Force, Army, BMDO, DARPA, Navy, NSA, and OSD--and also by the DOE, NASA, and NIST.

  4. "Solid-state Lighting: 'The case' 10 Years After and Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospects" paper will be translated in Chinese Solid-state Lighting: 'The case' 10 Years After and Future Prospects" paper will be translated in Chinese - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure

  5. Red-Emitting Phosphors for Solid-State Lighting - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Red-Emitting Phosphors for Solid-State Lighting Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (851 KB) Technology Marketing SummarySandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes

  6. Transformations in Lighting: The Seventh Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 350 researchers, manufacturers, and other industry insiders and observers gathered in Raleigh, N.C., February 2–4, 2010, to participate in the "Transformations in Lighting" Solid-State Lighting R&D Workshop, hosted by DOE. The workshop was the seventh annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products, and it brought together a diverse gathering of participants to share insights, ideas, and updates.

  7. Solid-State Lighting-L Prize Competition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L Prize Competition Solid-State Lighting-L Prize Competition Presenter: Marc Ledbetter, Pacific Northwest National Laboratory The L Prize competition spurs the development of new, ultra-efficient lighting products to replace common light sources, including the 60-watt (W) incandescent bulb and the PAR38 reflector bulb. The goal is to realize significant lighting energy savings through widespread product adoption. Winning manufacturers receive significant recognition, and retailers, energy

  8. Solid State Processing of New Low Cost Titanium Powders Enabling Affordable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Components | Department of Energy Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon

  9. FEMP Outdoor Solid State Lighting Intiative: Resources for Outdoor SSL Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Solid-State Street Lighting Consortium Fact Sheet - The Consortium shares technical information and experi- ences related to LED street and area light- ing demonstrations. The Consortium also serves as an objective resource for evalu- ating new products on the market intended for street and area lighting applications. http://apps1.eere.energy.gov/buildings/ publications/pdfs/ssl/consortium_fs.pdf DOE SSL GATEWAY Demonstration Project Results - DOE GATEWAY dem- onstrations showcase

  10. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  11. Industry Leaders, Research Experts Gather for Fourth Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    More than 250 attendees gathered in Phoenix, Arizona, to participate in the 2007 DOE Solid-State Lighting (SSL) Program Planning Workshop on January 31-February 2, 2007. Lighting industry leaders, fixture manufacturers, researchers, academia, trade associations, lighting designers, energy efficiency organizations, and utilities joined DOE to share perspectives on the rapidly evolving SSL market. The workshop provided a forum for building partnerships and strategies to accelerate technology advances and guide market introduction of high efficiency, high-performance SSL products.

  12. Industry Leaders, Research Experts Gather for Second Annual DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Technology leaders from industry, research institutions, universities, and national laboratories gathered in San Diego, California, on February 3 and 4, 2005 to attend a workshop focused on advancing solid-state lighting (SSL) technology from the laboratory to the marketplace. Sponsored by the U.S. Department of Energy (DOE) Building Technologies Office, the workshop provided an interactive forum for shaping and prioritizing DOE's SSL research and development activities.

  13. Solid-State Lighting Early Lessons Learned on the Way to Market

    Energy Savers [EERE]

    EARLY LESSONS LEARNED On the Way to Market Solid-State Lighting (SSL) has made impressive progress over the past decade, emerging as a promising new technology that could fundamentally alter and improve lighting systems, and significantly lower energy use and costs. Benefiting from lessons learned from the market introduction of compact fluorescent lamps (CFLs) in the 1980s and 1990s, actions taken by the U.S. Department of Energy (DOE), energy efficiency programs, and standards organizations

  14. Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Energy Savers [EERE]

    5, 96 solid-state lighting (SSL) patents have been awarded to research projects funded by the U.S. Department of Energy. Since December 2000, when DOE began funding SSL research projects, a total of 247 patent applications have been submitted, ranging from large businesses (79) and small businesses (90) to universities (66) and national laboratories (12). DOE tracks three types of patent applications. A brief overview and the superscript used to identify each application type follows: NP U.S.

  15. Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Energy Savers [EERE]

    6, 109 solid-state lighting (SSL) patents have been awarded to research projects funded by the U.S. Department of Energy. Since December 2000, when DOE began funding SSL research projects, a total of 261 patent applications have been submitted, ranging from large businesses (83) and small businesses (97) to universities (69) and national laboratories (12). DOE tracks three types of patent applications. A brief overview and the symbol used to identify each application type follows: NP U.S.

  16. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities

    SciTech Connect (OSTI)

    Tanimura, Yoshitaka

    2014-07-28

    For a system strongly coupled to a heat bath, the quantum coherence of the system and the heat bath plays an important role in the system dynamics. This is particularly true in the case of non-Markovian noise. We rigorously investigate the influence of system-bath coherence by deriving the reduced hierarchal equations of motion (HEOM), not only in real time, but also in imaginary time, which represents an inverse temperature. It is shown that the HEOM in real time obtained when we include the system-bath coherence of the initial thermal equilibrium state possess the same form as those obtained from a factorized initial state. We find that the difference in behavior of systems treated in these two manners results from the difference in initial conditions of the HEOM elements, which are defined in path integral form. We also derive HEOM along the imaginary time path to obtain the thermal equilibrium state of a system strongly coupled to a non-Markovian bath. Then, we show that the steady state hierarchy elements calculated from the real-time HEOM can be expressed in terms of the hierarchy elements calculated from the imaginary-time HEOM. Moreover, we find that the imaginary-time HEOM allow us to evaluate a number of thermodynamic variables, including the free energy, entropy, internal energy, heat capacity, and susceptibility. The expectation values of the system energy and system-bath interaction energy in the thermal equilibrium state are also evaluated.

  17. Monitoring atmospheric emissions from petrochemical industries using low-level solid state sensors

    SciTech Connect (OSTI)

    Szinyei, W.J.; Kimbell, C.L. (Tracor Atlas, Inc., Houston, TX (US))

    1988-01-01

    Low level solid state sensors provide an inexpensive alternative to monitoring part per billion levels of pollution over wide areas on a continuous basis. Solid state sensors such as those manufactured by Tracer Atlas for hydrogen sulfide and mercaptans are commonly applied in personnel protection applications, to monitor for and warn against high levels of certain toxic gases. Although these devices are not precision analytical instruments, with the proper configuration and electronics they can give reliable indication of the presence at the part per billion level of certain polluting gases. These sensors are sufficiently stable so that a general idea of pollutant level at any given time can be established. The configuration, operation and application of sensors sensitive to hydrogen sulfide and mercaptans are discussed in particular. Sensitivity, repeatability, and measurement range is also addressed. In low level applications, solid state sensors would be used as perimeter monitors around plants where there might be low level emissions of a pollutant gas that would need to be monitored on a continuous basis. Connecting a distributed group of sensors to an intelligent data gathering system such as a personal computer can allow spatial distributions in time and time weighted averages of pollutant levels to be calculated and charted.

  18. Solid-State Lighting Technology: Current State of the Art and Grand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges Technology: Current State of the Art and Grand Challenges - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  19. Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results Austin Brown, Philipp Beiter, Donna Heimiller, Carolyn Davidson, Paul Denholm, Jennifer Melius, Anthony Lopez, Dylan Hettinger, David Mulcahy, and Gian Porro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64503 July 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  20. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metalbenzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metalorganic reaction chemistry.

  1. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  2. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  3. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    DOE Patents [OSTI]

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  4. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    SciTech Connect (OSTI)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order which are all consistent with a solid-state transformation formation of maskelynite.

  5. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    SciTech Connect (OSTI)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  6. Solid-State Lighting: Early Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  7. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect (OSTI)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  8. Networked Lighting Power and Control Platform for Solid State Lighting in Commercial Office Applications

    SciTech Connect (OSTI)

    Covaro, Mark

    2012-08-15

    Redwood Systems' objective is to further accelerate the acceptance of solid state lighting (SSL) with fine grain and easy-to-use control. In addition, increased and improved sensor capability allows the building owner or user to gather data on the environment within the building. All of this at a cost equal to or less than that of code-compliant fluorescent lighting. The grant we requested and received has been used to further enhance the system with power conversion efficiency improvements and additional features. Some of these features, such as building management system (BMS) control, allow additional energy savings in non-lighting building systems.

