National Library of Energy BETA

Sample records for initiative application power

  1. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  2. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications resources. To operate the future power grids, these will need to take into account: » the integration (509) 372-6575 jason.fuller@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver

  3. DOE Seeks Applications for Third Round of Clean Coal Power Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11, 2008 - 2:40pm Addthis Funding Opportunity Announcement Solicits Applications for Carbon Capture and Sequestration WASHINGTON, DC -The U.S. Department of Energy (DOE) today...

  4. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  5. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridOPTICSTM : A Software Framework for Power System Operations technologies needed to support the operations and planning of the future power grid » provide a framework to the GridPACK numerical library that is being developed in the Future Power Grid Initiative APPROACH

  6. FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors Capable of Autonomous, Adaptive from the rest of the power grid and reconnect and synchronize without loss of functionality FOCUS AREA Power Grid Initiative (FPGI) will deliver next-generation concepts and tools for grid operation

  7. FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to bear on the challenges of the power grid Therefore, a community resource is needed to enable needed

  8. FUTURE POWER GRID INITIATIVE Future Power Grid

    E-Print Network [OSTI]

    of all 16 machines damped quickly ­ improved frequency performance » AGC ensures tie line power flows on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science and develop the technologies

  9. Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines.

    SciTech Connect (OSTI)

    Schwarz, Jens; Savage, Mark E.; Lucero, Diego Jose; Jaramillo, Deanna M.; Seals, Kelly Gene; Pitts, Todd; Hautzenroeder, Brenna M.; Laine, Mark Richard; Karelitz, David B.; Porter, John L.

    2014-09-01

    Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( < 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.

  10. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  11. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Energy Savers [EERE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  12. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  13. FUTURE POWER GRID INITIATIVE Scalable Sensor Data

    E-Print Network [OSTI]

    to the characteristic power grid data and application » Distributed over multiple machines for further scalability on the Electricity Infrastructure Operations Center (EIOC), the Pacific Northwest National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science and develop the technologies

  14. Initial tests of thermoacoustic space power engine.

    SciTech Connect (OSTI)

    Backhaus, S. N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  15. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  16. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    SciTech Connect (OSTI)

    Peterson, Michael Leroy; Zydlewski, Gayle Barbin; Xue, Huijie; Johnson, Teresa R.

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  17. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot...

  18. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This...

  19. FUTURE POWER GRID INITIATIVE Real-time High-Performance

    E-Print Network [OSTI]

    #12;» System will support time-critical power grid applications (PMU data rate: every 30ms) » Flexible

  20. The Mesaba Energy Project: Clean Coal Power Initiative, Round...

    Office of Scientific and Technical Information (OSTI)

    Mesaba Energy Project: Clean Coal Power Initiative, Round 2 Stone, Richard; Gray, Gordon; Evans, Robert 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS The Mesaba Energy...

  1. FUTURE POWER GRID INITIATIVE A Statistical State Prediction

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE A Statistical State Prediction Methodology to Improve Reliability and Efficiency of Power Grid Simulation OBJECTIVE This project aims to develop a short-term prediction in a power system state predictor at grid level, which cannot only predict power system behaviors, but also

  2. FUTURE POWER GRID INITIATIVE Linear Algebra Solvers and

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Linear Algebra Solvers and Associated Matrix-Vector Kernels for Power of power grid systems. As the future power grid system becomes more complex and as more model variability are used to accurately represent the future system, determining the stability security margins will become

  3. FUTURE POWER GRID INITIATIVE Market Design Analysis Tool

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Market Design Analysis Tool OBJECTIVE Power market design plays to efficiently attain a desired future state of the power grid APPROACH The project will develop two mechanisms rules to attain a desired future state of power grid. » use MDI to modify the market clearing mechanism

  4. FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Modeling of Distributed Energy Resources in the Smart Grid OBJECTIVE can be used in the studies for the design, operation and control of the future smart grid. Our project National Laboratory (509) 375-2235 shuai.lu@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI

  5. Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and...

  6. EIS-0131: Initial Northwest Power Act Power Sales Contracts

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration prepared this EIS to analyze the environmental impact of power sales and residential exchange contracts and to explore if there is a need to seek changes to these contracts.

  7. FUTURE POWER GRID INITIATIVE An Intelligent Agent Platform

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE VOLTTRONTM : An Intelligent Agent Platform for the Smart Grid Two-way Power Flows n Decentralized Control To Support Micro-Grids And Islanding n Enable Load, not developed past simulation, and/or do not fit the requirements of the power grid. VOLTTRON has become

  8. FUTURE POWER GRID INITIATIVE Decision Support for Future

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Decision Support for Future Power Grid Organizations OBJECTIVE Northwest National Laboratory (509) 371-6607 angela.dalton@pnnl.gov ABOUT FPGI The Future Power Grid a more secure, efficient and reliable future grid. Building on the Electricity Infrastructure Operations

  9. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  10. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U Pacific Northwest National Laboratory (509) 375-3899 bruce.palmer@pnnl.gov ABOUT FPGI The Future Power and ensure a more secure, efficient and reliable future grid. Building on the Electricity Infrastructure

  11. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect (OSTI)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

  12. FUTURE POWER GRID INITIATIVE A Statistical State Prediction

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE A Statistical State Prediction Methodology to Improve Reliability the system future states, the project will enable proactive operation to improve the operational reliability the uncertainty in the future brought in by load, variable generation, market behaviors. This study will result

  13. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 ˝ years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 ?m, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New “Normally-Off” device architectures were demonstrated – for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8”/200 mm Si starting substrates.

  14. Initial Stress Symmetry and Applications in Elasticity

    E-Print Network [OSTI]

    Artur L. Gower; Pasquale Ciarletta; Michel Destrade

    2015-06-16

    An initial stress within a solid can arise to support external loads or from processes such as thermal expansion in inert matter or growth and remodelling in living materials. For this reason it is useful to develop a mechanical framework of initially stressed solids irrespective of how this stress formed. An ideal way to do this is to write the free energy density $\\Psi= \\Psi(\\boldsymbol F, \\boldsymbol {\\tau})$ in terms of initial stress $\\boldsymbol \\tau$ and the elastic deformation gradient $\\boldsymbol F$. In this paper we present a new constitutive condition for initially stressed materials, which we call the initial stress symmetry (ISS). We focus on two consequences of this symmetry. First we examine how ISS restricts the free energy density $\\Psi = \\Psi (\\boldsymbol F, \\boldsymbol \\tau) $ and present two examples of $\\Psi (\\boldsymbol F, \\boldsymbol \\tau)$ that satisfy ISS. Second we show that the initial stress can be derived from the Cauchy stress and the elastic deformation gradient. To illustrate we take an example from biomechanics and calculate the optimal Cauchy stress within an artery subjected to internal pressure. We then use ISS to derive the optimal target residual stress for the material to achieve after remodelling.

  15. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  16. Magnetic machines and power electronics for power MEMS applications

    E-Print Network [OSTI]

    Das, Sauparna, 1979-

    2005-01-01

    This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

  17. Verification of Initial-State Opacity in Security Applications of Discrete Event Systems6

    E-Print Network [OSTI]

    Hadjicostis, Christoforos

    Verification of Initial-State Opacity in Security Applications of Discrete Event Systems6 that are modeled as non-deterministic finite automata with partial observation on their transitions. A system and power distribution systems), var- ious notions of security and privacy have received considerable

  18. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC...

  19. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01

    ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM “PREMIUM POWER”Assessment of Combined Heat and Power Premium Power1 The Pacific Region Combined Heat and Power Application

  20. Budget-based power consumption for application execution on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J; Inglett, Todd A

    2012-10-23

    Methods, apparatus, and products are disclosed for budget-based power consumption for application execution on a plurality of compute nodes that include: assigning an execution priority to each of one or more applications; executing, on the plurality of compute nodes, the applications according to the execution priorities assigned to the applications at an initial power level provided to the compute nodes until a predetermined power consumption threshold is reached; and applying, upon reaching the predetermined power consumption threshold, one or more power conservation actions to reduce power consumption of the plurality of compute nodes during execution of the applications.

  1. Budget-based power consumption for application execution on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-02-05

    Methods, apparatus, and products are disclosed for budget-based power consumption for application execution on a plurality of compute nodes that include: assigning an execution priority to each of one or more applications; executing, on the plurality of compute nodes, the applications according to the execution priorities assigned to the applications at an initial power level provided to the compute nodes until a predetermined power consumption threshold is reached; and applying, upon reaching the predetermined power consumption threshold, one or more power conservation actions to reduce power consumption of the plurality of compute nodes during execution of the applications.

  2. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    SciTech Connect (OSTI)

    2014-11-03

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  3. Ultra Low Power Bioelectronics Fundamentals, Biomedical Applications,

    E-Print Network [OSTI]

    Sarpeshkar, Rahul

    Ultra Low Power Bioelectronics Fundamentals, Biomedical Applications, and Bio-inspired Systems to articulate information-based principles for ultra-low-power design that apply to biology or to electronics of ultra- low-power electronics and bioelectronics is shown in the figure below. Engineering can aid

  4. Fuel cell power conditioning for electric power applications: a summary

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Fuel cell power conditioning for electric power applications: a summary X. Yu, M.R. Starke, L.M. Tolbert and B. Ozpineci Abstract: Fuel cells are considered to be one of the most promising sources, multiple complications exist in fuel cell operation. Fuel cells cannot accept current in the reverse

  5. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational and non-operational risks will be described in Section 2.0 of this study. Given these risks, if rates are designed using BPA's traditional approach of only adding Planned Net Revenues for Risk (PNRR), power rates would need to recover a much larger ''risk premium'' to meet BPA's TPP standard. As an alternative to high fixed risk premiums, BPA is proposing a risk mitigation package that combines PNRR with a variable rate mechanism similar to the cost recovery adjustment mechanisms used in the FY 2002-2006 rate period. The proposed risk mitigation package is less expensive on a forecasted basis because the rates can be adjusted on an annual basis to respond to uncertain financial outcomes. BPA is also proposing a Dividend Distribution Clause (DDC) to refund reserves in excess of $800M to customers in the event net revenues in the next rate period exceed current financial forecasts.

  6. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  7. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01

    Modeling with Combined Heat and Power Applications. LawrenceASSESSMENT OF COMBINED HEAT AND POWER SYSTEM “PREMIUM POWER”2010 ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM “PREMIUM

  8. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  9. FUTURE POWER GRID INITIATIVE Actionable Visualization Tools for

    E-Print Network [OSTI]

    » integrate information from domains external to the power industry (e.g., weather) with power grid of the power grid: e.g., weather, political/social, cyber, etc. This integrated functionality is supported, efficient and reliable future grid. Building on the Electricity Infrastructure Operations Center (EIOC

  10. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  11. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to...

  12. Electric Power Industry Needs for Grid-Scale Storage Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will...

  13. Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs

    E-Print Network [OSTI]

    Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

    2008-01-01

    EFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEfficiency Investments to Power Plants: Applications to

  14. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective 

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  15. Grainger Power Engineering Award Undergraduate Student Application Form

    E-Print Network [OSTI]

    Jain, Kanti

    476 Power System Analysis __________ __________ ECE 333 Green Energy Systems __________ __________ ECEGrainger Power Engineering Award Undergraduate Student Application Form Name __________ __________ ECE 431 Electric Machinery __________ __________ ECE 464 Power Electronics __________ __________ ECE

  16. FUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE A Multi-layer Data-Driven Advanced Reasoning Tool for Smart Grid.zhou@pnnl.gov AbouT FpGI The Future Power Grid Initiative (FPGI) will deliver next-generation concepts and tools for grid operation and planning and ensure a more secure, efficient and reliable future grid. Building

  17. Shipboard condition based maintenance and integrated power system initiatives

    E-Print Network [OSTI]

    Barber, Darrin E. (Darrin Eugene)

    2011-01-01

    With the U.S. Navy's continued focus on developing and implementing a robust integrated power system aboard future combatants, there has been an ever increasing effort to guarantee an electrical distribution system that ...

  18. Laser power beaming for satellite applications

    SciTech Connect (OSTI)

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  19. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect (OSTI)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.

  20. RE-Powering America's Land Initiative Tracking Matrix | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNI Reviewing Officials Questions forEnergy Initiative

  1. Initial Maintenance Assessment for ARIES-CS Power Plant X. R. Wang, S. Malang

    E-Print Network [OSTI]

    Raffray, A. René

    Initial Maintenance Assessment for ARIES-CS Power Plant X. R. Wang, S. Malang a , A. R. Raffray that will result in the detailed design study of a compact stellarator power plant. The first year engineering and maintenance scheme is quite challenging for a compact stellerator power plant because of the helical plasma

  2. Mode Initialization for On-line Estimation of Power System Electromechanical Modes

    SciTech Connect (OSTI)

    Zhou, Ning; Trudnowski, Daniel; Pierre, John W.

    2009-03-18

    Measurement-based mode estimation methods are utilized to estimate electromechanical modes of a power system using phasor measurement units (PMU) data. These methods need to extract a certain amount of information before they can give useable mode estimation. Traditionally, the information is gathered solely from measurement data. Priori mode information from other resources (e.g. model eigenvalue analysis, engineering knowledge) are not fully utilized. For real time application, this means that mode estimation takes time to converge. By adding a mode regularization term in the objective function, this paper proposes a mode initialization method to include priori mode information in a regularized robust recursive least squares (R3LS) algorithm for on-line mode estimation. The proposed method is tested using a simple model, a 17 machine model and is shown to be able to shorten the convergence period of the R3LS algorithm. The proposed method is also applied on the measurement data recorded right before a major power outage in the western North American Grid on August 10th 1996 to show its potential applica-tion in detecting an approaching small signal stability problem.

  3. Microsoft PowerPoint - Gilbertson - Energy Park Initiative Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to Apply forNavalReginald AgunwahPaducah Site TourTank Initiative

  4. Initial fuel load and criticality, zero power and characterization testing

    SciTech Connect (OSTI)

    Bennett, R.A.; Jones, D.H.; Midgett, J.C.; Farabee, O.A.; King, T.L.

    1980-01-01

    The core is designed with three flow zones and two zones of fuel density to flatten the radial flux distribution; it has a stainless steel reflector to enhance fast neutron flux levels. The core is divided into three trisectors for ease of refueling by the core in-vessel handling machines. Each trisector contains three control rods and locations for 27 fueled assemblies. One location contains an in-reactor thimble which contains special fission chambers to monitor the startup, and another one contains special accelerometers to measure in-core vibration. Six locations have special steel shim assemblies placed in-core for control and power flattening purposes. 15 figures.

  5. WP-07 Reactive Power Supplemental Proposal (wp07/initial)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02) nerg *415,Rates > Meetings &Case

  6. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  7. Initial wave packets and the various power-law decreases of scattered wave packets at long times

    E-Print Network [OSTI]

    Manabu Miyamoto

    2004-04-09

    The long time behavior of scattered wave packets $\\psi (x,t)$ from a finite-range potential is investigated, by assuming $\\psi (x,t)$ to be initially located outside the potential. It is then shown that $\\psi (x,t)$ can asymptotically decrease in the various power laws at long time, according to its initial characteristics at small momentum. As an application, we consider the square-barrier potential system and demonstrate that $\\psi (x,t)$ exhibits the asymptotic behavior $t^{-3/2}$, while another behavior like $t^{-5/2}$ can also appear for another $\\psi (x,t)$.

  8. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  9. Thermoacoustic power systems for space applications

    SciTech Connect (OSTI)

    Backhaus, S. N.; Tward, E.; Pedach, M.

    2001-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  10. Initial Activation Assessment for ARIES Compact Stellarator Power Plant

    SciTech Connect (OSTI)

    El-Guebaly, L.; Wilson, P.; Paige, D. [University of Wisconsin, Fusion Technology Institute (United States)] (and others)

    2005-04-15

    As the safety assessment frequently requires knowledge of the activation parameters, we estimated the highest possible activity, decay heat, and waste disposal rating on the time scale after shutdown for the compact stellarator power plant ARIES-CS. We selected two widely different systems employing SiC/SiC composites and low-activation ferritic steel (FS) as structural materials. Our results show that components of both systems qualify as Class C low-level waste (LLW) at the end of a 100 y storage period following the decommissioning of the plant. The SiC blanket, vacuum vessel, and magnet offer very low waste disposal rating to the extent that a Class A LLW seems achievable for these components. On this last point, we discussed the split between the Class A and Class C wastes, emphasizing our motivation to lower the level of ARIES-CS radioactive waste.

  11. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01

    Power ampli?er (PA)2x2 Chapter 5 Power Combining5.1 Wilkinson Power Combiner . . . . . . . . . . . .

  12. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  13. Power system applications for PASC converter systems

    SciTech Connect (OSTI)

    Donnelly, M.K.; Johnson, R.M.

    1994-04-01

    This paper shows, using computer EMTP simulations, some preliminary results of applying pulse amplitude synthesis and control (PASC) technology to single-source level voltage converter system. The method can be applied to any single terminal pair source with appropriate modifications in power extraction interface and computer control program to match source and load impedance characteristics. The PASC realization as discussed here employs banks of transformers, one bank per phase, in which the primaries are connected in parallel through a switch matrix to the dc source. Two opposite polarity primaries per transformer are pulsed alternatively in time to produce an oscillatory sinusoidal output waveform. PASC conversion system capabilities to produce both leading and lagging power factor power output in single-phase and three-phase {Delta} or Y configurations are illustrated. EMTP simulations are used to demonstrate the converter capabilities. Also included are discussions regarding harmonics and potential control strategies to adapt the converter to an application or to minimize harmonics.

  14. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  15. Development of high temperature superconductors for electric power applications

    SciTech Connect (OSTI)

    Schiff, N. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    The Nobel Prize-winning discovery in 1986 of a new family of superconductors that exhibited the property of no resistance at temperatures more than ten times greater than the traditional low temperature superconductors (LTS) currently used in MRI and high field magnets, made it possible to foresee a new era for the production, transmission and distribution of electrical power. Smaller, more efficient motors, generators, power cables, transformers, inductors, and superconducting magnetic energy storage (SMES) for power quality were applications immediately envisioned for these high temperature superconductors (HTS), promising enhanced capabilities and lower costs. Work also began on new product concepts, such as more effective fault current limiters for both transmission and distribution systems that could protect expensive hardware and avoid the cost of upgrading circuit breakers as system capacity is increased. The interest of industry and utilities has been increased by successful demonstrations of small-scale prototypes. Recent demonstrations include a one meter conductor for an underground transmission cable produced by American Superconductor which carried over 4,200 amps, a 5 hp synchronous motor produced by Reliance Electric Company, magnet systems which generated over 2 Tesla at temperatures over 20 Kelvin (K) by both American Superconductor Corporation (ASC) and Sumitomo Electric Industries. The Department of Energy, under the Superconductivity Partnership Initiative Program (SPI), recently funded four application development projects: a 100 hp HTS motor demonstration, design of a generator rotor, a fault current limiter for distribution systems, and a 30 meter HTS power transmission cable. This paper will review the progress in application development of HTS products. The specific benefits and costs associated with this technology in power applications will be examined.

