Powered by Deep Web Technologies
Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

2

Federal Recycling Program Printed on recycled paper.  

E-Print Network (OSTI)

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise. This book was pub- lished by FHTET as part of the technology transfer series. http.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis

Hoddle, Mark S.

3

Recycling Programs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them. Waste Recycling In FY 2011, DOE Headquarters recycled 134 tons of waste which earned over $7,200 in GSA credits that were provided to the Sheila Jo Watkins Memorial Child Development Centers. Since the recycling program began in 1991 over 6,800 tons of waste have been recycled earning over $350,000 for the Child

4

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPARENCY RECYCLING Don't throw out your used overhead transparencies! RECYCLE them for REUSE. It's Easy! Follow these simple procedures: 1.) COLLECT used transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, and/or files. 3.) PLACE the transparencies (only) into an intra-laboratory mail envelope. 4.) SEND the envelope to: Terri Schneider, Building 201, 1D-10. Terri will prepare a

5

School Recycling Program  

NLE Websites -- All DOE Office Websites (Extended Search)

100% Recyclable 100% Recyclable Presentation Page Project Summary Scenario Student Pages Index of Projects Title of Project/Unit: 100% Recyclable Subject: Social Studies, Science, Healthy, & Communications Grade Level: Middle School (7th Grade) Abstract: The unit begins in the fall and will last about six weeks. Students will rely on working in collaborative groups in order to share information and problem solve. Students will us the Internet and e-mail to communicate with as many other schools as possible across the country. This unit will be part of an interdisciplinary unit to combine: Science: the study of waste, recycling & ecology Social Studies: how communities and groups of people historically handled waste and waste products, how native Americans re-cycled, how we became a 'disposable' society.

6

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

7

Recycling Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

starting with standard, solid waste recycling in 1991, and has expanded to include batteries, toner cartridges, carpeting and cell phones. Follow this link for a detailed...

8

Major issues associated with DOE commercial recycling initiatives  

SciTech Connect

Major initiatives are underway within DOE to recycle large volumes of scrap material generated during cleanup of the DOE Weapons Complex. These recycling initiatives are driven not only by the desire to conserve natural resources, but also by the recognition that shallow level burial is not a politically acceptable option. The Fernald facility is in the vanguard of a number of major DOE recycling efforts. These early efforts have brought issues to light that can have a major impact on the ability of Fernald and other major DOE sites to expand recycling efforts in the future. Some of these issues are; secondary waste deposition, title to material and radioactive contaminants, mixed waste generated during recycling, special nuclear material possession limits, cost benefit, transportation of waste to processing facilities, release criteria, and uses for beneficially reused products.

Motl, G.P.; Burns, D.D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Rast, D.M. [USDOE Fernald Field Office, OH (United States)

1994-07-27T23:59:59.000Z

9

Potential GTCC LLW sealed radiation source recycle initiatives  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

10

AISI waste oxide recycling program. Final technical report  

SciTech Connect

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

11

Loveland Water and Power - Refrigerator Recycling Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Recycling Program Refrigerator Recycling Program Loveland Water and Power - Refrigerator Recycling Program < Back Eligibility Residential Savings Category Appliances & Electronics Maximum Rebate Limit one rebate per account per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Refrigerator and Freezer Recycling: $35 Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator. The old refrigerator should be brought outside but remain plugged in so the utility can make it is in working condition. the utility will then take the refrigerator to a recycling facility and issue a $35 bill credit. Other Information

12

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

13

Loveland Water & Power- Refrigerator Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Loveland Water & Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

14

High-grade paper recycling: A program management perspective  

Science Conference Proceedings (OSTI)

Recycling of high-grade paper is one method of reducing the use of natural resources and the amount of waste being emitted into the environment, both in the process of manufacturing and in the disposal of unneeded documents. The Air Force Materiel Command (AFMC) is a significant user of high-grade paper, thus recycling represents a potential saving to society in the form of lessened negative impact on the environment as the result of AFMC operations. The possibility also exists for AFMC to reduce operating costs. The purpose of this study is to explore means of reducing high-grade paper disposal by AFMC, examine program management of high-grade paper recycling by AFMC, and apply effective program management processes to the AFMC high-grade paper recycling program.

Carter, R.L.

1999-03-01T23:59:59.000Z

15

Mound Laboratory's Reclamation and Recycling Program  

SciTech Connect

In keeping with Mound Laboratory's tradition for innovation and forward-looking action, several studies were recently conducted to seek out alternatives to incineration and landfill of all nonradioactive solid waste. Efforts were directed towards reclamation, reuse, and recycling of solid wastes. These efforts resulted in a reclamation and recycling program which is being implemented in three separate phases: 1. Phase I provides for reclamation and recycling of IBM cards, printouts, and white paper. 2. Phase II is designed for reclamation, recycling, or off-site disposal of all wastes generated in buildings and areas where radioactive or explosive wastes are not contained. 3. Phase III provides for reclamation, recycling, or off-site disposal of the remaining wastes not included in Phases I and II. Implementatin would follow successful operation of Phases I and II and would only be implemented after a complete analysis of monitoring and segregation techniques have been established to assure against any possibility of off-site contamination.

Garbe, Yvonne M.

1974-10-01T23:59:59.000Z

16

Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

recycling paths for various materials. Aerosol cans Asphalt Batteries Cardboard Concrete Light bulbs Metal Pallets Paper Tires Toner cartridges Vegetation Environmental...

17

The 10 Obstacles to a Successful Battery Recycling Program  

Science Conference Proceedings (OSTI)

Abstract Scope, Battery recycling in North America has reached adolescence. Retailers are demanding ... Role of Recycling in the Life Cycle of Batteries.

18

Energy Crossroads: Major Conservation Programs & Initiatives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Conservation Programs & Initiatives < Previous Topic Energy Crossroads Index Next Topic > Suggest a Listing California Energy Commission's Public Programs Office The...

19

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

20

EERE Program Management Initiative (PMI) Brochure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE Program Management Initiative EERE Program Management Initiative Table of Contents Introduction ............................................................................................................... 1 Structure, Systems and Processes ................................................................................. 3 Tools and Job Aids ...................................................................................................... 6 Training and Career Development .............................................................................. 7 Performance-Based Management ................................................................................ 8 FAQs ..........................................................................................................................

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

North American Synchrophasor Initiative (NASPI) Program Information |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information Summary of the Transmission Reliability program's North American Synchrophasor Initiative (NASPI) activity area. NASPI supports industry adoption of next-generation monitoring equipment to increase reliability and reduce costs for consumers through the development of secure, highspeed, time-synchronized data about bulk power system conditions. North American Synchrophasor Initiative (NASPI) Program Factsheet.pdf More Documents & Publications Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations

22

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that  

E-Print Network (OSTI)

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that previously contained chemicals (hazardous or non-hazardous) are collected by CWS for recycling. Bottles should be dry and empty without chemical residue. Rinse and collect rinsate in chemical

Ungerleider, Leslie G.

23

Program Management Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management Initiative Program Management Initiative Program Management Initiative Building the Foundation for our Future. Pyramid diagram showing how the improvement in program management leads to performance excellence, which leads to exceptional results. The Office of Energy Efficiency and Renewable Energy (EERE) seeks to manage its programs effectively and efficiently through disciplined systems and processes, highly motivated and capable professionals, useful tools and job aids, and a management approach that emphasizes results. To achieve excellence, each of these elements must be continuously improved or reengineered. The Program Management Initiative was launched in 2001 to help EERE more effectively accomplish its mission "To lead the nation in the research, development, and deployment of advanced energy efficiency and

24

Commonwealth Wind Incentive Program – Micro Wind Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

25

Tribal Programs, Special Initiatives, and Cooperative Agreements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs, Special Initiatives, and Cooperative Agreements Programs, Special Initiatives, and Cooperative Agreements Tribal Programs, Special Initiatives, and Cooperative Agreements EM is involved in the cleanup of nuclear waste at nationwide sites and facilities. The waste, a result of the production of nuclear weapons, has affected sovereign Tribal nations located near these facilities. These Tribal nations have been impacted by different types of waste contamination, and their participation in the EM mission is critical. Special Initiatives The Department and the Tribes have engaged in a wide range of issues under established cooperative agreements. The projects initiated by DOE and the Tribes are meeting the Department's two-fold mission of cleaning up America's environmental legacy and addressing environmental concerns for

26

Indian Energy Program Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program Initiatives Energy Program Initiatives Indian Energy Program Initiatives The Office of Indian Energy approach is, first and foremost, a collaborative one as it works with tribal nations, federal agencies, state governments, non-governmental organizations, and the private sector to support tribally led development of the considerable energy resources that exist on tribal lands. To guide the strategic planning and implementation of the Department's tribal energy programs and policies, Energy Secretary Steven Chu established an Indian Country Energy and Infrastructure Working Group. After holding numerous and in-depth roundtables and DOE Tribal Summit conversations in early 2011 with tribal governments, tribal organizations, and Alaskan Native communities and leaders, the Office of

27

Hanford recycling  

Science Conference Proceedings (OSTI)

This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

Leonard, I.M.

1996-09-01T23:59:59.000Z

28

ORISE Resources: Equal Access Initiative Computer Grants Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Equal Access Initiative Computer Grants Program The Equal Access Initiative Computer Grants Program is sponsored by the National Minority AIDS Council (NMAC) and the National...

29

Strategic planning of recycling drop-off stations and collection network by multiobjective programming  

SciTech Connect

Effective planning of solid-waste recycling programs is a substantial challenge to the current solid-waste management systems in Taiwan. Due to the rapid depletion of landfill space and the continuing delay in construction programs of municipal incinerators, solid-waste management strategies have to be reorganized in light of the success of recycling, recovery, and reuse of secondary materials. One of these efforts is how to effectively allocate recycling drop-off stations of appropriate size and how to design efficient collection-vehicle routing and scheduling programs in the solid waste collection network. This management strategy is particularly important in the privatized system with recycling containers and material recovery facilities (MRFs) owned by one agency. This research seeks multiobjective evaluation of the trade-off between the number and size of drop-off stations, the population covered in the service network, the average walking distance to drop-off stations by the population, and the distance traveled by collection vehicles. It also illustrates the use of the multiobjective nonlinear mixed integer programming model to achieve such goals that are solved by the genetic algorithms (GA) in a geographical information system (GIS) platform. The case study shows the application potential of such a methodology in the city of Kaohsiung in Taiwan.

Chang, N.; Wei, Y.L. (National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering)

1999-08-01T23:59:59.000Z

30

Worldwide Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

is building, and national initiatives and programs being formed. Japan, Taiwan, Korea, and China have government-supported initiatives for solid-state lighting. Japan,...

31

A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling  

Science Conference Proceedings (OSTI)

Paper is an example of a valuable material that can be recycled and recovered. In this study, a two-stage stochastic revenue-maximization model is presented to determine a long-term strategy under uncertainty for a large-scale real-world paper recycling ... Keywords: Paper recycling, Reverse supply network design, Robust programming, Stochastic programming, Uncertainty

Selin Soner Kara; Semih Onut

2010-09-01T23:59:59.000Z

32

Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.  

SciTech Connect

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

Wrons, Ralph Jordan; Vetter, Douglas Walter

2007-07-01T23:59:59.000Z

33

NNSA employees selected for Nuclear Scholars Initiative program | National  

National Nuclear Security Administration (NNSA)

employees selected for Nuclear Scholars Initiative program | National employees selected for Nuclear Scholars Initiative program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA employees selected for Nuclear Scholars Initiative program NNSA employees selected for Nuclear Scholars Initiative program Posted By Office of Public Affairs

34

Maui County - Solar Roofs Initiative Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program Maui County - Solar Roofs Initiative Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Local Loan Program Rebate Amount Zero-interest loans Provider Maui Electric Company, LTD In September 2002, Maui Electric Company (MECO) and the County of Maui teamed up to launch the Maui Solar Roofs Initiative to increase the use of renewable energy in Maui County. MECO administers the loan program and, through the Hawaii Energy Program, offers a $750 rebate for installations through its approved independent solar contractors. Residential homeowners with existing electric water heaters are eligible and must provide a down payment equal to 35% of the system cost after

35

Air Emmissions Trading Program/Regional Greenhouse Gas Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

reduction from the initial budget. The program is designed to stabilize, then reduce, CO2 emissions from CO2 budget sources within the state in an economically efficient...

36

Maryland Innovation Initiative New Translational Funding Program  

E-Print Network (OSTI)

Transfer Phone: 410-516-4408 Email: egood@jhmi.edu Website: www.techtransfer.jhu.edu CONTACT INFORMATION/the-maryland- innovation-initiative-mii/ Fast Facts JOHNSHOPKINSTECHNOLOGYTRANSFER·WWW.TECHTRANSFER.JHU.EDU #12;

von der Heydt, RĂĽdiger

37

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Commercial Heating & Cooling Heating & Cooling Solar Water Heating Maximum Rebate $15,000 Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 07/27/2011 State Maine Program Type Local Loan Program Rebate Amount Up to $15,000 Provider The Goggin Company Homeowners in the towns of Eliot, Kittery, North Berwick, South Berwick, Ogunquit, and York (located in Southern York County) may be eligible a loan of up to $15,000 to make energy efficiency improvements in their homes.

38

Commonwealth Wind Incentive Program - Micro Wind Initiative | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Projects: up to 4/W with maximum of $130,000 Non-Public Projects: up to 5.20/W with a maximum of $100,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 4/1/2005 State Massachusetts Program Type State Rebate Program Rebate Amount Capacity-based Rebate = Rated Capacity (kW) * 460 +3200 Estimated Performance Rebate = Expected Production * 2.8 * (Rated Capacity^-0.29)

39

California Solar Initiative - Solar Thermal Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

40

Mixed Waste Recycling Exemption  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented the process for obtaining state approval to apply the Resource Conservation and Recovery Act (RCRA) recycling exemption. This report examines the regulatory basis for the recycling exemption and the strategy for designing and operating a recycling facility to meet that exemption. Specifically addressed is the process of submitting an actual recycling exemption request to an RCRA authorized state and potential roadblocks utilities m...

1998-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Program on Technology Innovation: Controlled Recycling of Contaminated Materials for Nuclear Industry Uses  

Science Conference Proceedings (OSTI)

This report addresses opportunities to recycle materials in radioactive waste by decontamination and fabrication into new components for use in the nuclear industry. In particular, a novel approach called "controlled recycling" involves a procedure that controls the material during decontamination, metal processing and remanufacture into components for reuse in the nuclear industry.

2006-11-09T23:59:59.000Z

42

Report for EM-Initiated Program Supporting Cleanup is Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report for EM-Initiated Program Supporting Cleanup is Available Report for EM-Initiated Program Supporting Cleanup is Available Report for EM-Initiated Program Supporting Cleanup is Available September 4, 2013 - 12:00pm Addthis An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies. An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies. Modeled spatial distribution of technicium-99 after the releases from the BC cribs on the Hanford Central Plateau using VisIt software. Modeled spatial distribution of technicium-99 after the releases from the BC cribs on the Hanford Central Plateau using VisIt software. An Akuna-generated figure of the Savannah River F-Basin site showing the distribution of surface structures, well, contaminate plume and lithofacies.

43

Recycling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance and the purchase of furniture and equipment. What Can Be Recycled, And Where What you can recycle Where to recycle White office paper, printed with any color ink. Staples are acceptable but paperclips, binder clips, plastic flags, tabs and colored post-it notes must be removed. Receptacles for white office paper are located in office suites and next to copy machines. Blue collection bins for individual offices may be obtained from the Facilities Management Helpdesk at (202) 586-6100 or by e-mailing:

44

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

45

Hunter College Black Male Initiative-"Brothers for Excellence"-Summer Pipeline Programs Hunter College Black Male Initiative  

E-Print Network (OSTI)

Hunter College Black Male Initiative-"Brothers for Excellence"- Summer Pipeline Programs 1 Hunter College Black Male Initiative "Brothers for Excellence" Summer Pipeline Programs Table of Contents Page 11 Law Pipeline Programs 1 11 Graduate School, Earning a Ph.D., Conduct Research Pipeline Programs 24 16

Qiu, Weigang

46

HTGR fuel recycle development program. Quarterly progress report for the period ending August 31, 1978  

SciTech Connect

The work reported includes the development of unit processes and equipment for reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel, the design and development of an integrated pilot line to demonstrate the head end of HTGR reprocessing using unirradiated fuel materials, and design work in support of Hot Engineering Tests (HET). Work is also described on tradeoff studies concerning the required design of facilities and equipment for the large-scale recycle of HTGR fuels in order to guide the development activities for HTGR fuel recycle.

1978-09-01T23:59:59.000Z

47

U. S. Navy shipboard-generated plastic-waste pilot-recycling program. Research and development report, Apr 90-Jan 91  

Science Conference Proceedings (OSTI)

From April 1990 through January 1991, the feasibility of recycling Navy shipboard-generated plastic wastes was explored. Normally, plastic wastes are source separated aboard Navy ships and retained for shoreside disposal in accordance with new fleet requirements implementing MARPOL Annex V that prohibits the discharge of plastics at sea. Over 23,000 pounds of shipboard plastic wastes from USS Lexington (AVT 16) and ships from the Norfolk Naval Base were recycled into park benches, picnic tables and carstops that have been distributed back to the Navy bases for use. Navy shipboard plastics must undergo sorting prior to recycling because Navy plastic waste contains large quantities of composite plastic items (e.g., plastic/paper) that are not easily recyclable. Recycling food-contaminated plastics is not practical due to sanitation problems encountered during handling. However, certain items have good resale value if separated by resin type and color (e.g., sonobuoy casings, hard plastic containers, packaging films). Education, feedback, and command support for shipboard recycling programs are required to ensure maximum participation and to minimize contamination with non-plastic items. Specially marked plastics only containers increase convenience and effectiveness of the recycling program.

Middleton, L.B.; Huntley, J.Y.; Burgiel, J.J.

1991-03-01T23:59:59.000Z

48

Continuous-discrete simulation-based decision making framework for solid waste management and recycling programs  

Science Conference Proceedings (OSTI)

Solid waste produced as a by-product of our daily activities poses a major threat to societies as populations grow and economic development advances. Consequently, the effective management of solid waste has become a matter of critical importance for ... Keywords: Continuous-discrete modeling, Modeling of large scale systems, Recycling systems, Simulation based optimization, Solid waste management systems

Eric D. Antmann, Xiaoran Shi, Nurcin Celik, Yading Dai

2013-07-01T23:59:59.000Z

49

Special initiatives FY 1996 multi-year program plan (MYPP) WBS 5.0. Revision 1  

DOE Green Energy (OSTI)

The Special Initiatives mission supports programmatic requests for service to DOE offices, other organizations and agencies. These requests can include the following: Supporting priority DOE initiatives, researching special programs, studying locating new activities ar the Hanford Site, producing specialty materials, providing consulting support to other sites, and managing a broad spectrum of US and international test programs. The Special Initiatives Program discussed in this plan consists of the following elements: space power programs, advanced programs, special programs, and program strategy.

Howald, S.C.