  9. Transformations in Lighting: The Sixth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 400 SSL technology leaders from industry, research organizations, universities, national laboratories, manufacturing, energy efficiency organizations, utilities and municipalities gathered in San Francisco, CA to participate in the "Transformations in Lighting" Solid-State Lighting Workshop on February 3-5, 2009. The workshop, hosted by DOE, with sponsors BetaLED, Echelon, Pacific Gas & Electric, and Southern California Edison, was the sixth annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products. The workshop brought together a diverse gathering of participants - from the R&D community to lighting designers and architects - to share insights, ideas, and updates on the rapidly evolving SSL market.

  10. Solid state fermentation system for production of ethanol from apple pomace

    SciTech Connect (OSTI)

    Hang, Y.D.; Lee, C.Y.; Woodams, E.E.

    1982-01-01

    A solid state fermentation system for the production of ethanol from apple pomace with a Montrachet strain of Saccharomyces cerevisiae is described. The yields of ethanol varied from about 29 g to more than 40 g/kg of apple pomace, depending on the samples fermented. Separation of up to 99% of the ethanol from spent qpple pomace was achieved with a rotary vacuum evaporator. Alcohol fermentation of apple pomace might be an efficient method of alleviating waste disposal problems with the concomitant production of ethanol.

  11. Industry Leaders, Research Experts Gather for 2006 DOE Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Solid-state lighting (SSL) technology leaders from industry, research institutions, universities, and national laboratories gathered in Orlando, Florida from February 1-3, 2006 to attend a workshop focused on advancing SSL technologies from the laboratory to the marketplace. The workshop was hosted by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (Building Technologies Office) and the Office of Science (Basic Energy Sciences Program). The 2006 workshop provided a forum for sharing updates on basic research underlying SSL technology, SSL core technology research, product development, commercialization support, and the ultimate goal of bringing energy-efficient, cost-competitive products to the market.

  12. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  13. Microporous glass-polymer composite as a new material for solid-state dye lasers: I. Material properties

    SciTech Connect (OSTI)

    Aldag, H R; Pacheco, D P; Dolotov, S M; Ponomarenko, E P; Reznichenko, A V; Koldunov, M F; Kravchenko, Ya V; Manenkov, Aleksandr A; Roskova, G P; Tsekhomskaya, T S

    2000-11-30

    The mechanical, optical, and thermooptical properties of a microporous glass-polymer (MPG-P) composite used as a matrix for solid-state dye lasers are studied. It is shown that the composite has a high mechanical hardness, good transparency, excellent thermooptical parameters, and high laser damage resistance, and can be also readily doped with various dyes. The analysis of physical properties of the MPG-P composite showed its advantages over other solid matrices (bulk polymers and sol-gel glasses) for applications in efficient solid-state dye lasers. (lasers, active media)

  14. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  15. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  16. Isothermal Solid-State Transformation Kinetics Applied to Pd/Cu Alloy Membrane Fabrication

    SciTech Connect (OSTI)

    Pomerantz, Natalie L; Payzant, E Andrew; Ma, Yi Hua

    2010-01-01

    In this work, time-resolved, in situ high-temperature X-ray diffraction (HT-XRD) was used to study the solid-state transformation kinetics of the formation of the fcc Pd/Cu alloy from Pd/Cu bi-layers for the purpose of fabricating sulfur tolerant Pd/Cu membranes for H2 separation. Thin layers of Pd and Cu (total ~15 wt% Cu) were deposited on porous stainless steel (PSS) with the electroless deposition method and annealed in H2 at 500, 550 and 600 C. The kinetics of the annealing process were successfully described by the Avrami nucleation and growth model showing that the annealing process was diffusion controlled and one dimensional. The activation energy for the solid-state transformation was 175 kJ/mol, which was similar to the activation energy of Pd-Cu bulk interdiffusion. Furthermore, the Avrami model was able to successfully describe the changes in permeance and activation energy observed in Pd/Cu alloy membranes during characterization as they were annealed at high temperatures.

  17. Diode array alternative to paint removal solid-state cw laser

    SciTech Connect (OSTI)

    Comaskey, B.

    1993-12-29

    The purpose of this memo is to highlight an alternative to the approach for cw laser paint removal. The point to be made is that a direct diode design is feasible and can be far more competitive than a solid-state laser based system. Through by-passing the use of a solid-state laser media, we immediately gain a factor of about five in system efficiency based on measured optical-to-optical efficiencies of our average power diode pumped lasers. This permits a massive reduction in system cooling requirements. It should be noted that cooling system size was the greatest concern voiced by Gordon McFadden at Hobart Lasers with regards to his Nd:YAG laser systems operated in field applications. Furthermore, with direct diode use far fewer diode packages will be needed to deliver a given amount of wattage on the target. This will largely eliminate the intimidating sticker shock and shorten (proportionally by the diode count) the required run-to-fail times demanded of the system.

  18. Digital processing of solid state detector signals in pellet charge exchange measurements on LHD

    SciTech Connect (OSTI)

    Goncharov, P.R.; Ozaki, T.; Sudo, S.; Tamura, N.; Isobe, M.; Sasao, M.; Saida, T.; Krasilnikov, A.V.; Sergeev, V.Yu.

    2004-10-01

    Radially resolved measurements of the plasma ion distribution function by detecting charge exchange neutrals from an impurity pellet ablation cloud require a fast operating energy analyzer working at high count rates to build several spectra during the pellet flight. Currently a solid state detector in the pulse height analysis (PHA) mode is used for such measurements on the Large Helical Device. Traditional PHA techniques cannot provide the operating speed required for a good spatial resolution. An algorithm has been proposed based on digital processing of noisy data series containing charge-sensitive preamplifier signals with discontinuities corresponding to incident particles. The algorithm employs the modified Tikhonov regularization and the successive detection-estimation of signal increments at discontinuity points. Such an approach allows one to realize an ultrafast particle energy spectroscopy by taking advantage of detector/preamplifier capabilities without limiting the system throughput by subsequent electronics.

  19. Development of all-solid-state flash x-ray generator with photoconductive semiconductor switches

    SciTech Connect (OSTI)

    Xun, Ma; Jianjun, Deng; Hongwei, Liu; Jianqiang, Yuan; Jinfeng, Liu; Bing, Wei; Yanling, Qing; Wenhui, Han; Lingyun, Wang; Pin, Jiang; Hongtao, Li

    2014-09-15

    A compact, low-jitter, and high repetitive rate all-solid-state flash x-ray generator making use of photo conductive semiconductor switches was developed recently for the diagnostic purpose of some hydrokinetical experiments. The generator consisted of twelve stages of Blumlein pulse forming networks, and an industrial cold cathode diode was used to generate intense x-ray radiations with photon energy up to 220 keV. Test experiments showed that the generator could produce >1 kA electron beam currents and x-ray pulses with ?40 ns duration under 100 Hz repetitive rates at least (limited by the triggering laser on hand), also found was that the delay time of the cathode explosive emission is crucial to the energy transfer efficiency of the whole system. In addition, factors affecting the diode impedance, how the switching synchronization and diode impedance determining the allowable operation voltage were discussed.

  20. High energy particle tracking using scintillating fibers and solid state photomultipliers

    SciTech Connect (OSTI)

    Petroff, M.D.; Atac, M.

    1989-02-01

    The Solid State Photomultiplier (SSPM) recently developed at the Rockwell International Science Center, coupled with fast scintillating fibers can have a rate capacity of 10/sup 8/ tracks per second per cm/sup 2/ of fiber cross-section in systems for tracking of high energy ionizing particles. Relative to other approaches the SSPM can provide substantial improvements in spatial and temporal tracking accuracy. Results of preliminary experiments with 0.255 x 0.255 mm/sup 2/ cross section step-index-of-refraction fibers exposed to electrons from a beta source are presented. The experiments involved pulse height analysis of SSPM photon detection pulses induced by coincident scintillations in two adjacent fibers traversed by the same electron. The data for two different scintillating fibers tested indicate that meter long fibers of this type, optimally coupled to SSPMs, will be effective in detecting minimum ionizing particles.

  1. High energy particle tracking using scintillating fibers and solid state photomultipliers

    SciTech Connect (OSTI)

    Petroff, M.D.; Atac, M.