  16. Initiating Event Rates at U.S. Nuclear Power Plants 1988–2013

    SciTech Connect (OSTI)

    John A. Schroeder; Gordon R. Bower

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  17. Reducing power consumption during execution of an application on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2013-09-10

    Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: powering up, during compute node initialization, only a portion of computer memory of the compute node, including configuring an operating system for the compute node in the powered up portion of computer memory; receiving, by the operating system, an instruction to load an application for execution; allocating, by the operating system, additional portions of computer memory to the application for use during execution; powering up the additional portions of computer memory allocated for use by the application during execution; and loading, by the operating system, the application into the powered up additional portions of computer memory.

  18. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking

    E-Print Network [OSTI]

    Pre-swing deficits in forward propulsion, swing initiation and power generation by individual to quantify individual muscle contributions to forward propulsion, swing initiation and power generation.e., power delivered to the swing leg) and power generation (i.e., production or absorption of mechanical

  19. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  20. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    Modeling with Combined Heat and Power Applications SCE, S.Modeling with Combined Heat and Power Applications FigureModeling with Combined Heat and Power Applications Figure

  1. Power Reduction via Macroblock Prioritization for Power Aware H.264 Video Applications

    E-Print Network [OSTI]

    Chatha, Karam S.

    Power Reduction via Macroblock Prioritization for Power Aware H.264 Video Applications Michael A for energy conservation. Power-aware applications give their users flexibility to prioritize and trade power reduction in exchange for controlled reduc- tions in video quality for H.264 video streams

  2. Diverse Power Iteration Embeddings and Its Applications

    SciTech Connect (OSTI)

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  3. Initial Northwest Power Act Power Sales Contracts : Final Environmental Impact Statement. Volume 1, Environmental Analysis.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-01-01

    This is volume 1 of the final environmental impact statement of the Bonneville Power Administration Information is included on the following: Purpose of and need for action; alternatives including the proposed action; affected environment; and environmental consequences.

  4. Studies of geothermal power and process heat applications in St. Lucia and Guatemala

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1986-01-01

    Many countries have the potential to use geothermal energy for both power production and process heat applications. Two Los Alamos programs have studied the most effective use of geothermal energy in St. Lucia and Guatemala. The general objectives are (1) to reduce oil imports; (2) develop employment opportunities; and (3) make products more competitive. The initial St. Lucia studies emphasized power generation but a number of applications for the power plant's residual heat were also found and costs and systems have been determined. The costs of geothermal heat compare favorably with heat from other sources such as oil. In Guatemala, the development of the nation's first geothermal field is well advanced. Process heat applications and their coordination with power generation plants are being studied at Los Alamos. Guatemala has at least two fields that appear suitable for power and heat production. These fields are close to urban centers and to many potential heat applications.

  5. Initial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR0987P Uncertainty inInhibiting

  6. Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts

    SciTech Connect (OSTI)

    Carreras, B.A.; Dobson, I.; Newman, D.E.; Poole, A.B.

    2000-01-04

    We examine correlations in a time series of electric power system blackout sizes using scaled window variance analysis and R/S statistics. The data shows some evidence of long time correlations and has Hurst exponent near 0.7. Large blackouts tend to correlate with further large blackouts after a long time interval. Similar effects are also observed in many other complex systems exhibiting self-organized criticality. We discuss this initial evidence and possible explanations for self-organized criticality in power systems blackouts. Self-organized criticality, if fully confirmed in power systems, would suggest new approaches to understanding and possibly controlling blackouts.

  7. Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh Najmabadi and the ARIES Team

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh study of compact stellarators as power plants, ARIES-CS, was initiated recently to advance our. It appears that devices with an overall size similar to those envisioned for tokamak power plants

  8. Impact and Process Evaluation of the U.S. Department of Energy's Wind Powering America Initiative

    SciTech Connect (OSTI)

    2013-05-01

    This report presents an evaluation of the impacts and processes of the former Wind Powering America(WPA) initiative sponsored by the U.S. Department of Energy (DOE). WPA has an underlying goal of dramatically increasing the use of wind energy in the U.S.

  9. Trading Functionality for Power within Applications Melanie Kambadur

    E-Print Network [OSTI]

    Trading Functionality for Power within Applications Melanie Kambadur Columbia University melanie down a program, so they must err on the side of caution when trading performance for power. Compounding application to trade performance for power, it may not be for another, preventing the sys- tem from taking

  10. A review for identification of initiating events in event tree development process on nuclear power plants

    SciTech Connect (OSTI)

    Riyadi, Eko H.

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  11. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han An Li Grace High Frequency Power Applications Yehui Han, Grace Cheung, An Li, Charles R. Sullivan and David J useful for design of magnetic components for very high frequency applications. I. INTRODUCTION

  12. 2007 Wholesale Power Rate Case Initial Proposal : Wholesale Power Rate Development Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2007-11-01

    The Wholesale Power Rate Development Study (WPRDS) calculates BPA proposed rates based on information either developed in the WPRDS or supplied by the other studies that comprise the BPA rate proposal. All of these studies, and accompanying documentation, provide the details of computations and assumptions. In general, information about loads and resources is provided by the Load Resource Study (LRS), WP-07-E-BPA-01, and the LRS Documentation, WP-07-E-BPA-01A. Revenue requirements information, as well as the Planned Net Revenues for Risk (PNNR), is provided in the Revenue Requirement Study, WP-07-E-BPA-02, and its accompanying Revenue Requirement Study Documentation, WP-07-E-BPA-02A and WP-07-E-BPA-02B. The Market Price Forecast Study (MPFS), WP-07-E-BPA-03, and the MPFS Documentation, WP-07-E-BPA-03A, provide the WPRDS with information regarding seasonal and diurnal differentiation of energy rates, as well information regarding monthly market prices for Demand Rates. In addition, this study provides information for the pricing of unbundled power products. The Risk Analysis Study, WP-07-E-BPA-04, and the Risk Analysis Study Documentation, WP-07-E-BPA-04A, provide short-term balancing purchases as well as secondary energy sales and revenue. The Section 7(b)(2) Rate Test Study, WP-07-E-BPA-06, and the Section 7(b)(2) Rate Test Study Documentation, WP-07-E-BPA-06A, implement Section 7(b)(2) of the Northwest Power Act to ensure that BPA preference customers firm power rates applied to their general requirements are no higher than rates calculated using specific assumptions in the Northwest Power Act.

  13. Some new applications of supercapacitors in power electronic systems 

    E-Print Network [OSTI]

    Palma Fanjul, Leonardo Manuel

    2004-09-30

    This thesis explores some new applications in power electronics for supercapacitors. This involves the design and development of dc-dc converters to interface the supercapacitor banks with the rest of the power electronic ...

  14. Power Conditioning and Control Applications for Energy Conservation 

    E-Print Network [OSTI]

    Brushwood, J. S.

    1982-01-01

    Electrical power conditioning and control (PCC) systems are finding cost effective applications in AC motor drives, lamp ballasts and power supplies. Substantial system efficiency improvements are being realized when the appropriate PCC system...

  15. Low Power Filtering Techniques for Wideband and Wireless Applications 

    E-Print Network [OSTI]

    Gambhir, Manisha

    2010-10-12

    This dissertation presents design and implementation of continuous time analog filters for two specific applications: wideband analog systems such as disk drive channel and low-power wireless applications. Specific focus has been techniques...

  16. Analysis of silicon carbide based semiconductor power devices and their application in power factor correction 

    E-Print Network [OSTI]

    Durrani, Yamin Qaisar

    2005-11-01

    Recent technological advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a stage that the present Si-based power devices...

  17. Optimal selection of on-site generation with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

    2004-01-01

    Modeling with Combined Heat and Power Applications. LBNL-Tax on Microgrid Combined Heat and Power Adoption. JournalGeneration with Combined Heat and Power Applications Afzal

  18. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  19. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  20. Regulation and investment under uncertainty: An application to power grid interconnection

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M; Gravel, E; Bernard, J T

    2004-01-01

    An Application to Power Grid Interconnection. Jean-Danielto the Ontario power grid. This interconnection will allowfor our application to a power grid interconnection. Second,

  1. Chameleon: Application Level Power Management with Performance Isolation

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , we present Chameleon--an application-level power management approach for reducing energy consumption in mobile processors. Our approach exports the entire responsibility of power management decisions energy savings. We consider three classes of applications--soft real-time, interactive and batch

  2. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    1 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Member frequency (VHF) applications. Index Terms--Magnetic materials, resonant inductor, very high frequency (VHF capable of efficient operation at very high switching frequencies (e.g., 10 ­ 100 MHz). Power electronics

  3. Wireless power transmission for medical applications

    E-Print Network [OSTI]

    Payne, Joshua E.

    We studied the wireless power transmission capabilities of microwave through human skin-tissue. Microwave transmission through simulated human skins was tested with rectenna array as a power receiver located under the ...

  4. Thermoelectric Applications to Truck Essential Power

    SciTech Connect (OSTI)

    John C. Bass; Norbert B. Elsner

    2001-12-12

    The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

  5. Pulsed power hydrodynamics : a new application of high magnetic fields.

    SciTech Connect (OSTI)

    Reinovsky, R. E. (Robert E.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Faehl, R. J. (Rickey J.); Keinigs, R. K. (Rhonald K.); Lindemuth, I. R.; Scudder, D. W. (David W.); Shlachter, Jack S.; Taylor, Antoinette J.,

    2002-01-01

    Pulsed Power Hydrodynamics is a new application of high magnetic fields recently developed to explore advanced hydrodynamics, instabilities, fluid turbulences, and material properties in a highly precise, controllable environment at the extremes of pressure and material velocity. The Atlas facility at Los Alamos is the world's first and only laboratory pulsed power system designed specifically to explore this relatively new family of megagauss magnetic field applications. Constructed in 2000 and commissioned in August 2001, Atlas is a 24-MJ high-performance capacitor bank delivering up to 30 MA with a current risetime of 5-6 {micro}sec. The high-precision, cylindrical, imploding liner is the tool most frequently used to convert electrical energy into the hydrodynamic (particle kinetic) energy needed to drive the experiments. For typical liner parameters including initial radius of 5 cm, the peak current of 30 MA delivered by Atlas results in magnetic fields just over 1 MG outside the liner prior to implosion. During the 5 to 10-{micro}sec implosion, the field outside the liner rises to several MG in typical situations. At these fields the rear surface of the liner is melted and it is subject to a variety of complex behaviors including: diffusion dominated andor melt wave field penetration and heating, magneto Raleigh-Taylor sausage mode behavior at the liner/field interface, and azimuthal asymmetry due to perturbations in current drive. The first Atlas liner implosion experiments were conducted in September 2000 and 10-15 experiments are planned in the: first year of operation. Immediate applications of the new pulsed power hydrodynamics techniques include material property topics including: exploration of material strength at high rates of strain, material failure including fracture and spall, and interfacial dynamics at high relative velocities and high interfacial pressures. A variety of complex hydrodynamic geometries will be explored and experiments will be designed to explore uristable perturbation growth and transition to turbulence. This paper will provide an overview of the range of problems to which pulsed power hydrodynamics can be applied and the issues associated with these techniques. Other papers at this Conference will present specifics of individual experiments and elaborate on the liner physics issues.

  6. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  7. Compact Low-Voltage, High-Power, Multi-beam Klystron for ILC: Initial Test Results

    E-Print Network [OSTI]

    Teryaev, V E; Kazakov, S Yu; Hirshfield, J L; Ives, R L; Marsden, D; Collins, G; Karimov, R; Jensen, R

    2015-01-01

    Initial test results of an L-band multi-beam klystron with parameters relevant for ILC are presented. The chief distinction of this tube from MBKs already developed for ILC is its low operating voltage of 60 kV, a virtue that implies considerable technological simplifications in the accelerator complex. To demonstrate the concept underlying the tubes design, a six-beamlet quadrant (a 54 inch high one-quarter portion of the full 1.3 GHz tube) was built and recently underwent initial tests, with main goals of demonstrating rated gun perveance, rated gain, and at least one-quarter of the full 10-MW rated power. Our initial three-day conditioning campaign without RF drive (140 microsec pulses @ 60 Hz) was stopped at 53% of full rated duty because of time-limits at the test-site; no signs appeared that would seem to prevent achieving full duty operation (i.e., 1.6 msec pulses @ 10 Hz). The subsequent tests with 10-15 microsec RF pulses confirmed the rated gain, produced output powers of up to 2.86 MW at 60 kV with...

  8. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    SciTech Connect (OSTI)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  9. Transmission Power Management for Wireless Health Applications

    E-Print Network [OSTI]

    Amini, Navid

    2012-01-01

    Experimental Analysis of RF Transmission Characteristics foroptimal low-energy transmission strategy for ieee 802.11a/h.Distributed algorithms for transmission power control in

  10. Thulium heat sources for space power applications

    SciTech Connect (OSTI)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

  11. Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications

    SciTech Connect (OSTI)

    Coleman, RL

    2002-10-21

    The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for unattended or covert operation and in remote or inaccessible locations where the unavailability of LN{sub 2} and signal degradation from existing mechanical coolers prevent its use at the present time.

  12. Transmission Power Management for Wireless Health Applications

    E-Print Network [OSTI]

    Amini, Navid

    2012-01-01

    of an End Device in a ZigBee Mesh Network,” University ofis remarkably lighter than ZigBee. IV) And the power-supplyThe XBee-Pro also includes ZigBee features, allowing for

  13. Dynamic modeling issues for power system applications 

    E-Print Network [OSTI]

    Song, Xuefeng

    2005-02-17

    Power system dynamics are commonly modeled by parameter dependent nonlinear differential-algebraic equations (DAE) x ???p y x f ) and 0 = p y x g ) . Due to (,, (,, the algebraic constraints, we cannot directly perform...

  14. ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING

    E-Print Network [OSTI]

    Mitchell, John E.

    ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING WATER REACTOR AND THE HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Advanced Boiling Water Reactor - General Description . . . . . . . . . . . 3 2.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ii #12;4. Advanced Boiling Water Reactor . . . . . . . . . . . . . . . . . . . . . . . 46 4

  15. Energy processing circuits for low-power applications

    E-Print Network [OSTI]

    Ramadass, Yogesh Kumar

    2009-01-01

    Portable electronics have fueled the rich emergence of new applications including multi-media handsets, ubiquitous smart sensors and actuators, and wearable or implantable biomedical devices. New ultra-low power circuit ...

  16. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect (OSTI)

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  17. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    4270 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Grace. The results of this paper are thus useful for design of magnetic components for very high frequency of efficient operation at very high switching frequencies (e.g., 10-100 MHz). Power electronics operating

  18. Concentrating Solar Power Commercial Application Study

    SciTech Connect (OSTI)

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  19. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    Power Devices and Energy Storage Applications A dissertationfor Power Devices and Energy Storage Applications by Ya-5 On-Chip Energy Storage

  20. Application of smart grid in photovoltaic power systems, ForskEL...

    Open Energy Info (EERE)

    Application of smart grid in photovoltaic power systems, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Application of smart grid in photovoltaic power...

  1. Design, characterization, and modeling of GaN based HFETs for millimeter wave and microwave power amplifier applications

    E-Print Network [OSTI]

    Conway, Adam M.

    2006-01-01

    for Microwave and Millimeter-Wave Power Applications,” IEDM.power microwave and millimeter wave power amplifiers. Whilemicrowave and millimeter- wave power amplifier applications.

  2. Phasor Measurement Unit and Its Application in Modern Power Systems

    SciTech Connect (OSTI)

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topics touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.

  3. Tensor to scalar ratio and large scale power suppression from pre-slow roll initial conditions

    SciTech Connect (OSTI)

    Lello, Louis; Boyanovsky, Daniel, E-mail: lal81@pitt.edu, E-mail: boyan@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara St, Pittsburgh, PA 15260 (United States)

    2014-05-01

    We study the corrections to the power spectra of curvature and tensor perturbations and the tensor-to-scalar ratio r in single field slow roll inflation with standard kinetic term due to initial conditions imprinted by a ''fast-roll'' stage prior to slow roll. For a wide range of initial inflaton kinetic energy, this stage lasts only a few e-folds and merges smoothly with slow-roll thereby leading to non-Bunch-Davies initial conditions for modes that exit the Hubble radius during slow roll. We describe a program that yields the dynamics in the fast-roll stage while matching to the slow roll stage in a manner that is independent of the inflationary potentials. Corrections to the power spectra are encoded in a ''transfer function'' for initial conditions T{sub ?}(k), P{sub ?}(k) = P{sup BD}{sub ?}(k)T{sub ?}(k), implying a modification of the ''consistency condition'' for the tensor to scalar ratio at a pivot scale k{sub 0}: r(k{sub 0}) = ?8n{sub T}(k{sub 0}) [T{sub T}(k{sub 0})/T{sub R}(k{sub 0})]. We obtain T{sub ?}(k) to leading order in a Born approximation valid for modes of observational relevance today. A fit yields T{sub ?}(k) = 1+A{sub ?}k{sup ?p}cos [2??k/H{sub sr}+?{sub ?}], with 1.5?initial conditions. These corrections lead to both a suppression of the quadrupole and oscillatory features in both P{sub R}(k) and r(k{sub 0}) with a period of the order of the Hubble scale during slow roll inflation. The results are quite general and independent of the specific inflationary potentials, depending solely on the ratio of kinetic to potential energy ? and the slow roll parameters ?{sub V}, ?{sub V} to leading order in slow roll. For a wide range of ? and the values of ?{sub V}; ?{sub V} corresponding to the upper bounds from Planck, we find that the low quadrupole is consistent with the results from Planck, and the oscillations in r(k{sub 0}) as a function of k{sub 0} could be observable if the modes corresponding to the quadrupole and the pivot scale crossed the Hubble radius very few (2–3) e-folds after the onset of slow roll. We comment on possible impact on the recent BICEP2 results.

  4. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  5. Reducing power consumption during execution of an application on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2012-06-05

    Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: executing, by each compute node, an application, the application including power consumption directives corresponding to one or more portions of the application; identifying, by each compute node, the power consumption directives included within the application during execution of the portions of the application corresponding to those identified power consumption directives; and reducing power, by each compute node, to one or more components of that compute node according to the identified power consumption directives during execution of the portions of the application corresponding to those identified power consumption directives.