1995-09-01T23:59:59.000Z

50

Towards Systematic Benchmarking in Answer Set Programming: The Dagstuhl Initiative  

E-Print Network (OSTI)

for di#erent designs of a benchmarking and testing environment for ASP, we used the systems competition at the Dagstuhl Seminar. The following answer set programming systems participated in that initial competition. -- aspps, University of Kentucky, -- assat, UST Hong Kong, -- cmodels, University of Texas, -- dlv, Technical University of Vienna, -- smodels, Technical University of Helsinki. # A#liated with the School of Computing Science at Simon Fraser University, Burnaby, Canada. The di#culty that emerged right away was that these systems do not have a common input language nor do they agree on all functionalities. This led to the introduction of three di#erent (major) categories of benchmarks: Ground: Ground instances of coded benchmarks. As of now, these ground instances are produced by lparse or by the dlv grounder. These benchmarks can be used to test the performance of ASP solvers accepting as input ground (propositional) programs in output formats of lparse or the dlv

Paul Borchert; Christian Anger; Torsten Schaub; Miroslaw Truszczynski

2004-01-01T23:59:59.000Z

51

Initiatives for proliferation prevention program : goals, projects, and opportunities  

SciTech Connect

The mission of the U.S. Department of Energy Initiatives for Proliferation Prevention (IPP) Program is to identify and create commercial opportunities for former weapons scientists currently or formerly involved with weapons of mass destruction in the Former Soviet Union (FSU). IPP was first authorized in Fiscal Year 1994 under Section 575 of Public Law 103-87. IPP currently sponsors 164 projects in Russian at 64 institutes; 16 projects in the Ukraine at 14 institutes; 14 projects in Kazakhstan at 10 institutes; and one project in Belarus. To date, the IPP program has engaged over 10,000 experts in the areas of nuclear, chemical, and biological weapons and missile development at more than 170 institutes in Russia, Kazakhstan, Ukraine, and Belarus.

Hemberger, P. H. (Philip H.)

2001-01-01T23:59:59.000Z

52

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

53

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

54

Recycled roads  

SciTech Connect

This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

Tarricone, P.

1993-04-01T23:59:59.000Z

55

Maui County - Solar Roofs Initiative Loan Program (Hawaii) |...  

Open Energy Info (EERE)

the loan program and, through the Hawaii Energy Program, offers a 750 rebate for installations through its approved independent solar contractors. Residential homeowners...

56

SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Foundational Program to Solar Foundational Program to Advance Cell Efficiency to someone by E-mail Share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Facebook Tweet about SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Twitter Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Google Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Delicious Rank SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Digg Find More places to share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy

57

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

58

Recycling 1  

Science Conference Proceedings (OSTI)

Jun 7, 2012 ... 6xxx Series Alloy Design Considerations Relating to Recycling: Malcolm ... Reuse of Al Dross as an Engineered Product: Chen Dai1; Diran ...

59

Solar America Initiative (SAI) PV Technology Incubator Program: Preprint  

DOE Green Energy (OSTI)

The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

2008-05-01T23:59:59.000Z

60

Air Emmissions Trading Program/Regional Greenhouse Gas Initiative (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Regional Greenhouse Gas Initiative is a carbon dioxide emissions budget trading program. The program includes a statewide annual CO2 budget allowance of 8,620,460 tons between...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

US DOE's Carbon Sequestration Program New Initiatives for U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Carbon Sequestration Program New Initiatives for U.S. Climate Change Geological Sequestration North American Coalbed Methne Forum Charles W. Byrer National Energy Technology...

62

Recycling Trends  

Science Conference Proceedings (OSTI)

...countries with low energy costs, such as Canada, Venezuela, Brazil, and Australia Recycling will increase in importance. For the United States, and ultimately for the rest of the aluminum-consuming world, recycling and resource recovery will play an increasingly important strategic role in ensuring a...

63

Program on Technology Innovation: The Galvin Electricity Initiative Microgrid Workshop  

Science Conference Proceedings (OSTI)

EPRI organized The Microgrid Workshop and Roundtable for the Galvin Electricity Initiative, held in Chicago, Illinois, June 27-28, 2006. The privately funded initiative's goal is to create the Perfect Power System, one that is trouble free for consumers and not susceptible to failure. The Microgrid Workshop and Roundtable supported that goal by featuring a combination of formal presentations and roundtable discussions in which participants exchanged experiences and collectively developed lists of issues ...

2007-03-30T23:59:59.000Z

64

California Public Utilities Commission California Solar Initiative Program Handbook  

E-Print Network (OSTI)

modifications to the Reservation Request process for residential and non-residential applications (<5 kW) in order to expedite the application process. In complying with that resolution, PG&E filed Advice Letter 4182-E on behalf of the CSI Program Administrators.

unknown authors

2012-01-01T23:59:59.000Z

65

Acronyms and Initialisms | Scientific and Technical Information Program  

Office of Scientific and Technical Information (OSTI)

Acronyms and Initialisms Acronyms and Initialisms Print page Print page Email page Email page A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X-Z AEC Atomic Energy Commission AN Announcement Notice ANL Argonne National Laboratory ANSI American National Standards Institute AT Applied Technology AV Audio-Visual B&R budget and reporting BAPL Bettis Atomic Power Laboratory BNL Brookhaven National Laboratory C Confidential CAF Controlled Access File CD-ROM Compact Disk - Read Only Memory CDIAC Carbon Dioxide Information Analysis Center CEMI Center for Environmental Management Information CFR Code of Federal Regulations CIMS Classified Information Management System CRADA cooperative research and development agreement CUI Controlled Unclassified Information

66

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs  

Science Conference Proceedings (OSTI)

Government laboratories and private industry in the U.S. and in other countries have carried out or initiated programs to study and evaluate the technical and economic feasibility of recycling plutonium. The experimental measurements program provides benchmark neutronics data for use in assessing the accuracy of neutronics analysis methods for slightly enriched uranium lattices and for mixed oxide lattices. The lattice pitches were selected to provide configurations that were undermoderated, near optimum...

1978-09-01T23:59:59.000Z

67

Office of Civilian Radioactive Waste Management Transportation Program: Tribal Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS BREAKOUT COMMUNICATIONS BREAKOUT SESSION Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group Background and History * Transportation information products - Information Product Survey results - Alliance for Transportation Research Institute Assessments * Discussion on future DOE communications * Information Display 3 Objectives and Expectations * OCRWM communications approach - Transportation Strategic Plan Collaborative effort with stakeholders Two-way interactions with program participants and public - provide information and receive feedback * Implement communications strategy - Identify stakeholders and issues - Engage nationally, regionally and with States - Participate through discussion and issue resolution

68

Recycling Symposium Advance Program  

Science Conference Proceedings (OSTI)

... Lee, Rare Metals Research Group, Kigam, Korea; Kyung-Hee Ju, Jae-Koo Yoom, ... Kang, Young-Suk Kim, Hun-Joon Sogn, Seoul National University, Korea.

69

Final Recycling Technical Program  

Science Conference Proceedings (OSTI)

potential to reduce materials production energy consumption by 95% for aluminum, 80% ..... This study has been carried out to develop a relatively simple hydro-.

70

Proceedings of the waste recycling workshop  

Science Conference Proceedings (OSTI)

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

71

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

72

WINCO Metal Recycle annual report, FY 1993  

Science Conference Proceedings (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

73

Concrete & Asphalt Recycling into Reusable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

SNLNM Pollution Prevention Concrete & Asphalt Recycling into Reusable Products (SNLNM Pollution Prevention Program) March 18, 2010 Doug Vetter, PE, LEED-AP Sandia is a...

74

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

75

California Solar Initiative - Low-Income Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » California Solar Initiative - Low-Income Solar Water Heating Rebate Program California Solar Initiative - Low-Income Solar Water Heating Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-Family Low-Income: $3,750 Multi-Family Low-Income: $500,000 Program Info Funding Source Ratepayer Funds Start Date 3/29/2012 State California Program Type State Rebate Program Rebate Amount Step 1 Incentive Rates (contact utility to determine current incentive levels): Single-Family Low-Income: $25.64 per therm displaced Multi-Family Low-Income: $19.23 per therm displaced The California Public Utilities Commission (CPUC) voted in October 2011 to

76

Sandia National Laboratories: Pollution Prevention: Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling Recycling Sandia goes beyond basic recycling of common papers, plastics, and metals. We divert as many waste streams for recycling as feasible. The list of materials diverted grows every year. We regularly re-evaluate processes for efficiency and improved revenues as well. Revenue received from recycling goes back into the program to fund material streams that currently cost to process, and to improve and expand the waste reduction infrastructure. The state of New Mexico has a target to recycle 35% of its waste by 2018. The Department of Energy has a goal of 50% by 2015. Sandia/New Mexico is contributing toward both of these goals by recycling nearly 71% of its waste in FY12. Sandia/California is doing even better at 78%. compost pile Composting Sandia/New Mexico sends green waste in the form of branches to Kirtland Air

77

Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)  

Science Conference Proceedings (OSTI)

The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

Martin, Olga [Los Alamos National Laboratory

2012-06-04T23:59:59.000Z

78

Aluminum Association: Recycling  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This webpage provides some historical information on aluminum recycling and describes the processes done by various recyclers: used ...

79

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

80

GLOBAL THREAT REDUCTION INITIATIVE REACTOR CONVERSION PROGRAM: STATUS AND CURRENT PLANS  

SciTech Connect

The U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.

Staples, Parrish A.; Leach, Wayne; Lacey, Jennifer M.

2009-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Global Threat Reduction Initiative's Molybdenum-99 Program, OAS-L-12-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Global Threat Reduction Initiative's Molybdenum-99 Program OAS-L-12-07 July 2012 Department of Energy Washington, DC 20585 July 20, 2012 MEMORANDUM FOR THE ASSISTANT DEPUTY ADMINISTRATOR FOR GLOBAL THREAT REDUCTION, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Global Threat Reduction Initiative's Molybdenum-99 Program" BACKGROUND Molybdenum-99 (Mo-99) is used in the production of technetium-99m (Tc-99m), the most commonly used medical radioisotope in the world. The United States accounts for approximately half of the global demand for Mo-99 at approximately 6,000 units per week. Because Mo-99's short half-life of 66 hours prevents it from being stockpiled, consistent

82

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

83

University Programs of the U.S. Advanced Fuel Cycle Initiative  

Science Conference Proceedings (OSTI)

As the Advanced Accelerator Applications (AAA) Program, which was initiated in fiscal year 2001 (FY01), grows and transitions to the Advanced Fuel Cycle (AFC) Program in FY03, research for its underlying science and technology will require an ever larger cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and even larger student populations. Because of the recognition of these current and increasing requirements, the DOE began a multi-year program to involve university faculty and students in various phases of these Projects to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. Herein I summarize the goals and accomplishments of the university programs that have supported the AAA and AFC Programs during FY02, including the involvement of 120 students at more than 30 universities in the U.S. and abroad. I also highlight contributions to academic research from LANL, which hosted students from and sponsored research at more than 18 universities by more than 50 students and 20 faculty members, investing about 10% of its AFC budget.

Beller, D. E. (Denis E.)

2003-01-01T23:59:59.000Z

84

Other U.S Agencies Initiatives and Programs in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Since 09/28/2004 Since 09/28/2004 | National Initiatives | Other U.S. Agencies | Worldwide Programs | OTHER U.S. AGENCIES This website is not being actively maintained -- see note on homepage. The U.S. Department of Energy, through its Office of Energy Efficiency and Renewable Energy, is accelerating directly the development of the science and technology of Solid-State Lighting. But there are a number of other synergistic national programs, sponsored by other U.S. agencies or by other Offices within the U.S. Department of Energy. A few of these are listed here: · Department of Defense: The Defense Advanced Research Projects Agency's SUVOS Program aims to develop semiconductor UV optical sources for bio-agent detection. These UV sources may also be useful, after phosphor down-conversion, for Solid-State Lighting.

85

Special initiatives FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP) WBS 5.0  

Science Conference Proceedings (OSTI)

The Special Initiatives mission supports programmatic requests for service to DOE offices, other organizations and agencies. These requests can include the following: Supporting priority DOE initiatives; Researching special programs; Studying locating new activities at the Hanford Site; Producing specialty materials; Providing consulting support to other sites; Managing a broad spectrum of US and international test programs.

Jekel, R.A.

1994-09-01T23:59:59.000Z

86

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

87

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by industry for recycling facilities 2 , is a systematic analysis to identify facility and external hazards and their potential for initiating accident sequences, the...

88

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The materialÂ’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of EnergyÂ’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

89

Solvent recycle/contaminant reduction testing - Phase I, Task 3. Topical progress report, June 1994--December 1994  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. This report describes the solvent recyle test program for EDTA/ammonium carbonate solvent.

NONE

1995-07-01T23:59:59.000Z

90

Recycling General Sessions  

Science Conference Proceedings (OSTI)

... and design based on recyclability; life-cycle analysis of materials; properties; and ... Al Recycling Batch Planning in a Constrained Secondary Material Market ... Mullites Bodies Produced From the Kaolin Residue Using Microwave Energy.

91

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling ...

92

Next generation safeguards initiative (NGSI) program plan for safeguards by design  

Science Conference Proceedings (OSTI)

Safeguards by Design (SBD) is defined as the incorporation of safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign the facility at a later date, or retrofit the completed facility. Not only can SBD avoid the need for redesign or retrofit, but consideration of safeguards features early in the facility design effort can provide for a more efficient and effective safeguards design. A program has been initiated by the United States Department of Energy during the past several years to develop, demonstrate and institutionalization SBD. This plan has been developed in parallel with a similar effort at the IAEA while taking into account their achievements and future plans. The United States SBD program is focused on (1) identification of best practices that satisfy existing safeguards requirements, (2) identification of advanced concepts where best practices can be improved, and (3) institutionalizing SBD by gaining its acceptance as a global norm for the design of new nuclear facilities. SBD guidance documents are being prepared as an aid to industry for their design activities, to describe the relationship between requirements, best practices, and advanced concepts. SBD 'lessons learned' studies have been conducted to help identify the existing best practices and potential areas for improvement. Finally, acceptance as a global norm is being pursued by way of international workshops, engagement with industry and the IAEA, and setting an example by way of its use in new nuclear facilities in the United States.

Demuth, Scott F [Los Alamos National Laboratory; Budlong - Sylvester, Kory [Los Alamos National Laboratory; Lockwood, Dunbar [DOE/NA-243

2010-01-01T23:59:59.000Z

93

Objectives, Strategies, and Challenges for the Advanced Fuel Cycle Initiative  

Science Conference Proceedings (OSTI)

This paper will summarize the objectives, strategies, and key chemical separation challenges for the Advanced Fuel Cycle Initiative (AFCI). The major objectives are as follows: Waste management - defer the need for a second geologic repository for a century or more, Proliferation resistance - be more resistant than the existing PUREX separation technology or uranium enrichment, Energy sustainability - turn waste management liabilities into energy source assets to ensure that uranium ore resources do not become a constraint on nuclear power, and Systematic, safe, and economic management of the entire fuel cycle. There are four major strategies for the disposal of civilian spent fuel: Once-through - direct disposal of all discharged nuclear fuel, Limited recycle - recycle transuranic elements once and then direct disposal, Continuous recycle - recycle transuranic elements repeatedly, and Sustained recycle - same as continuous except previously discarded depleted uranium is also recycled. The key chemical separation challenges stem from the fact that the components of spent nuclear fuel vary greatly in their influence on achieving program objectives. Most options separate uranium to reduce the weight and volume of waste and the number and cost of waste packages that require geologic disposal. Separated uranium can also be used as reactor fuel. Most options provide means to recycle transuranic (TRU) elements - plutonium (Pu), neptunium (Np), americium (Am), curium (Cm). Plutonium must be recycled to obtain repository, proliferation, and energy recovery benefits. U.S. non-proliferation policy forbids separation of plutonium by itself; therefore, one or more of the other transuranic elements must be kept with the plutonium; neptunium is considered the easiest option. Recycling neptunium also provides repository benefits. Americium recycling is also required to obtain repository benefits. At the present time, curium recycle provides relatively little benefit; indeed, recycling curium in thermal reactors would significantly increase the hazard (hence cost) of the resulting fuel. Most options separate short-lived fission products cesium and strontium to allow them to decay in separate storage facilities tailored to that need, rather than complicate long-term geologic disposal. This can also reduce the number and cost of waste packages requiring geologic disposal. These savings are balanced by costs for separation and recycle systems. Several long-lived fission products, such as technetium-99 and iodine-129 go to geologic disposal in improved waste forms, recognizing that transmutation of these isotopes would be a slow process; however, the program has not precluded their transmutation as a future alternative.

Steven Piet; Brent Dixon; David Shropshire; Robert Hill; Roald Wigeland; Erich Schneider; J. D. Smith

2005-04-01T23:59:59.000Z

94

U.S. Radioecology Research Programs Initiated in the 1950s  

SciTech Connect

In the early postwar years, beginning in 1949 and extending to the mid-1960s, U.S. Atomic Energy Commission (AEC) research on the fate and effects of radionuclides in the environment was driven by distinct environmental concerns-- the releases of radioactive materials around production sites, fallout from nuclear weapons tests, and radiation effects from both external and internal exposures. These problem areas spawned development of the scientific field of radioecology. To understand the perspectives in the 1950s of the United States on the issues of nuclear energy and the environment, we have reviewed the early research programs. Keeping to the theme of the papers in this environmental session, we will focus on the first area of concern -- the scientific studies to understand the environmental consequences of nuclear production and fuel reprocessing at the three primary production sites: the Hanford Works in the state of Washington, Clinton Laboratories in Oak Ridge, Tennessee, and the Savannah River Plant in South Carolina. The driving environmental issue was the fate and effects of waste products from nuclear fuel production and reprocessing -- concern about entry into environmental pathways. Early operational monitoring and evaluation by health physicists led to realization that additional emphasis needed to be placed on understanding environmental fate of radionuclides. What followed was forward-thinking R and D planning and development of interdisciplinary research teams for experimentation on complex environmental systems. What follows is a review of the major U.S. AEC radioecology research programs initiated during the 1950s, the issues leading to the establishment of these programs, early results, and their legacies for environmental protection and ecological research in the following decades.

Auerbach, S.I.; Reichle, D.E.

1999-10-01T23:59:59.000Z

95

Hydrogen recycling: fundamental processes  

DOE Green Energy (OSTI)

The recycling of hydrogen at the interior surfaces of plasma devices is an important and largely uncontrolled process at present. There remain important questions concerning the fundamental processes involved in recycling phenomena and the material dependence of these pocesses. A primary aim of the fundamental studies should be to develop sufficient understanding of the influence of materials properties on hydrogen recycling so that the materials and machine operating conditions can be selected to give maximum control of hydrogen recycling. In addition, realistic models of the wall behavior under recycling conditions need to be developed. Such modeling goes hand-in-hand with both fundamental process studies and in situ measurements, and may provide sufficient overall understanding of the influence of recycling on machine operation to impact design decisions effecting such important processes as impurity control, plasma, fueling, and pulse length.

Picraux, S.T.

1979-01-01T23:59:59.000Z

96

General Recycling Poster Session  

Science Conference Proceedings (OSTI)

Life Cycle Based Greenhouse Gas Footprints of Metal Production with Recycling .... The disposal of landfill sludge directly not only leads to the heavy metal ...

97

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste- ...

98

INEL metal recycle annual report, FY-94  

SciTech Connect

In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business.

Bechtold, T.E. [ed.