    1989-01-01

    The Solid State Photomultiplier (SSPM) recently developed at the Rockwell International Science Center, coupled with fast scintillating fibers can have a rate capacity of 10/sup 8/ tracks per second per cm/sup 2/ of fiber cross section in systems for tracking of high energy ionizing particles. Relative to other approaches the SSPM can provide substantial improvements in spatial and temporal tracking accuracy. Results of preliminary experiments with 0.225 /times/ 0.225 mm/sup 2/ cross section step-index-of-refraction fiber exposed to electrons from a beta source are presented. The experiments involved pulse height analysis of SSPM photon detection pulses induced by coincident scintillations in two adjacent fibers traversed by the same electron. The data for two different scintillating fibers tested indicate that meter long fibers of this type, optimally coupled to SSPMs, will be effective in detecting minimum ionizing particles. 4 refs., 3 figs., 1 tab.

  2. The Tenth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Nearly 250 researchers, manufacturers, and other industry insiders and observers gathered in Long Beach, CA, January 29–31, 2013, to participate in DOE's tenth annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by noting how far SSL has come in the past 10 years. Whereas in 2003 LEDs were just starting to gain a foothold in traffic signals and exit signs, today they're used for nearly every lighting application, and OLED niche products are gaining traction. Brodrick noted that despite the progress, there's still significant headroom, and urged attendees to explore ways to maximize efficacy, "not compared to what was, but compared to what is and what can be." He emphasized the present opportunity to push the boundaries with new approaches, product designs, form factors, and value-added features.

  3. The Eleventh Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred researchers, manufacturers, and other industry insiders and observers gathered in Tampa, FL, January 28–30, 2014, to participate in DOE's 11th annual Solid-State Lighting (SSL) R&D Workshop. DOE SSL Program Manager James Brodrick kicked off Day 1 by reminding attendees that it takes time to achieve market adoption, and that "we're still early in the game." He emphasized that the true value of SSL has yet to be "mined" by the industry, and pointed out that the technology has the potential to be far more than a commodity in the old lighting paradigm. Brodrick predicted that SSL's value-added features will drive adoption, and noted that smart-lighting options can significantly increase the energy savings.

  4. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    SciTech Connect (OSTI)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

  5. Science and the Energy Security Challenge: The Example of Solid-State Lighting

    ScienceCinema (OSTI)

    Philips, Julia [Sandia

    2010-01-08

    Securing a viable, carbon neutral energy future for humankind will require an effort of gargantuan proportions. As outlined clearly in a series of workshops sponsored by the DOE Office of Basic Energy Sciences (http://www.sc.doe.gov/bes/reports/list.html), fundamental advances in scientific understanding are needed to broadly implement many of the technologies that are held out as promising options to meet future energy needs, ranging from solar energy, to nuclear energy, to approaches to clean combustion. Using solid state lighting based on inorganic materials as an example, I will discuss some recent results and new directions, emphasizing the multidisciplinary, team nature of the endeavor. I will also offer some thoughts about how to encourage translation of the science into attractive, widely available products ? a significant challenge that cannot be ignored. This case study offers insight into approaches that are likely to be beneficial for addressing other aspects of the energy security challenge.

  6. Analysis of lasers as a solution to efficiency droop in solid-state lighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chow, Weng W.; Crawford, Mary H.

    2015-10-06

    This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages includingmore » low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. As a result, a solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.« less

  7. Bayesian Models for Life Prediction and Fault-Mode Classification in Solid State Lamps

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2015-04-19

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classifY failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identifY luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. It is expected that, the new test technique will allow the development of failure distributions without testing till L 70 life for the manifestation of failure.

  8. Multi-Year Program Plan FY'09-FY'15 Solid-State Lighting Research and Development

    SciTech Connect (OSTI)

    2009-03-01

    President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE and our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.

  9. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect (OSTI)

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  10. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Hry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  11. Manufacturing R&D Initiative Lowers Costs and Boosts Quality

    SciTech Connect (OSTI)

    2015-06-30

    Fact sheet that provides an overview of DOE's Manufacturing R&D Initiative, which supports projects aimed at developing better-performing, lower-cost solid-state lighting while encouraging engineering and manufacturing in the United States.

  12. Physics of laser fusion. Volume IV. The future development of high-power solid-state laser systems

    SciTech Connect (OSTI)

    Emmett, J.L.; Krupke, W.F.; Trenholme, J.B.

    1982-11-01

    Solid state lasers, particularly neodymium glass systems, have undergone intensive development during the last decade. In this paper, we review solid state laser technology in the context of high-peak-power systems for inertial confinement fusion. Specifically addressed are five major factors: efficiency, wavelength flexibility, average power, system complexity, and cost; these factors today limit broader application of the technology. We conclude that each of these factors can be greatly improved within current fundamental physical limits. We further conclude that the systematic development of new solid state laser madia, both vitreous and crystalline, should ultimately permit the development of wavelength-flexible, very high average power systems with overall efficiencies in the range of 10 to 20%.

  13. U. S. Department of Energy to Invest up to $20.6 Million for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Research and Development Projects | Department of Energy U. S. Department of Energy to Invest up to $20.6 Million for Solid-State Lighting Research and Development Projects U. S. Department of Energy to Invest up to $20.6 Million for Solid-State Lighting Research and Development Projects February 12, 2008 - 11:29am Addthis Funding to total $27.8 million with industry contribution The U.S. Department of Energy (DOE) today announced that DOE will provide up to $20.6 million for a

  14. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect (OSTI)

    Hu, Yanyan

    2011-02-07

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of {approx}1.8 {gamma}B{sub 1} without significant distortions. Fast MAT {sup 125}Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S{sub 0} pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  15. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2014-09-15

    Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the dose response in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly differed at the beam edge in transverse field orientations only. Due to the difference in design, the two detectors behaved differently. Conclusions: When transverse magnetic fields are present, great care must be taken when using diamond or diode detectors. Dose response varies with relative detector orientation, magnetic field strength, and between detectors. This response can be considerable (?20% for both detectors). Both detectors in longitudinal fields exhibit little to no dose response as a function of magnetic field. Water tank simulations seem to suggest that the diode detector is better suited to general beam commissioning, and each detector must be investigated separately.

  16. Technical progress report. Private sector initiatives between the United States and Japan. January 1991 - December 1991

    SciTech Connect (OSTI)

    1993-07-01

    This annual report for calendar year 1991 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  17. Technical progress report. Private sector initiatives between the United States and Japan. January 1992 - December 1992

    SciTech Connect (OSTI)

    1993-08-01

    OAK A271 This annual report for calendar year 1992 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  18. Technical progress report. Private sector initiatives between the United States and Japan. January 1990 - December 1990

    SciTech Connect (OSTI)

    1993-07-01

    OAK A271 This annual report for calendar year 1990 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  19. Technical progress report. Private sector initiatives between the United States and Japan. January 1989 - December 1989

    SciTech Connect (OSTI)

    1990-02-01

    This annual report for calendar year 1989 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  20. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    SciTech Connect (OSTI)

    Takegoshi, K. Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  1. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect (OSTI)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  2. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  3. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 #14;C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  4. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  5. Harmonia: A Globally Coordinated Garbage Collector for Arrays of Solid-state Drives

    SciTech Connect (OSTI)

    Kim, Youngjae; Oral, H Sarp; Shipman, Galen M; Lee, Junghee; Dillow, David A; Wang, Feiyi

    2011-01-01

    Solid-State Drives (SSDs) offer significant performance improvements over hard disk drives (HDD) on a number of workloads. The frequency of garbage collection (GC) activity is directly correlated with the pattern, frequency, and volume of write requests, and scheduling of GC is controlled by logic internal to the SSD. SSDs can exhibit significant performance degradations when garbage collection (GC) conflicts with an ongoing I/O request stream. When using SSDs in a RAID array, the lack of coordination of the local GC processes amplifies these performance degradations. No RAID controller or SSD available today has the technology to overcome this limitation. This paper presents Harmonia, a Global Garbage Collection (GGC) mechanism to improve response times and reduce performance variability for a RAID array of SSDs. Our proposal includes a high-level design of SSD-aware RAID controller and GGC-capable SSD devices, as well as algorithms to coordinate the global GC cycles. Our simulations show that this design improves response time and reduces performance variability for a wide variety of enterprise workloads. For bursty, write dominant workloads response time was improved by 69% while performance variability was reduced by 71%.

