National Library of Energy BETA

Sample records for initiates co2 injection

  1. Carbon Storage Partner Completes First Year of CO2 Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19,...

  2. Non-isothermal CO2 flow through an injection well

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    production - superheated steam injection The CO2 phase, whether gas, liquid or supercritical, is determined

  3. Modeling Hydrogeological and Geomenchanical Processes Related to CO2 Injection in a Faulted Multilayer System

    E-Print Network [OSTI]

    Rutqvist, Jonny; Birkholzer, Jens; Tsang, Chin-Fu

    2006-01-01

    underground injection of supercritical CO2 in a hypotheticalthe CO2-rich phase (supercritical CO2 with small amounts of

  4. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  5. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  6. Continuous active-source seismic monitoring of CO2 injection in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

    2008-01-01

    INTERPRETATION The injection of CO 2 causes a decrease in seismicseismic monitoring during injection. Although quantitative interpretation

  7. Complex Flow and Composition Path in CO2 Injection Schemes from Density Effects

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    is that the downward flow of the CO2 and oil mixture may not be gravity-stable, despite the widespread assumption States ABSTRACT: CO2 injection has been used to improve oil recovery for the last 4 decades. In recent) improves the oil recovery. One of the screening criteria for CO2 injection as an enhanced oil recovery

  8. CO2watermineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test

    E-Print Network [OSTI]

    to be addressed during the selection and characterization of suitable CO2 storage sites (IEA-GHG, 2011; Lemieux., 2007; IEA-GHG, 2011). Considering a sce- nario where CO2 ­ or brine or both ­ escapes from the storage., 2010; Kharaka et al., 2010; Humez et al., 2011a, 2011b; IEA-GHG, 2011; Lemieux, 2011; Keating et al

  9. Modeling Density Effects in CO2 Injection in Oil Reservoirs and A Case Study of CO2 Sequestration in a Qatari Saline Aquifer 

    E-Print Network [OSTI]

    Ahmed, Tausif

    2012-10-19

    CO2 injection has been used to improve oil recovery for several decades. In recent years, CO2 injection has become even more attractive because of a dual effect; injection in the subsurface 1) allows reduction of CO2 concentration in the atmosphere...

  10. 10,248,196 Metric Tons of CO2 Injected as of June 19, 2015 |...

    Energy Savers [EERE]

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  11. 10,180,047 Metric Tons of CO2 Injected as of May 28, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  12. 10,422,136 Metric Tons of CO2 Injected as of August 21, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed below. Regional Carbon...

  13. CO2 Injection in the Subsurface Kjetil Haugen

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    (1015 BTU) Year Oil Coal Gas Hydro Nuclear Other Figure 1: World energy consumption by energy type. Thus, replacing oil and coal with less carbon-intensive natural gas, is probably the fastest way of achieving a significant reduction in CO2 emissions. CO2 Capture Natural gas is the most clean burning fossil

  14. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    CO2 injection and storage, gas-fluid-rock interactions,this study covered gas injection and storage in bothof CO 2 and acid gas injection and storage is controlled by

  15. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 hasmore »been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less

  16. Numerical simulations of the thermal impact of supercritical CO2 injection on chemical

    E-Print Network [OSTI]

    Boyer, Edmond

    in a carbonate saline reservoir Laurent André, Mohamed Azaroual, André Menjoz BRGM ­ Water Division - 3 Avenue 64 37 19 Email : l.andre@brgm.fr www.brgm.fr Abstract Geological sequestration of CO2 offers, investigates thermal effects during CO2 injection into a deep carbonate formation. Different thermal processes

  17. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    E-Print Network [OSTI]

    Cappa, F.

    2010-01-01

    L.K,  2000.   Fully  Coupled  Geomechanics  and  Fluid?Flow CO 2   injection,  geomechanics,  and  ground?surface 

  18. CO2 Injection Begins in Illinois | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched...

  19. Impact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up scaling from experimental

    E-Print Network [OSTI]

    Boyer, Edmond

    flow rate and capillary properties on the desiccation mechanisms. Keywords: supercritical CO2, dryingImpact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up - France Abstract Injection of CO2 in geological reservoirs or deep aquifers is nowadays studied

  20. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground

    SciTech Connect (OSTI)

    Oldenburg

    2009-07-30

    July 21, 2009 Berkeley Lab summer lecture: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  1. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  2. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  3. Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds

    E-Print Network [OSTI]

    Gasperikova, E.

    2010-01-01

    Plasynski, S. , 2008, Advancing Coal-Based Power Generationto monitor CO 2 injection into Coal Beds as a part of theanalysis for CO 2 movement in coal beds was based on the

  4. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01

    Groundwater Chemistry Changes as a Result of CO 2 Injection9 Test Configuration and Groundwater1994) Geochemistry, groundwater and pollution. A.A.Balkema,

  5. Three-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA equation

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    approach to mitigate global warming. Several unique phase behavior properties make CO2 especially reservoirs, and the solubility in both light and heavy oil may be very high. [3] Upon dissolution, CO2 mayThree-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA

  6. Using batch experiments to quantify the potential of North Sea saline aquifers to leach contaminants upon injection of CO2

    E-Print Network [OSTI]

    contaminants upon injection of CO2 Kit Carruthers MSc, Dr. Mark Wilkinson, Dr. Katriona Edlmann · Saline aquifer CO2 storage limited by water and pore compressibilities · Pressure relief via water production · CO2 acidifies water upon dissolution, promoting leaching of heavy metals into solution

  7. Local Sensitivity of Predicted CO2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore »(LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  8. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore »wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  9. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  10. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  11. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2006-01-01

    of “recovery factor”. IEA Oil Reserves Conference, Paris,used today for CO 2 -enhanced oil recovery. Pipeline CO 2 is

  12. Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Rockhold, Mark L.; Murray, Christopher J.

    2012-01-05

    Numerical models are essential tools for CO2 sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprock. Broad-based research addressing the impacts of caprock properties and their heterogeneity on seal permeation is absent. Efforts along this direction require obtaining information about the physically reasonable range of caprock and reservoir properties, effectively sampling the parameter space to fully explore the range of these properties, and performing flow and transport calculations using reliable numerical simulators. In this study, we identify the most important factors affecting CO2 leakage through intact caprock and try to understand the underlying mechanisms. We use caprock and reservoir properties from various field sites and literature data to identify the range of caprock thickness, permeability, and porosity that might occur. We use a quasi Monte Carlo sampling approach to ensure that the full range of caprock and seal properties is evaluated without bias. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water-salt-CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through intact caprock are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock, and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. As a byproduct, the dependence of CO2 injectivity on reservoir properties is also evaluated.

  13. Method and apparatus for efficient injection of CO2 in oceans

    DOE Patents [OSTI]

    West, Olivia R.; Tsouris, Constantinos; Liang, Liyuan

    2003-07-29

    A liquid CO.sub.2 injection system produces a negatively buoyant consolidated stream of liquid CO.sub.2, CO.sub.2 hydrate, and water that sinks upon release at ocean depths in the range of 700-1500 m. In this approach, seawater at a predetermined ocean depth is mixed with the liquid CO.sub.2 stream before release into the ocean. Because mixing is conducted at depths where pressures and temperatures are suitable for CO.sub.2 hydrate formation, the consolidated stream issuing from the injector is negatively buoyant, and comprises mixed CO.sub.2 -hydrate/CO.sub.2 -liquid/water phases. The "sinking" characteristic of the produced stream will prolong the metastability of CO.sub.2 ocean sequestration by reducing the CO.sub.2 dissolution rate into water. Furthermore, the deeper the CO.sub.2 hydrate stream sinks after injection, the more stable it becomes internally, the deeper it is dissolved, and the more dispersed is the resulting CO.sub.2 plume. These factors increase efficiency, increase the residence time of CO2 in the ocean, and decrease the cost of CO.sub.2 sequestration while reducing deleterious impacts of free CO.sub.2 gas in ocean water.

  14. MODELING POTENTIAL IMPACTS OF SO2 CO-INJECTED WITH CO2 ON THE KNOX GROUP, WESTERN KENTUCKY

    SciTech Connect (OSTI)

    Zhu, Junfeng; Harris, David; Leetaru, Hannes

    2014-09-30

    Understanding potential long-term impacts of CO2 impurities, such as sulfur and nitrogen compounds, on deep carbon storage reservoirs is of considerable interest because co-injection of the impurities with CO2 can bring significant economic and environmental benefits. The Cambrian–Ordovician Knox Group, a thick sequence of dolostone (Beekmantown Dolomite) with minor dolomitic sandstone (Gunter Sandstone), in western Kentucky, USA, has been evaluated as a prospective CO2 sequestration target. In this study, TOUGHREACT was used to build 1-D radial models to simulate the potential impacts of co-injected CO2 and SO2 on minerals, pore fluids, and porosity and permeability in the Beekmantown Dolomite and the Gunter Sandstone. Co-injection of a mass ratio of 2.5 percent SO2 and 97.5 percent CO2, representative of flue gas from coal-fired plants, was simulated and the co-injection simulations were compared to models with CO2 only injections. The model results suggest that the major impacts of added SO2 for both the Beekmantown and the Gunter rocks were significant enhancement of dissolution of dolomite and precipitation of anhydrite, leading to noticeable increases in porosity and permeability. The Gunter Sandstone appeared to be more active with SO2 than the Beekmantown Dolomite. More dolomite was dissolved in the Gunter than in the Beekmantown with the same SO2 impurity. Consequently, porosity was raised more in the Gunter than in the Beekmantown. On the other hand, the impacts on aluminosilicate minerals appeared to be insignificant in both reservoirs, slightly changing the rates of precipitation/dissolution but the overall reaction paths remained the same.

  15. Time-lapse VSP data processing for monitoring CO2 injection

    SciTech Connect (OSTI)

    Huang, Lianjie; Rutledge, James; Cheng, Arthur

    2009-01-01

    As a part of the effort of the Southwest Regional Partnership on Carbon Sequestration supported by U.S. Department of Energy and managed by the National Energy Technology Laboratory, two sets of time-lapse VSPs were acquired and processed in oil fields undergoing CO{sub 2} injection. One set of VSPs was acquired at the Aneth oil field in Utah, the other set at the Scurry Area Canyon Reef Operators Committee (SACROC) field in West Texas. One baseline and two repeat VSP surveys were conducted from 2007 to 2009 at the Aneth oil field in Utah for monitoring CO{sub 2} injection. The aim of the time-lapse VSP surveys is to study the combined enhanced oil recovery (EOR) and CO{sub 2} sequestration in collaboration with Resolute Natural Resources, Inc. VSP data were acquired using a cemented geophone string with 60 levels at depth from 805 m to 1704 m, and CO{sub 2} is injected into a horizontal well nearby within the reservoir at depth approximately from 1730 m to 1780 m. For each VSP survey, the data were acquired for one zero-offset source location and seven offset source locations (Figure 1). The baseline VSP survey was conducted before the CO{sub 2} injection. More than ten thousand tons of CO{sub 2} was injected between each of the two repeat VSP surveys. There are three horizontal injection wells, all originating from the same vertical well. One is drilled towards Southeast, directly towards the monitoring well (Figure 2), and the other two towards Northwest, directly away from the monitoring well. The injection is into the top portion of the Desert Creek formation, just beneath the Gothic shale, which acts as the reservoir seal. The initial baseline acquisition was done in October 2007; subsequent time-lapse acquisitions were conducted in July 2008, and January 2009. The acquisition geometry is shown in Figure 1. Shot point 1 is the zero-offset source location, Shot points 2 to 8 are the seven offset VSPs, arranged in a quarter circle on the Northwest side of the monitoring well. The horizontal injection well is shown in green. The black lines in Figure 1 show the approximate reflection coverage al reservoir depth from the respective offset source locations. VSP source location 5 is in a direct line with the injection. The 60 geophone sondes were cemented into the monitor well just before the baseline VSP acquisition and consisted of 96 geophone channels, with 18 three-component geophones (at the bottom of the string) and 42 single vertical component phones above. For this study, only the vertical geophone data were used.

  16. Borehole Seismic Monitoring of Injected CO2 at the Frio Site

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, John E.; Korneev, Valeri A.

    2006-01-01

    are Schlumberger's reservoir saturation tool (RST) [4]. Thereservoir; 3) Combine with other measurements to estimate CO 2 saturationsaturation). At this point the time-lapse change reservoir

  17. A combined saline formation and gas reservoir CO2 injection pilot in Northern California

    E-Print Network [OSTI]

    Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas; Seeman, Ed

    2006-01-01

    cushion gas for natural gas storage. Energy & Fuels, 2003; [demonstrate CO 2 Storage with Enhanced Gas Recovery (CSEGR).formations and storage/enhanced recovery projects in gas

  18. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection

    E-Print Network [OSTI]

    Rinaldi, A.P.

    2014-01-01

    Rutqvist, J. , 2012. The Geomechanics of CO 2 Storage in2001. Fully coupled geomechanics and fluid-flow analysis ofUS Rock Mechanics, Geomechanics Symposium. San Francisco, 23

  19. A combined saline formation and gas reservoir CO2 injection pilot in Northern California

    E-Print Network [OSTI]

    Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas; Seeman, Ed

    2006-01-01

    the middle Capay Shale (depleted gas) and McCormick Sand (depleted gas reservoir located within the Middle Capay shaleCO 2 gas will occur in the 2-3 m thick Capay Shale interval

  20. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    SciTech Connect (OSTI)

    Srinivasan, Sanjay

    2014-09-30

    In-depth understanding of the long-term fate of CO? in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO? in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO? plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO? plume migration in two field projects – the In Salah CO? Injection project in Algeria and CO? injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO? plume, the effect of CO?-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.