1994-09-01T23:59:59.000Z

99

Evaluation of radioactive scrap metal recycling  

SciTech Connect

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

100

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Production of Recycled Lead  

Science Conference Proceedings (OSTI)

...production of lead from recycled and mined (primary) sources for 1980 to 1988. At present, just under half of the total world lead production of 4.3 million metric tons (4.7 million tons) comes from recycling of scrap materials. As indicated in Table 4, there has been very little change in recent...

102

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

Science Conference Proceedings (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

103

Recycling - Nickel-based superalloys  

Science Conference Proceedings (OSTI)

A business and technology perspective on recycling, partiularly recycling of household waste, metals and plastics. 0, 563, Diana Grady, 7/2/2008 9:55 AM

104

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network (OSTI)

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We, ppm Cu, ppm Column I Column II H2SO4 Tank CdSO4 Electrolytic Cell Cadmium Metal Cd Solution H2SO4

105

Program on Technology Innovation: Development of Thin-Film Sensors to Detect Stress Corrosion Crack Initiation  

Science Conference Proceedings (OSTI)

A great amount of effort has been expended measuring stress corrosion crack (SCC) growth rates and investigating the mechanisms of SCC propagation. By contrast, relatively little effort has been devoted to studies of SCC initiation. The small amount of work on SCC initiation is due, in part, to the difficulty in investigating this phase of cracking. The main objective of the present investigation is to develop a thin-film sensor suitable for detecting and studying the initiation of intergranular stress c...

2005-12-02T23:59:59.000Z

106

Alabama Land Recycling And Economic Redevelopment Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Recycling And Economic Redevelopment Act (Alabama) Land Recycling And Economic Redevelopment Act (Alabama) Alabama Land Recycling And Economic Redevelopment Act (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Provider Department of Environmental Management This article establishes a program, to be implemented, maintained, and administered by the Alabama Department of Environmental Management, to encourage the voluntary cleanup and the reuse and redevelopment of environmentally contaminated properties. The article states criteria for applicant participation and property qualification in the voluntary cleanup

107

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle Charlotte Green Supply Chain: Reduce, Reuse, Recycle July 30, 2010 - 10:59am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had no paper recycling program," says Troy Berryman, who is entering his sixth year as principal at Sacred Heart. "A couple years prior, we had a guy park a semi-truck in the parking lot for people to recycle paper." But Berryman says this system did not work out well, as the truck was often locked and papers would be left to blow around in the wind or get wet with rain. Knowing that something must be done, he began to look into the local

108

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Kelly, Scott David

109

Recycle plastics into feedstocks  

Science Conference Proceedings (OSTI)

Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

Kastner, H.; Kaminsky, W. [Univ. of Hamburg (Germany)

1995-05-01T23:59:59.000Z

110

Recycling and Waste Minimization  

NLE Websites -- All DOE Office Websites (Extended Search)

and "Recycling Data by Site." For additional information regarding this page or feedback on its content, please contact: Jane Powers This page was last updated on March 25, 2013...

111

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

112

Recycle of radiologically contaminated austenitic stainless steels  

Science Conference Proceedings (OSTI)

The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides.

Imrich, K.J.; Leader, D.R.; Iyer, N.C.; Louthan, M.R. Jr.

1995-02-01T23:59:59.000Z

113

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

114

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

115

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

116

Scrap tire recycling  

DOE Green Energy (OSTI)

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

117

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

118

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

ARTICLES: Selected Readings on Magnesium Production, Recycling and Environment Links to key papers on magnesium primary production, recycling and ...

119

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Materials Recycling Research and Process Development Many reports by Argonne National Laboratory on recycling materials especially from vehicles.

120

Recycling and Material Price - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Recycling General Session. Presentation Title, Recycling and Material Price: ...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recycling of Titanium  

Science Conference Proceedings (OSTI)

...as basic raw materials for pigments, paints, paper, and plastic. The titanium ores are the materials of choice to produce white pigmentation in those materials. At this time only 10% of the ores result in metal. Recycling takes place in metal only....

122

Specifications for Recycled Lead  

Science Conference Proceedings (OSTI)

...in lead are antimony, arsenic, bismuth, copper, nickel, silver, tin, and zinc. Recently, selenium and tellurium have been added as important impurities in the United States. Primary-lead companies generally produce the 99.99% Pb grade, whereas recyclers produce the 99.97% Pb grade. The major difference...

123

Recycling and Secondary Recovery  

Science Conference Proceedings (OSTI)

"Applying Ausmelt Technology to Recover Cu, Ni, and Co from Slags" .... " Enhancing Cobalt Recovery from Primary and Secondary Resources" .... " Modifying Alumina Red Mud to Support a Revegetation Cover" (Research .... " Recycling Used Automotive Oil Filters" (Research Summary), K.D. Peaslee, February 1994, pp.

124

Florida Hydrogen Initiative (FHI) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Block, Director Emeritus Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road Cocoa, FL 32922 Phone: (321) 638-1001 Email: block@fsec.ucf.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Greg Kleen Phone: (720) 356-1672 Email: Greg.Kleen@go.doe.gov Contract Number: DE-FC36-04GO14225 Subcontractors: * EnerFuels, Inc., West Palm Beach, FL * Florida Atlantic University, Boca Raton, FL * Florida Solar Energy Center, Cocoa, FL * SRT Group, Inc., Miami, FL * Electrolytic Technologies Corporation, Miami, FL

125

Gunite and associated tanks remediation project recycling and waste minimization effort  

SciTech Connect

The Department of Energy`s Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars.

Van Hoesen, S.D.; Saunders, A.D.

1998-05-01T23:59:59.000Z

126

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

127

Renewable and Recycled Energy Objective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

128

Use of recycled materials in highway construction. Final report  

SciTech Connect

The major objectives of this study were to examine: (1) the types of recycled materials that are appropriate and feasible as alternative paving materials, such as glass and tires; and (2) the types of recycled materials, such as mixed-plastics and compost, that can be utilized in all types of transportation applications other than pavements. Seven key products are investigated: (1) tires, (2) glass, (3) asphalt concrete, (4) fly ash, (5) compost, (6) mixed plastics, and (7) aluminum sign stock. Performance and cost data for rubber-asphalt pavements is documented for both in-state and nationwide applications. The national experience with the use of waste glass as an additive to asphalt concrete and its use in unbound base materials is also highlighted. Programs for experimental use of recycled materials are outlined. Recommendations for staffing and program changes to deal with recycling issues are also discussed.

Swearingen, D.L.; Jackson, N.C.; Anderson, K.W.

1992-02-01T23:59:59.000Z

129

Recycled Thermoplastic Composite Bridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

130

Recycled Thermoplastic Composite Bridge  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycled Thermoplastic Composite Recycled Thermoplastic Composite Bridge Philip R. Columbus Office of the Assistant Chief of Staff for Installation Management Headquarters, Department of the Army 180900ZMay2012 1 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Overview * The purpose of this project was to demonstrate that a thermoplastic composite I-beam bridge could be constructed to accommodate a M-1 battle tank. * This effort determined the engineering and construction of such a structure was possible and be cost competitive to a wood timber bridge * The materials are virtually maintenance-free and not subject to degradation from moisture, rot, insects and weather. 180900ZMay2012 2 Philip R. Columbus/571-256-9774/philip.r.columbus.civ@mail.mil/ Background

131

REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.  

Science Conference Proceedings (OSTI)

Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

FTHENAKIS,V.

2001-01-29T23:59:59.000Z

132

Cleaning Out? Don't Forget to Recycle! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! Cleaning Out? Don't Forget to Recycle! January 24, 2013 - 5:30pm Addthis Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Recycling your old electronics is easy and good for the environment. | Photo by Nicki Johnson, NREL 15669. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Next time you need to get rid of old electronics or lighting, find out about recycling opportunities in your area. We all know recycling isn't necessarily a new idea for being energy conscious, but it's important to remember just how useful and easy it actually is. We explore a myriad of different energy saving tips every day

133

Climate VISION: Private Sector Initiatives: Forest Products  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Forest & Paper Association Logo The American Forest & Paper Association (AF&PA) supports the Climate VISION initiative to address climate change through enhanced research in technology and science, incentives, and voluntary efforts from all sectors of the American economy. The members of AF&PA have undertaken a series of programs through which they are collectively committed to meeting the President's intensity reduction goals. These programs include inventorying and reporting on greenhouse gases, actions to enhance sequestration in managed forests and products, development and implementation of improved technologies, efforts to improve energy efficiency, use of cogeneration and increased use of renewable energy, and recycling. AF&PA expects that these programs will

134

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

135

Argonne TTRDC - Experts - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

pollution control, solid waste recycling, greenhouse gases, advanced power systems and heat transfer Greg Krumdick, Electrical Engineer phone: 630252-3952, fax: 630252-1342,...

136

Recycled rubber roads  

SciTech Connect

The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

Not Available

1989-02-01T23:59:59.000Z

137

Direction of CRT waste glass processing: Electronics recycling industry communication  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

138

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity PIKETON, Ohio - Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and Reinvestment Act. Proceeds from recycling that metal through the unique program will add to the more than $2.8 million already generated from recycling more than 5.2 million pounds of material from site demolition efforts. "This metal represents economic opportunity for the surround- ing community, as proceeds from this material will create local jobs, utilize surrounding area facilities and generate money to be reinvested back into the community," said Pete Mingus, who

139

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycles Millions of Pounds of Metal Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

140

Site Recycles Millions of Pounds of Metal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal Site Recycles Millions of Pounds of Metal May 30, 2013 - 12:00pm Addthis The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. The Portsmouth site worked with two regional companies and local law enforcement to arrange transportation of 10 massive synchronous condensers as part of an asset recovery effort. PIKETON, Ohio - The EM program at the Portsmouth site and its contractor, Fluor-B&W Portsmouth, recycled millions of pounds of metal from the demolition of an electrical switchyard that served the former gaseous diffusion plant. The effort at the Portsmouth site diverted more than 4 million pounds of

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. The first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.

Seigler, R.S.

1994-01-01T23:59:59.000Z

142

Recycle Plastic Waste Recommended Action  

E-Print Network (OSTI)

AR No. 5 Recycle Plastic Waste Recommended Action Separate scrap plastic bag waste from solid waste stream and recycle. This can be accomplished by either arranging for no-cost pick-up of loose waste or by selling baled waste material. Assessment Recommendation Summary Recommended Waste Cost Implementation

Tullos, Desiree

143

Materials Sustainability: Digital Resource Center - Global Recycling ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Global Recycling Network is an electronic information exchange that specializes in the trade of recyclables reclaimed in Municipal Solid Waste ...

144

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... The Steel Recycling Institute is an industry association that promotes the recycling of steel products. The association website includes pages on ...

145

Materials - Recycling - Dezincing  

NLE Websites -- All DOE Office Websites (Extended Search)

Dezincing Scrap Steel Dezincing Scrap Steel Electro winning cells for recovery of zinc from de-zincing process solutions. Electro winning cells for recovery of zinc from de-zincing process solutions. Steel is one of the most recycled resources in the U.S.; half of the steel produced is derived from scrap. Since 1980, automobile and appliance manufacturers have increased their use of galvanized steel almost five-fold, with a resulting increase in the amount of galvanized steel scrap returned to steel producers. Dezincing Challenges The steel galvanizing process involves the application of a zinc-coating, which provides corrosion resistance. When galvanized scrap is melted in a steelmaking furnace, the zinc that it contains volatizes. The costs of treating the resulting zinc-laden dust and sludge by-products are

146

November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives- Illness and Injury Surveillance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Health, Safety and Security Illness and Injury Surveillance Program Office of Illness and Injury Prevention Programs Dr. Bonnie Richter, Office Director Dr. Cliff Strader, IISP Program Manager Further Information and Reports Available At: http://www.hss.energy.gov/HealthSafety/IIPP/hservices/epi_surv.html Program Overview: * Department's only multi-site program focused primarily on health of current workers * Monitors health of over 79,000 current contractor workers * Program evaluates and communicates potential impact of DOE operations on the health of workers * Maximizes use of existing data to reduce fiscal burden * Individual site analyses summarized annually * Reports of the entire DOE complex provide programmatic overview of workforce health

147

Coal liquefaction with preasphaltene recycle  

SciTech Connect

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

148

California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors  

E-Print Network (OSTI)

1 California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose to the mixing valve. Place the hot sensor on the pipe between the solar tank and the backup water heater. #12 to backup heater and a mixing valve between the solar tank and the backup water heater. Place the flow meter

149

Plant Networks for Processing Recyclable Materials  

Science Conference Proceedings (OSTI)

We use a modified optimal market area model to examine how links between material recycling and other aspects of operations strategy can shape plant networks for the processing of recyclable materials. We characterize the complementarity of the recyclate ... Keywords: localization, material versatility, minimills, operations strategy, optimal market area, plant networks, recycling

Lieven Demeester, Mei Qi, Luk N. Van Wassenhove

2013-10-01T23:59:59.000Z

150

Applied ecotechnological issues for recycling cars  

Science Conference Proceedings (OSTI)

The paper shows the need for recycling cars. Recycling operation is particularly complicated because after dismantling and split a wide range of material resulting in a proportion different and difficult to separate. There are presented two recycling ... Keywords: end-of-life-vehicle recycling, hammer mill technology, shrreder technology

Gheorghe Amza; Zoia Apostolescu; Mihaiela Iliescu; Zlatko Garac; Sanda Paise; Maria Groza

2011-07-01T23:59:59.000Z

151

Earth Day Electronics Recycling Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth Day Electronics Recycling Collection The U.S. Department of Energy, Washington, DC in collaboration with UNICOR Federal Prison Industries C E L E B R A T E E A R T H D A Y A...

152

Hail Formation via Microphysical Recycling  

Science Conference Proceedings (OSTI)

It is suggested that alternation of low-density riming and wet growth processes play a role in hailstone formation. Such alternation of growth processes, which has been called microphysical recycling, is envisioned to operate in the following ...

John C. Pflaum

1980-01-01T23:59:59.000Z

153

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

154

Solvent usage and recycling potential in a research and development setting  

SciTech Connect

Argonne National Laboratory utilizes thousands of gallons of chemicals each year. Laboratory wastes can be broadly characterized as coming from three focus areas: (1) restoration and decommissioning associated wastes generate larger quantities of waste on a one-time basis. The wastes may be non-hazardous to highly toxic and the quantities are variable. (2) Laboratory operations generate approximately 50% of all waste disposed. Operational waste can be characterized as less hazardous, reasonably consistent in nature, generally in larger quantities. (3) the final waste stream is small quantities of many different materials coming from many different waste streams. This waste stream is at the center of ANL`s pollution prevention program. The research areas have implemented many pollution prevention techniques. Solvent substitution has been effective in reducing hazardous cleaning wastes, scintillation cocktail wastes, and other chlorinated wastes. Micro chemistry is effective at minimizing certain chemical process wastes, developing new analytical chemistry procedures has reduced and eliminated other waste forms. New instrumentation has provided first level reductions in many waste streams. Despite these new techniques solvent usage remains the largest research related waste stream. The present solvents are generated from instruments such as electrophoresis and high pressure liquid chromatographs (HPLC), solvent extractions, biological staining and cleaning practices. ANL recognizes the significant role recycling this waste stream is in Pollution Prevention Program implementation. ANL initiated a study to quantify solvent usage, characterization of the waste solvent, and match the purity requirements exploring all opportunities to substitute and recycle.

Vivio, F.; Thuot, J.R.; Peters, R.W.

1996-07-01T23:59:59.000Z

155

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

2011-08-17T23:59:59.000Z

156

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

157

Design analysis: understanding e-waste recycling by Generation Y  

Science Conference Proceedings (OSTI)

This paper aims to understand e-waste recycling behavior of Generation Y. It presents a pilot study that explores this generation's e-waste recycling practices, their attitudes towards e-waste recycling, and the barriers to e-waste recycling. The findings ... Keywords: attitude, design, e-waste, recycling, recycling action, recycling behavior

Xiao Zhang; Ron Wakkary

2011-06-01T23:59:59.000Z

158

Problems in the initial teaching of programming using Java: the case for replacing J2SE with J2ME  

Science Conference Proceedings (OSTI)

In their analysis of the use of Java as a first teaching language, the ACM Java Task Force (JTF) identified a number of issues with the Java language and APIs which caused significant pedagogic problems. The focus of their work, and hence of their characterisation ... Keywords: introductory programming, programming languages

Ian Utting

2006-06-01T23:59:59.000Z

159

What can Recycling in Thermal Reactors Accomplish?  

SciTech Connect

Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

2007-09-01T23:59:59.000Z

160

Recycling came of age in 1994  

SciTech Connect

While metal and glass recycling have a long history, newer recycling efforts for paper and plastic have gone from a nascent business to maturing industry. After five years, sufficient infrastructure exists to support recycling as a full-fledged business. In the late 1980s, recycling was a business trying to get off the ground. Now it is recognized by many cities and states as a means of economic development and job creation. But recycling`s coming of age was not without growing pains. Many recyclers had to hang on while markets were poor and spotty. Gluts of plastic, waste paper, aluminum, and green glass often made it difficult for recyclers to turn a profit. Until early 1994, prices for most commodities were significantly low, and in some cases, these low prices forced recyclers and processors to close their doors, or at least curtail their operations.

Rabasca, L.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel  

SciTech Connect

The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

Clark, E.A.

1995-04-03T23:59:59.000Z

162

Services Initiatives | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Initiatives Services Initiatives The Transportation Team Uses Alternative Fueled Vehicles in HQ Fleet 73% of HQ Fleet is alternative fueled (FY2011). HQ utilizes biodiesel (B20) fueled shuttle buses, a domestic renewable fuel derived from natural oils like soybean oil. Recycled Paper for Copiers and Printers DOE Headquarters purchases a combination of 30% and 100% post-consumer recycled content paper for use in its staffed copy centers, walk-up copiers, and dedicated office printers and copiers. Printing Procurement All documents procured for printing use soy ink instead of petroleum based ink, and use recycled paper. Soy ink is renewable and is very low in Volatile Organic Compounds (VOCs) which evaporate little and cause no air pollution, whereas

163

Recycling readiness of advanced batteries for electric vehicles  

SciTech Connect

Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

Jungst, R.G.

1997-09-01T23:59:59.000Z

164

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

165

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

166

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

167

A review of incentives, strategies and model technologies for recycling photovoltaic modules  

DOE Green Energy (OSTI)

This paper identifies existing recycling programs for consumer products with similar composition to photovoltaic (PV) modules, including cathode-ray tubes, electronic circuit boards, batteries, and automobile windshield glass. Discussed are incentives, the selection of technologies, and strategies used to recycle these products. Since the technologies for recycling these products exist, developing a process, or series of processes, for PV modules should primarily be a matter of customization. Developing an entire recycling program that is economically feasible will provide a greater challenge. Achieving this will require careful analysis of incentives, use of various combinations of strategies, and inclusion of multiple industries for additional technical processes. This can contribute to the success of a program by dividing the costs and ensuring that secondary products and materials enter into a diverse amount of markets.

DePhillips, M.P.; Moskowitz, P.D.

1994-03-07T23:59:59.000Z

168

Analysis of Customer Enrollment Patterns in Time-Based Rate Programs - Initial Results from the SGIG Consumer Behavior Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2013 July 2013 SGIG Consumer Behavior Studies - Initial Results | Page ii Table of Contents Executive Summary .............................................................................................................. iii 1. Introduction ................................................................................................................... 1 1.1 Purpose and Scope ........................................................................................................... 1 1.2 Organization of this Report .............................................................................................. 3 2. Overview of the SGIG Consumer Behavior Studies .......................................................... 4 2.1 Recruitment Methods ...................................................................................................... 5

169

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

170

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network (OSTI)

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

171

Education: Digital Resource Center - WEB: What is Metals Recycling?  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... This British Metals Recycling Association (BMRA) website provides details concerning steel, aluminum, and copper recycling including ...