  6. Controllers with Minimal Observation Power (Application to Timed Systems)

    E-Print Network [OSTI]

    David, Alexandre

    Controllers with Minimal Observation Power (Application to Timed Systems) Peter Bulychev1 , Franck, Danish-Chinese Center for Cyber Physical Systems (IDEA4CPS) and VKR Center of Excellence MT-LAB. #12;The iterations. We apply our approach to timed systems. We have developed a tool prototype and analyze

  7. Evaluation of Light-Triggered Thyristors for Pulsed Power Applications

    SciTech Connect (OSTI)

    Tully, L K; Fulkerson, E S; Goerz, D A; Speer, R D

    2008-05-20

    Lawrence Livermore National Laboratory has many needs for high reliability, high peak current, high di/dt switches. Solid-state switch technology offers the demonstrated advantage of reliability under a variety of conditions. Light-triggered switches operate with a reduced susceptibility to electromagnetic interference commonly found within pulsed power environments. Despite the advantages, commercially available solid-state switches are not typically designed for the often extreme pulsed power requirements. Testing was performed to bound the limits of devices for pulsed power applications beyond the manufacturers specified ratings. To test the applicability of recent commercial light-triggered solid-state designs, an adjustable high current switch test stand was assembled. Results from testing and subsequent selected implementations are presented.

  8. Power of a determinant with two physical applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Louck, James D.

    1999-01-01

    An expression for the k th power of an n × n determinant in n 2 indeterminates ( z i j ) is given as a sum of monomials. Two applications of this expression are given: the first is the Regge generating function for the Clebsch-Gordan coefficients of the unitary group S U ( 2 ) ,more »noting also the relation to the ? 3 ? F 2 hypergeometric series; the second is to the even powers of the Vandermonde determinant, or, equivalently, all powers of the discriminant. The second result leads to an interesting map between magic square arrays and partitions and has applications to the wave functions describing the quantum Hall effect. The generalization of this map to arbitrary square arrays of nonnegative integers, having given row and column sums, is also given. « less

  9. Power-aware applications for scientific cluster and distributed computing

    E-Print Network [OSTI]

    David Abdurachmanov; Peter Elmer; Giulio Eulisse; Paola Grosso; Curtis Hillegas; Burt Holzman; Ruben L. Janssen; Sander Klous; Robert Knight; Shahzad Muzaffar

    2014-10-22

    The aggregate power use of computing hardware is an important cost factor in scientific cluster and distributed computing systems. The Worldwide LHC Computing Grid (WLCG) is a major example of such a distributed computing system, used primarily for high throughput computing (HTC) applications. It has a computing capacity and power consumption rivaling that of the largest supercomputers. The computing capacity required from this system is also expected to grow over the next decade. Optimizing the power utilization and cost of such systems is thus of great interest. A number of trends currently underway will provide new opportunities for power-aware optimizations. We discuss how power-aware software applications and scheduling might be used to reduce power consumption, both as autonomous entities and as part of a (globally) distributed system. As concrete examples of computing centers we provide information on the large HEP-focused Tier-1 at FNAL, and the Tigress High Performance Computing Center at Princeton University, which provides HPC resources in a university context.

  10. Initial Northwest Power Act Power Sales Contracts : Final Environmental Impact Statement. Volume 2, Appendices A--L.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-01-01

    This report consists of appendices A-L of the final environmental impact statement for the Bonneville Power Administration. The appendices provide information on the following: Ninth circuit Court opinion in Forelaws on Board v. Johnson; guide to Northwest Power act contracts; guide to hydro operations; glossary; affected environment supporting documentation; environmental impacts of generic resource types; information on models used; technical information on analysis; public involvement activities; bibliography; Pacific Northwest Electric Power Planning and Conservation Act; and biological assessment. (CBS)

  11. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space-power requirements over the next few decades. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  12. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT facility. [PWR

    SciTech Connect (OSTI)

    Varacalle, D.J. Jr.; Koizumi, Y.; Giri, A.H.; Koske, J.E.; Sanchez-Pope, A.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  13. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    SciTech Connect (OSTI)

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-07-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data.

  14. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  15. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect (OSTI)

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  16. Profiling an application for power consumption during execution on a compute node

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-09-17

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  17. Profiling an application for power consumption during execution on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2012-08-21

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  18. 1987 Overview of the free-piston Stirling technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.; Alger, D.L.

    1994-09-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, NASA Lewis serves as the project office to manage the newly initiated NASA SP-100 Advanced Technology Program. This 5-yr program provides the technology thrust for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable growth candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are comparisons between predicted and experimental engine performance, enhanced performance resulting from regenerator modification, increased operating stroke brought about by isolating the gas bearing flow between the displacer and power piston, identifying excessive energy losses and recommending corrective action, and a better understanding of linear alternator design and operation. Technology work is also conducted on heat exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance performance. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  19. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  20. Investigation of expert system application to spacecraft power system control

    SciTech Connect (OSTI)

    Pistole, C.; Bein, J.

    1984-08-01

    This paper addresses the application of expert systems to spacecraft power system control through investigation of two salient technical issues. These are the maximum speed of an expert system, and interaction between the expert system and transient phenomena. The basis of this discussion will be test data obtained through development of the Fault Isolation Expert System (FIES) at Martin Marietta Aerospace Denver. The expert system was tested to determine the minimum time required to clear a power system fault. This response time will be compared to conventional fault handling techniques, and analyzed to determine the maximum bandwidth of the system to be controlled. The second issue to be investigated is the relationship between expert system speed and power system transients. Specifically, FIES is intended to deal with quasi steady state inputs only. Therefore, expert system inputs must be filtered to eliminate the interaction between the expert system and transient phenomena. This paper will discuss the considerations involved in the tailoring of inputs.

  1. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  2. Initial Studies on Actionable Control for Improving Small Signal Stability in Interconnected Power Systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Huang, Zhenyu; Zhou, Ning; Guttromson, Ross T.; Jayantilal, Avnaesh

    2010-06-14

    Power consumption and demand continues to grow around the world. As the electric power grid continues to be put under more stress, the conditions of instability are more likely to occur. One cause of such instabilities is intearea oscillations, such as the oscillation that resulted in the August 10, 1996 blackout of the WECC. This paper explores different potential operations of different devices on the power system to improve the damping of these interarea oscillations using two different simulation models

  3. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  4. Guidelines for preparing and reviewing applications for the licensing of non-power reactors: Format and Content. NUREG-1537, Part 1

    SciTech Connect (OSTI)

    1996-02-01

    NUREG - 1537, Part 1 gives guidance to non-power reactor licensees and applicants on the format and content of applications to the Nuclear Regulatory Commission for licensing actions. These licensing actions include construction permits and initial operating licenses, license renewals, amendments, conversions from highly enriched uranium to low-enriched uranium, decommissioning, and license termination.

  5. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  6. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  7. Initial exploration of 21-cm cosmology with imaging and power spectra from the Murchison Widefield Array

    E-Print Network [OSTI]

    Williams, Christopher Leigh

    2012-01-01

    The Murchison Widefield Array (MWA) is a new low-frequency radio array under construction in Western Australia with a primary goal of measuring the power spectrum of the 21-cm signal from neutral hydrogen during the Epoch ...

  8. High Performance Computing - Power Application Programming Interface Specification.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  9. Applications of Power Electronics in Automotive Power Generation David J. Perreault, Thomas A. Keim, Jeffrey H. Lang, Leandro M. Lorilla

    E-Print Network [OSTI]

    Perreault, Dave

    Applications of Power Electronics in Automotive Power Generation David J. Perreault, Thomas A. Keim Alternator, Brushless Exciter, Contactless Power Transfer. 1. Introduction The evolution of automotive these challenges has motivated a variety of research into automotive alternator design in recent years (e.g., [1

  10. Development and initial application of the global-through-urban weather research and forecasting model with chemistry

    E-Print Network [OSTI]

    Zhang, Yang

    Development and initial application of the global-through-urban weather research and forecasting application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem), J. In this work, a global-through-urban WRF/Chem model (i.e., GU-WRF/Chem) has been developed to provide

  11. The VIKING Project: An Initiative on Resilient Control of Power Networks

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    . INTRODUCTION AND MOTIVATION Supervisory control and data acquisition (SCADA) net- works contain computers on SCADA networks for power systems. SCADA systems are continuously becoming more advanced and com- plex complexity of the systems is not the most challenging trend today. Instead, it is the fact that SCADA systems

  12. STARFIRE -INITIAL CONCEPTUAL DESIGN OFA COMMERCIAL TOKAMAK POWER PLANT C.C. Baker, M.A. Abdou, D.DeFreece, C.Trachsel,

    E-Print Network [OSTI]

    Abdou, Mohamed

    STARFIRE -INITIAL CONCEPTUAL DESIGN OFA COMMERCIAL TOKAMAK POWER PLANT by C.C. Baker, M.A. Abdou, D DESIGN OF A COMMERCIAL TOKAMAK POWER PLANT C. C. Baker and M. A. Abdou Argonne National Laboratory conceptual design study called STARFIRE of a commercial fusion tokamak power reactor and balance plant

  13. Hawaii International Conference on System Sciences, January 2001, Maui, Hawaii. c 2001 IEEE An initial model for complex dynamics in electric power system blackouts

    E-Print Network [OSTI]

    Newman, David

    An initial model for complex dynamics in electric power system blackouts I. Dobson ECE Department University of electric power transmission system blackouts. The model describes opposing forces which have been conjectured to cause self-organized criticality in power system blackouts. There is a slow time scale

  14. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  15. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect (OSTI)

    Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Martin, Daniel [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Dr. Matt [University of Arkansas; Lamichhane, Ranjan [University of Arkansas; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas

    2015-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.

  16. Design of a creep resistant nickel base superalloy for power plant applications

    E-Print Network [OSTI]

    Cambridge, University of

    Design of a creep resistant nickel base superalloy for power plant applications Part 2­Phase and used as tools to design a new `made to measure' nickel base superalloy for power plant applications (wt-%) nickel base superalloy has been proposed, for use in future fossil fuel power plant, to operate

  17. Ultra-Low Power DLMS Adaptive Filter For Hearing Aid Applications

    E-Print Network [OSTI]

    Kim, Chris H.

    Ultra-Low Power DLMS Adaptive Filter For Hearing Aid Applications Hyung-il Kim Purdue University, USA +1-765-494-2361 kaushik@ecn.purdue.edu ABSTRACT We present an ultra-low power DLMS (delayed least suitable application areas for sub-threshold logic since ultra-low power consumption takes first priority

  18. A Hybrid Adiabatic Content Addressable Memory for Ultra Low-Power Applications

    E-Print Network [OSTI]

    Tessier, Russell

    A Hybrid Adiabatic Content Addressable Memory for Ultra Low-Power Applications Aiyappan Natarajan/write operation. The adiabatic CAM is suitable for ultra low-power, low per- formance applications such as smart, Performance Keywords Ultra-low power, Energy recovery, adiabatic switching 1. INTRODUCTION Content Addressable

  19. Power Versus Quality Trade-offs for Adaptive Real-Time Applications

    E-Print Network [OSTI]

    Power Versus Quality Trade-offs for Adaptive Real-Time Applications Andrew Nelson1, Benny Akesson2 that is used to trade processor speed for a reduction in power consumption. Adaptive applications can reduce of the H.263 decoder's scalable mechanisms, in their ability to trade quality for temporal/energy/power

  20. File:Oklahoma Wind Power Initiative Lesson1 windenergycalc.pdf | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonasterwindCAES energy site.pdf |NhpaEnergy

  1. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2 (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(activeInforum LIFTMEMSProject: computing

  2. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  3. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect (OSTI)

    Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory; Lopez, Leon [Los Alamos National Laboratory; Martinez, Ron [Los Alamos National Laboratory; Le, Loan [Los Alamos National Laboratory; Lamontagne, Stephen A [DOE/NNSA/NA241; Veal, Kevin [NN/ADTR

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.

  4. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01

    of stacked-FET millimeter-wave power amplifiers,” IEEECMOS Millimeter-Wave Power Amplifiers .dual-path, millimeter-wave power amplifier with 20 dBm

  5. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-E-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-E-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-E-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-E-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-E-BPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard. The processes and interaction between each of the models and studies are depicted in Graph 1.

  6. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ˝*______*______*______*.59

  7. Application of Centrality Measures of Complex Network Framework in Power Grid

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Application of Centrality Measures of Complex Network Framework in Power Grid A. B. M. Nasiruzzaman of the power grid. In this paper three distinct measures of centrality are presented and they are described Typically a system like power grid consists of power plants, transformers, transmission lines, distribution

  8. Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications

    E-Print Network [OSTI]

    Pilawa-Podgurski, Robert C. N.

    This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...

  9. Grainger Power Engineering Award Graduate Student Application Form

    E-Print Network [OSTI]

    Jain, Kanti

    - __________ __________ scale electrical systems ECE 568 Modeling and Control of __________ __________ Electromechanical Systems ECE 573 Power Systems Control __________ __________ ECE 576 Power System Dynamics __________ __________ Thesis advisor: ______________________________ Thesis title

  10. Transmission Line Resistance Compression Networks and Applications to Wireless Power Transfer

    E-Print Network [OSTI]

    Barton, Taylor W.

    Microwave-to-dc rectification is valuable in many applications, including RF energy recovery, dc-dc conversion, and wireless power transfer. In such applications, it is desired for the microwave rectifier system to provide ...

  11. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering

    E-Print Network [OSTI]

    Miller, William H.

    -IVR is approximate. Some of the correlation functions involve only linear operators, and others involve nonlinearTest of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen Jian Liua and William H

  12. A low power high power supply rejection ratio bandgap reference for portable applications

    E-Print Network [OSTI]

    Sundar, Siddharth

    2008-01-01

    A multistage bandgap circuit with very high power supply rejection ratio was designed and simulated. The key features of this bandgap include multiple power modes, low power consumption and a novel resistor trimming strategy. ...

  13. Space reactor/Stirling cycle systems for high power Lunar applications

    SciTech Connect (OSTI)

    Schmitz, P.D.; Mason, L.S.

    1994-09-01

    NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

  14. Assessment of Combined Heat and Power Premium Power Applications in California, September 2008

    Broader source: Energy.gov [DOE]

    This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.

  15. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  16. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  17. Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications

    E-Print Network [OSTI]

    Perreault, Dave

    Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications explores the benefits of distributed power electronics in solar photovoltaic applications through the use, interest in renewable energy sources has in- creased. Among these, solar photovoltaic (PV) energy has seen

  18. PossibleApplications of PowerfulPulsed C0,-Lasers in Tokamak Reactors

    E-Print Network [OSTI]

    Harilal, S. S.

    interaction with a wall, as in the case of a plasma disruption, is considered. 1. INTRODUCTION To buildPossibleApplications of PowerfulPulsed C0,-Lasers in Tokamak Reactors A. Hassanein Argonne National available original document. #12;Possible Applications of Powerful Pulsed C0,-Lasers in Tokamak Reactors

  19. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  20. PowerScope: A Tool for Profiling the Energy Usage of Mobile Applications

    E-Print Network [OSTI]

    Satyanarayanan, Mahadev "Satya"

    PowerScope: A Tool for Profiling the Energy Usage of Mobile Applications Jason Flinn and M In this paper, we describe the design and implementation of PowerScope, a tool for profiling energy usage of energy usage by process and procedure. Using PowerScope, we have been able to reduce the energy con

  1. Proceedings of IEEE Sensors 2003 Fiber Optic Oxygen Sensor for Power Plant Applications

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    807 Proceedings of IEEE Sensors 2003 Paper 22-2 Fiber Optic Oxygen Sensor for Power Plant for power plant applications. The sensor utilizes quenching of the bright red fluorescence from inorganic. Motivation Combustion processes in power plants require the correct mix of fuel and oxygen to maximize

  2. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    E-Print Network [OSTI]

    McHenry, Michael E.

    and facilitate two-way power conversion.7 Flexible alternating current (AC) Transmission Systems (FACTS) and High Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from highSoft Magnetic Materials in High-Frequency, High-Power Conversion Applications ALEX M. LEARY,1

  3. Design Methodology to trade off Power, Output Quality and Error Resiliency: Application to Color Interpolation Filtering

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    Design Methodology to trade off Power, Output Quality and Error Resiliency: Application to Color,nbanerje,kaushik}@purdue.edu chaitali@asu.edu Abstract: Power dissipation and tolerance to process variations pose conflicting design-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems

  4. A Plantwide Control Procedure with Application to Control Structure Design for a Gas Power Plant

    E-Print Network [OSTI]

    Skogestad, Sigurd

    A Plantwide Control Procedure with Application to Control Structure Design for a Gas Power Plant #3 and Skogestad (2001) and apply it to a gas power plant. 1 Introduction A chemical plant may have thousands extend the plantwide control procedure of Larsson and Skogestad (2001) and apply it to a gas power plant

  5. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  6. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01

    through capability of CHP equipment. Thomson Technology,Germany, 2008. Pacific Region CHP Application Center, EnergyMarnay ^ * Pacific Region CHP Application Center ^ Lawrence

  7. Application of Automated Controls for Voltage and Reactive Power Management - Initial Results

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWasteCommentsTransmission Company:DesiertoTransmission

  8. DOE Seeks Applications for Third Round of Clean Coal Power Initiative |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThis memoEnergy The U.S.Department

  9. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    SciTech Connect (OSTI)

    Stone, J.R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently.

  10. High Performance Circuits for Power Management and Millimeter Wave Applications 

    E-Print Network [OSTI]

    Amer, Ahmed 1979-

    2012-01-23

    to achieve the required goals in terms of small silicon area and power consumption while at the same time achieve high performance. Four key building blocks in power management and a switchable harmonic mixer with pre-amplifier and poly-phase generator as a...

  11. Application of Symbolic Analysis to Power and Ground Interconnect Optimization

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    submicron levels · Vdd levels going down to conserve power · Power and Ground buses cannot be assumed to be perfect conductors · P&G buses must be designed carefully to ensure that supply voltage levels are maintained at appropriate levels. · Better CAD techniques needed for estimation of voltage drops in P&G buses

  12. Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky

    E-Print Network [OSTI]

    Sanders, Seth

    -- the electrochemical battery -- has failed to shrink at the same rate as circuits and sensors. While this growing or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from high

  13. Application of U10Mo Fuel for Space Fission Power Applications - White Paper

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    A novel reactor design has been proposed for space applications to provide hundreds of watts to one or two kilowatts of electrical power. The reactor concept proposed uses the alloy U10Mo (uranium with 10 weight percent molybdenum) as the fuel. This fuel was selected for its high uranium density, high thermal conductivity, and excellent neutronic characteristics for this application. The core is surrounded by a BeO reflector. Heat is carried from the reactor by liquid metal heat pipes. A shadow shield of LiH tungsten is also utilized to reduce the neutron and gamma radiation dose to the rest of the spacecraft. This design represents a best effort at minimizing the complexity of the fission system and reducing the mass of the system. The compact nature of the block UMo core and BeO radial reflector allows the reactor diameter to be as small as practical while still meeting the neutronic and thermal power demands. This directly results in a reduced shield mass since the reactor diameter dictates the footprint of the radiation shield. The use of heat pipes offers a straightforward primary heat transport approach using proven liquid-metal heat pipe technology. Further, the elimination of a liquid core coolant system heat transport components, both at the reactor side and radiator side, contributes to reducing the total part-count and lowering system mass. The proposed reactor is using a fuel that is being developed by DOE, but there are significant differences in the fuels enrichment, operating conditions and the physical shape of the fuel itself. This paper attempts to highlight some of the basic consideration and needs that would be expected to be met in developing this fuel and qualifying it for use.