  1. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot

    E-Print Network [OSTI]

    Daley, T.M.

    2011-01-01

    and the reservoir properties (CO 2 saturation distribution).residual CO 2 saturation and the associated reservoir CO 2reservoir model (top) with zoom of central portion showing predicted CO 2 saturation

  2. Investigation of Efficiency Improvements During CO2 Injection in Hydraulically and Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Schechter, David S.; Vance, Harold

    2003-03-10

    The objective of this project was to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO2 flooding in heterogeneous or fracture-dominated reservoirs. This report provided results of the second semi-annual technical progress report that consists of three different topics.

  3. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    SciTech Connect (OSTI)

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  4. Effects of EGR, water/N2/CO2 injection and oxygen enrichment on the availability destroyed due to combustion for a range of conditions and fuels 

    E-Print Network [OSTI]

    Sivadas, Hari Shanker

    2009-06-02

    This study was directed at examining the effects of exhaust gas recirculation (EGR), water/N2/CO2 injections and oxygen enrichment on availability destroyed because of combustion in simple systems like those of constant ...

  5. Experimental and Simulation Studies to Evaluate the Improvement of Oil Recovery by Different Modes of CO2 Injection in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Aleidan, Ahmed Abdulaziz S.

    2011-02-22

    Experimental and numerical simulation studies were conducted to investigate the improvement of light oil recovery in carbonate cores during CO2 injection. The main steps in the study are as follows. First, the minimum miscibility pressure of 31º...

  6. Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT Field Site, Bozeman, Montana

    SciTech Connect (OSTI)

    Kharaka, Y.K.; Thordsen, T.T.; Kakouros, E.; Ambats, G.; Herkelrath, W.N.; Birkholzer, J.T.; Apps, J.A.; Spycher, N.F.; Zheng, L.; Trautz, R.C.; Rauch, H.W.; Gullickson, K.; Beers, S.R.

    2009-09-01

    Approximately 300 kg/day of food-grade CO2 was injected through a perforated pipe placed horizontally 2-2.3 m deep during July 9-August 7, 2008 at the MSU-ZERT field test to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the subsurface storage and potential leakage of CO2. As part of this multidisciplinary research project, 80 samples of water were collected from 10 shallow monitoring wells (1.5 or 3.0 m deep) installed 1-6 m from the injection pipe, at the southwestern end of the slotted section (zone VI), and from two distant monitoring wells. The samples were collected before, during and following CO2 injection. The main objective of study was to investigate changes in the concentrations of major, minor and trace inorganic and organic compounds during and following CO2 injection.

  7. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous Fruitland

  8. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2004-04-26

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on investigating the effect of CO{sub 2} injection rates in homogeneous and fractured cores on oil recovery and a strategy to mitigate CO{sub 2} bypassing in a fractured core.

  9. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2004-10-10

    This report describes the work performed during the third year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling fluid flow through rough fractures and investigating the grid orientation effect in rectangular grid blocks particularly at high mobility ratio as our precursor to use a compositional simulator. We are developing a robust simulator using Voronoi grids to accurately represent natural and induced fractures. We are also verifying the accuracy of the simulation using scaled laboratory experiments to provide a benchmark for our simulation technique. No such simulator currently exists so this capability will represent a major breakthrough in simulation of gas injection in fractured systems. The following sections outline the results that appear in this report.

  10. CO2-Brine Surface Dissolution and Injection: CO2 Storage Enhancement Paul Emeka Eke, SPE, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage,

    E-Print Network [OSTI]

    . The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract Carbon capture and storage (CCS, Mark Naylor, Stuart Haszeldine and Andrew Curtis, Scottish Centre for Carbon Storage, School of Geo. The upward buoyancy of dense phase carbon dioxide (CO2) in deep reservoirs means that sites need to be chosen

  11. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    E-Print Network [OSTI]

    Zhang, W.

    2011-01-01

    capture and compression of CO 2 from industrial waste streams containing small quantities of sulfur and

  12. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2003-10-01

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling the fluid flow in fracture surface, examining the fluid transfer mechanisms and describing the fracture aperture distribution under different overburden pressure using X-ray CT scanner.

  13. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  14. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  15. Geomechanical Evaluation of Thermal Impact of Injected CO2 Temperature on a Geological Reservoir: Application to the FutureGen 2.0 Site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; USA, Richland Washington; Nguyen, Ba Nghiep; USA, Richland Washington; Stewart, Mark; USA, Richland Washington; Hou, Z. Jason; USA, Richland Washington; Murray, Christopher; USA, Richland Washington; et al

    2014-12-31

    The impact of temperature variations of injected CO2 on the mechanical integrity of a reservoir is a problem rarely addressed in the design of a CO2 storage site. The geomechanical simulation of the FutureGen 2.0 storage site presented here takes into account the complete modeling of heat exchange between the environment and CO2 during its transport in the pipeline and injection well before reaching the reservoir, as well as its interaction with the reservoir host rock. An ad-hoc program was developed to model CO2 transport from the power plant to the reservoir and an approach coupling PNNL STOMP-CO2 multiphase flowmore »simulator and ABAQUS® has been developed for the reservoir model which is fully three-dimensional with four horizontal wells and variable layer thickness. The Mohr-Coulomb fracture criterion has been employed, where hydraulic fracture was predicted to occur at an integration point if the fluid pressure at the point exceeded the least compressive principal stress. Evaluation of the results shows that the fracture criterion has not been verified at any node and time step for the CO2 temperature range predicted at the top of the injection zone.« less

  16. 24/02/2012 12:49SPE Projects, Facilities & Construction -CO2/Brine Surface Dissolution and Injection: CO2 Storage Enhancement Page 1 of 1http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=EFC&pdfChronicleId=090147628022501b&mid=SPE-12471

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Strategies, Climate Change, Leakage Risk Mitigation Summary Carbon capture and storage (CCS) is capable.1.5 Processing Equipment Keywords CO2 Capture and Storage, Process Design and Simulation, CO2 Injection of dense-phase carbon dioxide (CO2) in deep reservoirs means that sites need to be chosen

  17. Well injectivity during CO2 storage operations in deep saline aquifers6 1: Experimental investigation of drying effects, salt precipitation and7

    E-Print Network [OSTI]

    Boyer, Edmond

    Carbon Capture and Storage (CCS) is a technique than can potentially limit the accumulation29-17Jan2014 #12;3 1. Introduction51 52 Geological sequestration of CO2 into deep saline aquifers studied54 much less than mature oil & gas reservoirs. Injection of carbon dioxide into saline aquifers55

  18. On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers

    E-Print Network [OSTI]

    Zheng, L.

    2014-01-01

    F.C. Knopf, 1991. Supercritical CO2 extraction of organicaqueous sulfide and supercritical CO2. Chemical Geology 271(reactivity with supercritical CO2 and aqueous sulfide.

  19. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 ?g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  20. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    SciTech Connect (OSTI)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

  1. Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine plot

    SciTech Connect (OSTI)

    Daley, T.M.; Ajo-Franklin, J.; Doughty, C.A.

    2011-02-15

    Crosswell CASSM (continuous active-source seismic monitoring) data was acquired as part of the Frio-II brine pilot CO{sub 2} injection experiment. To gain insight into the CO{sub 2} plume evolution, we have integrated the 3D multiphase flow modeling code TOUGH2 with seismic simulation codes via a petrophysical model that predicts seismic velocity for a given CO{sub 2} saturation. Results of forward seismic modeling based on the CO{sub 2} saturation distribution produced by an initial TOUGH2 model compare poorly with the CASSM data, indicating that the initial flow model did not capture the actual CO{sub 2} plume dynamics. Updates to the TOUGH2 model required to better match the CASSM field data indicate vertical flow near the injection well, with increased horizontal plume growth occurring at the top of the reservoir sand. The CASSM continuous delay time data are ideal for constraining the modeled spatiotemporal evolution of the CO{sub 2} plume and allow improvement in reservoir model and estimation of CO{sub 2} plume properties.

  2. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  3. Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds

    E-Print Network [OSTI]

    Gasperikova, E.

    2010-01-01

    on the geophysical properties of coal undergoing CO 2 flood.coal layer, at the depth of 750 m, with the same lateral extent and propertiescoal zones (~300 tons to each zone). A literature search for rock properties

  4. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE FederalThe Department ofFederalLEDWhileTheEP942512

  5. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministrationAward-LNGPhase |Program

  6. DOE Regional Partner Initiates CO2 Injection Study in Virginia | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartmentEP9425 701 9thof Energy Partner

  7. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01

    Co +2 Cu + Cd +2 PbSe CrO + AsSe(OH)(SeH) - FeSe MoO 4-2 UOCo +2 Cu + Cd +2 PbSe CrO + AsSe(OH)(SeH) - FeSe MoO 4-2 UO

  8. Measuring the CO2 flux at the air/water interface in lakes using flow injection analysis

    E-Print Network [OSTI]

    Jardim, Wilson de Figueiredo

    measurements. The use of flow analysis for the determination of dissolved carbon dioxide by membrane separation a hydrophobic membrane into a flow of deionized water, generating a gradient of conductivity proportional the processes related to the carbon cycle within the aquatic environment. The direction of CO2 gas exchange

  9. Injection of CO2 with H2S and SO2 and Subsequent Mineral Trapping in Sandstone-Shale Formation

    SciTech Connect (OSTI)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations can potentially reduce atmospheric emissions of greenhouse gases. Sequestering less-pure CO{sub 2} waste streams (containing H{sub 2}S and/or SO{sub 2}) would be less expensive or would require less energy than separating CO{sub 2} from flue gas or a coal gasification process. The long-term interaction of these injected acid gases with shale-confining layers of a sandstone injection zone has not been well investigated. We therefore have developed a conceptual model of injection of CO{sub 2} with H{sub 2}S and/or SO{sub 2} into a sandstone-shale sequence, using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments of the United States. We have performed numerical simulations of a 1-D radial well region considering sandstone alone and a 2-D model using a sandstone-shale sequence under acid-gas injection conditions. Results indicate that shale plays a limited role in mineral alteration and sequestration of gases within a sandstone horizon for short time periods (10,000 years in present simulations). The co-injection of SO{sub 2} results in different pH distribution, mineral alteration patterns, and CO{sub 2} mineral sequestration than the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Simulations generate a zonal distribution of mineral alteration and formation of carbon and sulfur trapping minerals that depends on the pH distribution. The co-injection of SO{sub 2} results in a larger and stronger acidified zone close to the well. Precipitation of carbon trapping minerals occurs within the higher pH regions beyond the acidified zones. In contrast, sulfur trapping minerals are stable at low pH ranges (below 5) within the front of the acidified zone. Corrosion and well abandonment due to the co-injection of SO{sub 2} could be important issues. Significant CO{sub 2} is sequestered in ankerite and dawsonite, and some in siderite. The CO{sub 2} mineral-trapping capability can reach 80 kg per cubic meter of medium. Most sulfur is trapped through alunite precipitation, although some is trapped by anhydrite precipitation and minor amount of pyrite. The addition of the acid gases and induced mineral alteration result in changes in porosity. The limited information currently available on the mineralogy of natural high-pressure acid-gas reservoirs is generally consistent with our simulations.

  10. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    20-22, 2006 End of CO2 injection Fraction Variation 5E-05 -point. End of CO2 injection Fraction Variation Figure 3.poin Y (m (m X End of CO2 storage Fraction Variation Y (m (m

  11. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    SciTech Connect (OSTI)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  12. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    SciTech Connect (OSTI)

    Apps, J.A.; Birkholzer, J.T.; Spycher, N.; Zheng, L.; Herkelrath, W.N.; Kharaka, Y.K.; Thordsen, J.J.; Kakouros, E.; Beers, S; Gullickson, K.S.; Spangler, L.H.; Ambats, G.

    2009-11-01

    Combustion of fossil fuels produces CO{sub 2}, a common greenhouse gas linked to global climate change. Separation of CO{sub 2}from emissions produced by large industrial point sources like power plants, cement kilns and refineries, and injection deep nderground into geologic formations is one method of preventing CO{sub 2} releases into the atmosphere. This process is referred to as Carbon Capture and Storage (CCS). CCS is one of several solutions being considered to mitigate global climate change. Other solutions nclude increased energy efficiency, renewables, nuclear power, advanced coal, and plug-in hybrid electric vehicles.

  13. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  14. UPDATE ON THE INTERNATIONAL EXPERIMENT ON CO2 OCEAN SEQUESTRATION

    E-Print Network [OSTI]

    discussed strategies for ocean carbon sequestration are direct injection of CO2 into the deep ocean and iron effort is solely focused on the direct injection approach. In this method, liquid CO2 is injected

  15. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

  16. Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow

    E-Print Network [OSTI]

    Yamamoto, H.

    2010-01-01

    displaces. In situ, the supercritical CO2 partitions betweenprocess, CO2 is injected in a supercritical state that has a

  17. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    of the buoyancy of supercritical CO2 in the presence ofindividual pock- ets of supercritical CO2 to form, therebydomain. Injection of supercritical CO2 occurs at a depth of

  18. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  19. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  20. Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents 

    E-Print Network [OSTI]

    Al Yousef, Zuhair

    2012-10-19

    CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

  1. A model comparison initiative for a CO2 injection field test: An introduction to Sim-SEQ

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2013-01-01

    characterization data, as well as review of monitoring data as they become available, (2) conversion of the geological

  2. A model comparison initiative for a CO2 injection field test: An introduction to Sim-SEQ

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2013-01-01

    Energy's Regional Carbon Sequestration Partnerships Programthe Southeast Regional Carbon Sequestration Partnership (through its Regional Carbon Sequestration Partnership (RCSP)

  3. A model comparison initiative for a CO2 injection field test: An introduction to Sim-SEQ

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2013-01-01

    Energy's Regional Carbon Sequestration Partnerships Programimplications for carbon sequestration, Environmental Earthtrapping for geologic carbon sequestration, International

  4. Laboratory studies evaluating CO2 flood impact on the geomechanics of whole core samples

    SciTech Connect (OSTI)

    O'Connor, William K.