  6. Comparing Coordinated Garbage Collection Algorithms for Arrays of Solid-state Drives

    SciTech Connect (OSTI)

    Lee, Junghee; Kim, Youngjae; Oral, H Sarp; Shipman, Galen M; Dillow, David A; Wang, Feiyi

    2012-01-01

    Solid-State Drives (SSDs) offer significant performance improvements over hard disk drives (HDD) on a number of workloads. The frequency of garbage collection (GC) activity is directly correlated with the pattern, frequency, and volume of write requests, and scheduling of GC is controlled by logic internal to the SSD. SSDs can exhibit significant performance degradations when garbage collection (GC) conflicts with an ongoing I/O request stream. When using SSDs in a RAID array, the lack of coordination of the local GC processes amplifies these performance degradations. No RAID controller or SSD available today has the technology to overcome this limitation. In our previous work, we presented a Global Garbage Collection (GGC) mechanism to improve response times and reduce performance variability for a RAID array of SSDs. A coordination method is employed so that GCs in the array can run at the same time. The coordination can exhibit substantial performance improvement. In this paper, we explore various GC coordination algorithms. We develop reactive and proactive GC coordination algorithms and evaluate their I/O performance and block erase counts for various workloads. We show that a proactive GC coordination algorithm can improve the I/O response times by up to 9% further and increase the lifetime of SSDs by reducing the number of block erase counts by up to 79% compared to a reactive algorithm.

  7. Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack

    SciTech Connect (OSTI)

    Dr. Ram Adapa; Mr. Dante Piccone

    2012-04-30

    ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the line in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED

  8. Bayesian probabilistic model for life prediction and fault mode classification of solid state luminaires

    SciTech Connect (OSTI)

    Lall, Pradeep [Auburn Univ., Auburn, AL (United States); Wei, Junchao [Auburn Univ., Auburn, AL (United States); Sakalaukus, Peter [Auburn Univ., Auburn, AL (United States)

    2014-06-22

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminous flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The ?-? plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85C/85%RH during accelerated life test fairly closely within the 20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.

  9. Fate of the initial state perturbations in heavy ion collisions. II. Glauber fluctuations and sounds

    SciTech Connect (OSTI)

    Staig, Pilar; Shuryak, Edward

    2011-09-15

    Heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly ideal) hydrodynamics for average events. In the present paper we study initial state fluctuations appearing on an event-by-event basis and the propagation of perturbations induced by them. We found that (i) fluctuations of several of the lowest harmonics have comparable magnitudes and (ii) that at least all odd harmonics are correlated in phase, (iii) thus indicating the local nature of fluctuations. We argue that such local perturbations should be the source of the ''tiny bang,'' a pulse of sound propagating from it. We identify its two fundamental scales as (i) the ''sound horizon'' (analogous to the absolute ruler in cosmic microwave background and galaxy distributions) and (ii) the ''viscous horizon'' separating damped and undamped harmonics. We then qualitatively describe how one can determine them from the data and thus determine two fundamental parameters of the matter: the (average) speed of sound and viscosity. The rest of the paper explains how one can study mutual coherence of various harmonics. For that, one should go beyond the two-particle correlations to three (or more) particles. Mutual coherence is important for the picture of propagating sound waves.

  10. A frictional work predictive method for the initiation of solid high explosives from low-pressure impacts

    SciTech Connect (OSTI)

    Chidester, S.K.; Green, L.G.; Lee, C.G.

    1993-07-01

    The goal of these tests was to provide information that would aid in the prediction of HE response in accident situations where the initiating stimulus was less than that required for direct shock initiation. Before these tests were run, a prediction of threshold impact velocity was made (70m/s) using a rough average of previously reported threshold factional work from skid tests (1 cal/cm{sub 2}) and the experimental value for coefficient of friction of 0.5({plus_minus}) measured in the same tests for PBX-9404. The actual testing proved the threshold impact velocity to be much less, and the pretest prediction was not only wrong, it was not conservative. This work presents a methodology for more accurately predicting the reaction threshold for HE involved in an accident such as an airplane crash or a severe land transportation accident. The main focus of this work is on LX-10-1 (94.5% 5.5% Viton A binder, density 1.86g/cm{sup 3}). Additional work was done on LX-17 (92.5% TATB, 7.5% KelF binder, density 1.90g/cm{sub 3}), a very insensitive explosive. The explicit two-dimensional finite element code, DYNA2D, was used to model the tests and predict the HE response. The finite element mesh of the projectile and target were generated using MAZE. The post-processing of the DYNA2D analysis was done with ORION.

  11. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    SciTech Connect (OSTI)

    Cabot Corporation

    2007-09-30

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

  12. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  13. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  14. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOE Patents [OSTI]

    Gold, Raymond (1393 George Washington Way, Suite No. 7, P.O. Box 944, Richland, WA 99352); Roberts, James H. (1393 George Washington Way, Suite No. 7, P.O. Box 944, Richland, WA 99352)

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  15. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices

    SciTech Connect (OSTI)

    Williams, TE; Chang, CM; Rosen, EL; Garcia, G; Runnerstrom, EL; Williams, BL; Koo, B; Buonsanti, R; Milliron, DJ; Helms, BA

    2014-01-01

    We report here the first solid-state, NIR-selective electrochromic devices. Critical to device performance is the arrangement of nanocrystal-derived electrodes into heteromaterial frameworks, where hierarchically porous ITO nanocrystal active layers are infiltrated by an ion-conducting polymer electrolyte with mesoscale periodicity. Enhanced coloration efficiency and transport are realized over unarchitectured electrodes in devices, paving the way towards new smart windows technologies.

  16. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

  17. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2005-05-29

    We have made great progress in both developing solid state sensors for coal combustion control and understanding the mechanism by which they operate. We have fabricated and tested numerous sensors and identified the role electrode microstructure plays in sensor response. We have developed both p-type (La{sub 2}CuO{sub 4}) and n-type (WO{sub 3}) semiconducting NO{sub x} sensing electrodes. We have demonstrated their respective sensing behavior (sensitivities and cross-sensitivities), related this behavior to their gas adsorption/desorption behavior and catalytic activity, and in so doing verified that our proposed Differential Electrode Equilibria is a more comprehensive sensing mechanism. These investigations and their results are summarized below. The composition and microstructure of the sensing electrode is the key parameters that influence the sensing performance. We investigated the effect of electrode microstructure on the NO{sub x} sensitivity and response time using a La{sub 2}CuO{sub 4}-based potentiometric sensor. Temperature dependence, cross-sensitivity and selectivities of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. In order to optimize the sensor electrode microstructure, powders were prepared using four different powder synthesis routes, resulting in different particle size distributions and BET surface areas. Different sintering conditions were also applied. The microstructure of electrodes, synthesized with the same composition, has a dramatic effect on both sensitivity and response time of potentiometric NO sensors, showing that large surface areas generate a porous morphology with smaller grain size, and that smaller grain size results in a sharper response and faster response time. The relative responses of the La{sub 2}CuO{sub 4}-based sensor under varied concentrations of NO, NO{sub 2}, CO, CO{sub 2} and O{sub 2} were studied. The results showed a very high sensitivity to NO, CO, and NO{sub 2} at 450 C in 3% O{sub 2}, whereas the response to O{sub 2} and CO{sub 2} gases was negligible. The NO response at 400-500 C agreed with the NO adsorption behavior. The high NO{sub 2} sensitivity at 450 C was probably related to heterogeneous catalytic activity of La{sub 2}CuO{sub 4}. The adsorption of NO was not affected by the change of O{sub 2} concentration and thus the sensor showed selective detection of NO over O{sub 2}. However, the NO sensitivity was strongly influenced by the existence of CO, H{sub 2}O, NO{sub 2}, and CO{sub 2}, as the adsorption behavior of NO was influenced by these gases. The WO{sub 3}-based sensor was able to selectively detect NO in the presence of CO{sub 2} in 3% O{sub 2} at 650 C. The NO sensitivity, however, was affected by the variation of the NO{sub 2}, CO, and H{sub 2}O concentration. No gas-solid reactions were observed using TPR in the NO-containing gas mixture, indicating that the NO response was not obtained by the conventionally accepted mixed-potential mechanism. At the same condition, the sensor had high sensitivity to {approx}10 ppm NO{sub 2} and selectivity in the presence of CO, CO{sub 2}, and H{sub 2}O, showing it to be applicable to the monitoring of NO{sub 2}. A lot different sensing properties of NO in simulated exhaust gas suggested the occurrence of gas composition change by the gas-phase and gas-solid reactions, and strong adsorption of water on the electrodes. The NO{sub 2} sensitivity in simulated exhaust gas was modified by O{sub 2} and H{sub 2}O, but not by CO and CO{sub 2}. A positive voltage response was obtained for NO{sub 2}, but negative for NO at 650 C with the n-type semiconducting WO{sub 3}-based sensor. In contrast, the opposite response direction for NO{sub x} was observed at 450 C with t