172

Recycling steel from grinding swarf  

SciTech Connect

Two cleaning processes have been investigated for removing contaminants (cutting oil with phosphorus ester) from high speed steel (HSS) griding swarf. One process uses an aqueous surfactant washing technique, and the second process uses supercritical carbon dioxide (SCCO{sub 2}) extraction. Both technical and preliminary financial analysis are performed to have a better evaluation of these two competing cleaning technologies. Bench scale aqueous washings have shown that the required phosphorus removal is easily obtained, but a sufficient oil removal is more difficult. The experimental results also indicate a strong dependence of the aqueous washing efficiency on the choice of a suitable surfactant. SCCO{sub 2} extraction at 80 C and 340 atm shows that approximately 80% of the oil can be removed from swarf during a 60-minute process to produce a batch of recyclable steel, and that the phosphorus removal also reaches the required level. The cost of processing swarf using either aqueous surfactant washing or SCCO{sub 2} extraction in a 3,000,000 lbs per year plant is analyzed and the market forces impacting the feasibility of recycling on a commercial basis are reviewed. Commercial scale recycling is, in part, dependent upon resolution of regulatory uncertainty on the definition of swarf. States regulating swarf as hazardous provide a significant financial incentive to recycle. In states that regulate swarf as a solid waste, low disposal costs provide a disincentive that must be balanced with the possible hidden, future liabilities of landfill disposal.

Fu, H.; Matthews, M.A.; Warner, L.S. [Univ. of South Carolina, Columbia, SC (United States)

1998-12-31T23:59:59.000Z

173

PITT RECYCLES! *Please empty cans!  

E-Print Network (OSTI)

(e.g. ­ Towers Lobby). White paper Most colored paper Notebook paper Copier paper Paperboard (Cereal printout paper Carbonless NCR paper Paper or manila folders Paper envelopes without windows Adding machine NOT Recyclable... Food waste Lunch bags Coffee cups Cellophane Tissues Paper towels Carbon paper Styrofoam Metals

Sibille, Etienne

174

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

175

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

176

California Public Utilities Commission California Solar Initiative  

E-Print Network (OSTI)

California Public Utilities Commission California Solar Initiative Program Handbook September 2012Power #12;Table of Contents i California Solar Initiative Program Handbook September 2012 1. Introduction: California Solar Initiative Program....................................................................1 1

177

Energy Return on Investment - Fuel Recycle  

SciTech Connect

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

178

Exchange Visitors Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Facility Operations Food Services Graphics Mail and Distribution Parking and Garage Photography Printing Recycling Safety and Health Shuttle Bus and Couriers Supply...

179

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

180

Impact of increased electric vehicle use on battery recycling infrastructure  

DOE Green Energy (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recycling end-of-life vehicles of the future. Final CRADA report.  

DOE Green Energy (OSTI)

Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

2010-01-14T23:59:59.000Z

182

Safe recycling of used oil  

SciTech Connect

It`s not just recovery of used oil, but how you recover it, that ultimately determines the impact on the environment. No matter what recycling technology is employed, there are environmental/economic factors that come into play. One is the distance to the end user. Sending the used oil to a nearby plant (e.g. a local asphalt manufacturer as opposed to a distant refiner) both reduces hauling costs and the potential for a spill occurring during transport. Management practices of the used oil recycler, pollution control, insurance coverage and environmental compliance record are other factors in evaluating recovery options. Generators need to be careful about who is collecting their used oil, because they can be held liable for mismanagement.

Arner, R. [Northern Virginia Planning District Commission, Cincinnati, OH (United States)

1995-09-01T23:59:59.000Z

183

Assessment of recycling or disposal alternatives for radioactive scrap metal  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A {open_quotes}tiered{close_quotes} concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested.

Murphie, W.E.; Lilly, M.J. III [US Dept. of Energy, Oak Ridge, TN (United States); Nieves, L.A.; Chen, S.Y. [Argonne National Lab., IL (United States)

1993-11-01T23:59:59.000Z

184

Slag recycling of irradiated vanadium  

Science Conference Proceedings (OSTI)

An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

Gorman, P.K.

1995-04-05T23:59:59.000Z

185

Predictive model for the determination of the economic feasibility of construction and demolition waste recycling in the Air Force. Master's thesis  

Science Conference Proceedings (OSTI)

This study created a model to be used at a CONUS Air Force base to determine the economic feasibility of Construction and Demolition (CD) waste recycling. Three areas investigated to develop this model: the methods to determine amounts and types of CD waste generated at a specific location, the markets for recycled CD wastes, and the recycling methods currently available. From this data, gathered through records searches and interviews, a procedure was developed to perform cost/benefit analyses on the available recycling options. A model was then created based on these calculations which can arm a manager with information to either support or reject a recycling program by indicating cost savings or losses from recycling CD waste. Also, the model aids managers in determining the approximate quantities of recyclable materials being generated, which could be valuable in reaching base recycling goals. To demonstrate the model, the feasibility of recycling CD waste at Hill AFB, Utah in 1994 was evaluated. In addition to determining recycling feasibility, a method was presented to perform sensitivity analyses on the base-specific input variables. This procedure can help determine when it will become feasible to create a CD waste recycling program.

Dixon, B.L.

1993-09-01T23:59:59.000Z

186

Scrap tire recycling in Minnesota  

Science Conference Proceedings (OSTI)

The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

Not Available

1989-10-01T23:59:59.000Z

187

Resolution in Support of the Responsible Electronics Recycling Act (HR2284/S1270) By Wisconsin Council on Recycling  

E-Print Network (OSTI)

WHEREAS the US EPA reported that over 2.3 million tons of e-waste i were generated in the US in 2009; WHEREAS Wisconsin recognized the need to actively and responsibly recycle electronic waste (e-waste) by passing 2009 Wisconsin Act 50 ii, now known as “E-Cycle Wisconsin”; WHEREAS a major goal of this statewide legislation is to divert as much e-waste from land disposal to responsible recovery and recycling; WHEREAS investigative reports by 60 Minutes iii, Frontline iv, Business Week v, National Geographic vi and other respected news organizations traced e-waste claimed to be responsibly recycled in the US to China and Africa where primitive processing technologies and methods were employed to recover metals from electronics while hazardous materials were burned off or disposed in open dumps- this practice offshores recycling jobs, poisons communities in developing countries, and threatens national security; WHEREAS the US General Accountability Office vii led a review of the e-waste industry in 2008 and determined that “current U.S. regulatory controls do little to stem the export of potentially hazardous used electronics”; WHEREAS the E-Cycle Wisconsin program does not have the jurisdiction to restrict the export of

unknown authors

2011-01-01T23:59:59.000Z

188

Nuclear Fuel Recycling Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that if the world is to provide sufficient energy to meet the demands of a growing population and improved standards of living in the 21 st century, nuclear energy will play a substantial role. Nuclear energy is a proven technology that will be part of the mix of technologies used by future generations due to its enormous energy potential with near-zero emissions of greenhouse gases (see related Position Statement 44). Alternative energy sources by themselves will be insufficient to meet these needs during this period of rapidly increasing energy demand. Nuclear fuel recycling, which involves separating the uranium and plutonium from spent nuclear fuel for reuse in the fabrication of new fuel (see Position Statement 47), has the potential to reclaim most of the unused energy in spent fuel. It is a proven alternative to current U.S. policy of direct disposal of spent fuel in a geological repository, which throws away the fuel’s remaining energy content. Recycling of nuclear fuel in other countries with proper safeguards and material controls (see related Position Statement 55) under the auspices of the International Atomic Energy Agency (IAEA) has demonstrated the viability of high level waste volume reduction and energy resource conservation. Transitioning to a recycle policy in an era of expanded nuclear deployment will enhance resource utilization, radioactive waste management, and safeguards. Additional research and development 1 are needed to address the issue of cost and to further enhance the safeguards and safety of the various processes that are required. Such research is also needed to secure the U.S. position as a leader in nuclear technology and global nuclear materials stewardship. Therefore, the American Nuclear Society endorses the following: U.S. policy that allows an orderly transition to nuclear fuel recycling in parallel with the development of the high level waste repository, Yucca Mountain, in a manner that would enhance the repository’s efficiency; further research and development of recycle options to ensure a secure and sustainable energy future with reduced proliferation risks.

unknown authors

2007-01-01T23:59:59.000Z

189

Consumer Assistance to Recycle and Save Act: empirical examination of government-sponsored financial incentives  

Science Conference Proceedings (OSTI)

The Cash for Clunkers program is the popular nickname for the Car Allowance Rebates Program created in the Consumer Assistance to Recycle and Save Act of 2009 (CARS). A review of the applied literature on CRM, economic policy, and the newly enacted ... Keywords: CRM, Car Allowance Rebates Program, Cash for Clunkers, Consumer Assistance to Recycle and Save Act, USA, United States, automobile purchasing, automotive sales, car buying, customer relationship management, economic recession, empirical, financial incentives, government incentives, operations, political policy, service industry, services, strategic planning, vehicle purchase

Alan D. Smith

2010-05-01T23:59:59.000Z

190

Recycling production designs : the value of coordination and flexibility in aluminum recycling operations  

E-Print Network (OSTI)

The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

Brommer, Tracey H. (Tracey Helenius)

2013-01-01T23:59:59.000Z

191

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

192

Waste Processing and Recycling: Some Case Studies  

Science Conference Proceedings (OSTI)

Symposium, WASTE RECYCLING IN MINERAL AND METALLURGICAL ... Effect of Electricity Mix and Ore Grade on the Carbon Footprint of Chilean Cathodic ...

193

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... This video was created by the Steel Manufacturers Association to educate the public on the importance of recycling steel. Shredded cars ...

194

Materials Sustainability: Digital Resource Center - Recycling and ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... These proceedings include papers based on presentations prepared for the symposium "Recycling and Waste Processing" at the TMS 2007 ...

195

Recycling in America: A Reference Handbook  

E-Print Network (OSTI)

and academic libraries, the handbook presents a nontechnicalRecycling in America: A Reference Handbook Patricia Murphy Handbook (Contemporary World Issues

Murphy, Patricia

1994-01-01T23:59:59.000Z

196

Materials Sustainability: Digital Resource Center - Product Recycling  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This excerpt from the 2003 Fujitsu Group Sustainability Report provides an overview of the Fujitsu recycling system and describes their ...

197

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and ...

198

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Biomass Product London-based project developer and manufacturer of biomass feedstock for energy production. References Howard Waste Recycling Ltd1 LinkedIn Connections...

199

Fourth International Symposium on Recycling of Metals  

Science Conference Proceedings (OSTI)

Combining Lead-Zinc 2000 and Recycling of Metals and Engineered ... Andreas Sigmund, RSR Technologies, Inc. Secondary Copper, Nickel and Cobalt

200

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

Link directory to a variety of general information sources on magnesium production, 0 ... Links to key papers on magnesium primary production, recycling and ...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Recycling of LiFePO4 Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

8-11, 2011 8-11, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of LiFePO 4 Batteries 7th International Symposium on Inorganic Phosphate Materials Phosphate Materials for Energy Storage We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 Battery materials could get used multiple times Initial Use Automotive power Secondary Use Utility storage Residential storage Power at remote location Refurbishment Rejuvenate (change electrolyte) Switch out bad module

202

Programming  

NLE Websites -- All DOE Office Websites (Extended Search)

Programming for Exascale Computers William Gropp and Marc Snir April 15, 2013 Abstract Exascale systems will present programmers with many challenges. We review the...

203

LANL's sanitary facility can now recycle up to 300,000 gallons of water  

NLE Websites -- All DOE Office Websites (Extended Search)

sanitary facility can now recycle up to 300,000 gallons of water sanitary facility can now recycle up to 300,000 gallons of water daily | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL's sanitary facility can now recycle up ... LANL's sanitary facility can now recycle up to 300,000 gallons of water daily Posted By Office of Public Affairs

204

LANL's sanitary facility can now recycle up to 300,000 gallons of water  

National Nuclear Security Administration (NNSA)

sanitary facility can now recycle up to 300,000 gallons of water sanitary facility can now recycle up to 300,000 gallons of water daily | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL's sanitary facility can now recycle up ... LANL's sanitary facility can now recycle up to 300,000 gallons of water daily Posted By Office of Public Affairs

205

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

Science Conference Proceedings (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

206

Waste Reduction and Recycling Rina Parikh  

E-Print Network (OSTI)

Waste Reduction and Recycling Rina Parikh Jimmy Zimmerman Brooke Evans Lacey Johnston #12;The with ideas to reduce waste. Many students have researched possibilities in exploring other aspects of waste that is accumulating in areas of food service and increasing the number of people who recycle. We

Peterson, Blake R.

207

FINAL PROGRAM  

Science Conference Proceedings (OSTI)

Oct 13, 2008 ... Global Symposium on Recycling,. Waste Treatment and. Clean Technology. Incorporating. Fifth International Symposium on Recycling.

208

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

209

The Second Symposium on the Recycling of Electronic Wastes  

Science Conference Proceedings (OSTI)

Life cycle and economic analysis for the recycling of E-Wastes. Abstracts Due ... Prospective Scenario of E-Waste Recycling in India · Recovery of Copper from ...

210

Recycling Magnesium Alloy Housings for Notebook Computers - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This article from Fujitsu Laboratories describes two recycling processes for magnesium alloy housings: one for recycling the excess material ...

211

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

212

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

213

Program Areas | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Initiatives Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program...

214

Constitutional Implications of Regional CO2 Cap-and-Trade Programs: The Northeast Regional Greenhouse Gas Initiative as a Case in Point  

E-Print Network (OSTI)

The Northeast Regional Greenhouse Gas Initiative as a CaseSee generally Reg'l Greenhouse Gas Initiative, About RGGI,18, 2009). 3. Reg'l Greenhouse Gas Initiative, Memorandum of

Funk, William

2009-01-01T23:59:59.000Z

215

Better Buildings Neighborhood Program: Step 6: Implement Finance Program  

NLE Websites -- All DOE Office Websites (Extended Search)

6: 6: Implement Finance Program Initiatives to someone by E-mail Share Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on Facebook Tweet about Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on Twitter Bookmark Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on Google Bookmark Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on Delicious Rank Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on Digg Find More places to share Better Buildings Neighborhood Program: Step 6: Implement Finance Program Initiatives on AddThis.com... Getting Started Driving Demand Financing Assess the Market

216

Recycle of iodine-loaded silver mordenite by hydrogen reduction  

SciTech Connect

In 1977 and 1978, workers at Idaho National Engineering Laboratory (INEL) developed and tested a process for the regeneration and reuse of silver mordenite, AgZ, used to trap iodine from the dissolver off-gas stream of a nuclear fuel reprocessing plant. We were requested by the Airborne Waste Management Program Office of the Department of Energy to perform a confirmatory recycle study using repeated loadings at about 150/sup 0/C with elemental iodine, each followed by a drying step at 300/sup 0/C, then by iodine removal using elemental hydrogen at 500/sup 0/C. The results of our study show that AgZ can be recycled. There was considerable difficulty in stripping the iodine at 500/sup 0/C.; however, this step went reasonably well at 550/sup 0/C or slightly higher, with no apparent loss in the iodine-loading capacity of the AgZ. Large releases of elemental iodine occurred during the drying stage and the early part of the stripping stage. Lead zeolite, which was employed in the original design to trap the HI produced, is ineffective in removal of I/sub 2/. The process needs modification to handle the iodine. Severe corrosion of the stainless steel components of the system resulted from the HI-I/sub 2/-H/sub 2/O mixture. Monel or other halogen-resistant materials need to be examined for this application. Because of difficulty with the stripping stage and with corrosion, the experiments were terminated after 12 cycles. Thus, the maximum lifetime (cycles) of recycle AgZ has not been determined. Mechanistic studies of iodine retention by silver zeolites and of the behavior of silver atoms on the reduction stage would be of assistance in optimizing silver mordenite recycle.

Burger, L.L.; Scheele, R.D.

1982-11-01T23:59:59.000Z

217

Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

218

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

219

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) Fraunhofer Center for Sustainable Energy Systems Location: Cambridge, MA Project Title TechBridge Energy Innovation Acceleration Program

220

Proven concepts for LLW-treatment of large components for free release and recycling  

Science Conference Proceedings (OSTI)

This paper describes Studsvik's technical concept of LLW-treatment of large, retired components from nuclear installations in operation or in decommissioning. Many turbines, heat exchangers and other LLW components have been treated in Studsvik during the last 20 years. This also includes development of techniques and tools, especially our latest experience gained under the pilot project for treatment of one full size PWR steam generator from Ringhals NPP, Sweden. The ambition of this pilot project was to minimize the waste volumes for disposal and to maximize the material recycling. Another objective, respecting ALARA, was the successful minimization of the dose exposure to the personnel. The treatment concept for large, retired components comprises the whole sequence of preparations from road and sea transports and the management of the metallic LLW by segmentation, decontamination and sorting using specially devised tools and shielded treatment cell, to the decision criteria for recycling of the metals, radiological analyses and conditioning of the residual waste into the final packages suitable for customer-related disposal. For e.g. turbine rotors with their huge number of blades the crucial moments are segmentation techniques, thus cold segmentation is a preferred method to keep focus on minimization of volumes for secondary waste. Also a variety of decontamination techniques using blasting cabinet or blasting tumbling machines keeps secondary waste production to a minimum. The technical challenge of the treatment of more complicated components like steam generators also begins with the segmentation. A first step is the separation of the steam dome in order to dock the rest of the steam generator to a specially built treatment cell. Thereafter, the decontamination of the tube bundle is performed using a remotely controlled manipulator. After decontamination is concluded the cutting of the tubes as well as of the shell is performed in the same cell with remotely controlled tools. Some of the sections of steam dome shell or turbine shafts can be cleared directly for unconditional reuse without melting after decontamination and sampling program. Experience shows that the amount of material possible for clearance for unconditional use is between 95 - 97 % for conventional metallic scrap. For components like turbines, heat exchangers or steam generators the recycling ratio can vary to about 80 - 85% of the initial weight. (authors)

Bergstroem, Lena; Lindstrom, Anders; Lindberg, Maria; Wirendal, Bo; Lorenzen, Joachim [Studsvik RadWaste AB, SE-611 82 Nykoeping (Sweden)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

To Recycle or Not to Recycle: That Is the Question - Insights from Life-Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS BULLETIN MRS BULLETIN * VOLUME 37 * APRIL 2012 * www.mrs.org/bulletin © 2012 Materials Research Society MANUFACTURING * RECYCLING Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfi lls compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants. Life-cycle analysis Despite these positive attributes, not all recycling processes

222

Fuzzy Assessment of Material Recyclability and Its Applications  

Science Conference Proceedings (OSTI)

A method to assess material recyclability using fuzzy logic is presented. Recyclability of materials is defined as a function of several variables, called basic indicators, which influence the technology and economics of the recycling processes, policies ... Keywords: Monotonic fuzzy systems, Recyclability

Yannis A. Phillis; Vassilis S. Kouikoglou; Xiaomin Zhu

2009-06-01T23:59:59.000Z

223

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

224

RecycleBank | Open Energy Information  

Open Energy Info (EERE)

RecycleBank RecycleBank Jump to: navigation, search Logo: RecycleBank Name RecycleBank Address 95 Morton Street Place New York, New York Sector Efficiency Number of employees 51-200 Website http://www.recyclebank.com/ Coordinates 40.731373°, -74.008584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.731373,"lon":-74.008584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Design and Optimization of Photovoltaics Recycling Infrastructure  

Science Conference Proceedings (OSTI)

With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

Choi, J.K.; Fthenakis, V.