    2005-06-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the injected CO2 in these ancient aqueous systems is still uncertain. Migration of the CO2 beyond the natural reservoir seals could become problematic, thus the identification of means to enhance the natural seals may help lead to the utilization of this sequestration methodology. Co-injection of a mineral reactant slurry, either with the CO2 or in separate, secondary injection wells, could provide a means to enhance the natural reservoir seals by providing the necessary cations for precipitation of mineral carbonates along the periphery of the injection plume. The subject study evaluates the merit of several mineral slurry co-injection strategies, by conduct of a series of laboratory-scale CO2 flood tests on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  5. Recent advances in well-based monitoring of CO2 sequestration

    E-Print Network [OSTI]

    Freifeld, B.

    2009-01-01

    seismic tomography for monitoring the pilot CO2 injection into an onshore aquifer, Nagaoka, Japan, Exploration

  6. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  7. CASSEMCHAPTER 5 HOW DOWE KNOWWHERETHE CO2

    E-Print Network [OSTI]

    where some minimum threshold volume or saturation of CO2 has been exceeded within a subsurface reservoir reservoir engineering by repeated or continuous assessment that informs on the evolving physical conditions to a large amount of injected CO2 are only viable (1) for onshore reservoirs and (2) where the target

  8. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  9. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    SciTech Connect (OSTI)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  10. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  11. EA-1886: Big Sky Regional Carbon Sequestration Partnership- Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future anthropogenic carbon storage in this region.

  12. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  13. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect (OSTI)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  14. CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow

    E-Print Network [OSTI]

    MacMinn, Christopher W.

    Injection of carbon dioxide (CO2) into geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. To evaluate injection scenarios, estimate reservoir capacity and assess ...

  15. Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA

    SciTech Connect (OSTI)

    Bonneville, Alain; Gilmore, Tyler J.; Sullivan, E. C.; Vermeul, Vincent R.; Kelley, Mark E.; White, Signe K.; Appriou, Delphine; Bjornstad, Bruce N.; Gerst, Jacqueline L.; Gupta, Neeraj; Horner, Jacob A.; McNeil, Caitlin; Moody, Mark A.; Rike, William M.; Spane, Frank A.; Thorne, Paul D.; Zeller, Evan R.; Zhang, Z. F.; Hoffman, Jeffrey; Humphreys, Kenneth K.

    2013-08-05

    FutureGen 2.0 site will be the first near-zero emission power plant with fully integrated long-term storage in a deep, non-potable saline aquifer in the United States. The proposed FutureGen 2.0 CO2 storage site is located in northeast Morgan County, Illinois, U.S.A., forty-eight kilometres from the Meredosia Energy Center where a large-scale oxy-combustion demonstration will be conducted. The demonstration will involve > 90% carbon capture, which will produce more than one million metric tons (MMT) of CO2 per year. The CO2 will be compressed at the power plant and transported via pipeline to the storage site. To examine CO2 storage potential of the site, a 1,467m characterization well (FGA#1) was completed in December 2011. The target reservoir for CO2 storage is the Mt. Simon Sandstone and Elmhurst Sandstone Member of the lower Eau Claire Formation for a combined thickness of 176 m. Confining beds of the overlying Lombard and Proviso Members (upper Eau Claire Formation) reach a thickness of 126 m. Characterization of the target injection zone and the overlying confining zone was based on wellbore data, cores, and geophysical logs, along with surface geophysical (2-D seismic profiles, magnetic and gravity), and structural data collected during the initial stage of the project . Based on this geological model, 3D simulations of CO2 injection and redistribution were conducted using STOMP-CO2, a multiphase flow and transport simulator. After this characterization stage, it appears that the injection site is a suitable geologic system for CO2 sequestration and that the injection zone is sufficient to receive up to 33 MMT of CO2 at a rate of 1.1 MMT/yr. GHGT-11 conference

  16. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  17. High Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline Aquifers

    E-Print Network [OSTI]

    are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper TOUGH2-MP. 1. Introduction Geologic carbon dioxide (CO2) sequestration involves injecting CO2

  18. DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500

    E-Print Network [OSTI]

    Schrag, Daniel

    -than-sea- water CO2 in deep-sea sediments is inherently more secure then storing buoyant supercritical CO2 with the mobility of supercritical CO2 that has been injected into geologically equivalent (i.e., identical porosityDOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500 Meters of Water

  19. Post-Combustion CO2 Capture 11 -13 July 2010

    E-Print Network [OSTI]

    Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

  20. Characterization and Simulation of ECBM: History Matching of Forecasting CO2 Sequestration in Marshal County, West Virginia.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    that is capable of matching the methane production history and forecast field potential capacity for CO2 injection characterization and simulation process focused on natural gas production and subsequent CO2 injection) are the subject of this pilot CO2 sequestration project. Methane is produced from both coal seams; however CO2

  1. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect (OSTI)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  2. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  3. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  4. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    of energy-efficiency measures, the actual energy savingsCO 2 ) Fuel Savings (PJ) Efficiency Measure*** Injection ofRank Fuel Savings (PJ) Efficiency Measure*** Injection of

  5. CO2 interaction with aquifer and seal on geological timescales: the Miller oilfield, UK North Sea 

    E-Print Network [OSTI]

    Lu, Jiemin

    2008-01-01

    Carbon Capture and Storage (CCS) has been identified as a feasible technology to reduce CO2 emissions whilst permitting the continued use of fossil fuels. Injected CO2 must remain efficiently isolated from the atmosphere ...

  6. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  7. CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation Otway BasinAustralia)

    E-Print Network [OSTI]

    Cattin, Rodolphe

    . After injecting the CO2 as a supercritical fluid at depth, a certain amount will slowly dissolve of the dissolved CO2) and even- tually the upward flow of supercritical or gaseous CO2 accompanied by caprockCO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation ­ Otway

  8. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    technical constraints on the injection of CO2 into deep (>1.5 km) reservoirs under supercritical75 this amount of annual CO2 production. Assuming that CO2 is emplaced as a80 supercritical fluid havingPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4

  9. ENVIRONMENTAL ASSESSMENT OF GEOLOGIC STORAGE OF CO2 Jason J. Heinrich, Howard J. Herzog, David M. Reiner

    E-Print Network [OSTI]

    analogs: acid gas injection (AGI), enhanced oil recovery (EOR), natural gas storage, and CO2 transportENVIRONMENTAL ASSESSMENT OF GEOLOGIC STORAGE OF CO2 * Jason J. Heinrich, Howard J. Herzog, David M of reducing CO2 emissions. The storage of CO2 in underground geologic reservoirs is one such idea that employs

  10. Uncertainty Analysis of Otway CO2 Sequestration Project Shohreh Amini 1,2

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    this Surrogate Reservoir Model enables us to predict the pressure, phase saturation, and CO2 distribution presents the application of a grid-based Surrogate Reservoir Model (SRM) to a real case CO2 sequestration project in which CO2 were injected into a depleted gas reservoir. This project is a part of the National

  11. Constraining the density of CO2 within the Utsira formation using time-lapse gravity measurements

    E-Print Network [OSTI]

    Nooner, Scott

    best fit a high temperature forward model based on the seismically determined CO2 geometry, suggesting to study the behavior and physical properties of the injected CO2. The gravity measurements show1 Constraining the density of CO2 within the Utsira formation using time-lapse gravity measurements

  12. An Introduction to CO2 Separation and Capture Technologies Howard Herzog

    E-Print Network [OSTI]

    recovery (EOR) operations where CO2 is injected into oil reservoirs to increase the mobility of the oil andAn Introduction to CO2 Separation and Capture Technologies Howard Herzog MIT Energy Laboratory August, 1999 In general, to economically sequester CO2 produced from power plants, one must first produce

  13. Synthetic versus real time-lapse seismic data at the Sleipner CO2 ...

    E-Print Network [OSTI]

    artsrj

    2007-04-10

    injection project specifically for greenhouse gas mitigation. CO2 separated from natural gas is being injected into the. Utsira Sand (Figure 1), a major .... Survey of Denmark), IFP (Institute Francais du Petrole),. TNO (Netherlands Institute of ...

  14. Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas 

    E-Print Network [OSTI]

    Hernandez Arciniegas, Gonzalo

    2006-10-30

    . It includes deterministic and probabilistic simulation studies and evaluates both CO2 and flue gas injection scenarios. Probabilistic simulation results of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals with average net thickness...

  15. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Value Solution for Euro VI Emissions 3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros% CO2 reduction) at a significantly...

  16. CO2 interaction with geomaterials.

    SciTech Connect (OSTI)

    Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

    2010-09-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

  17. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect (OSTI)

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  18. Continuous CO2 extractor and methods

    SciTech Connect (OSTI)

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  19. Secretary Moniz Announces New CO2 Storage Network at Multinational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    collaboration builds on the success of the CO2 Capture Test Center Network, chaired by Norway since 2013. The U.S. will take the lead on the capture center initiative next year. At...

  20. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect (OSTI)

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  1. An Investigation of CO2 Sequestration

    E-Print Network [OSTI]

    Saldin, Dilano

    An Investigation of CO2 Sequestration through Mineralization Conference on Sustainable Construction area and increased availability of CO2 for rapid carbonation. The hardened and carbonated materials Slag #12;Carbonation Chemistry Dissolution of CO2 in water. CO2(g) CO2(aq) Formation of carbonic acid

  2. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  3. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    E-Print Network [OSTI]

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

  4. Commitment accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, SJ; Socolow, RH

    2014-01-01

    us My IOPscience Commitment accounting of CO2 emissions This9326/9/8/084018 Commitment accounting of CO 2 emissionsthe potential for ‘commitment accounting’ to inform public

  5. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01

    E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

  6. CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation for storage and enhanced gas recovery may be organic-rich shales, which CO2 is preferentially adsorbed comprehensive simulation studies to better understand CO2 injection process in shale gas reservoir. This paper

  7. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  8. ORIGINAL ARTICLE Growth, CO2 consumption and H2 production of Anabaena

    E-Print Network [OSTI]

    Pilon, Laurent

    are the irradiance and the initial CO2 mole fraction in the gas phase. The cyanobacterium A. variabilis to 16100 lux and for initial CO2 mole fractions from 0Æ03 to 0Æ20 in argon at pH 7Æ0 ± 0Æ4 with nitrate-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO2 mole fraction

  9. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions

    Broader source: Energy.gov [DOE]

    3-cylindery gasoline direct injection engines offer similar value in CO2 reduction capability (Euros/% CO2 reduction) at a significantly lower on-cost.

  10. Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage Projects

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    of the underground carbon dioxide storage to confine and sustain the injected CO2 for very long time. If a leakageSPE 166137 Using Big Data and Smart Field Technology for Detecting Leakage in a CO2 Storage sequestration of carbon dioxide is one of the most fascinating developing technologies in order to reduce

  11. Monitoring CO2 Intrusion and Associated Geochemical Transformations in a Shallow Groundwater System Using Complex

    E-Print Network [OSTI]

    Hubbard, Susan

    Geologic carbon sequestration, which aims to capture and inject carbon dioxide (CO2) into deep subsurface Using Complex Electrical Methods Baptiste Dafflon,, * Yuxin Wu, Susan S. Hubbard, Jens T. Birkholzer: The risk of CO2 leakage from a properly permitted deep geologic storage facility is expected to be very low

  12. Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes

    E-Print Network [OSTI]

    Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

  13. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  14. Fluid flow and CO2fluidmineral interactions during CO2-storage in sedimentary basins

    E-Print Network [OSTI]

    Cambridge, University of

    mineral dissolution rates. Observations from CO2-EOR exper- iments and natural analogues suggestFluid flow and CO2­fluid­mineral interactions during CO2-storage in sedimentary basins Niko Kampman Natural CO2 analogues Modelling the progress of geochemical processes in CO2 storage sites is frustrated

  15. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect (OSTI)

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  16. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  17. Engineered yeast for enhanced CO2 mineralization

    E-Print Network [OSTI]

    Barbero, Roberto Juan

    2013-01-01

    In this work, a biologically catalysed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was ...

  18. Drilling and Abandonment Preparation of CO2 storage wells – Experience from the Ketzin pilot site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-01-01

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO2 research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO2 were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore »the observation well Ktzi 202 shortly after shut-in of CO2 injection. The experience with the first CO2 well killing operation will be reviewed.« less

  19. CO2 Cycle du Fiche dtaille

    E-Print Network [OSTI]

    Dintrans, Boris

    CO2 ­ Cycle du Carbone Polluants Fiche détaillée Niveau (A partir de la 2nd) #12;I. Introduction Les origines du CO2 atmosphérique dépendent de l'échelle de temps que l'on considère. A l, ce cycle commence avec la dissolution du CO2 dans l'eau de pluie pour former de l'acide carbonique

  20. Geomechanical Evaluation of Thermal Impact of Injected CO2 Temperature...

    Office of Scientific and Technical Information (OSTI)

    variable layer thickness. The Mohr-Coulomb fracture criterion has been employed, where hydraulic fracture was predicted to occur at an integration point if the fluid pressure at...