  18. Evaluation of the State Energy Conservation Program from program initiation to September 1978. Final report

    SciTech Connect (OSTI)

    Heller, James N.; Grossmann, John R.; Shochet, Susan; Bresler, Joel; Duggan, Noreene

    1980-03-01

    The State Energy Conservation Program was established in 1975 to promote energy conservation and to help states develop and implement their own conservation programs. Base (5) and supplemental (3) programs required states to implement programs including: mandatory thermal-efficiency standards and insulation requirements for new and renovated buildings; mandatory lighting efficiency standards for public buildings; mandatory standards and policies affecting the procurement practices of the state and its political subdivisions; program measures to promote the availability and use of carpools, vanpools, and public transportation; a traffic law or regulation which permits a right turn-on-red; and procedures to carry out a continuing public education effort to increase awareness of energy conservation; procedures which promote effective coordination among local, state, and Federal energy conservation programs; and procedures for carrying out energy audits on buildings and industrial plants. All 50 states and Puerto Rico, Guam, the Virgin Islands, American Samoa, and the District of Columbia participated in the program. The total 1980 energy savings projected by the states is about 5.9 quadrillion Btu's or about 7% of the DOE projected 1980 baseline consumption of just under 83 quads. The detailed summary is presented on the following: information the SECP evaluation; DOE response to the SECP; DOE's role in the program management process; the effectiveness of the states in managing the SECP; the status of program measure implementation; innovative state energy conservation programs; and the evaluation methodology.

  19. Solar America Initiative State Working Group: Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Julie Taylor

    2012-03-30

    Through the support from the Department of Energy, NARUC has educated thousands of stakeholders, including Public Utility Commissioners, commission staff, and State energy officials on solar energy technology, implementation, and policy. During the lifetime of this grant, NARUC staff engaged stakeholders in policy discussions, technical research, site visits, and educational meetings/webinars/materials that provided valuable education and coordination on solar energy technology and policy among the States. Primary research geared toward State decision-makers enabled stakeholders to be informed on current issues and created new solar energy leaders throughout the United States. Publications including a Frequently Asked Questions guide on feed-in tariffs and a legal analysis of state implementation of feed-in tariffs gave NARUC members the capacity to understand complex issues related to the economic impacts of policies supportive of solar energy, and potential paths for implementation of technology. Technical partnerships with the National Renewable Energy Laboratory (NREL) instructed NARUC members on feed-in tariff policy for four States and solar PV resource assessment in seven States, as well as economic impacts of solar energy implementation in those States. Because many of the States in these technical partnerships had negligible amounts of solar energy installed, this research gave them new capacity to understand how policies and implementation could impact their constituency. This original research produced new data now available, not only to decision-makers, but also to the public at-large including educational institutions, NGOs, consumer groups, and other citizens who have an interest in solar energy adoption in the US. Under this grant, stakeholders engaged in several dialogs. These educational opportunities brought NARUC members and other stakeholders together several times each year, shared best practices with State decision-makers, fostered partnerships and relationships with solar energy experts, and aided in increasing the implementation of smart policies that will foster solar technology deployment. The support from the Department of Energy??s Office of Energy Efficiency and Renewable Energy has created solar energy leaders in the States; leaders who will serve to be a continuing valuable resource as States consider adoption of new low-carbon and domestic energy supply to meet the energy needs of the United States.

  20. Hawaii Clean Energy Initiative Permit to Cross or Enter the State...

    Open Energy Info (EERE)

    Permit to Cross or Enter the State Energy Corridor Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean...

  1. International trends in solid-state lighting : analyses of the article and patent literature.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Huey, Mark C.; Boyack, Kevin W.; Miksovic, Ann E.

    2008-07-01

    We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).

  2. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  3. Planning and Implementing a Solarize Initiative: A Guide for State Program Managers

    Broader source: Energy.gov [DOE]

    Solarize is a PV group purchasing program that aims to lower acquisition costs for rooftop solar installations. This Solarize guide features detailed case studies of two particularly well-developed and successful Solarize programs from New England Solarize Connecticut and Solarize Mass to help program managers in states across the country develop Solarize programs.

  4. Vehicle Technologies Office Merit Review 2014: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about solid state NMR...

  5. Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors

    SciTech Connect (OSTI)

    Malinowska, A.; Szyd?owski, A.; Jask?a, M.; Korman, A.; Kuk, M.; Sartowska, B.; Kuehn, T.

    2013-07-15

    Solid State Nuclear Track Detectors of the CR-39/PM-355 type were irradiated with protons with energies in the range from 0.2 to 8.5 MeV. Their intensities and energies were controlled by a Si surface barrier detector located in an accelerator scattering chamber. The ranges of protons with energies of 67 MeV were comparable to the thickness of the PM-355 track detectors. Latent tracks in the polymeric detectors were chemically etched under standard conditions to develop the tracks. Standard optical microscope and scanning electron microscopy techniques were used for surface morphology characterization.

  6. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    SciTech Connect (OSTI)

    Miake, Yudai; Mukaiyama, Takashi; OHara, Kenneth M.; Gensemer, Stephen

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  7. Formation of lithium fluoride/metal nanocomposites for energy storage through solid state reduction of metal fluorides

    SciTech Connect (OSTI)

    Amatucci, GG; Pereira, N; Badway, F; Sina, M; Cosandey, F; Ruotolo, M; Cao, C

    2011-12-01

    In order to utilize high energy metal fluoride electrode materials as direct replacement electrode materials for lithium ion batteries in the future, a methodology to prelithiate the cathode or anode must be developed. Herein, we introduce the use of a solid state Li(3)N route to achieve the lithiation and mechanoreduction of metal fluoride based nanocomposites. The resulting prelithiation was found to be effective with the formation of xLiF:Me structures of very fine nanodimensions analogous to what is found by electrochemical lithiation. Physical and electrochemical properties of these nanocomposites for the bismuth and iron lithium fluoride systems are reported. (C) 2011 Elsevier B.V. All rights reserved.

  8. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  9. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  10. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOE Patents [OSTI]

    Khait, Klementina (Skokie, IL)

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  11. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  12. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2000-04-10

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

  13. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  14. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, David S. (State College, PA); Ruud, Clay O. (State College, PA)

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  15. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  16. Zero-length Cross-linking in Solid State as an Approach for Analysis of Protein -Protein Interactions

    SciTech Connect (OSTI)

    Elshafey, Ahmed; Tolic, Nikola; Young, Malin M.; Sale, Kenneth L.; Smith, Richard D.; Kery, Vladimir

    2006-03-01

    Analyzing the architecture of protein complexes is a difficult task. Chemical cross-linking is often used in combination with mass spectrometric analysis to elucidate the interaction interfaces between proteins. We have developed a new approach for the analysis of interacting interfaces in protein complexes based on cross-linking in the solid state. Protein complexes are freeze-dried under vacuum and cross-links are introduced in the solid phase by dehydrating the protein in a non-water solvent, thus, creating peptide bonds between amino and carboxyl groups of the interacting peptides. Cross-linked proteins are digested into peptides with trypsin in both H216O and H218O and then readily distinguished in mass spectra by characteristic 8 atomic mass unit (amu) shifts reflecting incorporation of two 18O atoms into each C-terminus of proteolytic peptides. Computer analysis of mass spectrometry (MS) and MS/MS data is used to identify the cross-linked peptides.We demonstrated our method by cross-linking homooligomeric protein complexes alone or in a mixture of many other proteins. Cross-linking in the solid state was shown to be specific and reproducible. Glutathione-S-transferase (GST) from Schistosoma japonicum was studied in more detail. Twenty-seven unique intra-molecular and two inter-molecular cross-linked peptides were identified using tryptic mapping followed by LTQ-MS analysis. Identified cross-links were predominantly of amide origin, but six esters and thioesters were also found. Identified cross-linked peptides were validated by computational (visualization of cross-links in the three-dimensional [3D] structure of GST) and experimental (MS/MS) analyses. Most of the identified cross-links matched interacting peptides in the native 3D structure of GST indicating that the structure of GST and its oligomeric complex remained primarily intact after freeze drying. The pattern of oligomeric GST obtained in solid state was the same as that obtained in solution by Ru(II)Bpy32+ catalyzed, oxidative ?zero-length? cross-linking, confirming that it is feasible to use our strategy for analyzing the molecular interfaces of interacting proteins or peptides.