2010-10-01T23:59:59.000Z

226

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

227

Brickyard Recycling Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Recycling Biomass Facility Recycling Biomass Facility Jump to: navigation, search Name Brickyard Recycling Biomass Facility Facility Brickyard Recycling Sector Biomass Facility Type Landfill Gas Location Vermilion County, Illinois Coordinates 40.122469°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.122469,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

Bayshore Recycling Solar Project Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Location Keasbey, New Jersey Coordinates 40.51667°, -74.30556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.51667,"lon":-74.30556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Materials Sustainability: Digital Resource Center - Recycler's World  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Recycler's World promotes the trade of scrap materials. Users can post a listing for the type of scrap material they wish to buy or sell. Source: ...

230

Materials Sustainability: Digital Resource Center - Recycling ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group ...

231

Materials Sustainability: Digital Resource Center - Recycling - Metals  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group ...

232

BWR Assembly Optimization for Minor Actinide Recycling  

Science Conference Proceedings (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

233

Hydrogen recycle modeling in transport codes  

DOE Green Energy (OSTI)

The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes.

Howe, H.C.

1979-01-01T23:59:59.000Z

234

Agony and ecstasy of tire recycling  

SciTech Connect

This article discusses the problem of used tires and the recycling of them. Shredded tires have a multitude of uses-new rubber, road construction, mulch, fuel, in composting and home insulation.

Logsdon, G.

1990-07-01T23:59:59.000Z

235

Innovative Vacuum Distillation for Magnesium Recycling  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description Magnesium recycling ...

236

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs (Foil Activation Studies)  

Science Conference Proceedings (OSTI)

In order to provide benchmark information for testing fuel-cycle analysis methods and nuclear data libraries, EPRI supported a series of critical lattice experiments at Battelle, Pacific Northwest Laboratories' plutonium recycle critical facility. These experiments involved water-moderated uniform uranium oxide and mixed (uranium-plutonium) oxide critical lattices. This volume presents the foil activation data obtained from this experimental program.

1978-09-01T23:59:59.000Z

237

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

238

AVAILABLE ONLINE AT: INITIATED BY:  

National Nuclear Security Administration (NNSA)

INITIATED BY: http:nnsa.energy.gov Office of Information Management and the Chief Information Officer NNSA Policy Letter Approved: 12-14-12 Baseline Cyber Security Program...

239

Economic Feasibility of Recycling Photovoltaic Modules  

Science Conference Proceedings (OSTI)

The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

Choi, J.K.; Fthenakis, V.

2010-12-01T23:59:59.000Z

240

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

242

Waste tire recycling by pyrolysis  

DOE Green Energy (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

243

Program  

Office of Scientific and Technical Information (OSTI)

Extremophiles 2004 Extremophiles 2004 5th International Conference on Extremophiles SEPTEMBER 19 -23, 2004 CAMBRIDGE, MARYLAND Extremophiles 2004 5th International Conference on Extremophiles © 2004, American Society for Microbiology 1752 N Street, N.W. Washington, DC 20036-2904 Phone: 202-737-3600 World Wide Web: www.asm.org All Rights Reserved Printed in the United States of America ISBN: 1-55581 324-0 TABLE OF CONTENTS General Information Scientific Program Abstracts for Oral Sessions Abstracts for Poster Sessions Index 4 10 18 42 144 4 ASM Conferences EXECUTIVE COMMITTEE Frank Robb, Chair University of Maryland Biotechnology Institute Michael W. Adams University of Georgia Koki Horikoshi Japan Agency for Marine-Earth Science and Technology Robert M. Kelly North Carolina State University Jennifer Littlechild

244

Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 11, 1: October 11, 2004 Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #341: October 11, 2004 Tire Recycling on AddThis.com... Fact #341: October 11, 2004 Tire Recycling In 2001, the United States generated 281 million scrap tires. Nearly 78% of those scrap tires were reused, recycled, or recovered; that is a dramatic

245

California Solar Initiative - Single-Family Affordable Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program Eligibility...

246

California Solar Initiative - Multi-Family Affordable Solar Housing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program < Back...

247

Green Initiatives Keep Hanford Site Environmentally Responsible |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible May 30, 2013 - 12:00pm Addthis The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. An electric charging station for electric vehicles is located at the Hanford site. An electric charging station for electric vehicles is located at the Hanford site. Lead acid batteries are collected at the Hanford Centralized Consolidation/Recycling Center. Other items recycled at Hanford include aerosol products, aluminum cans and foil, audio tapes, boxes, cell phones, chemicals and computers.

248

Green Initiatives Keep Hanford Site Environmentally Responsible |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible Green Initiatives Keep Hanford Site Environmentally Responsible May 30, 2013 - 12:00pm Addthis The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. The Hanford site exceeded its goal of reducing fleet vehicles by 15 percent in fiscal year 2012. The overall reduction that year was 25.4 percent. An electric charging station for electric vehicles is located at the Hanford site. An electric charging station for electric vehicles is located at the Hanford site. Lead acid batteries are collected at the Hanford Centralized Consolidation/Recycling Center. Other items recycled at Hanford include aerosol products, aluminum cans and foil, audio tapes, boxes, cell phones, chemicals and computers.

249

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

250

Progress in recycling of automobile shredder residue  

DOE Green Energy (OSTI)

At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

1996-03-01T23:59:59.000Z

251

Chemical decontamination of process equipment using recyclable chelating solvent Phase I. Final report, September 1993--June 1995  

SciTech Connect

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

NONE

1995-10-01T23:59:59.000Z

252

Postdoc Program  

NLE Websites -- All DOE Office Websites (Extended Search)

for growth. Contact Postdoc Program Office Email New Initiative Los Alamos National Laboratory is pleased to announce our recent partnership with the University of California (UC)...

253

Recycle/reuse: the right answer  

SciTech Connect

Typically, all costs associated with disposal of hazardous waste are eliminated when the material is sold for reuse/recycling. In the future, out-of-pocket disposal costs can be expected to increase, and the market value of many materials found in wastes should rise as finite cheap virgin material sources are depleted. The recognition that natural resources will become increasingly scarce (perhaps similar to oil) has prompted the major oil companies to acquire major non-ferrous metal companies. In order to determine whether a serious marketing effort for recycling is justifiable, an accurate characterization of the must be made. Innovation in developing new applications is essential unless the material is one that has been traditionally recycled. In the coming years, as both the value of our waste and its dispsal increase, much greater emphasis must be placed on the principle of non-waste technology.

Immerman, R.L.

1981-01-01T23:59:59.000Z

254

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

Recycled Energy Development Recycled Energy Development Jump to: navigation, search Name Recycled Energy Development Place Westmont, Illinois Zip 60559 Product RED acquires industrial utility plants and then builds and installs waste energy capture and combined heat and power systems. Coordinates 40.316095°, -78.956753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316095,"lon":-78.956753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Impacts of EV battery production and recycling  

DOE Green Energy (OSTI)

Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

1996-06-01T23:59:59.000Z

256

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Central Florida Location: Orlando, FL Project Title MegaWatt Ventures Proposed Action or Project Description The University of Central Florida is dedicated to creating innovative programs that accelerate the

257

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-01-01T23:59:59.000Z

258

Chemical and mechanical recycling of shredder fluff  

SciTech Connect

Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

1992-12-01T23:59:59.000Z

259

November 6, 2008; HSS/Union Working Group Meeting on Aging Workforce/Strategic Initiatives - DOE Illness and Injury Surveillance Program Worker Health Summary, 1995-2004  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07-OEWH-1073 07-OEWH-1073 U.S. Department of Energy Illness and Injury Surveillance Program Worker Health Summary, 1995-2004 Questions or comments about this report or the Department of Energy's (DOE) Illness and Injury Surveillance Program (IISP) may be directed to: Dr. Cliff Strader at cliff.strader@hq.doe.gov or Dr. Bonnie Richter at bonnie.richter@hq.doe.gov United States Department of Energy Office of Health, Safety and Security Office of Illness and Injury Prevention Programs, HS-13 1000 Independence Avenue, SW Washington, DC 20585-0270 Additional information about the DOE's Office of Illness and Injury Prevention Programs, the IISP, and reports for DOE sites participating in this program can be found at: www.hss.energy.gov/HealthSafety/IIPP/hservices/epi_surv.html

260

BUILDING MATERIALS RECLAMATION PROGRAM  

Science Conference Proceedings (OSTI)

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

2010-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Recovery, reuse, and recycle of industrial waste  

SciTech Connect

The major goal of this work is to produce a document useful in planning efforts aimed at elimination of industrial wastes through the application of recycle, recovery, and reuse technology. The pollutants considered in this study are basically organic and inorganic by-products from wastewater effluents, solid residue and gaseous emissions from industrial operations. The first section contains chapters on methodology currently available for recovery of industrial and hazardous waste, and developing technology for recycle, reuse and recovery. The second section contains chapters on 5 technical categories, used for recovery namely, sorption, molecular separation, phase transition, chemical modification, and physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1983-11-01T23:59:59.000Z

262

The value of recycling on water conservation.  

SciTech Connect

Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

Ludi-Herrera, Katlyn D.

2013-07-01T23:59:59.000Z

263

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

264

Study of recycling impurity retention in Alcator C-mod  

E-Print Network (OSTI)

This work was aimed at reproducing experimental results in impurity compression of Ar, as well as the screening of recycling and non-recycling impurities from reaching the core plasma. As part of the study the code was ...

Chung, Taekyun

2004-01-01T23:59:59.000Z

265

A comparison of public policies for lead recycling  

E-Print Network (OSTI)

Policies that encourage recycling may be used to reduce environmental costs from waste disposal when direct restrictions on disposal are difficult to enforce. Four recycling policies have been advanced: (i) taxes on the ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

266

Impact of hybrid and electric vehicles on automobile recycling infrastructure  

Science Conference Proceedings (OSTI)

The recycling infrastructure for end-of-use vehicles in the United States is driven by profitability due to the absence of regulations. Typically, the recycling consists of removing reusable components for resale and shredding and separating remaining ...

Deogratias Kibira; Sanjay Jain

2011-12-01T23:59:59.000Z

267

U.S. Department of Energy National Center of Excellence for Metals Recycle  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.

Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

1998-05-01T23:59:59.000Z

268

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

269

Silicon Production, Purification and Recycling for Photovoltaic Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Silicon Production, Purification and Recycling for Photovoltaic Cells.

270

Fourth International Symposium on Recycling of Metals: Table Top ...  

Science Conference Proceedings (OSTI)

TMS Logo. Fourth International Symposium on Recycling of Metals: Table Top Exhibit. 2000 TMS FALL EXTRACTION AND PROCESS METALLURGY ...

271

Fourth International Symposium on Recycling of Metals and ...  

Science Conference Proceedings (OSTI)

Recycling - A Fan of the Can. X B. Steverson ................................................................. ............................................... 923. Development of New Filter for Removal of ...

272

Evaluation of Environmental Tradeoffs in Portable Battery Recycling  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Evaluation of Environmental Tradeoffs in ...

273

Impacts of the Manufacturing and Recycling Stages on Battery Life ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Impacts of the Manufacturing and ...

274

Recovery, recycle and reuse of industrial wastes  

Science Conference Proceedings (OSTI)

This book discusses the elimination of industrial wastes through the application of recycle, recovery and reuse technology. An overview is provided of how various processes can recover potential contaminants for eventual reuse. Chapters include resource recovery from hazardous waste, sorption, molecular separation, phase transition, chemical modifications, physical dispersion and separation.

Noll, K.E.; Haas, C.N.; Schmidt, C.; Kodukula, P.

1985-01-01T23:59:59.000Z

275

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

276

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

277

Recycling of Thermoset-Matrix Composites  

Science Conference Proceedings (OSTI)

Table 1   Thermoset composites recycling processes...Ref 14 ) Polyurethane foams, ASR Gas, oil, solid waste Hydrolysis ( Ref 10 , 11 ) Foams, RIM resin, and elastomers Monomers of the input material Fluidized bed combustion ( Ref 14 ) RIM Energy recovery, solid and gaseous wastes Rotary kiln combustion ( Ref 13 ) RIM Energy recovery, solid and gaseous...

278

Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications  

SciTech Connect

The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments allowing more time for neutralized solutions of plutonium-238 to precipitate resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

Schulte, L.D.; Espinoza, J.M.; Ramsey, K.B.; Rinehart, G.H.; Silver, G.L.; Purdy, G.M.; Jarvinen, G.D.

1997-11-01T23:59:59.000Z

279

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ-City-Camden NJ-City-Camden Location: City Camden NJ American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Funding for the position of Energy Manager to oversee the energy efficiency projects; 2) building retrofits to the North Camden Community Center which includes replacing inefficient hot water heaters, furnace, air-conditioning, insulation, and ventilation system; 3) expand recycling program by purchasing recycling containers and conduct educational and promotional campaigns; 4) consulting services and hiring of an intern to assist with monitoring recycling bins, tracking distribution, and assisting with outreach programs and miscellaneous promotional costs; and 5) replace traffic signals with energy efficient lighting technologies.

280

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment Methods and Operating Tools for Grid Reliability: An Executive Report on the Transmission Program of EPRI's Power Deliver y Reliability Initiative  

Science Conference Proceedings (OSTI)

Maintaining a high level of power grid reliability is one of the most pressing issues facing the electric power industry today. This report summarizes the achievements and planned activities of the transmission portion of the industry-wide Power Delivery Reliability Initiative, which is developing new tools and methods for assessing and improving grid reliability.

2001-03-26T23:59:59.000Z

282

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

283

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

284

New Choctaw Nation Recycling Center Posts Quick Results | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choctaw Nation Recycling Center Posts Quick Results Choctaw Nation Recycling Center Posts Quick Results New Choctaw Nation Recycling Center Posts Quick Results March 8, 2011 - 5:08pm Addthis Albert Bond Project Officer, Golden Field Office What does this mean for me? The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. "If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma's new regional recycling center is being received. The Choctaw Nation used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling

285

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

286

Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

1982-10-01T23:59:59.000Z

287

Control levels for residual contamination in materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support joint efforts by the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water and Radiation Division (DOE/EH-232); by the U.S. Environmental Protection Agency (EPA); and by the U.S. Nuclear Regulatory Commission (NRC) to develop radiological control criteria for the recycle and reuse of scrap materials and equipment that contain residual radioactive contamination. The initial radiological control levels are the concentrations in or on materials considered for recycle or reuse that meet the individual (human) or industrial (electronics/film) dose criteria. The analysis identifies relevant radionuclides, potential mechanisms of exposure, and methods to determine possible non-health-related impacts from residual radioactive contamination in materials considered for recycle or reuse. The generic methodology and scenarios described here provide a basic framework for numerically deriving radiological control criteria for recycle or reuse. These will be adequately conservative for most situations.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1993-09-01T23:59:59.000Z

288

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

289

A Ceramic membrane to Recycle Caustic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Ceramic Membrane to Recycle Caustic in Low-Activity Waste Stream Processing The Office of Waste Processing is sponsoring an R&D project with Ceramatec, Inc. to develop a ceramic membrane capable of separating sodium from the Hanford Low Activity Waste (LAW) stream. The Hanford High-Level Waste (HLW) tanks must be maintained in a caustic environment to inhibit corrosion. Consequently, they contain large quantities of NaOH. Ultimately the HLW will be retrieved, separated into HLW and LAW streams, with both streams being vitrified at the Waste Treatment Plant (WTP). Prior to processing, additional NaOH will be added to the LAW stream to solubilize the alumina, preventing alumina precipitation, but further increasing the NaOH quantity. This project's goal is to separate the sodium from the LAW stream prior to vitrification which will allow the NaOH to be recycled and further

290

Recovery of recyclable materials from shredder residue  

SciTech Connect

Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

1994-01-01T23:59:59.000Z

291

Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Final technical progress report  

Science Conference Proceedings (OSTI)

After an introduction and a literature survey in Chap. 1, Chap. 2 describes the tasks, together with objectives and important results obtained for each task throughout the entire project. Chaps. 3 thru 7 detail work in developing a qualitative and quantitative knowledge of asphalt oxidation, composition dependence of asphalt properties, and guidelines for producing superior asphalt binders through composition control. They also detail the development of a kinetic model for asphalt oxidative aging and present an understanding of the composition dependence of asphalt oxidation as well as other performance-related properties. Chaps. 8 and 9 compare the aging performance of recycled blends produced using commercial recycling agents and industrial supercritical fractions as rejuvenating agents. Oxidative aging of the recycled blends were evaluated along with the performance of the recycled blends in terms of the strategic highway research program performance grading procedure. Chap. 10 summarizes the work completed in the areas of processing schemes development, projection updates, and scale-up and commercialization plans.

Bullin, J.A.; Davison, R.R.; Glover, C.J.; Chaffin, J.; Liu, M.; Madrid, R.

1997-07-01T23:59:59.000Z

292

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

293

Recycling of Advanced Batteries for Electric Vehicles  

DOE Green Energy (OSTI)

The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

JUNGST,RUDOLPH G.

1999-10-06T23:59:59.000Z

294

Strategic defense initiative  

DOE Green Energy (OSTI)

The Engineering Technology Division has a leading role, including that of program management, in a major new programmatic thrust of the Oak Ridge National Laboratory that is in support of the national Strategic Defense Initiative (SDI). It is appropriate for the Laboratory to become significantly involved in the program because several of the most promising SDI technologies are in areas for which ORNL (together with Y-12 and K-25) have strong capabilities and significant resources. The initial ORNL work in support of the SDI program is focused on three technologies in which ORNL has extensive experience and traditionally strong research and development programs: (1) space nuclear power, (2) flywheel energy storage, and (3) neutral particle beams. The space nuclear program will utilize our capabilities in areas such as refractory materials, high-temperature alkali metal systems, shielding, and instrumentation. Space nuclear reactors capable of supplying multimegawatt levels of electrical power on a continuous and long-term basis are envisioned to be required for a variety of SDI surveillance satellites and space-borne weapons platforms. The feasibility of an alkali metal Rankine power conversion cycle, which has promise of providing high power with a very low system mass, is planned for study.

Nichols, J.P.

1985-01-01T23:59:59.000Z

295

Absorptive Recycle of Distillation Waste Heat  

E-Print Network (OSTI)

When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence, conserve) up to 50% of the required distillation energy. In contrast to compressor driven heat pumps, this savings is accomplished without need for a separate substantial input of mechanical power. A different AHP configuration is used depending on whether the excess availability is in the source heat or reject heat. In the excessive source temperature case, the higher temperature source heat is applied to the AHP, which then supplies the total reboiler requirement and recycles half the reject heat, with the remainder being rejected conventionally. In the excessive reject temperature case, all the reject heat is supplied to a reverse absorption heat pump (HAHP) which recycles half to reboiler temperature while reducing the remainder to ambient temperature.