  1. CO2 Injection in Kansas Oilfield Could Greatly Increase Production,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86)ContractorsCNG Exports by Truck out

  2. CO2 Injection Begins in Illinois | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency |CBA.PDF�ASSISTANCE PROGRAM |Midwest

  3. INFLUENCE OF CAPILLARY PRESSURE ON CO2 STORAGE AND MONITORING

    E-Print Network [OSTI]

    Santos, Juan

    - 0.3 sin 1 - 0.5 sin : pore pressure : critical porosity 0: initial porosity : bulk INFLUENCE OF CAPILLARY PRESSURE ON CO2 STORAGE AND MONITORING Juan E. Santos Work in collaboration and capillary pressure relations) are determined from on-site resistivity measurements. In particular we

  4. Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations

    SciTech Connect (OSTI)

    Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

    2014-03-01

    Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

  5. Managing Environmental and Human Safety Risks Associated with Geologic Storage of CO2

    E-Print Network [OSTI]

    London School of Economics, 2001 Submitted to the Engineering Systems Division in partial fulfillment transportation, injection and storage has been operational and scaling up in size and geographical distribution, transportation and injection, which have been successfully deployed in existing applications. Once CO2

  6. Using CO2 spatial variability to quantify representation errors of satellite CO2 retrievals

    E-Print Network [OSTI]

    Michalak, Anna M.

    global data of column- averaged CO2 dry-air mole fraction (XCO2) at high spatial resolutions. These dataUsing CO2 spatial variability to quantify representation errors of satellite CO2 retrievals A. A 2008; published 29 August 2008. [1] Satellite measurements of column-averaged CO2 dry- air mole

  7. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher; Hankin, S.; Koyuk, H; Bakker, D C E; Pfeil, B; Olsen, A; Metzl, N; Fassbender, A; Manke, A; Malczyk, J; Akl, J; Alin, S R; Bellerby, R G J; Borges, A; Boutin, J; Cai, W-J; Chavez, F P; Chen, A; Cosa, C; Feely, R A; Gonzalez-Davila, M; Goyet, C; Hardman-Mountford, N; Heinze, C; Hoppema, M; Hunt, C W; Hydes, D; Ishii, M; Johannessen, T; Key, R M; Kortzinger, A; Landschutzer, P; Lauvset, S K; Lefevre, N; Lourantou, A; Mintrop, L; Miyazaki, C; Murata, A; Nakadate, A; Nakano, Y; Nakaoka, S; Nojiri, Y; et al.

    2013-01-01

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  8. CO$_2$ dissolution controlled by buoyancy driven shear dispersion in a background hydrological flow

    E-Print Network [OSTI]

    Unwin, H Juliette T; Woods, Andrew W

    2015-01-01

    We present an analytical and numerical study of the long-time flow which controls the dissolution of a plume of CO$_2$ following injection into an anticline structure in a deep saline aquifer of finite vertical extent. Over times of tens to thousands of years, some of the CO$_2$ will dissolve into the underlying groundwater to produce a region of relatively dense, CO$_2$ saturated water directly below the plume of CO$_2$. Continued dissolution then requires the supply of CO$_2$ unsaturated aquifer water. This may be provided by a background hydrological flow or buoyancy driven flow caused by the density contrast between the CO$_2$ saturated and unsaturated water in the aquifer. At long times, the interaction of the cross-layer diffusive mixing with the buoyancy, leads to buoyancy driven shear dispersion of the CO$_2$. With a background hydrological flow, the upstream transport of dissolved CO$_2$ by this dispersion becomes balanced by the oncoming hydrological flow so that CO$_2$ rich water can only spread a ...

  9. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore »analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  10. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01

    emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

  11. CO2 Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle Gluesenkamp, gluesenkampk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline:...

  12. CO2 Conference Presentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CO2 Conference Presentation More Documents & Publications POWER-GEN Conference Presentation U.S. Energy Association Presentation EEI Environment Meetings Presentation...

  13. New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.

    2007-09-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys.

  14. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore »associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  15. An Integrated Framework for CO2 Accounting and Risk Analysis...

    Office of Scientific and Technical Information (OSTI)

    for CO2 Accounting and Risk Analysis in CO2-EOR Sites An integrated framework for CO2 accounting and risk analysis of CO2-EOR Authors: Dai, Zhenxue 1 ; Viswanathan, Hari S....

  16. SecuestrodeCO2enestructurasgeolgicas Modelacin numrica de

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Inyección CO2 en medio carbonatado #12;SecuestrodeCO2enestructurasgeológicas Gases de efecto invernadero #12

  17. Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach

    SciTech Connect (OSTI)

    Schoonen, Martin A. [Stony Brook University

    2014-12-22

    The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO2 (scCO2) and scCO2 with commingled aqueous solutions containing H2S and/or SO2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO2 with commingled aqueous solutions containing H2S and/or SO2 under conditions simulating the environment near the injection point (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.

  18. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  19. The Outlook for CO2 Capture Costs

    E-Print Network [OSTI]

    Common Measures of CCS Cost · Capital cost · Increased cost of electricity · Cost of CO2 avoided · Cost of CO2 captured E.S. Rubin, Carnegie Mellon Elements of Capital Cost Note: · Nomenclature and cost items construction Total Capital Requirement (TCR) E.S. Rubin, Carnegie Mellon Cost of Electricity (COE) COE ($/MWh

  20. Capturing CO2 via reactions in nanopores.

    SciTech Connect (OSTI)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  1. 2, 711743, 2006 Glacial CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacialCPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction

  2. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  3. 4, 23852405, 2007 CO2 and climate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 2385­2405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

  4. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    SciTech Connect (OSTI)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  5. meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both

    E-Print Network [OSTI]

    George, Edward I.

    meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate

  6. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach 

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  7. Uncertainty quantification for the impact of injection rate fluctuation on the geomechanical response of geological carbon sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Chu, Yanjun; Xu, Zhijie; Tartakovsky, Alexandre M.; Fang, Yilin

    2014-02-02

    We present an analysis of the geomechanical effects of injection rate fluctuations for geological sequestration of carbon dioxide (CO2). Initially, we present analytical solutions for the effects of injection rate fluctuations on CO2 fluid pressure spatial distribution and temporal evolution for a typical injection scenario. Numerical calculations are performed using a finite element method to investigate the effects of injection rate fluctuations on geomechanical deformation, stresses, and potential failure of the aquifer and caprock layers. The numerical method was first validated by the fluid pressure distribution’s good agreement with the analytical solution. It was shown that for any Gaussian fluctuations of injection rate Q with given mean Q ? and variance ?_Q, the coefficients of variance for fluid pressure (?_p=?_p?p ? ), deformation (?_u=?_u?u ? ), and stresses (?_?=?_??? ? ) increase linearly with the coefficient of variance for injection rate (?_Q=?_Q?Q ? ). The proportional constants are identified, and the fluctuations have the most pronounced effect on the geomechanical stresses, and, therefore, on the potential failure of the aquifer and caprock layers. Instead of expensive computational simulation, this study provides an efficient tool to estimate the geomechanical response variance to injection rate fluctuation. A failure analysis was presented based on the numerical results, where probability of failure was estimated for fluctuating injection rates with different mean and variance during the entire injection period. It was found that with increasing injection rate fluctuation, the failure probability increases significantly. Therefore, the risk associated with injection rate fluctuations should be carefully evaluated.?

  8. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    SciTech Connect (OSTI)

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

  9. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  10. Local Sensitivity of Predicted CO2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    SciTech Connect (OSTI)

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficient (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.

  11. Passive injection: A strategy for mitigating reservoir pressurization...

    Office of Scientific and Technical Information (OSTI)

    Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title:...

  12. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at tempera¬tures in the range of 50ºC to 100ºC or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

  13. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  14. Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations

    SciTech Connect (OSTI)

    Cole, David R [ORNL; Chialvo, Ariel A [ORNL; Rother, Gernot [ORNL; Vlcek, L. [Vanderbilt University; Cummings, Peter T [ORNL

    2010-01-01

    Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. A key aspect of this process is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We report the behavior of pure CO2 interacting with simple substrates, i.e. SiO2 and mica, that act as proxies for more complex mineralogical systems. Modeling of small-angle neutron scattering (SANS) data taken from CO2- silica aerogel (95% porosity; 6 nm pores) interactions indicates the presence of fluid depletion for conditions above the critical density. A theoretical framework, i.e. integral equation approximation (IEA), is presented that describes the fundamental behavior of near-critical adsorption onto a non-confining substrate that is consistent with SANS experimental results. Structural and dynamic behavior for supercritical CO2 interaction in K-mica slit pores was assessed by classical molecular dynamics (CMD). These results indicate the development of distinct layers of CO2 within slit pores, reduced mobility by one to two orders of magnitudes compared to bulk CO2 depending on pore size and formation of bonds between CO2 oxygens and H from mica hydroxyls. Analysis of simple, well-characterized fluid-substrate systems can provide details on the thermodynamic, structural and dynamic properties of CO2 at conditions relevant to sequestration.

  15. Data Assimilation Tools for CO2 Reservoir Model Development – A Review of Key Data Types, Analyses, and Selected Software

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Sullivan, E. C.; Murray, Christopher J.; Last, George V.; Black, Gary D.

    2009-09-30

    Pacific Northwest National Laboratory (PNNL) has embarked on an initiative to develop world-class capabilities for performing experimental and computational analyses associated with geologic sequestration of carbon dioxide. The ultimate goal of this initiative is to provide science-based solutions for helping to mitigate the adverse effects of greenhouse gas emissions. This Laboratory-Directed Research and Development (LDRD) initiative currently has two primary focus areas—advanced experimental methods and computational analysis. The experimental methods focus area involves the development of new experimental capabilities, supported in part by the U.S. Department of Energy’s (DOE) Environmental Molecular Science Laboratory (EMSL) housed at PNNL, for quantifying mineral reaction kinetics with CO2 under high temperature and pressure (supercritical) conditions. The computational analysis focus area involves numerical simulation of coupled, multi-scale processes associated with CO2 sequestration in geologic media, and the development of software to facilitate building and parameterizing conceptual and numerical models of subsurface reservoirs that represent geologic repositories for injected CO2. This report describes work in support of the computational analysis focus area. The computational analysis focus area currently consists of several collaborative research projects. These are all geared towards the development and application of conceptual and numerical models for geologic sequestration of CO2. The software being developed for this focus area is referred to as the Geologic Sequestration Software Suite or GS3. A wiki-based software framework is being developed to support GS3. This report summarizes work performed in FY09 on one of the LDRD projects in the computational analysis focus area. The title of this project is Data Assimilation Tools for CO2 Reservoir Model Development. Some key objectives of this project in FY09 were to assess the current state-of-the-art in reservoir model development, the data types and analyses that need to be performed in order to develop and parameterize credible and robust reservoir simulation models, and to review existing software that is applicable to these analyses. This report describes this effort and highlights areas in which additional software development, wiki application extensions, or related GS3 infrastructure development may be warranted.

  16. Heterogenised Molecular Catalysts for CO2 Conversion

    E-Print Network [OSTI]

    Windle, Christopher D.; Reisner, Erwin

    2015-08-01

    perspective, these systems do not utilise solar light directly but could be powered by photovoltaics. 2) No electrode is required in photocatalysis and the energy for the reaction is obtained through light absorption. Electrons are typically supplied by a... cluster.[3a] 2. Photocatalytic CO2 reduction Photocatalytic CO2 reduction cuts out the electrolytic middleman in solar fuels synthesis. Instead of relying on a photovoltaic panel for providing the electricity to drive electrolysis, photocatalysis...

  17. Simulation of muon radiography for monitoring CO$_2$ stored in a geological reservoir

    E-Print Network [OSTI]

    Klinger, J; Coleman, M; Gluyas, J G; Kudryavtsev, V A; Lincoln, D L; Pal, S; Paling, S M; Spooner, N J C; Telfer, S; Thompson, L F; Woodward, D

    2015-01-01

    Current methods of monitoring subsurface CO$_2$, such as repeat seismic surveys, are episodic and require highly skilled personnel to acquire the data. Simulations based on simplified models have previously shown that muon radiography could be automated to continuously monitor CO$_2$ injection and migration, in addition to reducing the overall cost of monitoring. In this paper, we present a simulation of the monitoring of CO$_2$ plume evolution in a geological reservoir using muon radiography. The stratigraphy in the vicinity of a nominal test facility is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO$_2$ plume. A planar detection region with a surface area of 1000 m$^2$ is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO$_2$ injection leads to changes in the column density of $\\lesssim 1\\%$, and that the CO$_2$ plume is already resolvable with an exposure time of less than 50 days.

  18. Simulation of muon radiography for monitoring CO$_2$ stored in a geological reservoir

    E-Print Network [OSTI]

    J. Klinger; S. J. Clark; M. Coleman; J. G. Gluyas; V. A. Kudryavtsev; D. L. Lincoln; S. Pal; S. M. Paling; N. J. C. Spooner; S. Telfer; L. F. Thompson; D. Woodward

    2015-10-12

    Current methods of monitoring subsurface CO$_2$, such as repeat seismic surveys, are episodic and require highly skilled personnel to acquire the data. Simulations based on simplified models have previously shown that muon radiography could be automated to continuously monitor CO$_2$ injection and migration, in addition to reducing the overall cost of monitoring. In this paper, we present a simulation of the monitoring of CO$_2$ plume evolution in a geological reservoir using muon radiography. The stratigraphy in the vicinity of a nominal test facility is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO$_2$ plume. A planar detection region with a surface area of 1000 m$^2$ is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO$_2$ injection leads to changes in the column density of $\\lesssim 1\\%$, and that the CO$_2$ plume is already resolvable with an exposure time of less than 50 days.