  17. Estimating Renewable Energy Economic Potential in the United States. Methodology and Initial Results

    SciTech Connect (OSTI)

    Brown, Austin; Beiter, Philipp; Heimiller, Donna; Davidson, Carolyn; Denholm, Paul; Melius, Jennifer; Lopez, Anthony; Hettinger, Dylan; Mulcahy, David; Porro, Gian

    2015-07-30

    This report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, may be defined in several ways. For example, one definition might be expected revenues (based on local market prices) minus generation costs, considered over the expected lifetime of the generation asset. Another definition might be generation costs relative to a benchmark (e.g., a natural gas combined cycle plant) using assumptions of fuel prices, capital cost, and plant efficiency. Economic potential in this report is defined as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity. The assessment is conducted at a high geospatial resolution (more than 150,000 technology-specific sites in the continental United States) to capture the significant variation in local resource, costs, and revenue potential. This metric can be a useful screening factor for understanding the economic viability of renewable generation technologies at a specific location. In contrast to many common estimates of renewable energy potential, economic potential does not consider market dynamics, customer demand, or most policy drivers that may incent renewable energy generation.

  18. Low Temperature Solid-State NMR Spectroscopy. A Strategy for the Direct Observation of Quadrupolar Nuclides of Biological Interest.

    SciTech Connect (OSTI)

    Ellis, Paul D.; Lipton, Andrew S.

    2007-01-01

    This review presents a self-contained summary of the experimental methods necessary to perform a low temperature solid-state NMR experiment. Specific references are made for Zn? and Mg?. However, this is not a comprehensive review of the NMR literature of these nuclides. As the review is concerned with solid-state NMR spectroscopy of quadrupolar nuclides, we limit the discussions to odd-half-integral spin systems, i.e. 3/2, 5/2, 7/2, and 9/2 spins. The reason for the limitation is due to the relative ease of observing the central transition, which is common to all of these nuclides. The review is divided into two major sections; the first dealing with experimental methods, e.g. use of low temperature, magnetization transfer, spin echo methods, and questions dealing with nonspecific binding. Following those discussions we turn to the introduction of structure into the experiment, i.e. the use triple resonance experiments to selectively introduce dipolar interactions and the use of molecular theory.

  19. Solid State Lighting LED Product Development and Manufacturing R&D Roundtable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 10, 2015 Washington, D.C. Prepared For: U.S. Department of Energy November 20, 2015 i DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  20. Structure and solid-state reactivity of Sc, Y, and lanthanide complexes of propiolic and tetrolic acid. [gamma radiation

    SciTech Connect (OSTI)

    Brodkin, J.S.

    1990-01-01

    The structure/reactivity relationships for several metal complexes of propynoic and 2-butynoic acid (propiolic and tetrolic acids, referred to as prop and tetr) were studied. Single-crystal X-ray structure determinations were carried out for Sc(prop){sub 3}, Lat(tetr){sub 3}{center dot}2H{sub 2}O, and two pseudo-polymorphs of La propiolate, La(prop){sub 3}{center dot}3H{sub 2}O and La(prop){sub 3}{center dot}3CH{sub 3}OH. The structures were analyzed for the presence of short (< 4.2 {angstrom}) contacts between {alpha} and {beta}{prime} carbon atoms of neighboring acetylenic functional groups. The existence of a continuous series of such contacts in the structure indicates that the compound has potential to undergo a 1,2-addition reaction leading to the formation of a polymeric product. All of the compounds studied were found to be potentially reactive. The propiolate and tetrolate complexes react in the solid state upon exposure to {gamma}-radiation. The radiation-induced reaction products of both La propiolate derivatives were shown by NMR spectral analysis to be branched polymers. The product resulting from the {gamma}-irradiation of Sc(prop){sub 3} was shown to be polymeric also, however, in this case, not branched. When La(tetr){sub 3}{center dot}2H{sub 2}O was exposed to {gamma}-radiation, the resultant product was not polymeric. The relative orientation of the reactive groups was believed to be a factor in determining whether or not branched polymers would be produced. Thermal analysis of the propiolate complexes indicated that solid state polymerization of these compounds can also occur by thermal induction. However, La(tetr){sub 3}{center dot}2H{sub 2}O is more likely to undergo decomposition than solid-state polymerization when heated. This result is probably associated with the presence of a terminal methyl group on the triple bond.

  1. MULTIFUNCTIONAL (NOx/CO/O2) SOLID-STATE SENSORS FOR COAL COMBUSTION CONTROL

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2005-03-21

    Sensing properties of a La{sub 2}CuO{sub 4}- and WO{sub 3}-based potentiometric NO{sub x} sensor were investigated both in N{sub 2} and in a simulated exhaust gas. We performed temperature programmed reaction (TPR) and desorption (TPD) experiments to determine the reaction and adsorption characteristics of O{sub 2}, NO{sub x}, CO, CO{sub 2}, and their mixtures on the electrodes, and related the results to sensor performance. The relative responses of the La{sub 2}CuO{sub 4}-based sensor under varied concentrations of NO, NO{sub 2}, CO, CO{sub 2} and O{sub 2} were studied. The results showed a very high sensitivity to CO and NO{sub 2} at 450 C in 3% O{sub 2}, whereas the response to O{sub 2} and CO{sub 2} gases was negligible. The NO response at 400-500 C agreed with the NO adsorption behavior. The high NO{sub 2} sensitivity at 450 C was probably related to heterogeneous catalytic activity of La{sub 2}CuO{sub 4}. The adsorption of NO was not affected by the change of O{sub 2} concentration and thus the sensor showed selective detection of NO over O{sub 2}. However, the NO sensitivity was strongly influenced by the existence of CO, H{sub 2}O, NO{sub 2}, and CO{sub 2}, as the adsorption behavior of NO was influenced by these gases. The WO{sub 3}-based sensor was able to selectively detect NO in the presence of CO{sub 2} in 3% O{sub 2} and at 650 C. The NO sensitivity, however, was affected by the variation of the NO{sub 2}, CO, and H{sub 2}O concentration. No gas-solid reactions were observed using TPR in the NO containing gas mixture, indicating that the NO response was not obtained by the conventionally accepted mixed-potential mechanism. At the same condition the sensor had high sensitivity to {approx}10 ppm NO{sub 2} and selectivity in the presence of CO, CO{sub 2}, and H{sub 2}O, showing it to be applicable to the monitoring of NO{sub 2}. Significantly different sensing properties of NO in simulated exhaust gas suggested the occurrence of gas composition change by the gas-phase and gas-solid reactions, and strong adsorption of water on the electrodes. The NO{sub 2} sensitivity in simulated exhaust gas was modified by O{sub 2} and H{sub 2}O, but not by CO and CO{sub 2}. A positive voltage response was obtained for NO{sub 2} but negative for NO at 650 C with the n-type semiconducting WO{sub 3}-based sensor. In contrast the opposite response direction for NO{sub x} was observed at 450 C with the La{sub 2}CuO{sub 4} (p-type semiconductor).

  2. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal controlmore » scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less

  3. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond

    SciTech Connect (OSTI)

    Farfurnik, D.; Jarmola, A.; Pham, L. M.; Wang, Z. H.; Dobrovitski, V. V.; Walsworth, R. L.; Budker, D.; Bar-Gill, N.

    2015-08-24

    In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T1 effects and DD microwave pulses are used to increase the transverse coherence time T2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.

  4. Study of hydrogen in coals, polymers, oxides, and muscle water by nuclear magnetic resonance; extension of solid-state high-resolution techniques. [Hydrogen molybdenum bronze

    SciTech Connect (OSTI)

    Ryan, L.M.