  14. Application of initial data sequences to the study of Black Hole dynamical trapping horizons

    E-Print Network [OSTI]

    Jaramillo, José Luis; Vasset, Nicolas; 10.1063/1.3141305

    2011-01-01

    Non-continuous "jumps" of Apparent Horizons occur generically in 3+1 (binary) black hole evolutions. The dynamical trapping horizon framework suggests a spacetime picture in which these "Apparent Horizon jumps" are understood as spatial cuts of a single spacetime hypersurface foliated by (compact) marginally outer trapped surfaces. We present here some work in progress which makes use of uni-parametric sequences of (axisymmetric) binary black hole initial data for exploring the plausibility of this spacetime picture. The modelling of Einstein evolutions by sequences of initial data has proved to be a successful methodological tool in other settings for the understanding of certain qualitative features of evolutions in restricted physical regimes.

  15. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy Savers [EERE]

    Projects, which exceeds the 2 billion in loan guarantees made available for this type of project in the June 30, 2008 solicitation. License applications for the nuclear...

  16. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    SciTech Connect (OSTI)

    Martin, Olga

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  17. Intelligent User Interfaces for Expert System Applications in Power Plants 

    E-Print Network [OSTI]

    Frogner, B.

    1989-01-01

    the end-user with all the capabilities still available. An expert system for diagnosis of heat rate degradation in power plants is discussed to illustrate the utility of the approach....

  18. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  19. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan [ORNL] [ORNL; Onar, Omer C [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Tang, Lixin [ORNL] [ORNL

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  20. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  1. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recording and text version of the Fuel Cell Technologies Office webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014.

  2. MEMS relays for make-break power switching applications : {111} silicon etched planar electrical contacts

    E-Print Network [OSTI]

    Weber, Alexis Christian, 1974-

    2008-01-01

    Relays and switches are of interest in applications such as test equipment, radar, communications, and power systems, amongst others. Unlike solid state switches, mechanical relays provide galvanic isolation across the ...

  3. Power Electronics Design Implications of Novel Photovoltaic Collector Geometries and Their Application for Increased Energy Harvest 

    E-Print Network [OSTI]

    Karavadi, Amulya

    2011-10-21

    applications for this sustainable energy generation currently not possible with the traditional rigid, flat silicon-glass modules. However, since the photovoltaic cells are no longer coplanar, there are significant new requirements for the power electronics...

  4. Modelling precipitation sequences in power plant steels Part 2 -Application of kinetic theory

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling precipitation sequences in power plant steels Part 2 - Application of kinetic theory J. D to predictthevastdifferencesin precipitation kineticsreportedin thepublishedliteraturefor powerplant steels.By implication, the precipitate phases usually present are metastable. Indeed,it is well establishedthat thereis

  5. Smart Energy Management of Multiple Full Cell Powered Applications

    SciTech Connect (OSTI)

    MOhammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  6. Selected papers from the 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009)

    E-Print Network [OSTI]

    Rubloff, Gary W.

    and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2009) Guest Editors Reza selected from the 9th International Workshop on Micro and Nanotechnology for Power Generation and EnergySelected papers from the 9th International Workshop on Micro and Nanotechnology for Power

  7. PICA'97 IEEE POWER INDUSTRY COMPUTER APPLICATIONS CONFERENCE

    E-Print Network [OSTI]

    Ernst, Damien

    University of Liâ??ege ­ Belgium Yannick JACQUEMART Electricitâ??e de France ­ France Final version of the course : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 2.2 Application of automatic learning (Data mining) : : : : : : : : : : : : : : : : : : : : 6 2

  8. Exergy efficiency of small coal-fired power plants as a criterion of their wide applicability

    SciTech Connect (OSTI)

    O.V. Afanas'eva; G.R. Mingaleeva [Russian Academy of Sciences, Tatarstan (Russian Federation). Research Center of Power Engineering Problems

    2009-02-15

    The applicability of small coal-fired power plants as an independent and reliable power supply source was considered. The advantages of using small thermal power plants were given, and the classification characteristics of small coal-fired power plants were put forward. The exergy method was chosen as a versatility indicator for the operating efficiency of a flowsheet in question. The exergy efficiency factor of the flowsheet was 32%. With the manufacture of by-products, such as activated carbons, the exergy efficiency of the flowsheet increased to 35%. The studies undertaken substantiated the wide applicability of small coal-fired power plants for the development of decentralized power supply. 7 refs., 2 tabs.

  9. Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications

    E-Print Network [OSTI]

    Perreault, Dave

    Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications 2012. Abstract--This paper explores the benefits of distributed power electronics in solar photovoltaic, interest in renewable energy sources has in- creased. Among these, solar photovoltaic (PV) energy has seen

  10. A Neural Network Based Adaptive Sliding Mode Controller: Application to a Power System Stabilizer

    E-Print Network [OSTI]

    Al-Duwaish, Hussain N.

    A Neural Network Based Adaptive Sliding Mode Controller: Application to a Power System Stabilizer University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia * Corresponding Author- e-mail: hduwaish gains when the operating point changes. The proposed method has been applied to a power system

  11. Application of the Global Positioning System to the Measurement of Overhead Power Transmission Conductor Sag

    E-Print Network [OSTI]

    operating regime [1-5]. In a deregulated electric utility environment, transmission circuit ratings assumeApplication of the Global Positioning System to the Measurement of Overhead Power Transmission Abstract This paper describes a method to directly meas- ure the physical sag of overhead electric power

  12. Application of Flow Battery in Marine Current Turbine System for Daily Power Management

    E-Print Network [OSTI]

    Brest, Université de

    Application of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage and to guarantee the expected power injection to the local grid. Keywords--Marine current turbine, flow battery

  13. Theory of Oblique Detonations and Application to Propulsion Joseph M. Powers

    E-Print Network [OSTI]

    Theory of Oblique Detonations and Application to Propulsion Joseph M. Powers Assistant Professor-5637 powers@neumann.ame.nd.edu 219-631-5978 prepared for the School of Aeronautics and Astronautics Purdue detonation wave engine and the ram accelerator. Additionally, it is the generic two-dimensional compressible

  14. Control of Ultracapacitor-Battery Hybrid Power Source for Vehicular Applications

    E-Print Network [OSTI]

    with 97-98% typical efficiency. I. INTRODUCTION Batteries often constitute the energy storage systemControl of Ultracapacitor-Battery Hybrid Power Source for Vehicular Applications Jonathan J of this work in other works must be obtained from the IEEE. #12;Control of Ultracapacitor-Battery Hybrid Power

  15. An Ultra Low Power CMOS pA/V Transconductor and its Application to Wavelet Filters

    E-Print Network [OSTI]

    Serdijn, Wouter A.

    An Ultra Low Power CMOS pA/V Transconductor and its Application to Wavelet Filters Peterson R topologies of ultra low-power CMOS triode transconductor are proposed. Its input transistors are kept with an extremely small transconductance gm is needed. This paper presents two topologies of ultra low

  16. Electrical power free, low dead volume, pressure-driven pumping for microfluidic applications

    E-Print Network [OSTI]

    Sun, Yu

    Electrical power free, low dead volume, pressure-driven pumping for microfluidic applications Mario not require electrical power and is cost effective $100 . To demonstrate the capabilities of the pump, we used-osmotic pumping and syringe a Currently with the Mechanical Engineering Department, Assiut University, Egypt. b

  17. A Single-phase Rectifier With Ripple-power Decoupling and Application to LED Lighting 

    E-Print Network [OSTI]

    Tian, Bo

    2015-05-12

    In recent years, Light-Emitting-Diode (LED) is widely used in lighting applications for its high efficacy and high reliability. However, the rectifier, which is required by the LEDs to convert the AC power from the grid into DC power, suffers from...

  18. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    SciTech Connect (OSTI)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  19. Channel Capacity and Achievable Rates of Peak Power Limited AWGNC, and their Applications to

    E-Print Network [OSTI]

    Ikeda, Shiro

    of the framework is how to design the switching strategy. In this paper, we discuss the practical strategy for AMCChannel Capacity and Achievable Rates of Peak Power Limited AWGNC, and their Applications white Gaussian noise channel (AWGNC). For the constraint, we focus on the peak power instead

  20. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Overview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B energy sources (RES). The extensive use of such energy sources in today's electricity networks can

  1. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01

    schedule. Of course, running CHP systems at the time ofride-through capability of CHP equipment, June 2007.Kammen* * Pacific Region CHP Application Center ^ Lawrence

  2. Smart Modules for Lighting System Applications and Power Quality Measurements.

    E-Print Network [OSTI]

    Hirche, Sandra

    , Guilherme M. Soares, Thiago R. F. Mendonça, Pedro S. Almeida, Henrique A. C. Braga Electrical Engineering system and coupling sensors to the module, it's possible to gather data regarding the power grid as well, such as adaptive dimming, allowing to vary the light intensity of the lamp in accordance with time, weather or just

  3. Electromechanical battery design suitable for back-up power applications

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  4. Partial Gating Optimization for Power Reduction During Test Application

    E-Print Network [OSTI]

    Tehranipoor, Mohammad

    and energy consumption self testing of portable devices is rendered impractical. For all these reasons. INTRODUCTION Power consumption during testing has become an impor- tant issue in modern day designs consumption is especially important in today's chips, where larger numbers of transistors are packed

  5. DATE OF INITIAL ADOPTION AND EFFECTIVE DATE 05-11-2005 APPLICABILITY/ACCOUNTABILITY

    E-Print Network [OSTI]

    Hua, Kien A.

    relationships constitutes failure to follow this policy and may be grounds for non-selection and discipline, up of control responsible for supervising, directing, evaluating, or influencing the work activities, or job on the application the name and relationship to any current UCF employee. Failure to properly disclose relative

  6. Application of power-factor correction in the Tandem Mirror Experiment Upgrade magnet power supply

    SciTech Connect (OSTI)

    Corvin, W.C.

    1981-08-14

    The magnet power supply for the Tandem Mirror Experiment Upgrade (TMX Upgrade) contains 24 groups of dc rectifiers that feed the water-cooled magnets. Each group consists of five or less rectifiers, connected in series. All 24 are current-regulating, using phase-controlled bilateral thyristors in the rectifier transformer primaries. The electric utility system must furnish reactive power to these phase-controlled thyristors as well as to the cmmutating diodes in the rectifier bridges.

  7. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  8. QM Power, Inc: Commercial Refrigeration Fan Applications | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget || DepartmentPutting Solar- EastEnergy QM Power,

  9. Cyber Fed Model Application in support of DOE Cyber Security Initiatives -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding inCustomer-Comments Sign In About

  10. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  11. PowerComplexity Analysis of Pipelined VLSI FFT Architectures for Low Energy Wireless Communication Applications

    E-Print Network [OSTI]

    Papaefthymiou, Marios

    & En­ gineering (DDR&E) Multidisciplinary University Research Initiative (MURI) on ``Low EnergyPower­Complexity Analysis of Pipelined VLSI FFT Architectures for Low Energy Wireless Communication of process­ ing units and their interconnect topology. This paper analyzes the energy dissipation

  12. Tests of cosmic ray radiography for power industry applications

    E-Print Network [OSTI]

    Durham, J M; Morris, C L; Bacon, J; Fabritius, J; Fellows, S; Plaud-Ramos, K; Poulson, D; Renshaw, J

    2015-01-01

    In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wall thickness. This work is motivated by the need for radiographic methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.

  13. Power and Memory Efficient Hashing Schemes for Some Network Applications 

    E-Print Network [OSTI]

    Yu, Heeyeol

    2010-07-14

    Filter FF Fingerprint Filter SBF Segmented Bloom Filter SL Successful Lookup UL Unsuccessful Lookup viii SS Successful Search US Unsuccessful Search BMF Bloomier Filter PPC Parallel Packet Classifier MPC Multi-tiered Packet Classifier 2TPC 2-tiered Packet... III Power value by CACTI in PPC(31Kx1, 20 ports), 2TPC(29Kx1, 19 ports), and 3TPC(14Kx1,18 ports). ................. 38 IV Complexities of operations to o?-chip in four schemes. ........ 61 V On-chip memory usage for three traces. The load factor is 0...

  14. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1995-12-31

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user see the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  15. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1996-05-01

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user ``see`` the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  16. BioPower Application (United States) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectricBioCleanBioPower

  17. A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

    SciTech Connect (OSTI)

    Marshall, A.C.

    1989-08-01

    We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.

  18. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated “dumb” nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated ‘smart grid’. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced to understand their implications before they can be successfully implemented in the power system.

  19. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  20. Ultra high performance connectors for power transmission applications

    DOE Patents [OSTI]

    Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

    2014-03-04

    Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

  1. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  2. Expert system driven fuzzy control application to power reactors

    SciTech Connect (OSTI)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  3. Expert system driven fuzzy control application to power reactors

    SciTech Connect (OSTI)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  4. Power Converter Topologies with Energy Recovery and Grid Power Limitation For Inductive Load Applications

    E-Print Network [OSTI]

    Rossini, Stefano; Papastergiou, Konstantinos; Le Godec, Gilles; Retegui, Rogelio Garcia; Maestri, Sebastian

    2015-01-01

    This work investigates a grid interface for power supplies used in particle accelerators for cycling loads such as large electromagnets. Two topologies are discussed integrating magnetic energy recovery. For each topology, the associated energy management strategies are examined with the objective to control the grid current profile. A model is established for each of the proposed solutions and the simulation results are presented. A critical review of the investigated energy management solutions is attempted.

  5. Reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda A. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2012-01-10

    Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.

  6. Reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Cambridge, MA); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2012-04-17

    Methods, apparatus, and products are disclosed for reducing power consumption while synchronizing a plurality of compute nodes during execution of a parallel application that include: beginning, by each compute node, performance of a blocking operation specified by the parallel application, each compute node beginning the blocking operation asynchronously with respect to the other compute nodes; reducing, for each compute node, power to one or more hardware components of that compute node in response to that compute node beginning the performance of the blocking operation; and restoring, for each compute node, the power to the hardware components having power reduced in response to all of the compute nodes beginning the performance of the blocking operation.

  7. High power linear pulsed beam annealer. [Patent application

    DOE Patents [OSTI]

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  8. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect (OSTI)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  9. Economic applicability of atomic energy as a source of power in underdeveloped countries 

    E-Print Network [OSTI]

    Ahmed, Sheik Basheer

    1963-01-01

    ECONOMIC APPLICABILITY OF ATOMIC ENERGY AS A SOURCE OF POWER IN UNDERDEVELOPED COUNTRIES A Thesis S, Basheer Ahmed Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... Earlier Discussions Geneva and Post-Geneva Developments III. ATOMIC ENERGY AND INDUSTRIALIZATION. Hi torical Process of Industrial Growth Atomic Power and Industrialization IV. COMPARATIVE ? COST STUDY. 38 Theoretical Co st Studie s Britain' s Case...

  10. 20 IEEE Computer Applications in Power ISSN 0895-0156/01/$10.002001 IEEE irtually every crucial economic

    E-Print Network [OSTI]

    Amin, S. Massoud

    -free electricity; and bank- ing and finance depend on the robust- ness of electric power, cable, and wireless/Systems Initiative (CIN/SI) is a joint program by Electric Power Research Institute (EPRI) and the U.S. Department constitute the foundation of all prospering societies. For example, the U.S. electric power grid has evolved

  11. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    SciTech Connect (OSTI)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  12. Architectures and circuits for low-voltage energy conversion and applications in renewable energy and power management

    E-Print Network [OSTI]

    Pilawa-Podgurski, Robert C. N

    2012-01-01

    In this thesis we seek to develop smaller, less expensive, and more efficient power electronics. We also investigate emerging applications where the proper implementation of these new types of power converters can have a ...

  13. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    Research Director, PIER Demand Response Research CenterAssessment of Demand Response & Advanced Metering, staffPower Shortages: Demand Response and its Applications in Air

  14. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    SciTech Connect (OSTI)

    Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

    2008-09-30

    This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the power generation system. Using the Distributed Energy Resource Customer Adoption Model (DER-CAM) developed at the Lawrence Berkeley National Laboratory, we model three representative scenarios and find the optimal operation scheduling, yearly energy cost, and energy technology investments for each scenario below: Scenario 1 - Diesel generators and CHP/CCHP equipment as installed in the current facility. Scenario 1 represents a baseline forced investment in currently installed energy equipment. Scenario 2 - Existing CHP equipment installed with blackout ride-through capability to replace approximately the same capacity of diesel generators. In Scenario 2 the cost of the replaced diesel units is saved, however additional capital cost for the controls and switchgear for blackout ride-through capability is necessary. Scenario 3 - Fully optimized site analysis, allowing DER-CAM to specify the number of diesel and CHP/CCHP units (with blackout ride-through capability) that should be installed ignoring any constraints on backup generation. Scenario 3 allows DER-CAM to optimize scheduling and number of generation units from the currently available technologies at a particular site. The results of this analysis, using real data to model the optimal schedulding of hypothetical and actual CHP systems for a brewery, data center, and hospital, lead to some interesting conclusions. First, facilities with high heating loads will typically prove to be the most appropriate for CHP installation from a purely economic standpoint. Second, absorption/adsorption cooling systems may only be economically feasible if the technology for these chillers can increase above current best system efficiency. At a coefficient of performance (COP) of 0.8, for instance, an adsorption chiller paired with a natural gas generator with waste heat recovery at a facility with large cooling loads, like a data center, will cost no less on a yearly basis than purchasing electricity and natural gas directly from a utility. Third, at marginal additional cost, if the reliability of CHP systems proves to be at

  15. Power Systems and Communications Infrastructures for the future, Beijing, September 2002 AN INITIAL COMPLEX SYSTEMS ANALYSIS OF THE RISKS OF

    E-Print Network [OSTI]

    COMPLEX SYSTEMS ANALYSIS OF THE RISKS OF BLACKOUTS IN POWER TRANSMISSION SYSTEMS I. Dobson D. E. Newman B of blackout risk. Indeed, the mitigation of failures in complex systems needs to be approached with care. To motivate our work we consider the statistics of series of blackouts. The North American Electrical

  16. Advanced Power Plant Modeling with Applications to an Advanced Boiling Water

    E-Print Network [OSTI]

    Mitchell, John E.

    Advanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat and an Advanced Boiling Water Reactor (ABWR). The continuity wave equa- tions for single and two-phase flow advanced method, are shown. These both are applied to a simplified model of the Advanced Boil- ing Water

  17. Distributed PI-Control with Applications to Power Systems Frequency Control

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Distributed PI-Control with Applications to Power Systems Frequency Control Martin Andreasson12 for networked dynamical systems. Sufficient conditions for when the controller is able to stabilize a general linear system and eliminate static control errors are presented. The proposed controller is applied

  18. Programmable Power-of-two RNS Scaler and its Application to a QRNS Polyphase Filter

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Programmable Power-of-two RNS Scaler and its Application to a QRNS Polyphase Filter G.C. Cardarilli is not easily implementable in the Residue Number System (RNS) due to its non positional nature. A number of different algorithms have been presented in the literature for the RNS scaling. In this paper, several RNS

  19. A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands Gabriel systems that presently provide electricity and heating to the islands also vary. Of particular note wind/hybrid systems. A feasibility study, carried out at the Renewable Energy Research Laboratory (RERL

  20. Heat sink design considerations in medium power electronic applications with long power cycles

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)744611; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  1. TRAJECTORY SENSITIVITY ANALYSIS FOR DYNAMIC SECURITY ASSESSMENT AND OTHER APPLICATIONS IN POWER SYSTEMS

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Pai, M. A.

    2014-07-10

    Real time stability evaluation and preventive scheduling in power systems offer many challenges in a stressed power system. Trajectory sensitivity analysis (TSA) is a useful tool for this and other applications in the emerging smart grid area. In this chapter we outline the basic approach of TSA, to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. The TSA technique has the advantage that model complexity is not a limitation, and the sensitivities can be computed numerically. Suitable metrics are developed from these sensitivities. The TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA in placement of distributed generation is indicated.

  2. Overview of free-piston Stirling engine technology for space power application

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Technology work is also conducted on heat-exchanger concepts, both design and fabrication, to minimize the number of joints as well as to enhance the heat transfer in the heater. Design parameters and conceptual design features are also presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. Projections are made for future space-power requirements over the next few decades along with a recommendation to consider the use of dynamic power-conversion systems - either solar or nuclear. A description of a study to investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kWe power range is presented.

  3. A Novel Application of Parallel Betweenness Centrality to Power Grid Contingency Analysis

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel; Feo, John T.; Wong, Pak C.

    2010-04-19

    In Energy Management Systems, contingency analysis is commonly performed for identifying and mitigating potentially harmful power grid component failures. The exponentially increasing combinatorial number of failure modes imposes a significant computational burden for massive contingency analysis. It is critical to select a limited set of high-impact contingency cases within the constraint of computing power and time requirements to make it possible for real-time power system vulnerability assessment. In this paper, we present a novel application of parallel betweenness centrality to power grid contingency selection. We cross-validate the proposed method using the model and data of the western US power grid, and implement it on a Cray XMT system - a massively multithreaded architecture - leveraging its advantages for parallel execution of irregular algorithms, such as graph analysis. We achieve a speedup of 55 times (on 64 processors) compared against the single-processor version of the same code running on the Cray XMT. We also compare an OpenMP-based version of the same code running on an HP Superdome shared-memory machine. The performance of the Cray XMT code shows better scalability and resource utilization, and shorter execution time for large-scale power grids. This proposed approach has been evaluated in PNNL’s Electricity Infrastructure Operations Center (EIOC). It is expected to provide a quick and efficient solution to massive contingency selection problems to help power grid operators to identify and mitigate potential widespread cascading power grid failures in real time.

  4. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect (OSTI)

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  5. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  6. Workplace Charging Program and Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program and Initiatives Evan Kolkos New York Power Authority Clean Energy Technology 2008 All Rights Reserved NYPA: Who We Are * Largest state public power organization in the...

  7. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

    1990-01-01

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  8. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

  9. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  10. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect (OSTI)

    Naus, Dan J

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  11. DESIGN and APPLICATIONS OF A UNIVERSAL POWER MANAGEMENT MIXED-SIGNAL SoC CONTROLLER (UPMC) PLATFORM

    E-Print Network [OSTI]

    and management of a mobile PC, full control and management of a Line Interactive Uninterruptible Power SupplyDESIGN and APPLICATIONS OF A UNIVERSAL POWER MANAGEMENT MIXED-SIGNAL SoC CONTROLLER (UPMC) PLATFORM by Eytan Rabinovitz, Arie Lev Systel Development & Industries Ltd. Sam Ben-Yaakov Power Electronics

  12. An efficient wireless power transfer system with security considerations for electric vehicle applications

    SciTech Connect (OSTI)

    Zhang, Zhen; Chau, K. T. Liu, Chunhua; Qiu, Chun; Lin, Fei

    2014-05-07

    This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.

  13. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  14. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    SciTech Connect (OSTI)

    Elcock, D.

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which, if improved, would reduce energy use and concomitant water consumption. These inefficiencies include air heater inefficiencies, boiler corrosion, low operating temperatures, fuel inefficiencies, and older components that are subject to strain and failure. A variety of nanotechnology applications that could potentially be used to reduce the amount of freshwater consumed - either directly or indirectly - by these areas and activities was identified. These applications include membranes that use nanotechnology or contain nanomaterials for improved water purification and carbon capture; nano-based coatings and lubricants to insulate and reduce heat loss, inhibit corrosion, and improve fuel efficiency; nano-based catalysts and enzymes that improve fuel efficiency and improve sulfur removal efficiency; nanomaterials that can withstand high temperatures; nanofluids that have better heat transfer characteristics than water; nanosensors that can help identify strain and impact damage, detect and monitor water quality parameters, and measure mercury in flue gas; and batteries and capacitors that use nanotechnology to enable utility-scale storage. Most of these potential applications are in the research stage, and few have been deployed at coal-fired power plants. Moving from research to deployment in today's economic environment will be facilitated with federal support. Additional support for research development and deployment (RD&D) for some subset of these applications could lead to reductions in water consumption and could provide lessons learned that could be applied to future efforts. To take advantage of this situation, it is recommended that NETL pursue funding for further research, development, or deployment for one or more of the potential applications identified in this report.

  15. Recent advances in phosphate laser glasses for high power applications. Revision 1

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  16. Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting Model with Chemistry (GU-WRF/Chem)2

    E-Print Network [OSTI]

    Nenes, Athanasios

    1 Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting-cloud-radiation-precipitation-climate interactions. In this work, a global-through-urban33 WRF/Chem model (i.e., GU-WRF/Chem) has been developed photolysis rate, near-surface temperature, wind speed at 10-m, planetary boundary layer height,40

  17. System planning analysis applied to OTEC: initial cases by Florida Power Corporation. Task II report No. FC-5237-2

    SciTech Connect (OSTI)

    None

    1980-03-01

    The objective of the task was to exercise the FPC system planning methodology on: (1) Base Case, 10 year generation expansion plan with coal plants providing base load expansion, and (2) same, but 400 MW of OTEC substituting for coal burning units with equal resultant system reliability. OTEC inputs were based on reasonable economic projections of direct capital cost and O and M costs for first-generation large commercial plants. OTEC inputs discussed in Section 2. The Base Case conditions for FPC system planning methodology involved base load coal fueled additions during the 1980's and early 1990's. The first trial runs of the PROMOD system planning model substituted OTEC for 400 MW purchases of coal generated power during 1988-1989 and then 400 MW coal capacity thereafter. Result showed higher system reliability than Base Case runs. Reruns with greater coal fueled capacity displacement showed that OTEC could substitute for 400 MW purchases in 1988-1989 and replace the 800 MW coal unit scheduled for 1990 to yield equivalent system reliability. However, a 1995 unit would need to be moved to 1994. Production costing computer model runs were used as input to Corporate Model to examine corporate financial impact. Present value of total revenue requirements were primary indication of relative competitiveness between Base Case and OTEC. Results show present value of total revenue requirements unfavorable to OTEC as compared to coal units. The disparity was in excess of the allowable range for possible consideration.

  18. Assessment of instrumentation needs for advanced coal power plant applications: Final report

    SciTech Connect (OSTI)

    Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

    1987-10-01

    The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

  19. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect (OSTI)

    Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Lamichhane, Ranjan [APEI, Inc.; Shepherd, Paul [APEI, Inc.; Glover, Michael [APEI, Inc.

    2014-01-01

    This paper presents a high-temperature capable intelligent power module that contains SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter (Fig. 1) to determine the performance of the module in a system level application. The converter was operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The peak efficiency was found to be 97.5% at 2.9 kW.

  20. Copolymerization of divinylbenzene and 4-vinylpyridine using initiated chemical vapor deposition for surface modification and its applications

    E-Print Network [OSTI]

    Martinez, Ernesto, S.B. Massachusetts Institute of Technology

    2013-01-01

    This research investigates the copolymerization of divinylbenzene and 4- vinylpyridine into organic thin films that exhibit conformal, stable, and uniform surface properties. Thin films were grown using initiated chemical ...

  1. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect (OSTI)

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  2. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Feng, Xizhou

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads.e. cost in power usage over time) will vary by application. For example, it costs 535 joules of energy

  3. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Ge, Rong

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads to application characteristics. While machines require peak power at times, energy consumption (i.e. cost

  4. High-Efficiency Harmonically-Terminated Rectifier for Wireless Powering Applications Michael Roberg, Erez Falkenstein and Zoya Popovic

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency Harmonically-Terminated Rectifier for Wireless Powering Applications Michael Roberg of Colorado, Boulder, CO, 80309-0425 Abstract-In wireless powering, the rectifier efficiency has a large effect on overall system efficiency. This paper presents an approach to high-efficiency microwave

  5. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    E-Print Network [OSTI]

    and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking by using the maximum power point tracking (MPPT) technique. A solar cell charges the battery through a 1 To whom any correspondence should be addressed. #12;battery charger that can prevent the battery from

  6. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect (OSTI)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  7. Application of Entry-Time Processes to Asset Management in Nuclear Power Plants

    SciTech Connect (OSTI)

    Nelson, Paul; Wang, Shuwen; Kee, Ernie J.

    2006-07-01

    The entry-time approach to dynamic reliability is based upon computational solution of the Chapman-Kolmogorov (generalized state-transition) equations underlying a certain class of marked point processes. Previous work has verified a particular finite-difference approach to computational solution of these equations. The objective of this work is to illustrate the potential application of the entry-time approach to risk-informed asset management (RIAM) decisions regarding maintenance or replacement of major systems within a plant. Results are presented in the form of plots, with replacement/maintenance period as a parameter, of expected annual revenue, along with annual variance and annual skewness as indicators of associated risks. Present results are for a hypothetical system, to illustrate the capability of the approach, but some considerations related to potential application of this approach to nuclear power plants are discussed. (authors)

  8. Tutorial: Neural networks and their potential application in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States))

    1989-01-01

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise'' signals (e.g. electroencephalograms), modeling complex systems that cannot be modelled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants.

  9. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  10. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

  11. A Transformer-less Partial Power Boost Converter for PV Applications Using a Three-Level Switching Cell

    SciTech Connect (OSTI)

    Mohammed Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Somasundaram Essakiappan

    2013-03-01

    Photovoltaic architectures with distributed power electronics provide many advantages in terms of energy yield as well as system level optimization. As the power level of the solar farm increases it becomes more beneficial to increase the dc collection network voltage, which requires the use of power devices with higher voltage ratings, and thus making the design of efficient, low cost, distributed power converters more challenging. In this paper a simple partial power converter topology is proposed. The topology is implemented using a three-level switching cell, which allows the use of semiconductor devices with lower voltage rating; thus improving design and performance and reducing converter cost. This makes the converters suitable for use for medium to high power applications where dc-link voltages of 600V~1kV may be needed without the need for high voltage devices. Converter operation and experimental results are presented for two partial power circuit variants using three-level switching cells.

  12. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect (OSTI)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

  13. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    SciTech Connect (OSTI)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

  14. Distributed energy resources customer adoption modeling with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    System Operator California Power Exchange California Energyand reliability photovoltaic power exchange Public Utilitiesaverage California Power Exchange (CalPX) prices for those

  15. The Vermont Biomass Gasifier Project -- Medium heating value gas for electric power applications

    SciTech Connect (OSTI)

    Craig, K.; Overend, R.P. [National Renewable Energy Lab., Golden, CO (United States); Gillette, L. [Dept. of Energy, Washington, DC (United States)

    1998-12-31

    The Vermont Biomass Gasifier Project is part of a major DOE initiative to demonstrate indirect gasification of renewable biomass for electricity production. The Vermont Project has been undertaken to demonstrate the integration of the Battelle Columbus Laboratories (Battelle) indirectly-heated gasifier with a high-efficiency gas turbine. The demonstration and validation of this gasification/gas turbine system is being performed at the existing 50 MW wood-fired McNeil Power Generating Station in Burlington, Vermont, thereby significantly reducing the time scale for deployment and the necessary capital investment for DOE and the Vermont project partnership. The development and commercialization of this technology is important for several reasons: (1) it does not require a hot-gas clean-up for gas turbine operation, thus removing this technical hurdle from the commercialization path; (2) it is the only US biomass gasification system that has successfully powered a gas turbine, supporting its near-term viability for commercial deployment; and (3) it produces a medium-heating-value gas without employing an oxygen plant, thus allowing the use of existing unmodified industrial gas turbines. Gasifier construction was completed in late 1997; commissioning and parametric testing was completed during the spring and summer of 1998. This paper discusses the results of this testing and presents plans for both the next phase of testing and prospects for near-term commercialization.

  16. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect (OSTI)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  17. Applicability of Loss of Offsite Power (LOSP) Events in NUREG/CR-6890 for Entergy Nuclear South (ENS) Plants LOSP Calculations

    SciTech Connect (OSTI)

    Li, Yunlong; Yilmaz, Fatma; Bedell, Loys

    2006-07-01

    Significant differences have been identified in loss of offsite power (LOSP or LOOP) event description, category, duration, and applicability between the LOSP events used in NUREG/CR-6890 and ENS'LOSP packages, which were based on EPRI LOSP reports with plant-specific applicability analysis. Thus it is appropriate to reconcile the LOSP data listed in the subject NUREG and EPRI reports. A cross comparison showed that 62 LOSP events in NUREG/CR-6890 were not included in the EPRI reports while 4 events in EPRI reports were missing in the NUREG. Among the 62 events missing in EPRI reports, the majority were applicable to shutdown conditions, which could be classified as category IV events in EPRI reports if included. Detailed reviews of LERs concluded that some events did not result in total loss of offsite power. Some LOSP events were caused by subsequent component failures after a turbine/plant trip, which have been modeled specifically in most ENS plant PRA models. Moreover, ENS has modeled (or is going to model) the partial loss of offsite power events with partial LOSP initiating events. While the direct use of NUREG/CR-6890 results in SPAR models may be appropriate, its direct use in ENS' plant PRA models may not be appropriate because of modeling details in ENS' plant-specific PRA models. Therefore, this paper lists all the differences between the data in NUREG/CR-6890 and EPRI reports and evaluates the applicability of the LOSP events to ENS plant-specific PRA models. The refined LOSP data will characterize the LOSP risk in a more realistic fashion. (authors)

  18. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  19. Feasibility Study of Biopower in East Helena, Montana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former American Smelting and Refining Company (Asarco) smelter in East Helena, Montana, was selected for a feasibility study under the initiative. Biomass was chosen as the renewable energy resource based on the wood products industry in the area. Biopower was selected as the technology based on Montana's renewable portfolio standard (RPS) requiring utilities to purchase renewable power.

  20. Digital Switching CMOS Power Amplifier for Multiband and Multimode Handset Applications /

    E-Print Network [OSTI]

    Nakatani, Toshifumi

    2013-01-01

    Switching Power Amplifier . 103 Introduction .. 103 Theoretical DesignSwitching Power Amplifier . 162 Introduction .. 162 Theoretical and Circuit Design

  1. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect (OSTI)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  2. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  3. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan; Campbell, Steven L; Miller , John M.

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.

  4. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  5. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  6. A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications

    E-Print Network [OSTI]

    Yip, Marcus

    A power-scalable SAR ADC for sensor applications is presented. The ADC features a reconfigurable 5-to-10-bit DAC whose power scales exponentially with resolution. At low resolutions where noise and linearity requirements ...

  7. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  8. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Different types of solar power plants have been designed andAmong the concentrating solar power plants (CSPP) are Solar

  9. Low-Power Integrated-Circuit Implementation Exploiting System and Application Information /

    E-Print Network [OSTI]

    Kang, Seokhyeong

    2013-01-01

    Table 3.3: Leakage power (W ) and wall clock time (minutes)CMOS Design Challenges to Power Wall”, Proc. InternationalTable 3.3: Leakage power (W ) and wall clock time (minutes)

  10. Low-Power Integrated-Circuit Implementation Exploiting System and Application Information /

    E-Print Network [OSTI]

    Kang, Seokhyeong

    2013-01-01

    ?delay represent leakage power and cell delay changes afterTo analyze leakage power, cell delay, and functionality ofdivided by the change in cell power (?w c ) when the cell c

  11. Robustness of amorphous silicon during the initial lithiation/ delithiation cycle

    E-Print Network [OSTI]

    Cui, Yi

    technology in applications requiring lightweight and high-power rechargeable energy storage [1Robustness of amorphous silicon during the initial lithiation/ delithiation cycle Lucas A. Berla a g h l i g h t s We probe the lithiation and delithiation behavior of amorphous silicon micropillars

  12. Applications for Coal and Natural Gas Power Plants in a Smart...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation Smart Grid Task Force * Reliability standards for bulk power Work Areas - Integration of smart grid onto bulk power system requires development of new planning and...

  13. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  14. The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not

    E-Print Network [OSTI]

    The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well

  15. A Structure Exploiting Algorithm for Approximate Robust Optimal Control with Application to Power Generating Kites

    E-Print Network [OSTI]

    slowly driving the generator while flying fast in a crosswind direction. To achieve a periodic power

  16. Abstract--The increase in use of power electronics in transmission and distribution applications is the driving

    E-Print Network [OSTI]

    Tolbert, Leon M.

    of the systems. High Voltage DC (HVDC) transmission and Flexible AC Transmission Systems (FACTS) are the widelyAbstract-- The increase in use of power electronics in transmission and distribution applications and compared for SiC and Si devices. These loss models are integrated with an HVDC transmission system to study

  17. A Novel Si-Tunnel FET based SRAM Design for Ultra Low-Power 0.3V VDD Applications

    E-Print Network [OSTI]

    Yener, Aylin

    A Novel Si-Tunnel FET based SRAM Design for Ultra Low-Power 0.3V VDD Applications J. Singh, K-Band Tunnel Field Effect Transistors (TFETs) in SRAMs at ultra low supply voltages. The uni design using Si- TFETs for reliable operation with low leakage at ultra low voltages. We also demonstrate

  18. Application Power Signature Analysis Chung-Hsing Hsu, Jacob Combs, Jolie Nazor, Fabian Santiago, Rachelle Thysell, Suzanne Rivoire

    E-Print Network [OSTI]

    Rivoire, Suzanne

    Sonoma State University, Rohnert Park, CA 94928, USA Email: {combsj about energy efficiency. To address this concern, it is essential to understand and charac- terize of research in power-aware HPC that has a multitude of potential applications. Keywords-high performance

  19. GreenRT: A Framework for the Design of Power-Aware Soft Real-Time Applications

    E-Print Network [OSTI]

    Mori, Greg

    and energy consumption. We experiment with GreenRT in the context of a pedestrian detection applica- tion. We show that using the GreenRT framework, appli- cations use less energy while meeting deadlines. EnergyGreenRT: A Framework for the Design of Power-Aware Soft Real-Time Applications Bo Chen, William Pak

  20. Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications.