  19. Version 3.0 SOP 4 --p(CO2) October 12, 2007 (p(CO2))

    E-Print Network [OSTI]

    Version 3.0 SOP 4 -- p(CO2) October 12, 2007 91 SOP 4 (p(CO2)) - 1. . microatmospheres . (20°C 250-2000 µatm) (mole fraction) . 2. CO2 (mole fraction) . 2 2(CO ) (CO( ) . . Frit . #12;October 12, 2007 SOP 4 -- p(CO2) Version 3.0 92 CO2 CO2 2 . p(CO2) (1) . 4. 3

  20. Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-01-19

    ''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

  1. Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations

    E-Print Network [OSTI]

    Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

    2008-01-01

    Phase Medium Irradiance ? H2 ? CO2 Maximum Reported Ratesa) Specific CO 2 uptake rate, ? CO2 (kg CO 2 /kg dry cell/h)

  2. Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong David W. Keith April 11, 2003 Abstract Fossil fuels can be used with minimal atmospheric emissions of carbon diox, the cost of sequestration and the energy penalty (the energy necessary to capture, transport and inject

  3. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    SciTech Connect (OSTI)

    Howard J. Herzog; E. Eric Adams

    2005-04-01

    On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

  4. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  5. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  6. Experimental study of crossover from capillary to viscous fingering for supercritical CO2 - water displacement in a homogeneous pore network

    SciTech Connect (OSTI)

    Wang, Ying; Zhang, Changyong; Wei, Ning; Oostrom, Martinus; Wietsma, Thomas W.; Li, Xiaochun; Bonneville, Alain

    2013-01-01

    Carbon sequestration in saline aquifers involves displacing resident brine from the pore space by supercritical CO2 (scCO2). The displacement process is considered unstable due to the unfavorable viscosity ratio (logM < 0). The unstable mechanisms that affect scCO2 - water displacement under reservoir conditions (i.e., 41 °C, 9 MPa) were investigated in a homogeneous micromodel. A wide range of injection rates (logCa = -7.61~-4.73) was studied in two sets of experiments: discontinuous-rate injection, where the micromodel was first cleaned and saturated with water before each injection rate was imposed, and continuous-rate injection, where the rate was increased after quasi-steady conditions were reached for a certain rate. For the discontinuous-rate experiments, capillary fingering and viscous fingering are the dominant mechanisms for low (logCa <= -6.61) and high injection rates (logCa >= -5.21), respectively. Crossover from capillary to viscous fingering was observed for logCa = -5.91~-5.21, resulting in a large decrease in scCO2 saturation. The discontinuous-rate experimental results confirmed the decrease in nonwetting fluid saturation during crossover from capillary to viscous fingering predicted by numerical simulations by Lenormand et al. (1988).1 Capillary fingering was the only mechanism that dominates all injection rates in the continuous-rate experiment, and resulted in monotonic increase in scCO2 saturation.

  7. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro-mechanical properties of the materials modelled are chosen to be representative of a potential injection site. For high on the injection process, and on site and rock properties. Rutqvist et al. (2008) showed through a coupled

  8. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    WITH SITE SCREENING AND SELECTION FOR CO 2 STORAGE D. A.77 ASSESSING AND EXPANDING CO 2 STORAGE CAPACITY IN DEPLETEDFOR CO 2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN

  9. Uncertainty analyses of CO2 plume expansion subsequent to wellbore...

    Office of Scientific and Technical Information (OSTI)

    The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we...

  10. Feasibility of CO2 Capture from Mobile Sources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 Capture from Mobile Sources Feasibility of CO2 Capture from Mobile Sources Presents integrated system for post-combustion CO2 capture from mobile sources p-16davis.pdf More...

  11. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  12. Pi-CO2 Aqueous Post-combustion CO2 Capture: Proof of Concept Through Thermodynamic, Hydrodynamic, and Gas-Lift Pump Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M.-H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO2) capture system (Pi-CO2) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO2 has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO2 from local industrial sources.

  13. Variations in 13 C discrimination during CO2 exchange by

    E-Print Network [OSTI]

    as to differential diffusivities of 13 CO2 and 12 CO2 in air (Farquhar, O'Leary & Berry 1982; O'Leary 1984

  14. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  15. Quantum Alloys Offer Prospects for CO2 Management Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Alloys Offer Prospects for CO2 Mgt. Technologies Utilizing and Storing Carbon Dioxide Emissions Quantum Alloys Offer Unique Prospects for CO2 Management Technologies...

  16. Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Chemistry of CO2 Interaction with Swelling Clays Quantum Chemistry of CO2 Interaction with Swelling Clays Ubiquitous clay minerals can play an important role in assessing...

  17. Meeting the CO2 Challenge DEER 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the CO2 Challenge DEER 2002 Meeting the CO2 Challenge DEER 2002 2002 DEER Conference Presentation: Ricardo 2002deergraham.pdf More Documents & Publications Application of...

  18. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts Print Researchers have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse...

  19. Theoretical Synthesis of Mixed Materials for CO2 Capture Applications...

    Office of Scientific and Technical Information (OSTI)

    Theoretical Synthesis of Mixed Materials for CO2 Capture Applications Citation Details In-Document Search Title: Theoretical Synthesis of Mixed Materials for CO2 Capture...

  20. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    Texas •? Over 30 years of CO2-EOR •? Sampled outside ofF Monitoring studies above EOR-CO2 fields Weyburn-Midale

  1. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  2. Buildings, Commissioning, Efficiency, Comfort, and CO2 

    E-Print Network [OSTI]

    Claridge, D. E.

    2006-01-01

    .6% of world CO2 emissions)? US commercial sector use ~50% of world commercial use? Asia today 10-20% of world commercial use 2055200514 7 Billion of Tons of Carbon Emitted per Year 1955 0 C Flat path Historicalemissions 1.9 ?Æ?Æ 2105 14 GtC/y7 GtC/y Seven..., Commissioning, Efficiency, Comfort, and CO2 Asian Pacific Building Commissioning Conference ICEBONovember 8, 2006Shenzhen, ChinaPresented ByDavid E. ClaridgeEnergy Systems LaboratoryTexas A&M University Commissioning New Buildings Beginnings Building Handover...

  3. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  4. Rapid precipitation of magnesite micro-crystals from Mg(OH)2-H2O-CO2 slurry enhanced by NaOH and a heat-ageing step (from

    E-Print Network [OSTI]

    Boyer, Edmond

    sequential reactions: (1) aqueous carbonation of synthetic brucite (Mg(OH)2) by injection of CO2 in a highly system at ambient temperatures and at atmospheric CO2 partial pressure is of both geological interest1 Rapid precipitation of magnesite micro-crystals from Mg(OH)2- H2O-CO2 slurry enhanced by Na

  5. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement

  6. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-01

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  7. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01

    impose a price on the carbon in their own fossil fuels forprice A nthropogenic climate change is driven by CO 2 emissions from the burning of fossil fuels (fossil fuel resources are suf?ciently concentrated such that, if the relatively few countries that extract the most fuels imposed a price

  8. Ocean Acidification: The Other CO2 Problem

    E-Print Network [OSTI]

    Childress, Michael J.

    reserved 1941-1405/09/0115-0169$20.00 Key Words biogeochemistry, calcification, carbon dioxide, climate of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well

  9. BUILDING A CO2 STORAGE HUB IN

    E-Print Network [OSTI]

    Painter, Kevin

    , once at the forefront of this innovative technology that can give us clean energy from abundant fossil technology we have in the battle to reduce CO2 emissions from power and industrial sources. Without it we and global reliance on low-cost energy from coal and gas shows no sign of diminishing, the time has come

  10. Aquifer Management for CO2 Sequestration 

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14

    Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

  11. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  12. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

  13. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  14. co2 capture meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative ccsi.jpglibfabric:Nauru:2012 NETL CO2

  15. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  16. Long-time evolution of sequestered CO$_2$ in porous media

    E-Print Network [OSTI]

    Cohen, Yossi

    2014-01-01

    CO$_2$ sequestration in subsurface reservoirs is important for limiting atmospheric CO$_2$ concentrations. However, a complete physical picture able to predict the structure developing within the porous medium is lacking. We investigate theoretically reactive transport in the long-time evolution of carbon in the brine-rock environment. As CO$_2$ is injected into a brine-rock environment, a carbonate-rich region is created amid brine. Within the carbonate-rich region minerals dissolve and migrate from regions of high concentration to low concentration, along with other dissolved carbonate species. This causes mineral precipitation at the interface between the two regions. We argue that precipitation in a small layer reduces diffusivity, and eventually causes mechanical trapping of the CO$_2$. Consequently, only a small fraction of the CO$_2$ is converted to solid mineral; the remainder either dissolves in water or is trapped in its original form. We also study the case of a pure CO$_2$ bubble surrounded by bri...

  17. Modelling the deployment of CO2 storage in U.S. gas-bearing shales

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-10-23

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation’s gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO2 into shales to enhance methane recovery and augment CO2 storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO2 adsorption, offering the potential to drive additional CH4 recovery beyond primary production and perhaps the potential to store a larger volume of CO2 than the volume of methane displaced. Recent research by the authors on the revenues associated with CO2-enhanced gas recovery (CO2-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO2 for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO2. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO2 storage. Significant storage potential exists in gas shales, with theoretical CO2 storage resources estimated at approximately 30-50 GtCO2. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO2 storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.

  18. The millennial atmospheric lifetime of anthropogenic CO2

    E-Print Network [OSTI]

    Cambridge, University of

    /ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, rangingThe millennial atmospheric lifetime of anthropogenic CO2 David Archer & Victor Brovkin Received: 19

  19. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine transfer area as IMTP#40 dumped packing. Independent measurements of CO2 solubility give a CO2 loading

  20. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  1. Rate Determination of the CO2* Chemiluminescence Reaction CO + O + M = CO2* + M 

    E-Print Network [OSTI]

    Kopp, Madeleine Marissa, 1987-

    2012-10-15

    numerous works have monitored CO2* chemiluminescence, a full kinetic scheme for the species has yet to be developed. A series of shock-tube experiments was performed in H2-N2O-CO mixtures highly diluted in argon at conditions where emission from CO2... for eleven common collision partners. The final mechanism developed for CO2* consisted of 14 reactions and 13 species. The rate for R1 was determined based on low-pressure experiments performed in two different H2-N2O-CO-Ar mixtures. Final mechanism...

  2. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    SciTech Connect (OSTI)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  3. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore »control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  4. CO2 stimulation of photosynthesis is not sustained during long-term (12 years) FACE treatments in Liquidambar styraciflua

    SciTech Connect (OSTI)

    Warren, Jeffrey; Jensen, Anna M; Medlyn, Belinda; Norby, Richard J; Tissue, David Thomas

    2015-01-01

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO2. A was re-assessed a decade later to determine if initial enhancement of CO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO2 response curves (A-Ci curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. Relationships between maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax) and foliar nitrogen (N) and chlorophyll content were assessed. In 1999, light-saturated photosynthesis (Asat) for eCO2 treatments was 15.4 0.8 mol m-2 s-1, 22% higher than aCO2 treatments (P<0.01). By 2009, Asat declined to <50% of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 0.7 mol m-2 s-1 for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17% less than in aCO2 foliage. Photosynthetic N use efficiency (Asat:N) was greater in eCO2 in 1999 resulting in greater Asat despite similar N content, but the enhanced efficiency in eCO2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between Jmax or Vcmax with declining N, or in the ratio of Jmax:Vcmax through time. Results suggest that initial enhancement of photosynthesis to elevated CO2 will not be sustained through time if nitrogen becomes limited.

  5. Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions 

    E-Print Network [OSTI]

    Valbuena Olivares, Ernesto

    2012-02-14

    from commercial PVT software package. Results present excellent agreement. Limited significant digits in commercial software lead to scattered data. ....................................... 80 Fig. 5.5? Case A?Fluid volume comparison from analytical... model and calculations from commercial PVT software package. Results present excellent agreement. ............................................................... 81 Fig. 5.6? Case B?CO2 molar density distribution at the end of injection. The CO2...

  6. CO2 gas/oil ratio prediction in a multi-component reservoir bycombined seismic and electromagnetic imaging

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-08-28

    Crosswell seismic and electromagnetic data sets taken before and during CO2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity and electrical conductivity during a CO2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed compressional velocity and density. A separate minimization using Archie's law provides parameters for modeling the relations between water saturation, porosity and the electrical conductivity. The rock properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. The electrical conductivity changes are directly mapped to changes in water saturation. The estimated changes in water saturation are used with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. The residual compressional velocity change is then interpreted in terms of increases in the CO2 /oil ratio. Resulting images of CO2/oil ratio show CO2 rich zones that are well correlated with the location of injection perforations with the size of these zones also correlating to the amount of injected CO2. The images produced by this process are better correlated to the location and amount of injected CO2 than are any of the individual images of change in geophysical parameters.

  7. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

  8. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  9. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect (OSTI)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  10. The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity

    E-Print Network [OSTI]

    Thomas, David D.

    The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

  11. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2 D. J. Erickson III,1,2 R. T. Mills,1 J. Gregg,3 T. J. Blasing,4 F. M. Hoffman,1 R. J. Andres,4 of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series

  12. CO2-H2O mixtures in the geological sequestration of CO2. II ...

    E-Print Network [OSTI]

    2005-07-01

    experimental and field data. ... In all studies discussed above, the solubility of CO2 in water ...... Li Y., and Nghiem L. X. (1986) Phase equilibria of oil, gas and.

  13. 4D Seismic to Image a Thin Carbonate Reservoir During a Miscible CO2 Flood: Hall-Gurney Field, Kansas, USA

    E-Print Network [OSTI]

    Raef, A. E.; Miller, Richard D.; Franseen, Evan K.; Byrnes, A. P.; Watney, W. L.; Harrison, W. E.

    2005-05-01

    The movement of miscible CO2 injected into a shallow (900 m) thin (3.6-6m) carbonate reservoir was monitored using the high-resolution parallel progressive blanking (PPB) approach. The approach concentrated on repeatability during acquisition...