    1981-10-01

    Nuclear magnetic resonance (NMR) spectroscopy has been an important analytical and physical research tool for several decades. One area of NMR which has undergone considerable development in recent years is high resolution NMR of solids. In particular, high resolution solid state /sup 13/C NMR spectra exhibiting features similar to those observed in liquids are currently achievable using sophisticated pulse techniques. The work described in this thesis develops analogous methods for high resolution /sup 1/H NMR of rigid solids. Applications include characterization of hydrogen aromaticities in fossil fuels, and studies of hydrogen in oxides and bound water in muscle.

  5. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    SciTech Connect (OSTI)

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in ironfrom ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.

  6. Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkevich, N. A.; Johnson, D. D.

    2015-08-14

    We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yetmore » all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.« less

  7. FINAL REPORT FOR THE INITIAL SOLID PHASE CHARACTERIZATION OF THE 2011 GRAB SAMPLES AND COMPOSITE FOR THE C-109 HARD HEEL STUDY

    SciTech Connect (OSTI)

    PAGE JS; COOKE G; PESTOVICH JA

    2011-12-01

    On May 3, 2011, solid phase characterization subsamples were taken from six of the eight grab samples that had been collected from tank 241-C-109 in April, 2011 and delivered to the 222-S Laboratory. These subsamples were characterized in order to guide the creation of the composite for the C-109 hard heel study. Visual observation showed that there was a large variability in the physical characteristics of the eight individual grab samples. Several of the grab samples consisted of 'stone-like' cobbles (several > 25 mm in diameter) while the other grab samples were of a finer granular composition referred to as 'bulk material'. Half of the six subsamples taken for this initial SPC were of crushed cobbles and half were of the bulk material. Scanning electron microscopy was performed on all six subsamples, and X-ray diffraction was performed on all three of the 'bulk material' samples and one of the crushed cobble samples. The crushed cobbles were found to be composed primarily of gibbsite (Al[OHh]{sub 3}). Analysis by X-ray diffraction indicated gibbsite to be the only crystalline phase detected, and scanning electron microscopy showed the crushed cobbles to consist primarily of aggregates of euhedral to subhedral gibbsite crystals that were 20 to 100 {mu}m in size. The aggregates, having a moderate amount of pore space, were cemented primarily by recrystallized gibbsite making them resistant to crushing. The bulk material consisted of coarse to fine-grained pebble-sized (2 to 20 mm) particles. The X-ray diffraction analysis showed them to be a mixture of natrophosphate (Na{sub 7}[PO{sub 4}]{sub 2}F{center_dot}19[H{sub 2}O]) and gibbsite crystals in varying amounts in each of the three subsamples (i.e., some grab samples were primarily natrophosphate while others were mixed with gibbsite). The scanning electron microscopy analysis of the bulk material showed the crystals to be euhedral to anhedral (rounded) in shape. Trace phases, too minor to be detected by XRD, were observed in the SEM analysis of both the crushed cobble and bulk material. Some of the trace phases were identified as uranium-rich (sodium diuranate and/or clarkeite), sodium aluminum-rich (dawsonite and/or sodium aluminate), and a sludge-like phase with a variable chemistry rich in iron, nickel, and lead. A composite was created from the grab samples and a sample was taken from the composite, labeled S11T009482, for solid phase characterization. In general, the vast majority of the particles and aggregates analyzed in the composite were either gibbsite or natrophosphate. A very minor phase consisting of dispersed small particles was rich in uranium.

  8. SU-E-J-51: Dose Response of Common Solid State Detectors in Homogeneous Transverse and Longitudinal Magnetic Fields

    SciTech Connect (OSTI)

    Reynolds, M; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.51% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.

  9. Exclusive Production of Ds Ds-, Ds* Ds-, and Ds* Ds*- via e e- Annihilation with Initial-State-Radiation

    SciTech Connect (OSTI)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-10-27

    The authors perform a study of exclusive production of D{sub s}{sup +}D{sub s}{sup -}, D*{sub s}{sup +}D{sub s}{sup -}, and D*{sub s}{sup +}D*{sub s}{sup -} final states in initial-state-radiation events from e{sup +}e{sup -} annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium 1{sup --} states. The data sample corresponds to an integrated luminosity of 525 fb{sup -1} and was recorded by the BABAR experiment at the PEP-II storage ring. The D{sub s}{sup +} D{sub s}{sup -}, D*{sub s}{sup +}D{sub s}{sup -}, and D*{sub s}{sup +}D*{sub s}{sup -} mass spectra show evidence of the known {psi} resonances. Limits are extracted for the branching ratios of the decays X(4260) {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}.

  10. SolidShperal

    Energy Science and Technology Software Center (OSTI)

    2013-12-22

    SolidSpheral is an extension of the Spheral open source meshless hydrodynamics method. SolidSpheral adds the capability to model solid materials using analytic equations of state, and a simple damage model to allow for the modeled materials to undergo dynamic damage evolution. SolidSpheral is a distributed parallel code employing MPI for the parallel framework.

  11. Exclusive Initial-State-Radiation Production of the DDbar,D*Dbar, and D*D*bar Systems

    SciTech Connect (OSTI)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-06-19

    We perform a study of the exclusive production of D{bar D}, D*{bar D}, and D*{bar D}* in initial-state-radiation events, from e{sup +}e{sup -} annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium and possible new resonances. The data sample corresponds to an integrated luminosity of 384 fb{sup -1} and was recorded by the BABAR experiment at the PEP-II storage rings. The D{bar D}, D*{bar D}, and D*{bar D}* mass spectra show clear evidence of several {psi} resonances. However, there is no evidence for Y(4260) {yields} D*{bar D} or Y(4260) {yields} D*{bar D}*.

  12. On Baryon-Antibaryon Cross Sections from Initial State Radiation Processes at BABAR and their Surprising Threshold Behavior

    SciTech Connect (OSTI)

    Pacetti, Simone

    2015-04-14

    BABAR has measured with unprecedented accuracy the e+e- → pp-bar and e+e- → ΛΛ-bar cross sections by means of the initial state radiation technique, which has the advantages of good efficiency and energy resolution, and full angular acceptance in the threshold region. A striking feature of these cross sections is their non-vanishing values at threshold. In the case of charged baryons, the phenomenon is well understood in terms of the Coulomb interaction between the outgoing baryon and antibaryon. However, such an effect is not expected for neutral baryons. We suggest a simple explanation for both charged and neutral baryon pairs based on Coulomb interactions at the valence quark level.

  13. Thermal management system and method for a solid-state energy storing device

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Gauthier, Michel; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Rouillard, Jean; Shiota, Toshimi; St-Germain, Philippe; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-01-01

    An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

  14. Improved Characterization of Transmitted Wavefront Error on CADB Epoxy-Free Bonded Solid State Laser Materials

    SciTech Connect (OSTI)

    Bayramian, A

    2010-12-09

    Current state-of-the-art and next generation laser systems - such as those used in the NIF and LIFE experiments at LLNL - depend on ever larger optical elements. The need for wide aperture optics that are tolerant of high power has placed many demands on material growers for such diverse materials as crystalline sapphire, quartz, and laser host materials. For such materials, it is either prohibitively expensive or even physically impossible to fabricate monolithic pieces with the required size. In these cases, it is preferable to optically bond two or more elements together with a technique such as Chemically Activated Direct Bonding (CADB{copyright}). CADB is an epoxy-free bonding method that produces bulk-strength bonded samples with negligible optical loss and excellent environmental robustness. The authors have demonstrated CADB for a variety of different laser glasses and crystals. For this project, they will bond quartz samples together to determine the suitability of the resulting assemblies for large aperture high power laser optics. The assemblies will be evaluated in terms of their transmitted wavefront error, and other optical properties.

  15. Initiatives | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MaDDD - Materials Discovery, Design, and Development PRIMROSE- Primary Research Into Magnetic Resonance Of the Solid-state for Energy GReen Advances for Catalysis and Energy ...

  16. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  17. The synthesis and optical property of solid-state-prepared YAG:Ce phosphor by a spray-drying method

    SciTech Connect (OSTI)

    Lee, H.-M.; Cheng, C.-C.; Huang, C.-Y.

    2009-05-06

    Ce{sup 3+}-activated yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 deg. C for 0, 4, and 8 h, the product was identified as YAG and CeO{sub 2} phases. The CeO{sub 2} phase content is decreased by increasing the calcination time or decreasing the Ce{sup 3+} doping content. The product showed higher emission intensity resulted from more Ce{sup 3+} content and larger grain size. The product with CeO{sub 2} was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.