    SciTech Connect (OSTI)

    Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Leung, Vitus J.; Olivier, Stephen Lecler; Pedretti, Kevin; Rajamanickam, Sivasankaran; Bunde, David P.; Deveci, Mehmet; Catalyurek, Umit V.

    2014-09-01

    As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

  1. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary

    SciTech Connect (OSTI)

    Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1990-12-31

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  2. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  3. Fault-Current Limiter (FCL) Application in a Wind Power Plant (Poster)

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.

    2011-05-01

    This poster describes how the power system switchgear and power system protection for WPPs should be carefully designed to be compatible with the operation of conventional synchronous generators connected to the same grid.

  4. Networked Control Systems under Cyber Attacks with Applications to Power Networks

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    acquisition (SCADA) systems. Several cyber attacks on SCADA systems operating power networks have been reported [3], and major blackouts are due to the misuse of the SCADA systems [4]. Power networks, being

  5. Analog adaptive nonlinear filtering and spectral analysis for low-power audio applications

    E-Print Network [OSTI]

    Salthouse, Christopher Donovan, 1978-

    2006-01-01

    Filters are one of the basic building blocks of analog circuits. For linear operation, the power consumption is proportional to the dynamic range for a given topology. I have explored techniques to lower the power consumption ...

  6. Advanced high-speed flywheel energy storage systems for pulsed power application 

    E-Print Network [OSTI]

    Talebi Rafsanjan, Salman

    2009-05-15

    Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power...

  7. Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications

    E-Print Network [OSTI]

    O'Sullivan, Francis M. (Francis Martin), 1980-

    2004-01-01

    Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

  8. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  9. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    None

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  10. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety of the environment is covered. The reactor emergency cooling system is in use in an operating nuclear power plant is a reactor emergency cooling system in an operating nuclear power plant. 2. MODEL CHECKING METHODOLOGY

  11. Development, Application, and Implementation of RAMCAP to Characterize Nuclear Power Plant Risk From Terrorism

    SciTech Connect (OSTI)

    Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States); Teagarden, Grant A. [ERIN Engineering and Research (United States)

    2006-07-01

    In response to increased interest in risk-informed decision making regarding terrorism, EPRI and ERIN Engineering were selected by U.S. DHS and ASME to develop and demonstrate the RAMCAP method for nuclear power plant (NPP) risk assessment. The objective is to characterize plant-specific NPP risk for risk management opportunities and to provide consistent information for DHS decision making. This paper is an update of this project presented at the American Nuclear Society (ANS) International Topical Meeting on Probabilistic Safety Analysis (PSA05) in September, 2005. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. For each site, worst case scenarios are developed for each of sixteen benchmark threats. Nuclear RAMCAP hypothesizes that the intent of the perpetrator is to cause offsite radiological consequences. Specific targets are the reactor core, the spent fuel pool, and nuclear spent fuel in a dry storage facility (ISFSI). Results for each scenario are presented as conditional risk for financial loss, early fatalities and early injuries. Expected consequences for each scenario are quantified, while vulnerability is estimated on a relative likelihood scale. Insights for other societal risks are provided. Although threat frequencies are not provided, target attractiveness and threat deterrence are estimated. To assure efficiency, completeness, and consistency; results are documented using standard RAMCAP Evaluator software. Trial applications were successfully performed at four plant sites. Implementation at all other U.S. commercial sites is underway, supported by the Nuclear Sector Coordinating Council (NSCC). Insights from RAMCAP results at 23 U.S. plants completed to date have been compiled and presented to the NSCC. Results are site-specific. Physical security barriers, an armed security force, preparedness for design-basis threats, rugged design against natural hazards, multiple barriers between fuel and environment, accident mitigation capability, severe accident management procedures, and offsite emergency plans are risk-beneficial against all threat types. (authors)

  12. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  13. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect (OSTI)

    Alex, J.; Schminke, W. [Thomcast AG, Turgi (Switzerland)

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  14. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  15. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect (OSTI)

    Patton, Bruce; Sorensen, Kirk [Propulsion Research Center, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  16. High power peripheral coupled waveguide electroabsorption modulator for analog fiber-optic link applications

    E-Print Network [OSTI]

    Xie, Xiaobo

    2007-01-01

    dc photocurrent generated at di?erent powers and nor- malized transmissiondc optical transfer curve mea- surement at high power, step-like modulator photocurrent and multiple-peak light transmission (dc characteristic of the optical modulator is determined by its optical transfer curve T (V ), which is the optical transmission

  17. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless antenna using low cost flexible substrate materials is presented. Flexible amorphous silicon a-Si solar nature of the circuit and providing operational autonomy by harvesting solar power without affecting

  18. Optimal power flow application issues in the Pool paradigm George Grossa,*, Ettore Bompardb

    E-Print Network [OSTI]

    Gross, George

    a Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Power ramifications. These factors have wide ranging economic impacts, whose implications are very pronounced due consideration of some system performance measures into the steady state analysis of the power system. The basic

  19. Performance-constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters

    E-Print Network [OSTI]

    Ge, Rong

    components in clusters to achieve high performance. Power reduction and energy conservation are important and systems without sacrificing performance. Generally, we use DVS (Dynamic Voltage Scaling) technology now of this petaflop machine is $10,000 per hour. More conservative estimates of 20% peak operational power ($2,000 per

  20. The NERVA Derivative Reactor - A multi-application space power source

    SciTech Connect (OSTI)

    Pierce, B.L.; Wett, J.F.; Chi, J.W.H.

    1987-01-01

    The U.S. Air Force, SDI, and NASA have identified increasing needs for electric power for all types of space missions. For many of these, only nuclear-electric can provide the lowest life cycle cost. Among the many different types of nuclear space power systems proposed, the NERVA Derivative Reactor, based on the proven NERVA/ROVER technology stands out as the most attractive. It can be integrated with closed and open cycle turbo-generators and open cycle MHD generators to provide the wide range of diverse power requirements that include multikilowatts to megawatts of steady state, baseload power and multi-megawatts of burst power for weapon systems. The NDR technology can be applied to these systems with relatively little additional engineering developments, which are primarily related to demonstrating compliance with the space nuclear safety requirements.

  1. Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Ning, Puqi [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Liang, Zhenxian [ORNL] [ORNL

    2013-01-01

    In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.

  2. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    been considered for solar thermal energy storages. These areTNO Symposium on Thermal Storage of Solar Energy, Amsterdam,Symposium on Thermal Application of Solar Energy, Hakone (

  3. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    application on AlGaN/GaN, AlN can serve as a superior passivation layer to Al 2 O 3 because of its piezoelectric

  4. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    applications of graphene in semiconductor industry. TheGraphene Transistors: Experiment and Modeling-Based Optimization” Semiconductorused in semiconductor industry, which gives graphene a great

  5. Initiatives | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR0987P UncertaintyInitiatives Initiatives Through

  6. Evaluation of high power density annular fuel application in the Korean OPR-1000 reactor

    E-Print Network [OSTI]

    Zhang, Liang, Ph. D.. Massachusetts Institute of Technology

    2009-01-01

    Compared to the traditional solid fuel geometry for PWRs, the internally and externally cooled annular fuel offers the potential to increase the core power density while maintaining or increasing safety margins. It is ...

  7. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications 

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as ...

  8. Application of solar-powered desalination in a remote town in South Australia 

    E-Print Network [OSTI]

    De Munari, Annalisa; Capăo, D.P.S; Richards, B.S.; Schäfer, Andrea

    2009-01-01

    Coober Pedy is a remote town in South Australia with abundant solar radiation and scarce and low quality water, where a reverse osmosis plant has been operating since 1967. This paper evaluates the feasibility of powering ...

  9. Solutions of the stream power equation and application to the evolution of river longitudinal profiles

    E-Print Network [OSTI]

    Royden, Leigh H.

    Erosion by bedrock river channels is commonly modeled with the stream power equation. We present a two-part approach to solving this nonlinear equation analytically and explore the implications for evolving river profiles. ...

  10. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    for rechargeable lithium ion batteries." Thin Solid Filmsof LiCoO 2 cathodes in lithium-ion batteries using surfacein secondary lithium-ion batteries." Journal Of Power

  11. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Turin and A. A. Balandin, Electronics Letters 40, 81 (2004).REFERENCES G. E. Moore, Electronics 38 (1965). E. Pop, Nanofor High-power Electronics” PCSI-38:38th Conference on the

  12. Carbon nanotube-based nanorelays for low-power circuit applications

    E-Print Network [OSTI]

    Schmitt, Courtney E

    2009-01-01

    The objective of this research is to reduce static power dissipation by developing a vertically-oriented carbon nanotube-based nanoelectromechanical switch that has no off-state leakage current. This switch, called a ...

  13. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  14. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  15. SCB initiator

    DOE Patents [OSTI]

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  16. SCB initiator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  17. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  18. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect (OSTI)

    Li, Jianjian; /IIT, Chicago

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10{sup 5} was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  19. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL; Chinthavali, Madhu Sudhan [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Ning, Puqi [Chinese Academy of Sciences (CAS)] [Chinese Academy of Sciences (CAS); White, Cliff P [ORNL] [ORNL; Miller (JNJ), John M. [JNJ-Miller PLC] [JNJ-Miller PLC

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at three center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.

  20. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  1. PulsedPower Transient Plasma: Energy, Engines, and

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    Plasma and Streamers Generated by nsec pulsed power · Initiates the breakdown process prior to arc1Gundersen PulsedPower USC Transient Plasma: Energy, Engines, and Aerospace Applications USC: Dan, TCC Corp., WPAFRL, Alfred Mann Inst DanScott Jason Alex Transient plasma occurs during the formative

  2. Engineering Al-based Thin Film Materials for Power Devices and Energy Storage Applications

    E-Print Network [OSTI]

    Perng, Ya-Chuan

    2012-01-01

    in Chemical Engineering by Ya-Chuan Perng ABSTRACT OF THEStorage Applications by Ya-Chuan Perng Doctor of Philosophyiii The dissertation of Ya-Chuan Perng is approved. Mark S.

  3. Power Optimization of Sum-of-Products Design for Signal Processing Applications

    E-Print Network [OSTI]

    Heo, Seok Won

    2014-01-01

    constant," in Proc. VLSI Signal Processing, VI, pp. 388–396,products design for signal processing applications, in Proc.Workshop on VLSI Signal Processing, IX, Oct. –Nov. 1996, pp.

  4. Closed Brayton cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    SciTech Connect (OSTI)

    Juhasz, A.J. (NASA Lewis Research Center, 21000 Brookpark Rd., MS: 301-3, Cleveland, Ohio 44135 (United States)); El-Genk, M.S. (Institute for Space Nuclear Power Studies, University of New Mexico (United States)); Harper, W. (Allied Signal Aerospace, 1300 W. Warner, P.O. Box 2220, Tempe, Arizona 85285-2200 (United States))

    1993-01-15

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  5. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    SciTech Connect (OSTI)

    Juhasz, A.J.; El-genk, M.S.; Harper, W.B. Jr.

    1992-10-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  6. Low-cost, high-power mechanical impact transducers for sonar and acoustic through-wall surveillance applications

    E-Print Network [OSTI]

    Felber, Franklin

    2014-01-01

    A new concept is presented for mechanical acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with very little input power. The transducer systems are well suited for coupling acoustic pulse energy into dense media, such as walls and water. Applications of the impact transducers are discussed, including detection and tracking of humans through walls and long-duration underwater surveillance by a low-cost network of autonomous, self-recharging, battery-operated sonobuoys. A conceptual design of a sonobuoy surveillance network for harbors and littoral waters is presented. An impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. Signal processing methods for increasing the signal-to-noise ratio by several tens of dB are discussed.

  7. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    E-Print Network [OSTI]

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-01-01

    quality and reliability photovoltaic Power Exchange marketin California Power Exchange revenue neutral microgrid

  8. Development and initial application of a sub-grid scale plume treatment in a state-of-the-art online Multi-scale Air Quality and Weather Prediction Model

    E-Print Network [OSTI]

    Zhang, Yang

    grid models applies to both "off- line" models, in which externally derived meteorology is usedDevelopment and initial application of a sub-grid scale plume treatment in a state of plume-in-grid (PinG) treatment in online-coupled WRF/Chem. grid

  9. Application Power Profiling on IBM Blue Gene/Q Sean Wallace, Venkatram Vishwanath, Susan Coghlan, John Tramm, Zhiling Lan, and Michael E. Papka

    E-Print Network [OSTI]

    Lan, Zhiling

    well understood applications will now have new facets of potential analysis. Index Terms detailed power consumption analysis of microbenchmarks running on Argonne's latest generation of IBM Blue Gene supercomputers, Mira, a Blue Gene/Q system. The analysis is done utilizing our power monitoring

  10. Department of Mechanical Engineering The Application of Fluid Power to Meet the Needs of Surgical Robotics

    E-Print Network [OSTI]

    Wu, Mingshen

    Robotics Devin R. Berg1, Perry Y. Li1, Arthur G. Erdman1, Tianhong Cui1, and Timothy P. Kinney2 1Department of Minnesota, Minneapolis, MN Introduction Robotic surgery promises to produce continued development of a novel fluid powered robotic surgical platform. Unlike current robotic instruments in which a robot

  11. A Bayesian approach to power-spectrum significance estimation, with application to solar neutrino data

    E-Print Network [OSTI]

    P. A. Sturrock

    2008-09-01

    The usual procedure for estimating the significance of a peak in a power spectrum is to calculate the probability of obtaining that value or a larger value by chance, on the assumption that the time series contains only noise (e.g. that the measurements were derived from random samplings of a Gaussian distribution). However, it is known that one should regard this P-Value approach with caution. As an alternative, we here examine a Bayesian approach to estimating the significance of a peak in a power spectrum. This approach requires that we consider explicitly the hypothesis that the time series contains a periodic signal as well as noise. The challenge is to identify a probability distribution function for the power that is appropriate for this hypothesis. We propose what seem to be reasonable conditions to require of this function, and then propose a simple function that meets these requirements. We also propose a consistency condition, and check to see that our function satisfies this condition. We find that the Bayesian significance estimates are considerably more conservative than the conventional estimates. We apply this procedure to three recent analyses of solar neutrino data: (a) bimodality of GALLEX data; (b) power spectrum analysis of Super-Kamiokande data; and (c) the combined analysis of radiochemical neutrino data and irradiance data.

  12. Innovative Applications of O.R. Scheduling electric power production at a wind farm

    E-Print Network [OSTI]

    Kusiak, Andrew

    computations Wind farm Particle swarm optimization Small world network a b s t r a c t We present a model for scheduling power generation at a wind farm, and introduce a particle swarm optimization algorithm) and therefore could be incorporated into an optimization model to assist opera- tors in scheduling wind turbines

  13. Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

    SciTech Connect (OSTI)

    BOWER,WARD I.; WILES,JOHN

    2000-10-03

    Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

  14. Design and Application of Cables and Overhead Lines in Wind Power Plants

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bellei, T.A. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Hermanson, J. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Loy, P. [IEEE PES Wind Plant Collector System Design Working Group; McLean, K. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Tesch, M. [IEEE PES Wind Plant Collector System Design Working Group; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    This paper presents a summary of the most impor- tant considerations for wind power plant collection system un- derground and overhead cable designs. Various considerations, including conductor selection, soil thermal properties, installa- tion methods, splicing, concentric grounding, and NESC/NEC requirements are discussed.

  15. An Ultra Low Power System Architecture for Sensor Network Applications Mark Hempstead, Nikhil Tripathi, Patrick Mauro, Gu-Yeon Wei, David Brooks

    E-Print Network [OSTI]

    Brooks, David

    - crocontroller, a radio, and a variety of (often MEMS-based) sensors. One of the main limitationsAn Ultra Low Power System Architecture for Sensor Network Applications Mark Hempstead, Nikhil a burgeoning interest in em- bedded wireless sensor networks with applications rang- ing from habitat

  16. The phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to

    E-Print Network [OSTI]

    Elliott, James

    conductivity have quickly attracted scientific and technological atten- tion. One of the earliest applications of low-temperature oxidative fuel cells.7 The potential for practical use of solid electrolytes has been of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. Solid

  17. Nuclear Safety Workshop Agenda - Post Fukushima Initiatives and...

    Broader source: Energy.gov (indexed) [DOE]

    Agenda Post Fukushima Initiatives and Results In response to the March 2011 accident at the Fukushima Daiichi nuclear power plant, Secretary Chu initiated a series of actions to...

  18. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

  19. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    E-Print Network [OSTI]

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gimenez, J L Gonzalez; Gustafsson, L; Kim, D W; Locci, E; Roehrich, D; Schoening, A; Siligaris, A; Soltveit, H K; Ullaland, K; Vincent, P; Wiednert, D; Yang, S

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  20. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-04-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ``root`` network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ``classifier`` network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company`s Duane Arnold Energy Center (DAEC) operator training simulator.

  1. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator.

  2. Low-Power Wireless Medical Systems and Circuits for Invasive and Non-Invasive Applications 

    E-Print Network [OSTI]

    Gaxiola-Sosa, Jesus Efrain

    2014-04-23

    .5 µm standard process with an effective area of 360 µm2. Experimental results show a pass-band gain of 40.2 dB (240 mHz - 170 Hz), input referred noise of 0.47 Vrms, minimum CMRR of 84.3 dBm, NEF of 1.88 and a power dissipation of 3.5 µW. The CSF...

  3. Design Options for Ultra-compact Nuclear Driven Power Sources for Field Applications 

    E-Print Network [OSTI]

    Mathis, Dean

    2014-04-21

    Across Heat Exchanger Pump Time Step Size Temperature Change of Heat Sink Air in Heat Exchanger EOL End of Life v Recuperator Efficiency Darcy-Weisbach Friction Factor Fast Flux Fraction Fq Power Peaking Factor F... Thermal Conductivity of Fuel Thermal Conductivity of Fuel Element Gap kinf Effective Neutron Multiplication Factor in an Infinite Medium vi LOCA Loss-of-Coolant Accident lp Prompt Neutron Lifetime LMFR Liquid Metal Fast Reactor LWR Light Water...

  4. Application of Quadratically-Constrained Model Predictive Control in Power Systems

    E-Print Network [OSTI]

    Tran, Tri; Foo Eddy, Y. S.; Ling, K.-V.; Maciejowski, Jan M.

    2015-03-19

    change in frequency • Pmech : Mechanical power, • PL : Non-frequency sensitive load • Tch : Charging time constant of the prime mover • Zv : Steam valve position • Pref : Load reference set point • Rf : percentage change in frequencypercentage change... generator connecting to a common bus bar. The wind generator has a wind turbine, an induction generator and the converter/inverter with its own voltage regulator. The diesel generator has a diesel engine with governor and a synchronous generator with AVR...