  14. 10-MW Supercritical-CO2 Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  15. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  16. Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers

    SciTech Connect (OSTI)

    Pruess, Karsten; Zhang, Keni

    2008-11-17

    For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against modest changes in problem parameters, and are essentially constant as long as no dissolved CO2 reaches the lower boundary of the system.

  17. Final Progress Report: Direct Experiments on the Ocean Disposal of Fossil Fuel CO2.

    SciTech Connect (OSTI)

    James P. Barry; Peter G. Brewer

    2004-05-25

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life. Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.

  18. Developing a Comprehensive Risk Assessment Framework for Geological Storage CO2

    SciTech Connect (OSTI)

    Duncan, Ian

    2014-08-31

    The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO?; risks of well blowouts; risk that CO? will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO? will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO2 based enhanced oil recovery (CO2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO2 pipelines have been widely used in papers and reports on risk of CO2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO2 releases from pipelines or wells are arguably the highest risk aspects of CO2 enhanced oil recovery (CO2-EOR), carbon capture, and storage (CCS). Assertions in the CCS literature, that CO2 levels of 10% for ten minutes, or 20 to 30% for a few minutes are lethal to humans, are not supported by the available evidence. The results of published experiments with animals exposed to CO2, from mice to monkeys, at both normal and depleted oxygen levels, suggest that lethal levels of CO2 toxicity are in the range 50 to 60%. These experiments demonstrate that CO2 does not kill by asphyxia, but rather is toxic at high concentrations. It is concluded that quantitative risk assessments of CCS have overestimated the risk of fatalities by using values of lethality a factor two to six lower than the values estimated in this paper. In many dispersion models of CO2 releases from pipelines, no fatalities would be predicted if appropriate levels of lethality for CO2 had been used in the analysis.

  19. Evaluation of Experimentally Measured and Model-Calculated pH for Rock-Brine-CO2 Systems under Geologic CO2 Sequestration Conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    Reliable pH estimation is essential for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies of formation reactivities conducted under geologic CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH; however, the accuracy of these model predictions is typically uncertain. In this study, we expanded the measurement range of a spectrophotometric method for pH determination, and we applied the method to measure the pH in batch-reactor experiments utilizing rock samples from five ongoing GCS demonstration projects. A combination of color-changing pH indicators, bromophenol blue and bromocresol green, was shown to enable measurements over the pH range of 2.5-5.2. In-situ pH measurements were compared with pH values calculated using geochemical models. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. For rocks comprised of carbonate, siltstone, and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain proton consuming and producing reactions that occur between the basalt minerals and CO2-saturated brine solutions.

  20. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  1. NETL CO2 Storage Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncriefB NESEA Newsletter ContentCO2

  2. CO2 Compression | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury ScienceComplex earning FPEComplex CNS,CO2

  3. CO2 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEATCNAA Jump to:Emissions fromCO2

  4. CO2 Utilization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office ofCERTIFIED2,May 4, 2011CO2

  5. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    E-Print Network [OSTI]

    Chakib Bouallou

    2010-08-12

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  6. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CO2 Heat Pump Water Heater Prototype
    Credit: Oak Ridge National Lab CO2 Heat Pump Water Heater Prototype Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National...

  7. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01

    emission and resource accounting. Ecol Econ 69:211–222. 12.Consumption-based accounting of CO 2 emissions Steven J.Consump- tion-based accounting of CO 2 emissions differs

  8. Formation Damage due to CO2 Sequestration in Saline Aquifers 

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25

    Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

  9. HYDROMECHANICAL CHARACTERIZATION FOR SITE SELECTION IN CO2 PERMANENT

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    of info and lack of info Arguments against: - It increases electricity cost + extra CO2 (CO2 market Sleipner In Salah Weyburn Snohvit #12;Uplift of 5 mm/yr in In Salah (Rutqvist et al., 2010, IJGGC

  10. North America's net terrestrial CO2 exchange with the atmosphere...

    Office of Scientific and Technical Information (OSTI)

    a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or...

  11. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    phase dispersivity test (BTC) Porosity-thickness product oftest Two-phase tracer BTC Evolution of CO 2 saturation

  12. CO2 stabilization, climate change and the terrestrial carbon sink

    E-Print Network [OSTI]

    White, Andrew

    CO2 stabilization, climate change and the terrestrial carbon sink A N D R E W W H I T E , * M E L V, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225

  13. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  14. Variability of primary production and air-sea CO 2 flux in the Southern Ocean

    E-Print Network [OSTI]

    Wang, Shanlin; Moore, J. Keith

    2012-01-01

    Lima (2007), Enhanced CO 2 outgassing in the Southern OceanCO 2 run, there is a CO 2 outgassing trend of 0.07 PgC/yr/sink and a natural CO 2 outgassing. The anthropogenic CO 2

  15. Center for By-Products Utilization CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Saldin, Dilano

    climate change, reduced GHGs, improved air quality, CO2 reduction & sequestration, and carbon offsets. #12 for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concreteCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik

  16. Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the CO2 scrubber. The ?30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  17. Aquatic primary production in a high-CO2 world

    E-Print Network [OSTI]

    Fussman, Gregor

    Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

  18. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing% inlet CO2. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast

  19. Widespread foliage d15 N depletion under elevated CO2

    E-Print Network [OSTI]

    Thomas, David D.

    Widespread foliage d15 N depletion under elevated CO2: inferences for the nitrogen cycle H O R M O an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage d15 N in a wide range

  20. he leading technology under development for management of CO2

    E-Print Network [OSTI]

    Aydilek, Ahmet

    T he leading technology under development for management of CO2 separated and captured from large assessment in relation to deploy- ment of the technology. Potential mechanisms for leakage from CO2 storage Series*sponsored by John J. Kirlin Lecture funds Geologic Sequestration of CO2 : Evaluating

  1. Cimpor inventa nova frmula para reduzir pegada de CO2

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Cimpor inventa nova fórmula para reduzir pegada de CO2 CIMENTO. A Cimpor descobriu uma nova fórmula para produzir ci- mento que lhe permitirá reduzir a pegada de CO 2 em 25%. Segundo as contas da as fábricas do grupo, seriam emitidos menos quatro milhões de toneladas de CO 2 por ano, o que permitiria uma

  2. CO2 dissolution in water using long serpentine microchannels

    E-Print Network [OSTI]

    Cubaud, Thomas

    CO2 dissolution in water using long serpentine microchannels Thomas Cubaud,a) Martin Sauzade dioxide-water is particularly impor- tant to the environment. When CO2 dissolves in water, it forms a weak shells.2 A method for enriching minute amount of water with CO2 on-chip would facilitate biological

  3. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing, requires equivalent work of 31.8 kJ/mole CO2 when used with a double matrix stripper and an intercooled

  4. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous. Uninhibited 5 m KHCO3/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO2/mol MEA. #12

  5. Central serotonin neurons are required for arousal to CO2

    E-Print Network [OSTI]

    Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

  6. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing use. Extensive measurements of CO2 solubility in 7 m MEA at 40 and 60o C have confirmed the work

  7. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing 20% of the power output from a 500 MW power plant with 90% CO2 removal. The stripper rate model shows

  8. Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage

    E-Print Network [OSTI]

    Otto, Vincent M.

    This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

  9. Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media 

    E-Print Network [OSTI]

    Cai, Shuzong

    2011-10-21

    CO2 has been widely used as a displacement fluid in both immiscible and miscible displacement processes to obtain tertiary recovery from the field. There are several problems associated with the application of CO2 flooding, especially when...

  10. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Energy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmissionsupercritical CO 2 and rock minerals. Studies of geochemical interactions in EGS-CO2

  11. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    E-Print Network [OSTI]

    Birkholzer, Jens

    2008-01-01

    Changes in Response to CO2 Leakage from Deep Geologicalstudy mineral trapping for CO2 disposal in deep arenaceousconstituents as function of P(CO2)? function of P(CO2)? – –

  12. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  13. Surface controls on the characteristics of natural CO2 seeps: implications for engineered CO2 stores

    E-Print Network [OSTI]

    Haszeldine, Stuart

    be characterized to design the most effective monitoring strategy. Key words: carbon capture and storage, carbon are considering adoption of carbon capture and storage technology to meet carbon emission reduction targets of Edinburgh, Edinburgh, UK ABSTRACT Long-term security of performance of engineered CO2 storage is a principle

  14. INTEGRATING MEA REGENERATION WITH CO2 COMPRESSION AND PEAKING TO REDUCE CO2 CAPTURE COSTS

    E-Print Network [OSTI]

    Rochelle, Gary T.

    by combining use of the heat integration configurations evaluated in this study and for the support and guidance of the DOE/NETL project manager, Jose D. Figueroa. Platte River Power Authority's insight on integrating a CO2 capture system into a full-scale power plant was also of great value

  15. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    SciTech Connect (OSTI)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.

  16. Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  17. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore »Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.« less

  18. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  19. Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W. Keith

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W. Keith Abstract Fossil fuels can be used with minimal atmo- spheric emissions of carbon dioxide, the cost of sequestration and the energy penalty (the energy necessary to capture, transport and inject

  20. Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores 

    E-Print Network [OSTI]

    Maduakor, Ekene Obioma

    2006-10-30

    Previous coreflood experiments show that CO2 sequestration in carbonate rocks is a win-win technology. Injecting CO2 into a depleted gas reservoir for storage also produces hitherto unrecoverable gas. This in turn helps to defray the cost of CO2...

  1. Effects of Increased Upward Flux of Saline Water Caused by CO2 Storage or Other Factors

    SciTech Connect (OSTI)

    Murdoch, Lawrence; Xie, Shuang; Falta, Ronald W.; Yonkofski, Catherine MR

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would likely be minor if the upward flux was smaller than a few tenths of the magnitude of recharge, according to the 2D analyses. The 3D analyses also show that upward flux could occur without a significant increase in the risk categories. The major contribution of this work is that it shows how a large increase in diffuse upward flux from a basin could cause significant problems, but a small increase in upward flux may occur without significantly affecting risks to the shallow freshwater flow system. This heightens the importance of understanding interactions between shallow and deep hydrologic systems when characterizing CO2 storage projects.

  2. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  3. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  4. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Interactions at the Supercritical CO2–liquid InterfaceEnergy Concept Utilizing Supercritical CO2 Instead of Water,Feasibility of Using Supercritical CO2 as Heat Transmission

  5. Optical Probing of CO2 Laser-Plasma Interactions at Near Critical Density

    E-Print Network [OSTI]

    Gong, Chao

    2015-01-01

    351. Tsung, F. , et al. , CO2 Laser acceleration of forwardJoshi, Fifteen terawatt picosecond CO2 laser system. Opticspicosecond, multiwavelength CO2 laser pulse. Applied Optics,

  6. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Riley, Ronald; Wicks, John; Perry, Christopher

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

  7. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Ronald Riley; John Wicks; Christopher Perry

    2009-12-30

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

  8. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress. #12;3 Abstract The objective of this work is to improve the process for CO2 capture by alkanolamine from 0.06 to 0.01 mol/(m3 .s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO2/ mol MEA

  9. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    Efforts Investigating Water Extraction •! LLNL –! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios –! Technical

  10. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01

    COAL MODEL Significant potential exists for carbon sequestration and enhanced methane recoverycoal zones within the Lower Pennsylvanian Pottsville Formation. Assessment of the CO 2 sequestration and enhanced recovery

  11. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01

    The geomechanics of CO 2 storage in deep sedimentaryThis paper provides a review of the geomechanics andmodeling of geomechanics associated with geologic carbon

  12. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    and performance of oil well cement with 30 years of CO 2cement –? Carbonation –? Sulfate attack –? Acid attack State of Alaska Oil and Gas Division Old Wells

  13. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers have discovered that nanoparticles of cerium oxide (ceria) in contact with copper will form metal-oxide interfaces that allow the adsorption and activation of CO2,...

  14. North America's net terrestrial CO2 exchange with the atmosphere...

    Office of Scientific and Technical Information (OSTI)

    of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward...

  15. Advanced Post-Combustion CO2 Capture Prepared for the

    E-Print Network [OSTI]

    Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

  16. Evaluating a new approach to CO2 capture and storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 capture and storage In a perspective paper published in Greenhouse Gases: Science and Technology, researchers examined a new approach that could potentially overcome many...

  17. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    by well/VSP (Vertical Seismic Profile) data. Fractures andat the Frio site, a vertical seismic profile ficult due towells VSP (vertical seismic profile) CO 2 distribution updip

  18. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced...

  19. Monitoring CO2 intrusion and associated geochemical transformations...

    Office of Scientific and Technical Information (OSTI)

    Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods Citation Details In-Document Search Title:...

  20. Direct s-CO2 Reciever Development | Department of Energy

    Office of Environmental Management (EM)

    Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Temperature Solar Thermoelectric Generators (STEG) Near-Blackbody Enclosed Particle Receiver...

  1. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01

    implications for CO 2 storage risk. Energy Procedia 4:3699–storage events and putting risk into perspective with other areas of the energy

  2. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    SciTech Connect (OSTI)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (? 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ? 1,000 membrane intrinsic CO2 permeance, ? 90% CO2 removal in one stage, ? 2 psi gas side pressure drop, and ? 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.

  3. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01

    is the largest source of NEU-CO2 emissions (233 Mt CO 2 ),black (another key source of NEU-CO2 emissions reported bysource and geographical distributions of NEU-CO2 emissions.