  18. Solid state electrochemical composite

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  19. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  20. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM)

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  1. Solid State Lighting Program

    SciTech Connect (OSTI)

    Theodore D. Moustakas

    2007-11-30

    The project had two main tasks: One addressed the materials and device development and it was carried out at Boston University. The second addressed the theory and simulation of materials and devices and it was carried out at Science Application International Corporation (SAIC). Each task had a number of sub-tasks which are described in the following table. Progress in these tasks is described in this section.

  2. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  3. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  4. Solid-state microrefrigerator

    DOE Patents [OSTI]

    Ullom, Joel N.

    2003-06-24

    A normal-insulator-superconductor (NIS) microrefrigerator in which a superconducting single crystal is both the substrate and the superconducting electrode of the NIS junction. The refrigerator consists of a large ultra-pure superconducting single crystal and a normal metal layer on top of the superconducting crystal, separated by a thin insulating layer. The superconducting crystal can be either cut from bulk material or grown as a thick epitaxial film. The large single superconducting crystal allows quasiparticles created in the superconducting crystal to easily diffuse away from the NIS junction through the lattice structure of the crystal to normal metal traps to prevent the quasiparticles from returning across the NIS junction. In comparison to thin film NIS refrigerators, the invention provides orders of magnitude larger cooling power than thin film microrefrigerators. The superconducting crystal can serve as the superconducting electrode for multiple NIS junctions to provide an array of microrefrigerators. The normal electrode can be extended and supported by microsupports to provide support and cooling of sensors or arrays of sensors.

  5. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    SciTech Connect (OSTI)

    Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522 ; Danon, Yaron

    2013-04-15

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

  6. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} ? H{sub 2} + CH{sub 3} reaction

    SciTech Connect (OSTI)

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via HHCH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  7. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  8. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    SciTech Connect (OSTI)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  9. Solid-state chemistry of molecular metal oxide clusters. Multiple, sequential C-H activation processes in the hydrogenation of coordinated cyclooctene. Lattice mobility of small organic molecules

    SciTech Connect (OSTI)

    Siedle, A.R.; Newmark, R.A.; Sahyun, M.R.V.; Lyon, P.A.; Hunt, S.L.; Skarjune, R.P. )

    1989-10-25

    Reaction of solid ((Ph{sub 3}P){sub 2}Ir(C{sub 8}H{sub 12})){sub 3}PW{sub 12}O{sub 40} with D{sub 2} gas produces cyclooctane containing up to 16 deuterium atoms. The c-C{sub 8}D{sub n}H{sub 16-n} isotopomer distribution is analyzed by Poisson statistics and interpreted in terms of C-H activation involving Ir-D-C-H exchange in an intermediate species containing coordinated cyclooctene. The results are compared with those from D{sub 2} reduction of ((Ph{sub 3}P){sub 2}Ir(C{sub 8}H{sub 12}))(PF{sub 6}) in the solid state and in acetone solution, in which cases, an additional exchange process operates. Solid-state {sup 2}H NMR shows that, even at low temperatures, small organic molecules such as cyclooctane and benzene undergo nearly isotropic motion.

  10. Medium-modified jets and initial state fluctuations as sources of charge correlations measured at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Petersen, Hannah; Bass, Steffen A.; Renk, Thorsten

    2011-01-15

    We investigate the contribution of medium-modified jets and initial state fluctuations to the asymmetry in charged-particle production with respect to the reaction plane. This asymmetry has been suggested as a compelling signature for the chiral magnetic effect in QCD and makes the study of conventional scenarios for the creation of such charged-particle multiplicity fluctuations a timely endeavor. The different path-length combinations of jets through the medium in noncentral heavy ion collisions result in finite correlations of like and different charged particles emitted in the different hemispheres. Our calculation is based on the combination of jet events from Yet another Jet Energy-Loss Model (YaJEM) and a bulk-medium evolution. It is found that the jet production probabilities are too small to observe this effect. The influence of initial state fluctuations on this observable is explored by using an event-by-event (3+1)-dimensional hybrid approach that is based on Ultra-relativistic Quantum Molecular Dynamics (UrQMD) with an ideal hydrodynamic evolution. In this calculation, momentum conservation and elliptic flow are explicitly taken into account. The asymmetries in the initial state are translated to a final state momentum asymmetry by the hydrodynamic flow profile. Dependent on the size of the initial state fluctuations, the resulting charged-particle asymmetries are in qualitative agreement with the preliminary STAR (solenoid tracker at the Relativistic Heavy Ion Collider) results. The multiparticle correlation as proposed by the PHENIX Collaboration can, in principle, be used to disentangle the different contributions, however, in practice, is affected substantially by the procedure to subtract trivial resonance decay contributions.

  11. State-to-state photodissociation of carbonyl sulfide ({nu}{sub 2}=0,1|JlM). II. The effect of initial bending on coherence of S({sup 1}D{sub 2}) polarization

    SciTech Connect (OSTI)

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H. M. [Laser Center and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, University of Crete, Heraklion 71110, Greece and Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, 71110 Heraklion (Greece); Laser Center and Department of Chemistry, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2005-10-22

    Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S({sup 1}D{sub 2}) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state ({nu}{sub 2}=0 vertical bar JM=10) or in the first excited bending state ({nu}{sub 2}=1 vertical bar JlM=111). At 230 nm photolysis the Im[a{sub 1}{sup (1p}{sub arallel}{sup ,perpendicular})] moment for the fast S({sup 1}D{sub 2}) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S({sup 1}D{sub 2}) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D{sub 0}=4.292 eV is reported.

  12. Manufacturing R&D Initiative Lowers Costs and Boosts Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality PDF icon mfg-initiative_factsheet_jun2015.pdf More Documents & Publications Manufacturing R&D Initiative Lowers Costs and Boosts Quality Prospects for U.S.-Based Manufacturing in the SSL Industry Solid-State Lighting Commercial Product Development Resulting from DOE-Funded Projects

  13. Solid-state polymerization of acrylamide and its derivatives complexed with some Lewis acids. II. Radiation-induced in-source polymerization

    SciTech Connect (OSTI)

    Zurakowska-Orszagh, J.; Mirowski, K.; Chajewski, A.

    1982-07-01

    Radiation-induced solid-state polymerizations of complexes of N-tert-butylacrylamide, N-tert-amylacrylamide, and N-tert-hexylacrylamide with zinc chloride and zinc bromide have been studied. An accelerating effect of temperature and an inhibiting effect of oxygen on the polymerization process were observed. The activation energies have been established. The influence of monomer structure as well as the halide used on the polymerization rate have been discussed and some regularities have been pointed out. The polymers obtained show good solubilities in common solvents, which proves that they are not crosslinked.

  14. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  15. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    SciTech Connect (OSTI)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  16. Supramolecular cobaloxime assemblies for H{sub 2} photocatalysis: an initial solution state structure-function analysis.

    SciTech Connect (OSTI)

    Mulfort, K. L.; Tiede, D. M.

    2010-01-01

    In this report, we have investigated the correlations between structure and light-induced electron transfer of one known and three new axially coordinated cobaloxime-based supramolecular photocatalysts for the reduction of protons to hydrogen. Solution-phase X-ray scattering and ultrafast transient optical spectroscopy analyses were used in tandem to correlate the self-assembled photocatalysts structural integrity in solution with electron transfer and charge separation between the photosensitizer and catalyst fragments. Biphasic excited state decay kinetics were observed for several of the assemblies, suggesting that configurational dispersion plays a role in limiting photoinduced electron transfer. Notably, an assembly featuring a 'push-pull' donor-photosensitizer-acceptor triad motif exhibits considerable ultrafast excited state quenching and, of the assemblies examined, presents the strongest opportunity for efficient solar energy conversion. These results will assist in the design and development of next-generation supramolecular photocatalyst architectures.

  17. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  18. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  19. Solid-state graphene formation via a nickel carbide intermediate phase [Nickel carbide (Ni3C) as an intermediate phase for graphene formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, W; Zhou, Yunshen; Hou, Wenjia; Guillemet, Thomas; Silvain, Jean-François; Lahaye, Michel; Lebraud, Eric; Xu, Shen; Wang, Xinwei; Cullen, David A; et al

    2015-11-10

    Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing to themore » autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less

  20. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.