  5. Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department of EnergyDepartment

  6. Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department of EnergyDepartmentMarketing LLC:

  7. Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department of EnergyDepartmentMarketing

  8. Application to Export Electric Energy OE Docket No. EA-409 Saracen Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing, LLC | DepartmentMarketingLP:

  9. Application to export electric energy OE Docket No. EA-212-C Coral Power,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing, LLC |Inc.:Energy

  10. Application of Annular Linear Induction Pumps Technology for Waste Heat Rejection and Power Conversion

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2005-03-16

    The U.S.-sponsored Jupiter Icy Moons Orbiter (JIMO) program will require a light weight, efficient, and reliable power generation system capable of a 20+ year lifespan. This requirement has renewed interest in orbiter technological development. Sub-components of the orbiter system are the primary and secondary power conversion/heat rejection systems for both the proposed nuclear reactors and Brayton cycle heat engines. Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. The conversion/rejection systems for these components typically utilize pumped molten metal as the heat transfer medium. Electromagnetic (EM) Annular Linear Induction Pumps (ALIPs) are ideal for this purpose as they can operate at moderate to high efficiency, at elevated temperature, do not involve moving parts (solid-state; long life), and require no bearings or seals. A parametric study was performed to develop a suite of ALIP preliminary designs capable of providing specified pressure and mass flow rate ranges for the proposed NaK(78) Brayton-cycle heat rejection loop. A limited study was also performed for the proposed lithium-cooled nuclear reactor heat transport loops; however, the design of these units is still in its infancy. Both studies were conducted by Pacific Northwest National Laboratory (PNNL) with the MHD Systems’ ALIP Design Code. The studies focused on designing ALIPs that displayed reasonably high efficiency and low source voltages as well as low mass and smallest geometric envelope.

  11. Application of Hybrid Geo-Spatially Granular Fragility Curves to Improve Power Outage Predictions

    SciTech Connect (OSTI)

    Fernandez, Steven J; Allen, Melissa R; Omitaomu, Olufemi A; Walker, Kimberly A

    2014-01-01

    Fragility curves depict the relationship between a weather variable (wind speed, gust speed, ice accumulation, precipitation rate) and the observed outages for a targeted infrastructure network. This paper describes an empirical study of the county by county distribution of power outages and one minute weather variables during Hurricane Irene with the objective of comparing 1) as built fragility curves (statistical approach) to engineering as designed (bottom up) fragility curves for skill in forecasting outages during future hurricanes; 2) county specific fragility curves to find examples of significant deviation from average behavior; and 3) the engineering practices of outlier counties to suggest future engineering studies of robustness. Outages in more than 90% of the impacted counties could be anticipated through an average or generic fragility curve. The remaining counties could be identified and handled as exceptions through geographic data sets. The counties with increased or decreased robustness were characterized by terrain more or less susceptible to persistent flooding in areas where above ground poles located their foundations. Land use characteristics of the area served by the power distribution system can suggest trends in the as built power grid vulnerabilities to extreme weather events that would be subjects for site specific studies.

  12. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  13. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  14. Application of the LBB concept to nuclear power plants with WWER 440 and WWER 1000 reactors

    SciTech Connect (OSTI)

    Zdarek, J.; Pecinka, L. [Nuclear Research Institute Rez (Czech Republic)

    1997-04-01

    Leak-before-break (LBB) analysis of WWER type reactors in the Czech and Sloval Republics is summarized in this paper. Legislative bases, required procedures, and validation and verification of procedures are discussed. A list of significant issues identified during the application of LBB analysis is presented. The results of statistical evaluation of crack length characteristics are presented and compared for the WWER 440 Type 230 and 213 reactors and for the WWER 1000 Type 302, 320 and 338 reactors.

  15. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

  16. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  17. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  18. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  19. Networked Lighting Power and Control Platform for Solid State Lighting in Commercial Office Applications

    SciTech Connect (OSTI)

    Covaro, Mark

    2012-08-15

    Redwood Systems' objective is to further accelerate the acceptance of solid state lighting (SSL) with fine grain and easy-to-use control. In addition, increased and improved sensor capability allows the building owner or user to gather data on the environment within the building. All of this at a cost equal to or less than that of code-compliant fluorescent lighting. The grant we requested and received has been used to further enhance the system with power conversion efficiency improvements and additional features. Some of these features, such as building management system (BMS) control, allow additional energy savings in non-lighting building systems.

  20. The Power-Performance Tradeoffs of the Intel Xeon Phi on HPC Applications

    SciTech Connect (OSTI)

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timothy; Mooring, John; Cameron, Kirk

    2014-05-23

    Accelerators are used in about 13% of the current Top500 List. Supercomputers leveraging accelerators grew by a factor of 2.2x in 2012 and are expected to completely dominate the Top500 by 2015. Though most of these deployments use NVIDIA GPGPU accelerators, Intel’s Xeon Phi architecture will likely grow in popularity in the coming years. Unfortunately, there are few studies analyzing the performance and energy efficiency of systems leveraging the Intel Xeon Phi. We extend our systemic measurement methodology to isolate system power by component including accelerators. We use this methodology to present a detailed study of the performance-energy tradeoffs of the Xeon Phi architecture.

  1. Application to Export Electric Energy OE Docket No. EA-209-B Cargill Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporation | Department of EnergyPower |

  2. Application to Export Electric Energy OE Docket No. EA-209-C Cargill Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporation | Department of EnergyPower |Markets:

  3. Hybrid Air-Cooled Condenser for Power Plants and other applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein Khalil Director of the Nuclear

  4. Application for Presidential Permit PP-400 TDI-NE - New England Clean Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgaeAnatomyCommentsGreatClean PowerConnectorLink

  5. Application to export electric energy OE Docket No. EA-220-C NRG Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing, LLC |Inc.:EnergyMarketing LLC:

  6. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  7. Methodology for Constructing Reduced-Order Power Block Performance Models for CSP Applications: Preprint

    SciTech Connect (OSTI)

    Wagner, M.

    2010-10-01

    The inherent variability of the solar resource presents a unique challenge for CSP systems. Incident solar irradiation can fluctuate widely over a short time scale, but plant performance must be assessed for long time periods. As a result, annual simulations with hourly (or sub-hourly) timesteps are the norm in CSP analysis. A highly detailed power cycle model provides accuracy but tends to suffer from prohibitively long run-times; alternatively, simplified empirical models can run quickly but don?t always provide enough information, accuracy, or flexibility for the modeler. The ideal model for feasibility-level analysis incorporates both the detail and accuracy of a first-principle model with the low computational load of a regression model. The work presented in this paper proposes a methodology for organizing and extracting information from the performance output of a detailed model, then using it to develop a flexible reduced-order regression model in a systematic and structured way. A similar but less generalized approach for characterizing power cycle performance and a reduced-order modeling methodology for CFD analysis of heat transfer from electronic devices have been presented. This paper builds on these publications and the non-dimensional approach originally described.

  8. Assessment of solar options for small power systems applications. Volume III. Analysis of concepts

    SciTech Connect (OSTI)

    Laity, W.W.; Aase, D.T.; Apley, W.J.; Bird, S.P.; Drost, M.K.; Garrett-Price, B.A.; Williams, T.A.

    1980-09-01

    A comparative analysis of solar thermal conversion concepts that are potentially suitable for development as small electric power systems (1 to 10 MWe) is given. Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces; (2) one-axis tracking (with single-curvature reflecting suraces; and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors (the Point Focus Central Receiver and the Point Focus Distributed Receiver) were analyzed with Brayton-cycle engines, and the latter of the two also was analyzed with Stirling-cycle engines. This volume describes the systems analyses performed on all the alternative configurations of the seven generic collector concepts and the results obtained. The SOLSTEP computer code used to determine each configuration's system cost and performance is briefly described. The collector and receiver performance calculations used are also presented. The capital investment and related costs that were obtained from the systems studies are presented, and the levelized energy costs are given as a function of capacity factor obtained from the systems studies. Included also are the values of the other attributes used in the concepts' final ranking. The comments, conclusions, and recommendations developed by the PNL study team during the concept characterization and systems analysis tasks of the study are presented. (WHK)

  9. Pulsed power considerations for electron beam pumped krypton fluoride lasers for inertial confinement fusion applications

    SciTech Connect (OSTI)

    Rose, E.A.; McDonald, T.E.; Rosocha, L.A.; Harris, D.B.; Sullivan, J.A. (Los Alamos National Lab., NM (USA)); Smith, I.D. (Pulse Sciences, Inc., San Leandro, CA (USA))

    1991-01-01

    The Los Alamos National Laboratory inertial confinement fusion (ICF) program is developing the krypton-fluoride excimer laser for use as an ICF driver. The KrF laser has a number of inherent characteristics that make it a promising driver candidate, such as short wavelength (0.25 {mu}m), broad bandwidth to target (>100 cm{sup {minus}1}), pulse-shaping with high dynamic range, and the potential for high overall efficiency (>5%) and repetitive operation. The large KrF laser amplifiers needed for ICF drivers are electron-beam pumped. A key issue for all laser ICF drivers is cost, and a leading cost component of a KrF laser driver is associated with the pulsed power and electron diode. Therefore, the efficient generation of electron beams is a high priority. The Los Alamos ICF program is investigating pulsed-power and diode designs and technologies to further the development of affordable KrF laser ICF drivers. 12 refs., 8 figs.

  10. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect (OSTI)

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  11. Power system applications engineering intern experience at TRW Controls: an internship report 

    E-Print Network [OSTI]

    Balachandra, Chandrakumar John

    2013-03-13

    of B W R , T u r b i n e and C o n t r o l s ( N U C L E R ) ............................... 41 F i g u re 13: BWR, T u r b i n e and C o n t r o l s A rray V a r i a b l e s .................................. 42 F ig u r e 14: BWR Power to R e... a r e E n g i n e e r? and r e p o r t e d d i r e c t l y to the S o f t w a r e D e v e l o p m e n t Le a de r (SDL), who in turn was d i r e c t l y un der the s u p e r v i s i o n of the Power S y s t e m s A p p l i c a t i o n s M...

  12. Optimisation and integration of membrane processes in coal-fired power plants with carbon capture and storage 

    E-Print Network [OSTI]

    Bocciardo, Davide

    2015-06-29

    This thesis investigates membrane gas separation and its application to post-combustion carbon capture from coal-fired power plants as alternative to the conventional amine absorption technology. The attention is initially ...

  13. Applications for Coal and Natural Gas Power Plants in a Smart Grid Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicant IApplicationSC14

  14. Applications for Coal and Natural Gas Power Plants in a Smart Grid Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicant IApplicationSC14Smart Grid

  15. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    SciTech Connect (OSTI)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  16. Low-Power Cross-Phase Modulation in a Metastable Xenon-Filled Cavity for Quantum Information Applications

    E-Print Network [OSTI]

    G. T. Hickman; T. B. Pittman; J. D. Franson

    2015-08-24

    Weak single-photon nonlinearities have many potential applications in quantum computing and quantum information. Here we demonstrate a relatively simple system for producing low-power cross-phase modulation using metastable xenon inside a high finesse cavity. The use of a noble gas such as xenon eliminates the contamination of the high-finesse mirrors that can occur when using alkali metal vapors such as rubidium. Cross-phase shifts of 5 mrad with 4.5 fJ control pulses were demonstrated. Numerical solutions of the master equation are in good agreement with the experimental results, and they predict that cross-phase shifts greater than 1 mrad per control photon should be achievable by reducing the size of the cavity.

  17. Conceptual design of coal-fueled diesel system for stationary power applications

    SciTech Connect (OSTI)

    Not Available

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  18. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  19. Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications

    SciTech Connect (OSTI)

    Dupuis, Russell

    2012-02-29

    The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of a set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.

  20. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

  1. Survey of Field Programmable Gate Array Design Guides and Experience Relevant to Nuclear Power Plant Applications

    SciTech Connect (OSTI)

    Bobrek, Miljko; Bouldin, Don; Holcomb, David Eugene; Killough, Stephen M; Smith, Stephen Fulton; Ward, Christina D

    2007-09-01

    From a safety perspective, it is difficult to assess the correctness of FPGA devices without extensive documentation, tools, and review procedures. NUREG/CR-6463, "Review Guidelines on Software Languages for Use in Nuclear Power Plant Safety Systems," provides guidance to the Nuclear Regulatory Commission (NRC) on auditing of programs for safety systems written in ten high-level languages. A uniform framework for the formulation and discussion of language-specific programming guidelines was employed. Comparable guidelines based on a similar framework are needed for FPGA-based systems. The first task involves evaluation of regulatory experience gained by other countries and other agencies, and those captured in existing standards, to identify regulatory approaches that can be adopted by NRC. If existing regulations do not provide a sufficient regulatory basis for adopting relevant regulatory approaches that are uncovered, ORNL will identify the gaps. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  2. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Energy Savers [EERE]

    for steadily building its renewable energy portfolio in an effort to support its members' green power initiatives. More than a decade ago, OMPA became the first commercial power...

  3. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    SciTech Connect (OSTI)

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilistic risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.

  4. Relativistic Fermi-Ulam map: Application to WEGA stellarator lower hybrid power operation

    SciTech Connect (OSTI)

    Fuchs, V.; Seidl, J.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Urban, J.; Laqua, H. P.

    2014-06-15

    Analytical and numerical support is here provided in support of the explanation [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)] for the observation of ?MeV electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [Otte et al., Nukleonika, 57, 171 (2012)]. In the quoted experiments, LH power from the WEGA TE{sub 11} circular waveguide, 9?cm diameter, un-phased, 2.45?GHz antenna, is radiated into a B???0.5?T, n{sup Ż}{sub e}???5?×?10{sup 17} 1/m{sup 3} plasma at T{sub e}???10?eV bulk temperature with an EC-generated 50?keV population of electrons. In response, the fast electrons travel around flux or drift surfaces essentially without collisions, repeatedly interacting with the rf field close to the antenna mouth, and gaining energy in the process. Our WEGA antenna calculations indicate a predominantly standing electric field pattern at the antenna mouth. From a simple approximation of the corresponding Hamiltonian equations of motion, we derive here a relativistic generalization of the simplified area-preserving Fermi-Ulam (F-U) map [M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A 5, 1852 (1972), Lichtenberg et al., Physica D 1, 291 (1980)], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, and with correlated phases between electron–antenna electric field interaction events, the F-U map and supporting numerical simulations predict an absolute energy barrier in the range of 300?keV. In contrast, with random phases intervening between interaction events, the electron energy can reach ?MeV values, compatible with the measurements on WEGA [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)].

  5. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  6. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    E-Print Network [OSTI]

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-01-01

    Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

  7. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    E-Print Network [OSTI]

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-01-01

    the high-voltage meshed power grid with which current powerand providing the µGrid’s power and heat with DER plus CHPProviding the µGrid’s power and heat with CHP reduces the µ

  8. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect (OSTI)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  9. Sandia National Laboratories Distributive Power Initiative (DPI...

    Office of Environmental Management (EM)

    Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOEESS) through Sandia National...

  10. Sandia National Laboratories Distributive Power Initiative (DPI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of Energy San FranciscoLarge Format

  11. Clean Coal Power Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) chargingWASHINGTON, DC - Jeffrey Clay

  12. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  13. Electrical initiation of an energetic nanolaminate film

    DOE Patents [OSTI]

    Tringe, Joseph W. (Walnut Creek, CA); Gash, Alexander E. (Brentwood, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  14. Comparative Analysis between Grundfos CRE 15-3 Variable Speed Centrifugal Pumps and a Worthington D-824 Constant Speed Centrifugal Pump in a KU Steam Power Plant Application

    E-Print Network [OSTI]

    Schmidt, Fabian Philip

    2014-05-31

    This document presents a comparative analysis between the use of a Grundfos CRE 15-3 variable speed centrifugal pump and a Worthington D-824 constant speed centrifugal pump in a steam power plant application. This was performed since, in many...

  15. Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low-power ARM-based cluster

    E-Print Network [OSTI]

    Komatitsch, Dimitri

    Energy efficiency vs. performance of the numerical solution of PDEs: An application study on a low November 2012 Available online 7 December 2012 Keywords: High performance computing Energy efficiency Low-Boltzmann a b s t r a c t Power consumption and energy efficiency are becoming critical aspects in the design

  16. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  17. Solutions for Summer Electric Power Shortages: Demand Response and its Applications in Air Conditioning and Refrigerating Systems

    E-Print Network [OSTI]

    Han, Junqiao; Piette, Mary Ann

    2008-01-01

    LBNL-63806 Refrigeration, Air Conditioning, & Electric Powerand its Applications in Air Conditioning and Refrigeratingand its applications in Air Conditioning and refrigerating

  18. National Nanotechnology Initiative's Signature Initiative Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will include manufactured products based on: * Carbon-based nanomaterials * Optical metamaterials * Cellulosic nanomaterials National Nanotechnology Initiative Three requirements...

  19. QM Power

    Broader source: Energy.gov [DOE]

    QM Power’s Q-Sync™ is an innovative, highly efficient and cost effective motor technology. Utilizing DoE SBIR funding, QM Power has developed advanced Q-Sync fan motor technology for 9-12 watt commercial refrigeration fan applications and is launching its first product lines targeting both new and existing commercial refrigeration equipment. For this project, QM Power will team with Oak Ridge National Labs, market leading OEMs, subject matter experts, end users, retrofit contractors and utilities to install and demonstrate approximately 10,000 high efficiency Q-Sync fan motors in over 50 grocery sites throughout the US.

  20. Design of a Novel, Battery-less, Solar Powered Wireless Tag for Enhanced Range Remote Tracking Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    Design of a Novel, Battery-less, Solar Powered Wireless Tag for Enhanced Range Remote Tracking and Microwave/antenna design are utilized to establish an asynchronous wireless link between the solar powered (centered at 904.4 MHz). System Level Design The fundamental problem with integrating the solar powered tag

  1. Initial Radionuclide Inventories

    SciTech Connect (OSTI)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.

  2. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    SciTech Connect (OSTI)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

  3. False-alarm probability in relation to over-sampled power spectra, with application to Super-Kamiokande solar neutrino data

    E-Print Network [OSTI]

    Peter A. Sturrock; Jeffrey D. Scargle

    2010-06-03

    The term "false-alarm probability" denotes the probability that at least one out of M independent power values in a prescribed search band of a power spectrum computed from a white-noise time series is expected to be as large as or larger than a given value. The usual formula is based on the assumption that powers are distributed exponentially, as one expects for power measurements of normally distributed random noise. However, in practice one typically examines peaks in an over-sampled power spectrum. It is therefore more appropriate to compare the strength of a particular peak with the distribution of peaks in over-sampled power spectra derived from normally distributed random noise. We show that this leads to a formula for the false-alarm probability that is more conservative than the familiar formula. We also show how to combine these results with a Bayesian method for estimating the probability of the null hypothesis (that there is no oscillation in the time series), and we discuss as an example the application of these procedures to Super-Kamiokande solar neutrino data.