  4. Solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration at ambient conditions

    SciTech Connect (OSTI)

    Wang, Xiaoxing [Pennsylvania State University; Ma, Xiaoliang [Pennsylvania State University; Schwartz, Viviane [ORNL; Clark, Jason C [ORNL; Overbury, Steven {Steve} H [ORNL; Zhao, Shuqi [Pennsylvania State University, University Park, PA; Xu, Xiaochun [Pennsylvania State University; Song, Chunshan [Pennsylvania State University

    2012-01-01

    In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15 was studied for CO2 capture from gas streams with low CO2 concentration at ambient conditions. The sorbent was able to effectively and selectively capture CO2 from a gas stream containing 1% CO2 at 75 C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg/g, respectively, and a selectivity of 14 for CO2/CO and 185 for CO2/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO2-TPD study showed that the sorbent could be regenerated at mild conditions (50-110 C) and was stable in the cyclical operations for at least 20 cycles. Furthermore, the possibility for CO2 capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg/g was attained at 75 C via TPD method using a simulated air with 400 ppmv CO2 in N2.

  5. Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    E-Print Network [OSTI]

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

  6. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting Host Site: City ofNovel CO 2

  7. Version 3.0 SOP 5 --Underway p(CO2) October 12, 2007 Determination of p(CO2) in air that is in

    E-Print Network [OSTI]

    as the product of the mole fraction of CO2, x(CO2), in the equilibrated gas phase and the total pressure (p . The analyzer is calibrated using gases of known CO2 concentration (mole fraction). The partial pressure, p(CO2 in sea water, it is necessary to convert the mole fraction to fugacity, (CO2), to account for the fact

  8. Greener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from the flue gases of coal-fired power plants would alleviate concerns

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    to remove CO2 from dilute gas streams because they have very high affinity for CO2. Unfortunately high solvents that balance high affinity for CO2 with ease of solvent recovery and reuse. Because the numberGreener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from

  9. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

  10. An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems

    Broader source: Energy.gov [DOE]

    Project objectives: Generate and characterize mineral dissolution/precipitation reactions in supercritical CO2/brine/rock systems under pressure-temperature-chemistry conditions resembling CO2injection into EGS. Characterize three-dimensional spatial and temporal distributions of rock structures subject to mineral dissolution/precipitation processes by X-ray tomography, SEM imaging, and Microprobe analysis.

  11. Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

    E-Print Network [OSTI]

    Zhang, Da

    2012-09-01

    To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity

  12. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    Interactions at the Supercritical CO2–liquid InterfaceProperties of the Supercritical CO2–Water Pure Interface, J.

  13. Intercomparison of simulation models for CO2 disposal in underground storage reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Tsang, Chin-Fu; Law, David; Oldenburg, Curt

    2001-01-01

    experience with using CO2 for EOR projects (SPE, 1999), andoil recovery (EOR) using CO2 requires an understanding of

  14. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  15. An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxides-bearing formations

    SciTech Connect (OSTI)

    Garcia, Susana; Liu, Q.; Bacon, Diana H.; Maroto-Valer, M. M.

    2014-08-26

    Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changes and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.

  16. Vehicular Sensing System for CO2 Monitoring Applications

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    --We are interested in monitoring the concentration of carbon dioxide (CO2) gas in a large field such as an urban area sensor, vehicular sensing system, wireless sensor network. I. INTRODUCTION Carbon dioxide (CO2) gas has concentration in Hsin-Chu city, Taiwan. The collected data is reported to a remote server, which is integrated

  17. CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . In order to perform a safe and efficient carbon dioxide capture and storage (CCS) project, a comprehensive. Carbon dioxide capture and storage (CCS) is a process including the capture of CO2 from high production, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

  18. Influence of C4 vegetation on 13 CO2 discrimination

    E-Print Network [OSTI]

    Minnesota, University of

    Influence of C4 vegetation on 13 CO2 discrimination and isoforcing in the upper Midwest, United vegetation on the 13 CO2 photosynthetic discrimination and atmospheric isotopic forcing in the upper Midwest discrimination within this heterogeneous landscape? (3) To what extent does land use change (i.e., a change in C4

  19. Variations in 13 C discrimination during CO2 exchange1

    E-Print Network [OSTI]

    exchange. Observed 13 were described well by the classical model of5 Farquhar, O'Leary & Berry (1982 enzymes, as well as to differential diffusivities of 13 CO2 and 12 CO2 in air9 (O'Leary, 1984; Farquhar, O'Leary

  20. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01

    gross world product, E is global energy consumption, Authorglobal consumption-based CO 2 emissions inventory and calcula- tions of associated consumption-based energyenergy consumption, and combustion-based CO 2 emissions of each region sector were all taken from Version 7 of the Global

  1. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-Print Network [OSTI]

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

  2. The Energy and CO2 Emissions Impact of

    E-Print Network [OSTI]

    The Energy and CO2 Emissions Impact of Renewable Energy Development in China Xiliang Zhang, Tianyu://globalchange.mit.edu/ Printed on recycled paper #12;1 The Energy and CO2 Emissions Impact of Renewable Energy Development Qi, and Valerie J. Karplus Report No. 242 April 2013 China Energy & Climate Project TSINGHUA - MIT

  3. Distribution of anthropogenic CO2 in the Pacific Ocean

    E-Print Network [OSTI]

    Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

  4. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology, by itself, the scope or quantity of greenhouse gas emissions reductions needed to achiev

  5. SPE -124703 Process for tracking the evolving perception of risk during CO2 storage

    E-Print Network [OSTI]

    the pressure on all nations to reduce emissions of greenhouse gases. Carbon capture and storage (CCS, primarily power plants, is captured and transported to a storage site where it is injective into the Earth. Carbon dioxide injected into deep geological formations will initially be more buoyant than the existing

  6. Does elevated CO2 alter silica uptake in trees?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; Finzi, Adrien C.

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, longterm free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwoodmore »species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less

  7. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  8. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs 

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01

    Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2...

  9. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in anEGS) with CO 2 as Heat Transmission Fluid - A Scheme for

  10. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Could Sequestration of CO2 be Combined with the DevelopmentTOUGH2 Code for Studies of CO2 Storage in Saline Aquifers,and J. Ennis- King. CO2-H2O Mixtures in the Geological

  11. Odors that Modify CO2 Receptor Activity in Insects and Their Effect on Innate CO2-Mediated Behavior and Neuronal Plasticity

    E-Print Network [OSTI]

    Turner, Stephanie

    2010-01-01

    Intermediates in Insect CO2 Sensory Systems. Science Certel,2007). The molecular basis of CO2 reception in Drosophila.J. (2004). Floral CO2 Reveals Flower Profitability to Moths.

  12. "Target CO2" publication, "Obstruction" clarification, Paterson letter 1. "Target Atmospheric CO2: Where Should Humanity Aim?" will appear in 3-4 days in The

    E-Print Network [OSTI]

    Hansen, James E.

    "Target CO2" publication, "Obstruction" clarification, Paterson letter 1. "Target Atmospheric CO2 the Australian position, but their subsequently stated goals of 450-550 ppm CO2 does. That plan appears to have

  13. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core

    E-Print Network [OSTI]

    Raggio Parkway, Reno, Nevada 89512-1095, USA ABSTRACT. One common assumption in interpreting ice-core CO2 records is that diffusion in the ice does not affect the concentration profile. However, this assumption/Ar and Kr/Ar), electrical conductivity and Ca2+ ion concentrations to show that substantial CO2 diffusion

  14. PVTx properties of the CO2H2O and CO2H2ONaCl systems below 647 K: Assessment of experimental data

    E-Print Network [OSTI]

    Polly, David

    PVTx properties of the CO2­H2O and CO2­H2O­NaCl systems below 647 K: Assessment of experimental-composition (PVTx) properties for the CO2­H2O and CO2­H2O­NaCl systems. This paper presents a comprehensive review. Keywords: CO2 sequestration; PVTx properties; Volume; Density; Thermodynamic modeling 1. Introduction CO2­H

  15. CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents

    SciTech Connect (OSTI)

    2010-10-01

    IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

  16. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    determined in hydraulic well tests ranges between 500 andcreation of hydraulic fractures linked to injecting wells ora hydraulic fracture is generated from injecting wells and

  17. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  18. Rhombohedral calcite precipitation from CO2-H2O-Ca(OH)2 slurry under supercritical and gas CO2 media

    E-Print Network [OSTI]

    Montes-Hernandez, German; Geoffroy, Nicolas; Charlet, Laurent; Pironon, Jacques

    2008-01-01

    The formation of solid calcium carbonate (CaCO3) from aqueous solutions or slurries containing calcium and carbon dioxide (CO2) is a complex process of considerable importance in the ecological, geochemical and biological areas. Moreover, the demand for powdered CaCO3 has increased considerably recently in various fields of industry. The aim of this study was therefore to synthesize fine particles of calcite with controlled morphology by hydrothermal carbonation of calcium hydroxide at high CO2 pressure (initial PCO2=55 bar) and at moderate and high temperature (30 and 90 degrees C). The morphology of precipitated particles was identified by transmission electron microscopy (TEM/EDS) and scanning electron microscopy (SEM/EDS). In addition, an X-ray diffraction analysis was performed to investigate the carbonation efficiency and purity of the solid product. Carbonation of dispersed calcium hydroxide in the presence of supercritical (PT=90 bar, T=90 degrees C) or gaseous (PT=55 bar, T=30 degrees C) CO2 led to t...

  19. A quantitative comparison of the cost of employing EOR-coupled CSS supplemented with secondary DSF storage for two large CO2 point sources

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.

    2011-04-18

    This paper explores the impact of the temporally dynamic demand for CO2 for enhanced hydrocarbon recovery with CO2 storage. Previous evaluations of economy-wide CO2 capture and geologic storage (CCS) deployment have typically applied a simplifying assumption that 100% of the potential storage capacity for a given formation is available on the first day of the analysis, and that the injection rate impacts only the number of wells required to inject a given volume of fluid per year, making it a cost driver rather than a technical one. However, as discussed by Dahowski and Bachu [1], storing CO2 in a field undergoing CO2 flooding for enhanced oil recovery (EOR) is subject to a set of constraints to which storage in DSFs is not, and these constraints combined with variable demand for CO2 may strongly influence the ability of an EOR field to serve as a baseload storage formation for commercial scale CCS projects undertaken as a means of addressing climate change mitigation targets. This analysis assumes that CCS is being undertaken in order to reduce CO2 emissions from the industrial sources evaluated and that there is enough of a disincentive associated with venting CO2 to the atmosphere that any CO2 not used within the EOR field will be stored in a suitable nearby deep saline formation (DSF). The authors have applied a CO2 demand profile to two cases chosen to illustrate the differences in cost impacts of employing EOR-based CCS as a part of a given source’s CCS portfolio. The first scenario is a less-than-ideal case in which a single EOR field is used for storage and all CO2 not demanded by the EOR project is stored in a DSF; the second scenario is designed to optimize costs by minimizing storage in the DSF and maximizing lower-cost EOR-based storage. Both scenarios are evaluated for two facilities emitting 3 and 6 MtCO2/y, corresponding to a natural gas processing facility and an IGCC electric power plant, respectively. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.

  20. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  1. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    clean sources of energy. Asturias, in northern Spain, is theThe CO 2 emissions in Asturias represent the 8% of total COsequestration in Asturias are deep saline aquifers and

  2. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01

    right. Figure 14: Surface gravity response (?Gal) for theAbsolute and relative gravity integration for high precision2003, Seafloor Micro-gravity Survey of the Sleipner CO 2

  3. Modeling the release of CO2 in the deep ocean

    E-Print Network [OSTI]

    Liro, Christopher R.

    1991-01-01

    The idea of capturing and disposing of carbon dioxide (CO2) from the flue gas of fossil fuel-fired power plants has recently received attention as a possible mitigation strategy to counteract potential global warming due ...

  4. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  5. Climatedependent CO2 emissions from lakes Sarian Kosten,1

    E-Print Network [OSTI]

    Cole, Jonathan J.

    in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South influence lakes' metabolism as well. For instance through its effect on the hydraulic residence time, which

  6. Novel CO2-Thickeners for Improved Mobility Control

    SciTech Connect (OSTI)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2002-01-15

    The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

  7. Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach

    Broader source: Energy.gov [DOE]

    Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

  8. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90 times faster than catalysts commonly used for this reaction today. What to Do with CO2? Recently, the United States and China announced a joint agreement setting targets for...

  9. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    reservoir, a natural gas power plant that burns CH 4 , CO 2from the natural gas power plant, there are two otherflue gas of the natural gas power plant in the system. When

  10. Implications of "peak oil" for atmospheric CO2 and climate

    E-Print Network [OSTI]

    Kharecha, P A

    2007-01-01

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  11. EGS rock reactions with Supercritical CO2 saturated with water...

    Office of Scientific and Technical Information (OSTI)

    CO2 as a working fluid. less Authors: Earl D. Mattson ; Travis L. McLing ; William Smith ; Carl Palmer Publication Date: 2013-02-01 OSTI Identifier: 1076541 Report Number(s):...

  12. Alabama Project Testing Potential for Combining CO2 Storage with...

    Broader source: Energy.gov (indexed) [DOE]

    to sequester 1.1 gigatons to 2.3 gigatons of CO2--approximately the amount that Alabama's coal-fired power plants emit in two decades. Enhanced coalbed methane recovery combined...

  13. CO2ReMoVe - Progress Report

    E-Print Network [OSTI]

    Danilo R. Velis

    of CO2 and brine or oil at liquid, supercritical and gaseous conditions, using a Biot-Gassmann ...... micro-heterogeneous water saturation field S. (j) w . We obtain ...

  14. Seismic modeling to monitor CO2 geological storage: The Atzbach ...

    E-Print Network [OSTI]

    2012-05-30

    Jun 8, 2012 ... When CO2 is stored into depleted oil and gas fields or unmineable .... where rb is the water (brine) density and g is the acceleration of gravity.