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

296

China Initiatives at Michigan State University  

E-Print Network (OSTI)

China Initiatives at Michigan State University Office of China Programs The Office of International Studies and Programs at Michigan State University established the Office of China Programs in July 2005 to help implement President Lou Anna K. Simon's "China Initiative," part of the university's long

Liu, Taosheng

297

Laser Initiated Actuator study  

SciTech Connect

The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

Watson, B.

1991-06-27T23:59:59.000Z

298

U.S. Department of Energy National Center of Excellence for Metals Recycle  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals.

Adams, V.; Bennett, M.; Bishop, L. [Dept. of Energy, Oak Ridge, TN (United States)] [and others

1998-06-01T23:59:59.000Z

299

Recycling Energy Yields Super Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings Recycling Energy Yields Super Savings April 23, 2010 - 4:34pm Addthis Joshua DeLung Recycling has been part of going green for a long time, but one company is going a step further by actually recycling energy that has already been used to power manufacturing plants. How do they do it? Recycled Energy Development implements proven technologies that help capture wasted heat and increase their energy efficiency. Dick Munson, senior vice president for public affairs at RED, says facilities that undertake such projects are generally able to cut their energy expenses by up to 20 percent. West Virginia Alloys, in Alloy, W.Va., is a silicon manufacturing plant that makes materials that end up in products such as solar cells and computer chips. In 2013, with help from

300

Validation of the RESRAD-RECYCLE computer code.  

SciTech Connect

The RESRAD-RECYCLE computer code was developed by Argonne National Laboratory under the sponsorship of the U.S. Department of Energy. It was designed to analyze potential radiation exposures resulting from the reuse and recycling of radioactively contaminated scrap metal and equipment. It was one of two codes selected in an international model validation study concerning recycling of radioactively contaminated metals. In the validation study, dose measurements at various stages of melting a spent nuclear fuel rack at Studsvik RadWaste AB, Sweden, were collected and compared with modeling results. The comparison shows that the RESRAD-RECYCLE results agree fairly well with the measurement data. Among the scenarios considered, dose results and measurement data agree within a factor of 6. Discrepancies may be explained by the geometrical limitation of the RESRAD-RECYCLE's external exposure model, the dynamic nature of the recycling activities, and inaccuracy in the input parameter values used in dose calculations.

Cheng, J.-J.; Yu, C.; Williams, W. A.; Murphie, W.

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network (OSTI)

Recycling and waste exchange, particularly in the industrial sector, has a substantial positive energy impact and one that can often be accomplished at little or no expense. Recycling saves energy because the secondary materials being recycled are "pre-processed", and this requires less manufacturing operations than creating products from virgin materials. Process energy reduction possible by recycling is estimated to be as high is 95% for aluminum and 88% for plastics. Industrial waste exchange is facilitated by having an independent agency to publicize and coordinate materials availability and exchange. The North Carolina Energy Division is a co-sponsor of one such agency, the Southeast Waste Exchange in Charlotte, and has funded workshops on the recycling-energy connection and waste minimization. Although the paper, plastic and glass familiar to residential recyclers are also exchanged at the industrial level, in addition, industrial waste exchange deals extensively with solvents, oils, acids and alkalis and other specialty substances.

Phillips, W. C.

1992-04-01T23:59:59.000Z

302

Weatherization & Intergovernmental Program: Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Intergovernmental Program Projects Site Map Bookmark and Share Projects From energy efficiency initiatives - such as residential weatherization and state capitol...

303

Breckinridge Project, initial effort  

DOE Green Energy (OSTI)

Report IV, Volume 3, provides descriptions, data, and drawings pertaining to H-COAL Recycle Slurry Preparation (Plant 5), H-COAL Recycle Hydrogen Compression (Plant 6), and H-COAL Distillate Separation (Plant 17). H-COAL Recycle Slurry Preparation (Plant 5) receives a slurry stream from H-COAL Primary Separation (Plant 4), and then pumps the slurry through hydrocyclones, producing two slurry streams. One, dilute in solids is recycled back to the reactor. The other, concentrated in solids, is further processed to recover liquid products and is then transferred to Gasification and Purification (Plant 12). H-COAL Recycle Hydrogen Compression (Plant 6) compresses and recycles back to the reactor system hydrogen-rich vapor from H-COAL Primary Separation (Plant 4). This recycling maintains a hydrogen partial pressure and gas flow through the reactor vessel. H-COAL Distillate Separation (Plant 17) processes products from H-COAL Primary Separation (Plant 4) and H-COAL Recycle Slurry Preparation to produce light naphtha for the Gas Plant (Plant 7), middle and heavy distillates for tank farms, and heavy naphtha for Naphtha Hydrotreating and Reforming (Plant 18). The following information is included for each of the three plants: a description of the plant's process design, including the utility balance, heat and material balance (if applicable), and a process flow diagram; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for the piping and instrument diagrams included in this volume.

None

304

TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS  

Science Conference Proceedings (OSTI)

The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

2010-11-01T23:59:59.000Z

305

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

306

Strategies for recycling CdTe photovoltaic modules  

DOE Green Energy (OSTI)

Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

Eberspacher, C.; Gay, C.F. [UNISUN, Newbury Park, CA. (United States); Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States)

1994-12-31T23:59:59.000Z

307

Selective Catalytic Reduction Catalyst Recycle and Re-Use Options  

Science Conference Proceedings (OSTI)

Given the widespread implementation of selective catalytic reduction (SCR) technology, there is a great deal of interest in finding viable recycle/re-use routes for spent catalyst as an alternative to landfilling. The current effort has focused on detailed evaluation of several recycle/re-use processes that were identified in previous EPRI studies. These recycle/re-use technologies include mineral filler applications, incorporation into wet-bottom boiler slag, cement kiln co-processing, and use in iron/s...

2010-12-21T23:59:59.000Z

308

A Goldilocks Catalyst: Nanocluster 'just right' for Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Goldilocks Catalyst A Goldilocks Catalyst Nanocluster 'just right' for recycling carbon dioxide February 21, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John...

309

ISASMELT™ for Recycling of Valuable Elements Contributing to a ...  

Science Conference Proceedings (OSTI)

Metals recycling is essential if we are to build a more sustainable society. ISASMELT™ Top Submerged Lance (TSL) technology can enable plant operators to ...

310

Development of Efficient Recycling System for Steel Alloying ...  

Science Conference Proceedings (OSTI)

ISASMELT™ for Recycling of Valuable Elements Contributing to a More Sustainable Society · Leaching of Uranium and Vanadium from Korean Domestic Ore.

311

PGM Recycling from Catalysts in a Closed Hydrometallurgical Loop ...  

Science Conference Proceedings (OSTI)

ISASMELT™ for Recycling of Valuable Elements Contributing to a More Sustainable Society · Leaching of Uranium and Vanadium from Korean Domestic Ore.

312

European Recycling Platform – Experiences from a New Venture  

Science Conference Proceedings (OSTI)

Materialization of Manganese by Selective Precipitation from Used Battery · Materials ... The Challenge of Allocation in LCA: The Case of Open-Loop Recycling.

313

Production, Refining and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, refining and recycling of the rare earth metals. In addition the symposium is ...

314

Production, Recovery and Recycling of Rare Earth Metals  

Science Conference Proceedings (OSTI)

This symposium is targeting on overview of the current state of the art for production, recovery and recycling of the rare earth. In addition the symposium is  ...

315

Decentralized Decision-making and Protocol Design for Recycled ...  

E-Print Network (OSTI)

Nov 14, 2006 ... Optimization Online. Decentralized Decision-making and Protocol Design for Recycled Material Flows. I-Hsuan Hong (ihong ***at*** ...

316

Discussions@TMS - What are the recycling trends between urban ...  

Science Conference Proceedings (OSTI)

Oct 4, 2007 ... Topic Title: What are the recycling trends between urban and rural areas and are there any specific infrastructure needs? Topic Summary: ...

317

Section 7.2 Operational Waste Reduction and Recycling: Greening...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations for reuse or can be recycled, depending on its age and quality. Compost: Organic matter generated from food services and landscaping operations should be...

318

LIGHT METALS 2007 Volume 6: The Material Recycling Industry  

Science Conference Proceedings (OSTI)

Environmental Management of Airborne Metal Emissions in the Recycling Industry [pp. 1173-1190] Karen Hagelstein and John E Heinze. Improved UBC Melting ...

319

REWAS 2008: Global Symposium on Recycling, Waste Treatment ...  

Science Conference Proceedings (OSTI)

Oct 20, 2008 ... REWAS 2008: Global Symposium on Recycling, Waste Treatment and ... on the Recovery of Materials and Energy for Resource Efficiency.

320

Promotion of Recycling Business by Combination of a Pre ...  

Science Conference Proceedings (OSTI)

... friendly system for recycling valuable metals in the waste which used to be sent to a landfill. ... Waste Heat Recovery from Industrial Smelting Exhaust Gas ...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Comparison of Li-Ion Battery Recycling Options  

NLE Websites -- All DOE Office Websites (Extended Search)

1 A Comparison of Li-Ion Battery Recycling Options Linda Gaines and Jennifer Dunn Center for Transportation Research Argonne National Laboratory SAE World Congress April 2012 PAPER...

322

Lithium-Ion Batteries: Examining Material Demand and Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES Linda Gaines and Paul Nelson Argonne National Laboratory, Argonne, IL Keywords: battery materials, lithium, recycling Abstract Use of vehicles with electric drive, which...

323

China Recycling Energy Corp CREG | Open Energy Information  

Open Energy Info (EERE)

Energy Corp CREG Jump to: navigation, search Name China Recycling Energy Corp (CREG) Place Reno, Nevada Zip 89511 Product A US-incorporated company that develops recovered energy...

324

2011 Vittorio de Nora Award Winner: Recycling of Contaminated ...  

Science Conference Proceedings (OSTI)

Removal of contaminants such as the coat and organic materials- applied for protection and appearance- are the tail that wags the recycling dog. Successful ...

325

Renewable and Recycled Energy Objective (North Dakota) | Open...  

Open Energy Info (EERE)

There are special conditions regarding RECs associated with hydropower facilities. Electricity generation applied to the renewable energy and recycled energy objective, as well...

326

Waste Home Appliances Recycling in Some European and ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... The recycling of waste home appliances has been an eminent issue globally. In European Communities, the directive on waste electrical and ...

327

Webcast “Enhancing the Value Proposition Through Metals Recycling  

Science Conference Proceedings (OSTI)

Presenter: Joseph Fiksel, Center for Resilience, The Ohio State University; “The ... “Understanding and Enhancing Aluminum Can Recycling Rate-a Kentucky ...

328

Microbial Fuel Cells for Recycle of Process Water from ...  

Large amounts of water are used in the processing of cellulosic biomass materials, so it is highly desirable to recycle used process water at the end ...

329

Mechanical Recycling of Electronic Wastes for Materials Recovery  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

330

Prospective Scenario of E-Waste Recycling in India  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

331

Willingness to Recycle Electronic Waste: Results from a National ...  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

332

WEEE: Obsolete Mobile Phones Characterization Aiming at Recycling  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP · Mechanical Recycling of Electronic Wastes for Materials Recovery.

333

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

334

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

335

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources  

E-Print Network (OSTI)

Recycle/reuse networks are commonly used in industrial facilities to conserve natural resources, reduce environmental impact, and improve process economics. The design of these networks is a challenging task because of the numerous possibilities of assigning stream (process sources) to units that may potentially employ them (process sinks). Additionally, several fresh streams with different qualities and costs may be used to supplement the recycle of process streams. The selection of the type and flow of these fresh resources is an important step in the design of the recycle/reuse networks. This work introduces systematic approaches to address two new categories in the design of recycle/reuse networks: (a) The incorporation of thermal effects in the network. Two new aspects are introduced: heat of mixing of process sources and temperature constraints imposed on the feed to the process sinks iv (b) Dealing with variation in process sources. Two types of source variability are addressed: flowrate and composition For networks with thermal effects, an assignment optimization formulation is developed. Depending on the functional form of the heat of mixing, the formulation may be a linear or a nonlinear program. The solution of this program provides optimum flowrates of the fresh streams as well as the segregation, mixing, and allocation of the process sources to sinks. For networks with variable sources, a computer code is developed to solve the problem. It is based on discretizing the search space and using the concept of "floating pinch" to insure solution feasibility and optimal targets. Case studies are solved to illustrate the applicability of the new approaches.

Zavala Oseguera, Jose Guadalupe

2009-08-01T23:59:59.000Z

336

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network (OSTI)

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

337

Initiatives for proliferation prevention  

SciTech Connect

Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

1997-04-01T23:59:59.000Z

338

NYSEG (Electric) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program NYSEG (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge Start Date 5/1/2011 State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 rebate and free removal Multifamily Dwelling Units: 6 free CFLS and smart power strips Multifamily Common Area Ligting: 50% off custom lighting upgrades Provider NYSEG/RG&E NYSEG is offering residential electric customers rebates for recycling refrigerators, and its multifamily customers free CFLs, smart power strips and 50% off common area lighting equipment. All equipment requirements must

339

Microdrill Initiative - Initial Market Evaluation  

SciTech Connect

The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

Spears & Associates, Inc

2003-07-01T23:59:59.000Z

340

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

342

Quality Improvement of Recycled Plastic Products Using Mixture Experiment  

Science Conference Proceedings (OSTI)

Recycling plastic has several advantages such as reducing consumption of energy, non-renewable fossil fuels use, and global emissions of carbon dioxide. In this study, the manufacturer would like to improve product quality and decrease cost of the products ... Keywords: recycled plastics, plastic properties, quality, mixture experiment, response surface methodology

Charnnarong Saikaew; Panita Sripaya

2009-12-01T23:59:59.000Z

343

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

344

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents (OSTI)

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

345

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

346

Global Threat Reduction Initiative | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Threat Reduction Initiative | National Nuclear Security Threat Reduction Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Global Threat Reduction Initiative Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative Global Threat Reduction Initiative The mission of the Global Threat Reduction Initiative (GTRI) is to reduce

347

Presidential Initiatives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Presidential Initiatives | National Nuclear Security Administration Presidential Initiatives | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Presidential Initiatives Home > About Us > Our Programs > Nonproliferation > Countering Nuclear Terrorism and Trafficking > Presidential Initiatives Presidential Initiatives Bratislava Nuclear Security Initiative: President Putin and President

348

Global Threat Reduction Initiative | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Threat Reduction Initiative | National Nuclear Security Threat Reduction Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Global Threat Reduction Initiative Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative Global Threat Reduction Initiative The mission of the Global Threat Reduction Initiative (GTRI) is to reduce

349

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can be achieved with the use of a new magnetic divertor, where the exhausted particles are injected through a narrow aperture into a large chamber. Exhausting the particles into a large chamber prevents their return to the plasma, resulting in a reduction in plasma recycling to a level where existing experiments have shown a large enhancement in plasma

350

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

351

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

352

Treatment or Recycling End-Of-Life (H)EV Battery Packs  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Battery Recycling. Presentation Title, Treatment or Recycling End-Of-Life ...

353

DOE Exascale Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Exascale Initiative Dimitri Kusnezov, Senior Advisor to the Secretary, US DOE Steve Binkley, Senior Advisor, Office of Science, US DOE Bill Harrod, Office of Science/ASCR Bob Meisner, Defense Programs/ASC Briefing to the Secretary of Energy Advisory Board, September 13, 2013 The Department of Energy is planning for a major computer and computational science initiative anchored in our mission challenges. We use the term 'exascale' to capture the successful transition to the next era of computing in the 2020 timeframe. Change is coming in many ways, not just technology. For instance: World we were in World we are going to Processing/ Processing expensive/ Processing free/ Memory: memory free memory expensive Ecosystem US micro-electronics Globalization of supply chain

354

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

355

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network (OSTI)

's Pine Falls operations has helped destroy production of recycled paper. Manitoba is now left with a huge pile of collected paper, which can either be burned or landfilled, or shipped to more distant recycling facilities, all of which will increase greenhouse gas emissions. The pulp and paper industry is one

356

Green Initiatives and Contracting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GSA Is Now Training Contracting GSA Is Now Training Contracting Officers In Green Purchasing Green Purchasing for the Federal Acquisition Work Force * introduction to the federal green purchasing program * assists learners with identifying green products * discusses factors that shape federal green purchasing initiatives https://cae.gsa.gov 2 "There's some challenges here" "Environmental Aisle" in the GSA Advantage electronic-purchasing website for federal buyers to find green products Environmental Protection Agency provides regular updates on EPA- approved "environmentally preferable" products. 3 GSA Designations for Green Products * Building Construction * Traffic Control * Landscaping * Roadway Construction * Building Interior *

357

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

358

Recycling technologies and market opportunities: Proceedings  

SciTech Connect

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

359

CO2 Sequestration and Recycle by Photosynthesis  

DOE Green Energy (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO2 to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O. The year two research focus catalyst screening and IR studies. Key research results show Pd/TiO2 exhibits the highest activity for hydrocarbon synthesis from photocatalytic reactions. The in situ IR could successfully monitor the adsorbate hydrocarbon species on Cu/TiO2. Year III research will focus on developing a better understanding of the key factors which control the catalyst activity.

Steven S.C. Chuang

2004-02-01T23:59:59.000Z

360

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report  

SciTech Connect

Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Actinide recycle potential in the IFR (Integral Fast Reactor)  

SciTech Connect

Rising concern about the greenhouse effect reinforces the need to reexamine the question of a next-generation reactor concept that can contribute significantly toward substitution for fossil-based energy generation. Even with only the nuclear capacity on-line today, world-wide reasonably assured uranium resources would last for only about 50 years. If nuclear is to make a significant contribution, breeding is a fundamental requirement. Uranium resources can then be extended by two orders of magnitude, making nuclear essentially a renewable energy source. The key technical elements of the IFR concept are metallic fuel and fuel cycle technology based on pyroprocessing. Pyroprocessing is radically different from the conventional PUREX reprocessing developed for the LWR oxide fuel. Chemical feasibility of pyroprocessing has been demonstrated. The next major step in the IFR development program will be the full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. IFR fuel cycle closure based on pyroprocessing can also have a dramatic impact on the waste management options, and in particular on the actinide recycling. 6 figs.

Chang, Y.I.

1989-01-01T23:59:59.000Z

362

Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends  

SciTech Connect

The civil and military utilization of nuclear power results in continuously increasing stockpiles of spent fuel and separated plutonium. Since fast breeder reactors are at present not available, the majority of spent fuel discharged from commercial nuclear reactors is intended for direct final disposal or designated for interim storage. An effective form of intermediate plutonium storage is recycling in thermal reactors. Recycling of the recovered plutonium in commercial light water reactors (LWRs) is currently practiced in Belgium, France, Germany, and Switzerland. The number of mixed-oxide (MOX) assemblies reloaded each year in a large variety of reactors demonstrates that plutonium recycling in LWRs has reached industrial maturity. The status of experience gained today at Framatome ANP confirms the reliability of the design codes and the suitability of fuel assembly and core designs. The validation database for increasing exposures of MOX fuel is being continuously expanded. This provides the basis for further extending the discharge exposures of MOX assemblies and for licensing the use of higher plutonium concentrations. Options to support the weapons plutonium reduction programs and for the development of advanced MOX assembly designs are investigated.