  4. Component technology for Stirling power converters

    SciTech Connect (OSTI)

    Thieme, L.G.

    1994-09-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling space power program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for a DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their program goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. This paper will present an overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings.

  5. Lunar Wireless Power Transfer Feasibility Study

    SciTech Connect (OSTI)

    Sheldon Freid, et al.

    2008-06-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  6. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  7. Application Engineering,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    A Plantwide Control Procedure with Application to Control Structure Design for a Gas Power Plant S. Skogestad, M. S. Govatsmark Department of Chemical Engineering, NTNU #12; Outline #15; Gas power plant #15; Plantwide control #15; Plantwide control procedure #15; Application #15; Concluding remarks #12; Gas power

  8. An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing

    E-Print Network [OSTI]

    Belding-Royer, Elizabeth M.

    of electrical energy. Depen- dence on renewable energy sources and variable power consump- tion make harvesting equipment hardware specifi- cations; high resolution, time-varying weather information settings, rural wireless deploy- ments often have to face the lack of reliable grid power infrastruc- ture

  9. Abstract--Power efficiency during heavy-and light-loading conditions in wireless portable applications is critical for

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    and quiescent current flow during light loading conditions and (2) an adaptive PA bias-current generator1 Abstract-- Power efficiency during heavy- and light-loading conditions in wireless portable efficiency is improved with a 0.5-µm CMOS dynamically adaptive, dual-mode buck- boost power supply and bias

  10. Applicability of a field-portable toxic heavy metal detector, using a radioisotope-tagged metalloprotein, to DOE environmental remediation and waste minimization initiatives

    SciTech Connect (OSTI)

    Randles, K.E.; Bragg, D.J.; Bodette, D.E.; Lipinski, R.J.; Luera, T.F.

    1998-08-01

    A system based on the metal-binding kidney protein, metallothionein, bound with a trace quantity of radioactive metal, has been shown to be capable of detecting parts-per-million (ppm) to parts-per-billion (ppb) concentrations of some heavy metals in liquid solution. The main objective of this study was to determine if this type of system has adequate sensitivity and selectivity for application in detecting a number of metallic species of concern to DOE, such as mercury, lead, and chromium. An affinity-displacement study is reported here using the heavy metal radiotracers {sup 65}Zn and {sup 109}Cd bound to metallothionein immobilized on an Affi-Gel 10 filter support. When a heavy metal solution with a greater affinity than the tracer for the protein is poured through the filter the radiotracer is displaced by a mechanism similar to ion exchange. The main objective of this study was to verify previous internal experimental parameters and results, and to determine the specific affinities of metallothionein for the metallic species of most concern to DOE.

  11. Towards the understanding of PETN initiation by a fast, high...

    Office of Scientific and Technical Information (OSTI)

    Towards the understanding of PETN initiation by a fast, high power arc source Citation Details In-Document Search Title: Towards the understanding of PETN initiation by a fast,...

  12. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  13. Administering an epoch initiated for remote memory access

    DOE Patents [OSTI]

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  14. Administering an epoch initiated for remote memory access

    DOE Patents [OSTI]

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  15. Administering an epoch initiated for remote memory access

    DOE Patents [OSTI]

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  16. Microwave Metamaterial Applications using Complementary Split Ring Resonators and High Gain Rectifying Reflectarray for Wireless Power Transmission 

    E-Print Network [OSTI]

    Ahn, Chi Hyung

    2011-10-21

    with lateral dimensions below diffraction limits, and ?erenkov radiation, and doppler effect have been studied [7]-[14]. B.Wireless Power Transmission The history of wireless power transmission started with a successful experiment by 3 Nikola... Tesla [15] over a hundred year ago. He made it to transmit wireless power from his oscillators operating up to 100 MV at 150 KHz to two bulbs. From this success, several WPT studies had been conducted in Japan [16] and U.S. [17] in the 1920?s...

  17. Network support for system initiated checkpoints

    DOE Patents [OSTI]

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  18. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Energy Savers [EERE]

    years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a...

  19. Our lab focuses on materials durability in extreme environments for energy, power, and propulsion applications. Current research interests include

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    -the-art capabilities in isotopic mapping by Time-of-Flight Secondary Ion Mass Spectrometry. Ceramic Matrix Composites for Combustion Applications SiC-based Ceramic Matrix Composites are currently under development for turbine applications. Current research interests include oxidation and corrosion of ceramics and ceramic matrix

  20. Index Terms --Smart grid; power engineering education; power engineering curriculum; power engineering re-

    E-Print Network [OSTI]

    1 Index Terms -- Smart grid; power engineering education; power engineering curriculum; power engineering re- sources; power engineering workforce. Abstract -- A widely supported effort to modernize the United States power system has led to an engineering initiative va- riously known as `smart grid

  1. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  2. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  3. Breckinridge Project, initial effort

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Report V, Volume 1 provides descriptions, data, and drawings pertaining to Flare System (Plant 19), Tankage (Plant 20), Interconnecting Piping (Plant 21), River Facilities (Plant 22), Rail, Truck, Pipeline (Plant 23), and Electrical Distribution (Plant 30). Flare System (Plant 19) provides primary and auxiliary flare systems for safe collection and disposal of overpressure relief discharges, and operational and emergency venting of flammable vapors and liquids from the various processing plants and loading facilities. Tankage (Plant 20) provides storage for propane and heavier liquid hydrocarbon products, as well as for by-product ammonia, phenols, and liquid sulfur. Interconnecting Piping (Plant 21) includes the fuel gas blending and distribution system and the interconnecting process and utility piping between process plants and offsites. River Facilities (Plant 22) provides the loading of liquid products and by-products into barges for marine surface transportation, and the unloading of coal from barges. Rail, Truck, Pipeline (Plant 23) provides loading and unloading of products shipped by either rail or truck. Electrical Distribution (Plant 30) receives main utility power from the Big River Electric Corporation and distributes the power to the other plants. The following information is included for each of the six plants: a description of the plant's design, including the utility balance, catalysts and chemicals usage, and process flow diagrams, as applicable; an equipment list, including item numbers and descriptions; data sheets and sketches for major plant components; and pertinent engineering drawings. An appendix contains: an overall site plan showing the locations of all plants; and the symbols and legend for piping and instrument diagrams.

  4. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  5. GLOBAL TAXONOMY INITIATIVE

    E-Print Network [OSTI]

    Grant, Taran

    #12;THE GLOBAL TAXONOMY INITIATIVE: Using Systematic Inventories to Meet Country and Regional Needs (COP) to the Convention on Biological Diversity (CBD) has endorsed a GlobalTaxonomy Initiative (GTI workshop, The Global Taxonomy Initiative: Shortening the Distance between Discovery and Delivery, made

  6. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  9. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  10. Feasibility Study of Economics and Performance of Biopower at the Chanute Air Force Base in Rantoul, Illinois. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Scarlata, C.; Mosey, G.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chanute Air Force Base site in Rantoul, Illinois, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this study was to assess the site for a possible biopower system installation and estimate the cost, performance, and impacts of different biopower options.

  11. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  12. Performance Evaluation of a Multi-Port DC-DC Current Source Converter for High Power Applications 

    E-Print Network [OSTI]

    Yancey, Billy Ferrall

    2011-08-08

    the voltage source doesn?t change polarity, current direction does not change, and a resistive load cannot generate power. Scenario?s 3 ? 6 also do not 36? ? make sense and this will be shown during the explanation of Scenario 2. Therefore only... earlier power transfer between source converters cannot occur because the voltage or current cannot change directions. In order to observe the behavior of this scenario the firing angle of the load was set at ?314 = 0?/180 ? and ?323 = 180...

  13. United Nations Human Space Technology Initiative (HSTI)

    E-Print Network [OSTI]

    Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

    2015-01-01

    The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

  14. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  15. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect (OSTI)

    Peters, John McCloskey, Jay Douglas, Trevor Young, Mark Snyder, Stuart Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?Ă?Â?taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.

  16. Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

  17. Modeling and Control of Discrete Event Systems Using Finite State Machines with Variables and Their Applications in Power Grids

    E-Print Network [OSTI]

    Zhang, Hongwei

    of electric power grids. Keywords: control synthesis; discrete event systems; finite state machines; PHEVModeling and Control of Discrete Event Systems Using Finite State Machines with Variables,e , and Hongwei Zhangf a Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the state’s interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the state’s energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  19. Rural Development Multi-Family Housing Energy Efficiency Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    rural America for the next century, the USDA Rural Development Multi-Family Housing Energy Efficiency Initiative enables applicants to several USDA housing programs to...

  20. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do The TwistContract2Application

  1. Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do TheApplication Portingboat ride on

  2. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  3. Progress in Initiator Modeling

    SciTech Connect (OSTI)

    Hrousis, C A; Christensen, J S

    2009-05-04

    There is great interest in applying magnetohydrodynamic (MHD) simulation techniques to the designs of electrical high explosive (HE) initiators, for the purpose of better understanding a design's sensitivities, optimizing its performance, and/or predicting its useful lifetime. Two MHD-capable LLNL codes, CALE and ALE3D, are being used to simulate the process of ohmic heating, vaporization, and plasma formation in the bridge of an initiator, be it an exploding bridgewire (EBW), exploding bridgefoil (EBF) or slapper type initiator. The initiation of the HE is simulated using Tarver Ignition & Growth reactive flow models. 1-D, 2-D and 3-D models have been constructed and studied. The models provide some intuitive explanation of the initiation process and are useful for evaluating the potential impact of identified aging mechanisms (such as the growth of intermetallic compounds or powder sintering). The end product of this work is a simulation capability for evaluating margin in proposed, modified or aged initiation system designs.

  4. A Novel SOI Lateral Bipolar Transistor with 30GHz fmax and 27V BVCEO for RF Power Amplifier Applications

    E-Print Network [OSTI]

    Ng, Wai Tung

    Applications I-Shan Michael Sun, Wai Tung Ng*, Koji Kanekiyo, Takaaki Kobayashi, Hidenori Mochizuki, Masato-doped collector region. The result of this optimization is demonstrated as the Johnson's product approaches/delay time in emitter, base and collector, respective. For pu

  5. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range

    SciTech Connect (OSTI)

    1980-02-01

    Initial work in a project on the design and development of Stirling engines for stationary integrated energy systems is reported. Information is included on a market assessment, design methodology, evaluation of engine thermodynamic performance, and preliminary system design. It is concluded that Stirling engines employing clean fossil fuels cannot compete with diesel engines. However, combustion technology exists for the successful burning of coal-derived fuels in a large stationary stirling engine. High thermal efficiency is predicted for such an engine and further development work is recommended. (LCL)

  6. About the Initiative

    SciTech Connect (OSTI)

    Not Available

    2007-06-01

    This factsheet gives an overview of the Solar America Initiative (SAI), including goals, research and development strategy, market transformation strategy, and benefits to nation.

  7. Strategic Growth Initiative (Michigan)

    Broader source: Energy.gov [DOE]

    A joint venture between Michigan Department of Agriculture and Rural Development (MDARD) and the Michigan Economic Development Corporation (MEDC), the Strategic Growth Initiative Grant Program was...

  8. Innovation Ecosystem Development Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ideas that address today's most urgent energy challenges. For More Information For more information about the Innovation Ecosystem Initiative, please visit eere.energy.gov...

  9. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2...

  10. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  11. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    SciTech Connect (OSTI)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage (BAL) fluid cytology and biochemistry; (3) blood cytology; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. In addition, at one plant, cardiac arrhythmias and heart rate variability (HRV) were evaluated in a rat model of myocardial infarction. Statistical analyses included analyses of variance (ANOVA) to determine differences between exposed and control animals in response to different scenario/plant combinations; univariate analyses to link individual scenario components to responses; and multivariate analyses (Random Forest analyses) to evaluate component effects in a multipollutant setting. Results from the power plant studies indicated some biological responses to some plant/scenario combinations. A number of significant breathing pattern changes were observed; however, significant clinical changes such as specific irritant effects were not readily apparent, and effects tended to be isolated changes in certain respiratory parameters. Some individual exposure scenario components appeared to be more strongly and consistently related to respiratory parameter changes; however, the specific scenario investigated remained a better predictor of response than individual components of that scenario. Bronchoalveolar lavage indicated some changes in cellularity of BAL fluid in response to the POS and PONS scenarios; these responses were considered toxicologically mild in magnitude. No changes in blood cytology were observed at any plant or scenario. Lung oxidative stress was increased with the POS scenario at one plant, and cardiac oxidative stress was increased with the PONS scenario also at one plant, suggesting limited oxidative stress in response to power plant emissions with added atmospheric constituents. There were some mild histological findings in lung tissue in response to the P and PONS scenarios. Finally, the MI model experiments indicated that premature ventricular beat frequency was increased at the plant studied, while no changes in heart rate, HRV, or electrocardiographic intervals were observed. Overall, the

  12. Application of real time transient temperature (RT{sup 3}) program on nuclear power plant HVAC analysis

    SciTech Connect (OSTI)

    Cai, Y.; Tomlins, V.A.; Haskell, N.L.; Giffels, F.W.

    1996-08-01

    A database oriented technical analysis program (RT) utilizing a lumped parameter model combined with a finite difference method was developed to concurrently simulate transient temperatures in single or multiple room(s)/area(s). Analyses can be seen for postulated design basis events, such as, 10CFR50 Appendix-R, Loss of Coolant Accident concurrent with Loss of Offsite Power (LOCA/LOOP), Station BlackOut (SBO), and normal station operating conditions. The rate of change of the air temperatures is calculated by explicitly solving a series of energy balance equations with heat sources and sinks that have been described. For building elements with heat absorbing capacity, an explicit Forward Time Central Space (FTCS) model of one dimensional transient heat conduction in a plane element is used to describe the element temperature profile. Heat migration among the rooms/areas is considered not only by means of conduction but also by means of natural convection induced by temperature differences through openings between rooms/areas. The program also provides a means to evaluate existing plant HVAC system performance. The performance and temperature control of local coolers/heaters can be also simulated. The program was used to calculate transient temperature profiles for several buildings and rooms housing safety-related electrical components in PWR and BWR nuclear power plants. Results for a turbine building and reactor building in a BWR nuclear power plant are provided here. Specific calculational areas were defined on the basis of elevation, physical barriers and components/systems. Transient temperature profiles were then determined for the bounding design basis events with winter and summer outdoor air temperatures.

  13. Initial Decision and Risk Analysis

    SciTech Connect (OSTI)

    Engel, David W.

    2012-02-29

    Decision and Risk Analysis capabilities will be developed for industry consideration and possible adoption within Year 1. These tools will provide a methodology for merging qualitative ranking of technology maturity and acknowledged risk contributors with quantitative metrics that drive investment decision processes. Methods and tools will be initially introduced as applications to the A650.1 case study, but modular spreadsheets and analysis routines will be offered to industry collaborators as soon as possible to stimulate user feedback and co-development opportunities.

  14. Fayette County Better Buildings Initiative

    SciTech Connect (OSTI)

    Capella, Arthur

    2015-03-04

    The Fayette County Better Buildings Initiative represented a comprehensive and collaborative approach to promoting and implementing energy efficiency improvements. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. The ultimate goal of Fayette County’s Better Buildings Initiative was to implement a total of 1,067 residential energy efficiency retrofits with a minimum 15% estimated energy efficiency savings per unit. Program partners included: United States Department of Energy, Allegheny Power, and Private Industry Council of Westmoreland-Fayette, Fayette County Redevelopment Authority, and various local partners. The program was open to any Fayette County residents who own their home and meet the prequalifying conditions. The level of assistance offered depended upon household income and commitment to undergo a BPI – Certified Audit and implement energy efficiency measures, which aimed to result in at least a 15% reduction in energy usage. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. Additionally, the program had components that involved recruitment and training for employment of persons in the energy sector (green jobs), as well as marketing and implementation of a commercial or community facilities component. The residential component of Fayette County’s Better Buildings Initiative involved a comprehensive approach, providing assistance to low- moderate- and market-rate homeowners. The initiative will also coordinate activities with local utility providers to further incentivize energy efficiency improvements among qualifying homeowners. The commercial component of Fayette County’s Better Building Initiative involved grants and loans to assist up to $15,000 projects per commercial structure with a mixture of a grant and financing at 0% for up to three – (3) years. The maximum award can be a $5,000 grant and a $10,000 loan. For projects less than $15,000, the award will have a ratio of 1/3 grant and 2/3 loan.

  15. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect (OSTI)

    Kashiwagi, M., E-mail: kashiwagi.mieko@jaea.go.jp; Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka 311-0193 (Japan)] [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka 311-0193 (Japan)

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  16. Applications of non-imaging micro-optic systems

    E-Print Network [OSTI]

    Baker, Katherine Anne

    2012-01-01

    Photovoltaics Concentrated Solar Power Dielectrophoresissystem for concentrated solar power (CSP), also known asthermal or concentrated solar power (CSP) applications.

  17. Analysis and design of power conditioning systems 

    E-Print Network [OSTI]

    Harfman Todorovic, Maja

    2009-05-15

    -power portable sources for small electronics and laptop computers to megawatt-power applications for fuel cell power plants. The design and analysis for each power conditioner is presented in detail and the performance is verified using simulations and prototypes...

  18. Superconducting Power Generation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-02-20

    The superconducting ac generator has the greatest potential for large-scale commercial application of superconductivity that can benefit the public. Electric power is a vital ingredient of modern society, and generation may be considered to be the vital ingredient of a power system. This articles gives background, and an insight into the physics and engineering of superconducting power generation.

  19. Signatures of initial state modifications on bispectrum statistics

    SciTech Connect (OSTI)

    Meerburg, P Daniel; Schaar, Jan Pieter van der; Corasaniti, Pier Stefano E-mail: j.p.vanderschaar@uva.nl

    2009-05-15

    Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. We focus on the bispectrum statistics of the primordial curvature perturbation and its projection on the CMB. For a canonical single-field action the three-point correlator enhancement is localized, maximizing in the collinear limit, corresponding to enfolded or squashed triangles in comoving momentum space. We show that the available local and equilateral template are very insensitive to this localized enhancement and do not generate noteworthy constraints on initial-state modifications. On the other hand, when considering the addition of a dimension 8 higher order derivative term, we find a dominant rapidly oscillating contribution, which had previously been overlooked and whose significantly enhanced amplitude is independent of the triangle under consideration. Nevertheless, the oscillatory nature of (the sign of) the correlation function implies the signal is nearly orthogonal to currently available observational templates, strongly reducing the sensitivity to the enhancement. Constraints on departures from the standard Bunch-Davies vacuum state can be derived, but also depend on the next-to-leading terms. We emphasize that the construction and application of especially adapted templates could lead to CMB bispectrum constraints on modified initial states already competing with those derived from the power spectrum.

  20. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.