Porsch, Dieter [Framatome ANP GmbH (France); Stach, Walter [Framatome ANP GmbH (France); Charmensat, Pascal [Framatome ANP S.A.S. (France); Pasquet, Michel [Framatome ANP S.A.S. (France)

2005-08-15T23:59:59.000Z

363

Initiating DOE Technical Standards, TSPP-2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-2013 2-2013 DOE TECHNICAL STANDARDS September 2013 PROGRAM PROCEDURES INITIATING DOE TECHNICAL STANDARDS U.S. Department of Energy Office of Nuclear Safety Washington, D.C. 20585 DOE-TSPP-2-2013 Initiating September 2013 DOE Technical Standards Program CONTENTS 1. SCOPE ............................................................................................................................................ 1 1.1 Purpose ....................................................................................................................... 1 1.2 Applicability ................................................................................................................. 1 2. ESTABLISHING THE NEED .......................................................................................................... 1

364

Model institutional infrastructures for recycling of photovoltaic modules  

DOE Green Energy (OSTI)

This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.

Moscowitz, P.D.; Reaven, J.; Fthenakis, V.M.

1996-07-01T23:59:59.000Z

365

Outlook for recycling large and small batteries in the future  

Science Conference Proceedings (OSTI)

Although there are many kinds and varieties of batteries, batteries can be subdivided into two basic types, large lead-acid batteries and small disposable batteries. Small cells contain different metals depending upon the configuration. These materials include iron, zinc, nickel, cadmium, manganese, mercury, silver, and potassium. Recycling these materials is not economically attractive. Most small batteries are thrown away and constitute a small fraction of municipal solid waste (perhaps 1/10%). There is no effective energy savings or economic incentive for recycling and, with the exception of Ni-Cad batteries, no significant environmental incentive. Any recycle scheme would require a significant reward (probably financial) to the consumer for returning the scrap battery. Without a reward, recovery is unlikely. Large batteries of the lead-acid type are composed of lead, acid, and plastic. There is an established recycle mechanism for lead-acid batteries which works quite well. The regulations written under the Hazardous and Solid Waste Disposal Amendments (1985) favor more recycling efforts by scrap metal operators. The reason for this is that recycled batteries are exempt from EPA regulation. If batteries are not recycled, any generator disposing of 6 or more batteries per month is required to have a special EPA license or premit. Currently, working against this incentive is a decreasing demand and low market price for lead which affects waste battery salvage.

Dodds, J.; Goldsberry, J.

1986-03-01T23:59:59.000Z

366

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

367

Commonwealth Wind Incentive Program - Micro Wind Initiative...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

368

Global Threat Reduction Initiative ? Conversion Program: Reduced...  

NLE Websites -- All DOE Office Websites (Extended Search)

dual application of splitting the atom, U.S. policy towards civilian use of highly enriched uranium (HEU) has historically exhibited contradictory traits. During these early...

369

California Solar Initiative - Solar Thermal Program (California...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

370

Safety System Oversight: Program Initial Implementation Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Office Phone: (509) 376-6863 e-mail: BurtonEBurtHill@rl.gov PDF Rocky Flats Project Office Provided By - Joseph Arango, ISMOperating Oversight Phone: (202)...

371

SunShot Initiative: Solar Incubator Program  

NLE Websites -- All DOE Office Websites (Extended Search)

California) Solaflect Energy (Norwich, Vermont) Incubator 4 (2010) Caelux (Pasadena, California) Crystal Solar (Santa Clara, California) Solexant (San Jose, California) Stion...

372

Seacoast Energy Initiative - Energy Efficiency Loan Program ...  

Open Energy Info (EERE)

Eligible Technologies Building Insulation, CaulkingWeather-stripping, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Programmable Thermostats, Solar Water Heat, Energy...

373

Solar Energy Technologies Program New Initiatives Summary  

Science Conference Proceedings (OSTI)

... in thin film PV, as well as CPV and CSP ... Internet (Weather Forecast) ... Market and Cost Analysis ? Value-Added Analysis ? Market and Tech Impacts ...

2010-08-12T23:59:59.000Z

374

City Water Light and Power - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Water Light and Power - Residential Energy Efficiency Rebate City Water Light and Power - Residential Energy Efficiency Rebate Programs City Water Light and Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Maximum Rebate Refrigerator Recycling: 2 units Insulation: $1,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Clothes Washer: $150 Central Air Conditioner: $9 per kBTUh Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500 Refrigerator Recycling: $50 per appliance Insulation: 30% Provider Energy Services Office City Water Light and Power (CWLP) offers rebates to Springfield residential

375

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Riverland Energy Cooperative - Residential Energy Efficiency Rebate Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program Riverland Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Construction Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount General Lighting: $1 - $15 LED Bulbs: $2/unit Occupancy Sensors: $5 Clothes Washers: $25 Dishwashers: $25 Dehumidifiers: $25 Refrigerators: $25 Room Air Conditioners: $25 Refrigerator/Freezer Recycling: $25 Room Air Conditioner Recycling: $25 Central Air Conditioner: $40 - $80/Ton Electric Water Heater: $50 - $300 Water Heater Installation Cost: $20 - $150

376

Gunnison County Electric - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gunnison County Electric - Residential Energy Efficiency Rebate Gunnison County Electric - Residential Energy Efficiency Rebate Program Gunnison County Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwashers: $45/unit Clothes Washers: $60/unit Refrigerators: $60/unit Freezers: $60/unit Refrigerator Recycling: $40/unit Freezer Recycling: $40/unit Electric Water Heaters (30-gal capacity, 6-year warranty, mandated EF rating): $70/unit Super Efficient Water Heater: $120/unit (primary heating must be from geothermal heat pump) Water Heaters (lifetime warranty): Additional $25/unit

377

Dayton Power and Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dayton Power and Light - Residential Energy Efficiency Rebate Dayton Power and Light - Residential Energy Efficiency Rebate Program Dayton Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $25 Freezer Recycling: $25 HVAC Tune-Up: $25 credit CFL's: $1.40 average off of each bulb purchased at participating stores Air Conditioning: $100 - $300, varies by efficiency and equipment application Air Source Heat Pump: $200 - $600, varies by efficiency and equipment application Geothermal Heat Pump: $200 - $600, varies by efficiency and equipment

378

Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Refrigerator/Freezer Recycling: 3 units Program Info State Missouri Program Type Utility Rebate Program Rebate Amount CFL's: In-store discounts, Online Store Refrigerator/Freezer Recycling: $50 Air Source Heat Pump: $300 - $650 Central AC: $150 - $425 Electronically Commutated Blower Motor: $50 - $100 Geothermal Heat Pump: $600 Diagnostic Tune-Up: $75 Programmable Thermostat: $25 Electric Storage Water Heater: $25

379

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

380

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

College of Engineering Strategic Planning Initiative  

E-Print Network (OSTI)

1 College of Engineering Strategic Planning Initiative Computational Science & Engineering Co, K. Merz, S. Ranka, G. Sjoden A. Executive Summary The proposed initiative is to establish to initiate collaborations; and (iii) integrate a MS in CSE as part of a disciplinary PhD program. Based

Fang, Yuguang "Michael"

382

Strategic Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Initiatives Strategic Initiatives Strategic Initiatives The Office of Health, Safety and Security (HSS) Strategic Initiative Work Group was established to provide a collaborative opportunity for DOE to gain insights from operating contractors, the contractor work force and their representatives to assure the most efficient and effective worker health and safety program expectations, approaches and processes are in place and are well communicated. The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex. HSS Office of Health and Safety and Office of Analysis are actively engaged

383

Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

384

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

385

Impact of Atmospheric Moisture Storage on Precipitation Recycling  

Science Conference Proceedings (OSTI)

Computations of precipitation recycling using analytical models are generally performed under the assumption of negligible change in moisture storage in the atmospheric column. Because the moisture storage term is nonnegligible at smaller time ...

Francina Dominguez; Praveen Kumar; Xin-Zhong Liang; Mingfang Ting

2006-04-01T23:59:59.000Z

386

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network (OSTI)

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

387

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

388

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network (OSTI)

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

389

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Energy.gov (U.S. Department of Energy (DOE))

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

390

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

391

Precipitation Recycling: Moisture Sources over Europe using ERA-40 Data  

Science Conference Proceedings (OSTI)

Atmospheric moisture within a region is supplied by both local evaporation and advected from external sources. The contribution of local evaporation in a region to the precipitation in the same region is defined as “precipitation recycling.” ...

B. Bisselink; A. J. Dolman

2008-10-01T23:59:59.000Z

392

Renewable, Recycled and Conserved Energy Objective (South Dakota...  

Open Energy Info (EERE)

(HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was...

393

Material Recovery and Recycling - Not an Option, But a Prerequisite ...  

Science Conference Proceedings (OSTI)

Inorganic materials are non-renewable; one would expect that appropriate design, ... (ii) designing recycling processes that are more energy efficient; (iii) develop ... Fuel Use Reduction and Lower Emissions Using Rugged, Verifiable, In-Situ ...

394

RCRA Waste Minimization and Recycling Initiatives at the Health Center (Rev. 12/09)  

E-Print Network (OSTI)

of a spill. The Office of Research Safety submitted samples of "typical" dental amalgam for TCLP testing. The TCLP test results indicated that amalgam is not a hazardous waste viewed from the RCRA definition

Kim, Duck O.

395

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

396

PNM - Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM - Residential Energy Efficiency Rebate Program PNM - Residential Energy Efficiency Rebate Program PNM - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Refrigerator/Freezer Recycling: 2 units per household Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount +Refrigerator/Freezer Recycling: $50/unit Compact Fluorescent Light Bulbs (CFLs): point-of-purchase discounts AC Cycling: $25 sign-up and $25/year Provider Customer Service PNM offers incentives for residential customers to improve the efficiency of eligible homes. PNM will provide a $50 rebate for the proper recycling of old refrigerators or freezers. Customers who agree to cycle the operation of residential air conditioning systems are also eligible for a

397

Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

4: July 24, 2006 4: July 24, 2006 Scrap Tire Recycling to someone by E-mail Share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Facebook Tweet about Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Twitter Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Google Bookmark Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Delicious Rank Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on Digg Find More places to share Vehicle Technologies Office: Fact #434: July 24, 2006 Scrap Tire Recycling on AddThis.com... Fact #434: July 24, 2006 Scrap Tire Recycling The recycling of scrap tires has come a long way in the last decade. In 1990, only 11% of the tires that were scrapped were recycled or reused, but

398

Brownfield Assistance Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Delaware Strategic Fund State Delaware Program Type Grant Program Provider Business Financing The Brownfield Assistance Program, administrated by the Delaware Economic Development Office (DEDO) and funded from Delaware Strategic Fund, provides matching grants to owners and developers to encourage the redevelopment of environmentally distressed sites within the state. Brownfield redevelopment is an important tool for Delaware's livable growth, recycling the state's

399

Method of recycling lithium borate to lithium borohydride through diborane  

DOE Patents (OSTI)

This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

Filby, Evan E. (Rigby, ID)

1976-01-01T23:59:59.000Z

400

Automobile shredder residue: Process developments for recovery of recyclable constituents  

SciTech Connect

The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

402

Sustainable recycling of municipal solid waste in developing countries  

SciTech Connect

This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

Troschinetz, Alexis M. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)], E-mail: alexis_troschinetz@yahoo.com; Mihelcic, James R. [Department of Civil and Environmental Engineering, Sustainable Futures Institute, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931 (United States)

2009-02-15T23:59:59.000Z

403

SunShot Initiative: Edward Hoegg  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to SunShot Initiative: Edward Hoegg to someone by E-mail Share SunShot Initiative: Edward Hoegg on Facebook Tweet about SunShot Initiative: Edward Hoegg on Twitter Bookmark SunShot Initiative: Edward Hoegg on Google Bookmark SunShot Initiative: Edward Hoegg on Delicious Rank SunShot Initiative: Edward Hoegg on Digg Find More places to share SunShot Initiative: Edward Hoegg on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts Staff Edward Hoegg SunShot Junior Fellow SunShot CSP Program Ed Hoegg enjoys being part of the fast-paced concentrated solar power (CSP) program within the SunShot Initiative, which is focused on reducing the costs of solar energy and promoting solar deployment. One area that Ed is

404

Strategic Growth Initiative (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Growth Initiative (Michigan) Strategic Growth Initiative (Michigan) Strategic Growth Initiative (Michigan) < Back Eligibility Agricultural Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Home Weatherization Water Solar Wind Program Info State Michigan Program Type Grant Program Provider Michigan Farm Bureau A joint venture between Michigan Department of Agriculture and Rural Development (MDARD) and the Michigan Economic Development Corporation (MEDC), the Strategic Growth Initiative Grant Program was designed to leverage business development and growth for the state's $91.4 billion food and agriculture industry. The grant program aims to remove barriers inhibiting growth in the state's food and agriculture industry, fostering economic opportunities for Michigan-based food processors, agribusiness and

405

Materials Sustainability: Digital Resource Center -- Recycling - Steel  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion  ...

406

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion  ...

407

Global Threat Reduction Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonproliferation Nonproliferation U.S. DEPARTMENT OF ENERGY 1 The Current Status of Gap and U.S.-Origin Nuclear Fuel Removals 2011 Jeff Galan, Deputy Project Manager U.S.-Origin Nuclear Remove Program National Nuclear Security Administration Global Threat Reduction Initiative Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 2 GTRI Mission and Goals GTRI is: A part of President Obama's comprehensive strategy to prevent nuclear terrorism; and The key organization responsible for implementing the U.S. HEU minimization policy. GTRI MISSION Reduce and protect vulnerable nuclear and radiological material located at civilian sites worldwide. DOE STRATEGIC GOAL 2.2 Prevent the acquisition of nuclear and radiological materials for use in weapons of mass destruction and other

408

Instrumented Pipeline Initiative  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

409

Hawaii Clean Energy Initiative | Open Energy Information  

Open Energy Info (EERE)

Hawaii Clean Energy Initiative Hawaii Clean Energy Initiative Jump to: navigation, search Logo: Hawaii Clean Energy Initiative Name Hawaii Clean Energy Initiative Agency/Company /Organization U.S. Department of Energy Partner State of Hawaii Sector Energy Focus Area Energy Efficiency Topics Background analysis Website http://www.hawaiicleanenergyin Country United States Northern America References Program's "About" Page[1] Abstract The Hawaii Clean Energy Initiative is a partnership program between the state of Hawaii and the U.S. Department of Energy, focused on moving Hawaii towards energy independence. The Hawaii Clean Energy Initiative is a partnership program between the state of Hawaii and the U.S. Department of Energy, focused on moving Hawaii towards energy independence.[1]

410

Clean Coal Technology Programs: Program Update 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

514 514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y DOE/FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Offi

411

Plug-in Hybrid Initiative  

SciTech Connect

Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

Goodman, Angie; Moore, Ray; Rowden, Tim

2013-09-27T23:59:59.000Z

412

SunShot Initiative: Tommy Rueckert  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to SunShot Initiative: Tommy Rueckert to someone by E-mail Share SunShot Initiative: Tommy Rueckert on Facebook Tweet about SunShot Initiative: Tommy Rueckert on Twitter Bookmark SunShot Initiative: Tommy Rueckert on Google Bookmark SunShot Initiative: Tommy Rueckert on Delicious Rank SunShot Initiative: Tommy Rueckert on Digg Find More places to share SunShot Initiative: Tommy Rueckert on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts Staff Tommy Rueckert Technical Project Officer SunShot CSP Program Having run many marathons, Tommy Rueckert has also persevered to see the concentrating solar power (CSP) industry through some pretty rough times. Tommy has been working with DOE's CSP program since before it was the CSP

413

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

414

NETL: 2009 Conference Proceedings - Carbon Recycling Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Pittsburgh, PA March 24-26, 2009 Table of Contents Disclaimer Presentations Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 Session 9 Session 10 SESSION 1 Opening/Overview Introduction [PDF-MB] Lynn Brickett, Director, Existing Plant Division, U.S. DOE/NETL Opening Remarks Scott Klara, Director, Strategic Center for Coal, U.S. DOE/NETL Overview of DOE/NETL CO2 Capture R&D Program [PDF-1.3MB] Jared Ciferno, Technology Manager, Existing Plants Program, U.S. DOE/NETL EPA's CO2 Separation & Capture Research Program [PDF-1.3MB] Nick Hutson, U.S. Environmental Protection Agency Post-combustion Sorbent Based Capture Development of a Dry Sorbent-Based Post Combustion CO2 Capture

415

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

416

CO2 Sequestration and Recycle by Photosynthesis  

Science Conference Proceedings (OSTI)

Visible light-photocatalysis could provide a cost-effective route to recycle CO{sub 2} to useful chemicals or fuels. Research is planned to study the reactivity of adsorbates, their role in the photosynthesis reaction, and their relation to the nature of surface sites during photosynthesis of methanol and hydrocarbons from CO{sub 2}/H{sub 2}O over four types of MCM-41/Al{sub 2}O{sub 3}-supported TiO{sub 2} and CdS catalysts: (1) ion-exchanged metal cations, (2) highly dispersed cations, (3) monolayer sites, and (4) modified monolayer catalysts. TiO{sub 2} was selected since it has exhibited higher activity than other oxide catalysts; CdS was selected for its photocatalytic activity in the visible light region. Al{sub 2}O{sub 3} provides excellent hydrothermal stability. MCM-41 offers high surface area (more than 800 m{sup 2}/g), providing a platform for preparing and depositing a large number of active sites per gram catalyst. The unique structure of these ion exchange cations, highly dispersed cations, and monolayer sites provides an opportunity to tailor their chemical/coordination environments for enhancing visible-light photocatalytic activity and deactivation resistance. The year one research tasks include (1) setting up experimental system, (2) preparing ion-exchanged metal cations, highly dispersed cations, monolayer sites of TiO{sub 2} and CdS, and (3) determination of the dependence of methanol activity/selectivity on the catalyst preparation techniques and their relation to adsorbate reactivity. During the first quarter, we have purchased a Gas Chromatography and all the necessary components for building 3 reactor systems, set up the light source apparatus, and calibrated the light intensity. In addition, monolayer TiO{sub 2}/MCM-41 and TiO{sub 2}/Al{sub 2}O{sub 3} catalyst were prepared. TiO{sub 2}/Al{sub 2}O{sub 3} was found to exhibit high activity for methanol synthesis. Repeated runs was planned to insure the reproducibility of the data.

Steven S.C. Chuang

2003-02-01T23:59:59.000Z

417

Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)  

Science Conference Proceedings (OSTI)

Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

Barber, James; Buckley, James

2003-02-23T23:59:59.000Z

418

Guidance document for multi-facility recycle/reuse/free release of metals from radiological control areas  

SciTech Connect

Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA`s as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills.

Gogol, S.; Starke, T.

1997-08-15T23:59:59.000Z

419

Initial Report on a LISP Programmer's Apprentice  

E-Print Network (OSTI)

This is an initial report on the design and partial implementation of a LISP programmers apprentice, an interactive programming system to be used by an expert programmer in the design, coding, and maintenance of large, ...

Rich, Charles

1976-12-01T23:59:59.000Z

420

Lab seeks venture acceleration initiative partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in northern New Mexico. June 9, 2008...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Indianapolis Power & Light - Residential Energy Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFLs: In store discounts A/C Cycling: $20/summer Split System AC: $300 - $400 Air Source Heat Pump: $200 - $300 Home Energy Evaluation and Energy Efficiency Kit: Free Refrigerator/Freezer Recycling: $30/unit Provider IPL Energy Incentives Program The Indianapolis Power and Light Energy Incentives Programs assist residential customers with reducing energy consumption. The program offers

422

ComEd - Smart Ideas for Your Home Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Ideas for Your Home Efficiency Program Smart Ideas for Your Home Efficiency Program ComEd - Smart Ideas for Your Home Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Weatherization Manufacturing Heating Commercial Lighting Lighting Maximum Rebate Refrigerator/Freezer Recycling: $50 In-store CFL Discounts: 12 bulbs and 6 fixtures Weatherization Incentives: 50% Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge State Illinois Program Type Utility Rebate Program Rebate Amount Lighting In-store Discounts: varies Refrigerator/Freezer Recycling: $35 Energy Star Clothes Washer Rebate: $75

423

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum consumption and producing useful products for American consumers. The world's first successful large-scale production of a polypropylene carbonate (PPC) polymer using waste carbon dioxide (CO2) as a key raw material has resulted from a projected funded in part by the U.S. Department of Energy's Office of Fossil Energy.

424

Radiological control criteria for materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping.

Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L. [Pacific Northwest Lab., Richland, WA (United States); Wallo, A. III [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

1994-11-01T23:59:59.000Z

425

Polymers go full circle in new plastics recycling process  

Science Conference Proceedings (OSTI)

Recycling waste, especially post-consumer plastic packaging waste, is a growing issue. Pressure to find alternatives to landfilling and conserve resources has prompted governments to limit the amount of material that can be disposed in traditional ways. One approach, chemical recycling of mixed plastics back to the feedstock for virgin plastic products, is receiving increased attention. British-based BP Chemicals, in collaboration with other polymer producers, is pioneering this alternative. The process involves cracking polymers to a hydrocarbon intermediate suitable for feeding to existing petrochemical plants, such as the steam crackers that produce the basic building blocks for plastics. BP's recycled product already can be used with four leading steam-cracking processes.

Lock, J.

1994-08-01T23:59:59.000Z

426

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

427

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

428

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

429

Performance of a Treatment Loop for Recycling Spent Rinse Waters  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation of a treatment loop designed to upgrade the quality of spent rinse waters discharged from 10 wet benches located in the fab at Sandia's Microelectronics Development Laboratory (MDL). The goal of the treatment loop is to make these waters, presently being discharged to the fab's acid waste neutralization (AWN) station, suitable for recycling as feed water back into the fab's ultrapure water (UPW) plant. The MDL typically operates 2 shifts per day, 5 days per week. Without any treatment, the properties of the spent rinse waters now being collected have been shown to be compatible with recycling about 30% (50/168) of the time (weekends primarily, when the fab is idling) which corresponds to about 12% of the present water discharged from the fab to the AWN. The primary goal of adding a treatment loop is to increase the percentage of recyclable water from these 10 wet benches to near 100%, increasing the percentage of total recyclable water to near 40% of the total present fab discharge to the AWN. A second goal is to demonstrate compatibility with recycling this treated spent rinse water to the present R/O product water tank, reducing both the present volume of R/O reject water and the present load on the R/O. The approach taken to demonstrate achieving these goals is to compare all the common metrics of water quality for the treated spent rinse waters with those of the present R/O product water. Showing that the treated rinse water is equal or superior in quality to the water presently stored in the R/O tank by every metric all the time is assumed to be sufficient argument for proceeding with plans to incorporate recycling of these spent rinse waters back into MDL's R/O tank.

DONOVAN,ROBERT PATRICK; TIMON,ROBERT P.; DEBUSK,MICHAEL JOHN; JONES,RONALD V.; ROGERS,DARELL M.

2000-11-15T23:59:59.000Z

430

Auto shredder residue recycling: Mechanical separation and pyrolysis  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

431

NETL: Educational Initiatives - Teachers  

NLE Websites -- All DOE Office Websites (Extended Search)

Teachers Educational Initiatives Teachers NETL is a proactive developer and supporter of educational initiatives at all levels. NETL's commitment to education is demonstrated...

432

SunShot Initiative: SunShot Initiative Fellowships  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative Fellowships Initiative Fellowships SunShot fellowships provide an opportunity for scientists, engineers, and researchers to lead and improve projects to meet the goals of the SunShot Initiative. Photo of six men and women standing in front of a space exhibit. SunShot Fellows in front of the Apollo Lunar Module at the National Air and Space Museum. Image from DOE There are three types of fellowships for recent graduates and experienced scientists and engineers. American Association for the Advancement of Science (AAAS) Fellows SunShot Fellows SunShot Junior Fellows. All fellows are assigned to policy-related projects and mentored by senior EERE staff. The fellowships are administered by the Oak Ridge Institute for Science and Education (ORISE) in collaboration with EERE. ORISE is responsible for the implementation of the fellowship program, processing applications, the review and notification processes, and management of payments to fellows.

433

Sludge recycle and reuse in acid mine drainage treatment  

Science Conference Proceedings (OSTI)

Neutralization of acid mine drainage produces vast quantities of iron-rich sludge, and large quantities of unused lime remain in the sludge after treatment. In a study in which sludge was recycled to increase lime utilization, sludge was mixed with raw acid mine drainage and settled out in an intermediate clarifier. The clarifier supernatant was then treated by lime addition, aeration and sedimentation. The low-pH sludge was withdrawn from the intermediate clarifier. The iron was recovered by acidification and used as wastewater coagulant. The recycle scheme resulted in a 30% decrease in lime requirements, and the resultant coagulant performed well when compared with stock iron coagulant solutions.

Keefer, G.B.; Sack, W.A.

1983-03-01T23:59:59.000Z

434

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

435

Summary of Fermilab's Recycler Electron Cooler Operation and Studies  

SciTech Connect

Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

Prost, L.R.; Shemyakin, A.; /Fermilab

2012-05-15T23:59:59.000Z

436

Recycling of Methylaluminoxane (MAO) Cocatalyst in Ethylene Polymerization with Supported Metallocene Catalyst  

E-Print Network (OSTI)

Abstract?The economy of the metallocene catalyst system in olefin polymerization depends more on the cost of methylaluminoxane (MAO) cocatalyst rather than on the catalyst cost since high ratio of cocatalyst to catalyst is required to have sufficient activity. The conditions to minimize the consumption of MAO have been studied for the ethylene polymerization with supported metallocene catalyst. By introducing the prepolymerization step, in which the supported metallocene catalyst is activated at high MAO concentration before polymerization, the MAO could be recovered after the prepolymerization and recycled repeatedly for the subsequent activation with marginal decrease in activity. No extra MAO was needed during the main polymerization. The addition of small amount of MAO or less expensive alkylaluminum at each recycle step kept the catalyst activity to the initial level. It compensates the MAO losses occurring both by the incomplete decantation of MAO solution and by the reaction with metallocene complex or impurities. As a result, the actual consumption ratio of Al/Zr in moles in commercial applications could be reduced to about 30 without sacrificing the activity. This value is significantly low considering that conventionally an Al/Zr ratio of 1,000 is required for sufficient activity.

Jae Seung Oh; Bun Yeoul Lee; Tai Ho Park

2003-01-01T23:59:59.000Z

437

Alternative Fuels Data Center: Petroleum Reduction Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Reduction Petroleum Reduction Initiative to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Initiative on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Initiative on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Initiative on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Initiative The Petroleum Savings and Independence Advisory Commission (Commission) was established to provide recommendations and monitor programs designed to

438

Process design and solvent recycle for the supercritical Fischer-Tropsch synthesis  

Science Conference Proceedings (OSTI)

A recycle reactor system for supercritical Fischer-Tropsch synthesis was successfully designed and tested. The new reactor system has these characteristics: (1) integration of supercritical Fischer-Tropsch reactions, natural separation of produced wax from liquid phase, and recycle of the solvent and (2) natural recycle of solvent driven by self-gravity. A 20% Co/SiO{sub 2} catalyst and n-hexane were used as a catalyst and supercritical fluid, respectively. The results show that the average CO conversion at the steady state was 45% with recycle and 58% without recycle. The lumped hydrocarbon products distribution did not have any obvious difference between with and without recycle operation; however, {alpha}-olefin content of products with recycle was lower than that without recycle. The XRD result indicates that most of the reduced cobalt remains in the metallic state during the Fischer-Tropsch reactions for both cases. 22 refs., 3 figs., 1 tab.

Wensheng Linghu; Xiaohong Li; Kenji Asami; Kaoru Fujimoto [University of Kitakyushu, Fukuoka (Japan). Department of Chemical Processes and Environments, Faculty of Environmental Engineering

2006-02-01T23:59:59.000Z

439

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

Science Conference Proceedings (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

440

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

Science Conference Proceedings (OSTI)

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report  

Science Conference Proceedings (OSTI)

This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

NONE

1994-12-01T23:59:59.000Z

442

Kent SeaTech Increases Fish Farm Yield and Recycles Water ...  

Science Conference Proceedings (OSTI)

Kent SeaTech Increases Fish Farm Yield and Recycles Water for Neighboring Agricultural Irrigation. Partnering Organization ...

2011-10-19T23:59:59.000Z

443

NETL: IEP - Coal Utilization By-Products: Consortium Byproducts Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Byproducts Recycling Consortium (CBRC) Combustion Byproducts Recycling Consortium (CBRC) The mission of the Combustion Byproducts Recycling Consortium (CBRC) is to promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing. The overall goals of CBRC are to: Increase the overall national rate of byproduct use by to ~ 50 % by 2010 Increase the number of “allowable” byproduct uses under state regulations by ~ 25% Double of the current rate of FGD byproduct use CBRC is a unique partnership that integrates the electric power industry, State and Federal regulatory agencies, and academia to form a strong, cohesive consortium to guide the national and regional research priorities of the CBRC. CBRC is managed by the West Virginia Water Research Institute at West Virginia University and is administered by regional centers at the University of Kentucky (Eastern Region), Southern Illinois University (Midwest Region) and the University of North Dakota (Western Region). Primary funding for CBRC is provided by the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL).

444

Recycling policy making of organic waste using analytical network process  

Science Conference Proceedings (OSTI)

The Analytic Hierarchy Process (AHP) has been used widely in multicriteria selection problems. However, AHP can deal with only a simple hierarchy of elements. On the other hand, the Analytical Network Process (ANP) can deal with more complex structures ... Keywords: analytical network process (ANP), group discussion, multicriteria selection, organic waste recycling policy making

Kazuei Ishii; Toru Furuichi

2008-11-01T23:59:59.000Z

445

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents (OSTI)

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

446

Innovative technologies for recycling contaminated concrete and scrap metal  

SciTech Connect

Decontamination and decommissioning of US DOE`s surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019.

Bossart, S.J. [USDOE Morgantown Energy Technology Center, WV (United States); Moore, J. [USDOE Oak Ridge Operations Office, TN (United States)

1993-09-01T23:59:59.000Z

447

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE))

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

448

Methods for differentiating recycled cooking oil needed in China  

Science Conference Proceedings (OSTI)

Researchers from the West China School of Public Health at Sichuan University in Chengdu, China, explain why the reuse of recycled cooking oil, or “gutter oil,” is such a difficult problem for government and public health officials to address. Methods for

449

The recycling of the coal fly ash in glass production  

Science Conference Proceedings (OSTI)

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

450

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 New Program Proposal for Fiscal Year 2011 - Modified Open Cycle Carter "Buzz" Savage Nuclear Energy Advisory Committee Meeting April 29, 2010 Washington, DC April 29, 2010 Recycle of Used Fuel Option to recycle used fuel has been the subject of much debate and discussion. Nonproliferation issues and economics have limited recycle options. Recycle of used fuel enables increased utilization of uranium resource and potential waste management benefits. - Once through fuel cycle uses less than 1% of energy value of the uranium. Courtesy AREVA 2 April 29, 2010 Summary of Fuel Cycle Options 3 Once-Through Fuel Cycle - One pass through reactor, used fuel directly disposed in a geologic repository. Modified Open Cycle - No or limited separations steps and

451

The construction of a collaborative-design platform to support waste electrical and electronic equipment recycling  

Science Conference Proceedings (OSTI)

Recycling of waste electrical and electronic equipment (WEEE) is a very important subject not only from the viewpoint of waste treatment but also from the viewpoint of recovery of valuable materials. In the past, some obstacles make recycling challenging ... Keywords: Collaborative design, Green supply chain management, Life-cycle management, Recycling, Waste electrical and electronic equipment

Tsai Chi Kuo

2010-02-01T23:59:59.000Z

452

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network (OSTI)

is approximately 100 Euro per tonne, whereas the estimated cost to recycle a tonne of electronic equipment is six into the cost of the recycling process, the financial demand to recycle cars or washing machines times larger. However, besides processing costs (which are crucially important in any efficient

Whelan, Paul F.

453

Why should I recycle? The average American generates 4.5 pounds of waste daily.  

E-Print Network (OSTI)

Why should I recycle? The average American generates 4.5 pounds of waste daily. Instead of throwing throughout campus.These guidelines will help you recycle more and waste less. What's recyclable? · Mixed and plastic-coated papers · Tissue and paper towels · Paper or containers soiled by food or organic waste

Tsien, Roger Y.

454

Mississippi Clean Energy Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Clean Energy Initiative Mississippi Clean Energy Initiative Mississippi Clean Energy Initiative < Back Eligibility Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Program Info Start Date 07/01/2010 State Mississippi Program Type Industry Recruitment/Support Rebate Amount 100% exemption from income, franchise, and sales and use tax for 10 years Provider Mississippi Development Authority In April 2010, the Mississippi Legislature enacted [http://billstatus.ls.state.ms.us/documents/2010/pdf/HB/1700-1799/HB1701S... HB 1701], establishing the Mississippi Clean Energy Initiative. This program provides an incentive for companies that manufacture systems or components used to generate renewable energy, including biomass, solar,

455

Nordic Partnership Initiative | Open Energy Information  

Open Energy Info (EERE)

Initiative Initiative Jump to: navigation, search Name Nordic Partnership Initiative Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Topics Implementation, Low emission development planning, Policies/deployment programs Program Start 2011 Country Peru, Vietnam South America, South-Eastern Asia References NPI[1] NEFCO[2] NDI[3] Overview The aim of the NPI is to demonstrate in practice how international climate finance can be matched with up-scaled host country mitigation action through two programs in Peru and Vietnam. The NPI program in Peru will focus on exploring possibilities to lower CO2 emissions in the waste sector. In Vietnam focus is on decreasing emissions from the cement sector.

456

Analysis of nuclear proliferation resistance reprocessing and recycling technologies  

Science Conference Proceedings (OSTI)

The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

2011-05-01T23:59:59.000Z

457

SunShot Initiative: CSP Systems Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Systems Research and Development The SunShot Initiative concentrating solar power (CSP) program funds research and development within the industry, national laboratories, and...

458

Regional Greenhouse Gas Initiative Inc RGGI | Open Energy Information  

Open Energy Info (EERE)

and technical services in support of the RGGI participating states(tm) CO2 Budget Trading Programs. References Regional Greenhouse Gas Initiative, Inc (RGGI)1...

459

California Solar Initiative - Low-Income Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential...

460

SunShot Initiative: Concentrating Solar Power Staff Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff Profiles The SunShot Initiative concentrating solar power (CSP) program competitively funds and actively manages the efforts of industry, national laboratories, and...

Note: This page contains sample records for the topic "initiatives recycling programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lab announces selection of partner for venture acceleration initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab with emphasis on establishing new businesses in Northern New Mexico....

462

California Solar Initiative - Single-Family Affordable Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternate Rates for Energy (CARE) program eligibility. (see below) The California Solar Initiative (CSI) provides financial incentives for installing solar technologies...

463

DuPont's Safety Model and Sustainability Initiatives | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives More Documents & Publications Sustainability Outreach Program Brochure Gosling, The Manhattan Project: Making the Atomic Bomb TheManhattanProject2010.pdf...

464

Clean Coal Technology Programs: Program Update 2003 (Volume 1)  

Science Conference Proceedings (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

465

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

466

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Goals and Initiatives to someone by E-mail Share Federal Energy Management Program: Technology Deployment Goals and Initiatives on Facebook Tweet about...

467

MONTANA PALLADIUM RESEARCH INITIATIVE  

Science Conference Proceedings (OSTI)

Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.

Peters, John

2012-05-09T23:59:59.000Z

468

RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.  

Science Conference Proceedings (OSTI)

RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

2004-11-01T23:59:59.000Z

469

Tribal Energy Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program Tribal Energy Program The Office of Indian Energy is developing new capacity building initiatives to support Tribes in their energy development efforts. The Office...

470

RG&E - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Efficiency Program - Residential Efficiency Program RG&E - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source PSC-mandated System Benefits Charge (SBC) State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $50 rebate and free removal Multifamily Dwelling Units: 6 free CFLS and smart power strips Multifamily Common Area Ligting: 50% off custom lighting upgrades RG&E is offering residential electric customers rebates for recycling refrigerators, and its multifamily customers free CFLs, smart power strips and 50% off common area lighting equipment. All equipment requirements must be met in order to receive rebates. See the program website for details.

471

Lake City Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake City Utilities - Residential Energy Efficiency Rebate Program Lake City Utilities - Residential Energy Efficiency Rebate Program Lake City Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies, see program website Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Air Source Heat Pump:$100 - $200, plus additional rebate for efficiency ratings above 14.5 SEER Geothermal Heat Pump:$200/ton, plus $25/ton for every 1 EER above minimum required EER Refrigerators: $25, plus $50 for recycling an old, working unit

472

Carroll County REMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carroll County REMC - Residential Energy Efficiency Rebate Program Carroll County REMC - Residential Energy Efficiency Rebate Program Carroll County REMC - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $300 Geothermal Heat Pump: $500/ton Installation (Contractor): $150 Refrigerator Recycling: $35 Provider Carroll County REMC Carroll County REMC offers incentives to residential customers who purchase and install energy efficiency equipment for the home. Rebates are available on geothermal heat pumps, air source heat pumps, and recycled refrigerators. Interested customers can visit the program web site for more

473

National Security Initiatives | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Initiatives SHARE National...

474

This page intentionally left blank. California Solar Initiative, CPUC Staff Progress Report, April 2008 2  

E-Print Network (OSTI)

#12;This page intentionally left blank. California Solar Initiative, CPUC Staff Progress Report................................................................................................................ 5 2. Go Solar California! Overview............................................................................................... 8 2.1 California Solar Initiative Program History

475

APEC Smart Grid Initiative  

Science Conference Proceedings (OSTI)

This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

Bloyd, Cary N.

2012-03-01T23:59:59.000Z

476

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

Science Conference Proceedings (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

477

EWEB - Residential Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs < Back Eligibility Low-Income Residential Residential Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Electric Water Heater: $25 - $75 Heat Pump Water Heater: $25 Ductless Heat Pumps: $1,000 - $1,500 Air Source Heat Pump: $1,000

478

Lakeland Electric - Residential Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeland Electric - Residential Conservation Rebate Program Lakeland Electric - Residential Conservation Rebate Program Lakeland Electric - Residential Conservation Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Maximum Rebate HVAC Maintenance: one rebate per central unit per household per year Heat Pump (AC Replacement): One rebate per central location Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat Pump: $400 HVAC Maintenance: $50 Attic Insulation Upgrade: $200 CFLs: 3 free bulbs, when an energy audit is scheduled Energy Saving Kit: Provided after energy audit Refrigerator: $200, with proper recycling