  15. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01

    the arrival of CO 2 . The drilling fluids were tagged withSeismic survey Drilling phase Fluid loss record, PWD Leak-as fluid path should be investigated during drilling phase.

  16. Canada’s Bitumen Industry Under CO2 Constraints

    E-Print Network [OSTI]

    Chen, Y.-H. Henry

    We investigate the effects of implementing CO2 emissions reduction policies on Canada’s oil sands industry, the largest of its kind in the world. The production of petroleum products from oils sands involves extraction of ...

  17. Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Thermodynamic and kinetic analyses of the CO2 chemisorption mechanism on Na2TiO3: Experimental and theoretical evidences Citation Details In-Document Search Title:...

  18. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...

    Office of Scientific and Technical Information (OSTI)

    Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental Validations Citation...

  19. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( MLi ,K): Density-Functional Calculations and Experimental...

  20. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  1. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  2. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  3. Dynamic micro-mapping of CO2 sorption in coal

    SciTech Connect (OSTI)

    Radlinski, Andrzej Pawell [ORNL; Melnichenko, Yuri B [ORNL; Cheng, Gang [ORNL; Mastalerz, Maria [Indiana Geological Survey

    2009-01-01

    We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS and USANS) to study the interaction between fluids and porous media in the particular case of sub- and super-critical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso), and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p,T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one contaminated with mineral matter, but mineral matter markedly accelerates the sorption kinetics.

  4. The unstable CO2 feedback cycle on ocean planets

    E-Print Network [OSTI]

    Kitzmann, D; Godolt, M; Grenfell, J L; Heng, K; Patzer, A B C; Rauer, H; Stracke, B; von Paris, P

    2015-01-01

    Ocean planets are volatile rich planets, not present in our Solar System, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong...

  5. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.

  6. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  7. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  8. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2

    E-Print Network [OSTI]

    Thomas, David D.

    Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert D AV I D S . E L L S W O R T H species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation

  9. Ris Energy Report 6 CO2 capture and storage 2 6.1 What is CO2 capture and storage?

    E-Print Network [OSTI]

    Gas Biomass Power & heat Power & heat Power & heat Gasification Air separation Process+CO2 sep-combustion Pre-combustion Oxyfuel Industrial processes Coal Gas Biomass Coal Gas Biomass Coal Gas Biomass Coal

  10. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    E-Print Network [OSTI]

    Zheng, L.

    2011-01-01

    1980). Mole fraction of organics in CO2 60 C o benzene+CO2,1980). Mole fraction of organics in CO2 100 C phenol+CO2,o VP CO2 Vapor pressure (bar) VP C6H6 0 Mole fraction of CO

  11. Low-temperature reactive coupling at polymerpolymer interfaces facilitated by supercritical CO2

    E-Print Network [OSTI]

    Low-temperature reactive coupling at polymer­polymer interfaces facilitated by supercritical CO2 S online 22 August 2005 Abstract Supercritical CO2 (scCO2) has been used to facilitate reactions in thin,6,7], the formation of such BCPs via reactive compatibilization [8­10], and the use of supercritical CO2 (scCO2) [11

  12. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect (OSTI)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but performed well overall. (b) Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. (c) The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing. (3) Organisms and Growth Surfaces: (a) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible that the rate of the stimulation of cyanobacterial growth in the CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (b) Tests have shown a doubling time of the cyanobacterial culture of about 7.5 hours with illumination of about 170 {micro}mol m{sup -2} sec{sup -1}. All lower levels of illumination led to a decrease in the cyanobacterial growth rate. (c) Macroscopical and microscopical observations suggest that the culture of this isolate undergoes significant morphological changes after 60-70 hours of incubation in the batch culture mode. First of all, the culture begins to clump. This clumping could lead to the decrease of effective illumination of culture and may reflect a medium alkalinization. (d) Organization of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park has resulted in 13 unialgal cultures of thermophilic cyanobacteria. (e) A new species (even probably a new genus) of cyanobacteria, 5.2 s. c. 1, isolated from LaDuke Spring in Great Yellowstone Basin, demonstrates an elevated resistance to some compounds of iron. This might be very important for our project, because plant gases may have elevated amount of iron. Our study of the effect of different concentration of FeCl{sub 3}* 6H{sub 2}O on the growth of the 5.2 s.c.1 isolate showed that iron additions stimulated rather then inhibited the growth of the isolate. Because of this we would recommend this isolate for further experiments. (f) The shape of the Chlorogloeopsis siderophila cells (cyanobacteria) was found to be affected b

  13. Rechargeable Li/CO2O2 (2 : 1) battery and Li/CO2 Yali Liu, Rui Wang, Yingchun Lyu, Hong Li* and Liquan Chen

    E-Print Network [OSTI]

    Wang, Wei Hua

    under suitable conditions. Therefore, it is plausible that a recharge- able Li/CO2 battery couldRechargeable Li/CO2­O2 (2 : 1) battery and Li/CO2 battery Yali Liu, Rui Wang, Yingchun Lyu, Hong Li* and Liquan Chen A Li/CO2­O2 (2 : 1, volume ratio) battery and a Li/CO2 battery with discharging specific

  14. Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to

    E-Print Network [OSTI]

    Antonovics, Janis

    Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

  15. Borehole Seismic Monitoring of Injected CO2 at the Frio Site

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Hoversten, G.M.; Peterson, John E.; Korneev, Valeri A.

    2006-01-01

    Energy Technology Laboratory, of the US Department of Energy, under Contract No.DE-AC02-05CH11231. Reference list: [

  16. Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M.

    2006-01-01

    Seismic Exploration, 14, Elsevier. Harris J.M. , Nolen-Seismic Profiling: Principles, Handbook of Geophysical Exploration:of Seismic Traveltime Tomography. Society of Exploration

  17. Seismic rupture and ground accelerations induced by CO2 injection in the shallow crust

    E-Print Network [OSTI]

    Cappa, F.

    2014-01-01

    D.A. , 2011. Linking microseismic event observations withwith less than 100 microseismic events having magnitudes

  18. Probabilistic analysis of fracture reactivation associated with deep underground CO2 injection

    E-Print Network [OSTI]

    Lee, J.

    2014-01-01

    biosphere. For example, microseismic events that may occurmight also result in microseismic events or even events that

  19. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2006-01-01

    dioxide in depleted natural gas reservoirs and in uselessHydrogen production from natural gas, sequestration ofas cushion gas for natural gas storage, Energy & Fuels, 17(

  20. Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M.

    2006-01-01

    monitoring with the RST Reservoir Saturation Tool. Oilfieldare Schlumberger's reservoir saturation tool (RST) (Adolph,Fluid Saturation Prediction in a Multicomponent Reservoir,

  1. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2006-01-01

    cushion gas for natural gas storage, Energy & Fuels, 17(1),cushion gas for natural gas storage (Oldenburg, 2003). Forstorage of carbon dioxide in depleted natural gas reservoirs

  2. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2006-01-01

    cushion gas for natural gas storage, Energy & Fuels, 17(1),cushion gas for natural gas storage (Oldenburg, 2003). For

  3. Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M.

    2006-01-01

    crosswell and vertical seismic profile (VSP), were acquiredof crosswell and vertical seismic profile (VSP) experiments.

  4. In-situ borehole seismic monitoring of injected CO2 at the Frio Site

    E-Print Network [OSTI]

    Daley, Thomas M.; Korneev, Valeri A.

    2006-01-01

    time-lapse vertical seismic profile (VSP) and crosswellFrio site, a vertical seismic profile (VSP) and a crosswell

  5. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection

    E-Print Network [OSTI]

    Rinaldi, A.P.

    2014-01-01

    approach for Enhanced Geothermal Systems. Geophys. J. Int.earthquakes in the enhanced geothermal system in Basel,including enhanced geothermal systems (Rutqvist et al. ,

  6. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy ConsentCertify DOEDOE Names OakApril 8, 2014 DOEJuneSandstone |

  7. Characteristics of seal formations (confining units) for CO2 injection in

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission,Textit ChandraSciTech Connect|Chaos andof Highthe

  8. Geomechanical Evaluation of Thermal Impact of Injected CO2 Temperature on a

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:Compression (JournalPublisher'sLeakage

  9. Geomechanical Evaluation of Thermal Impact of Injected CO2 Temperature on a

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:Compression (JournalPublisher'sLeakageGeological

  10. Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste | Department of Energy The ruins of a

  11. Illinois CO2 Injection Project Moves Another Step Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergy Tools for SustainabilityEnergy49Energy

  12. 10,651,176 Metric Tons of CO2 Injected as of September 16, 2015 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at

  13. Carbon Storage Partner Completes First Year of CO2 Injection Operations in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctober 22, 2012Department ofCarbonIllinois |

  14. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment ofof Energy withof

  15. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    Reports and Publications (EIA)

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  16. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  17. CO2-selective, Hybrid Membranes by Silation of Alumina

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.

    2007-09-01

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  18. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01

    China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

  19. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy...

  20. CO2 balance of boreal, temperate, and tropical forests derived from a global database

    E-Print Network [OSTI]

    2007-01-01

    2486.2007.01439.x CO 2 balance of boreal, temperate, andR T et al. Fig. 10 Observed CO 2 balance for boreal biomes.These CO 2 balances were not closed and therefore the

  1. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01

    and opportunities in accounting for non-energy use CO 2emissions (233 Mt CO 2 ), accounting for around one-third ofCO2 emissions? 3 Accounting challenges and opportunities

  2. Experiment-based modeling of geochemical interactions in CO2-based geothermal systems

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    associated with CO 2 -EGS,” Proceedings, 37th Workshop onEnhanced geothermal systems (EGS) using CO 2 as workingenhanced geothermal system (EGS) using CO 2 instead of water

  3. Experiment-based modeling of geochemical interactions in CO2-based geothermal systems

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    K. (2006), “Enhanced geothermal systems (EGS) using CO 2 asBehavior of Enhanced Geothermal Systems with CO 2 as Workingof operating enhanced geothermal system (EGS) using CO 2

  4. Single-well Low Temperature CO2- based Engineered Geothemal System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based...

  5. Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    Large Releases from CO2 Storage Reservoirs: Analogs,S.T. Nelson. Natural Leaking CO2-charged Systems as AnalogsY. Sano, and H.U. Schmincke. CO2-rich Gases from Lakes Nyos

  6. On CO2 Behavior in the Subsurface, Following Leakage from a Geologic Storage Reservoir

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    1 - 16, 1987. Skinner, L. CO2 Blowouts: An Emerging Problem,Assessment for Underground CO2 Storage, paper 234, presentedReservoir Performance Risk in CO2 Storage Projects, paper

  7. Regulation, Allocation, and Leakage in Cap-and-Trade Markets for CO2

    E-Print Network [OSTI]

    Bushnell, Jim B; Chen, Yihsu

    2009-01-01

    and Philippe Quirion. Co2 abatement, competitiveness andDaniel Kahn. Allocation of co2 emissions al- lowances in theA short-run case analysis of co2 leakage and nox and so2

  8. CATALYST CATALYSTADSORBENT ADSORBENT HCS + H2O H2 + CO2

    E-Print Network [OSTI]

    Southern California, University of

    - CO2 Adsorbent Effect of Membrane Properties On HAMR performance 3.190.3883--H2O --54.30.0248Ar --67 CATALYST CATALYSTADSORBENT ADSORBENT C O 2CO2 CO2 CO2 HCS + H2O H2 + CO2 Mork Family Department of Chemical using hydrotalcite-type CO2 adsorbents and nanoporous H2-selective carbon molecular sieve membranes (CMS

  9. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  10. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  11. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01

    2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

  12. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01

    as NEU-CO2 emissions (i.e. , a carbon storage fraction ofand stored fractions. It follows that, in practice, NEU-CO2

  13. Experiment-based modeling of geochemical interactions in CO2-based geothermal systems

    E-Print Network [OSTI]

    Jung, Y.

    2014-01-01

    in a granite-hosted geothermal system: Experimental insightsof CO 2 -based geothermal systems,” Proceedings, 38thK. (2006), “Enhanced geothermal systems (EGS) using CO 2 as

  14. Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana?

    E-Print Network [OSTI]

    Easlon, Hsien M; Carlisle, Eli; McKay, John K; Bloom, Arnold J

    2015-01-01

    Does low g enhance growth at elevated CO 2 ? To whomEcophysiology and Sustainability Does low g enhance growthat elevated CO 2 ? Does low stomatal conductance or

  15. Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"

    E-Print Network [OSTI]

    Lumley, D.

    2010-01-01

    L. and McPherson, B. , 2008, Microseismic monitoring of CO 2profiling) and passive microseismic, are being used toactivity in passive microseismic techniques to monitor CO 2

  16. Fundamental study of CO2-H2O-mineral interactions for carbon...

    Office of Scientific and Technical Information (OSTI)

    E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration,...

  17. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    with the Development of Enhanced Geothermal Systems? , paper2004. Pruess, K. Enhanced Geothermal Systems (EGS) Using CO2Behavior of Enhanced Geothermal Systems with CO 2 as Working

  18. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    The Influence of a CO2 Pricing Scheme on Distributed Energy5. Regional Results for the CO2 Pricing Scheme no-invest

  19. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wan -Hui; Himeda, Yuichiro; Muckerman, James T.; Manbeck, Gerald F.; Fujita, Etsuko

    2015-09-03

    In this study, carbon dioxide is one of the end products of combustion, and is not a benign component of the atmosphere. The concentration of CO2 in the atmosphere has reached unprecedented levels and continues to increase owing to an escalating rate of fossil fuel combustion, causing concern about climate change and rising sea levels. In view of the inevitable depletion of fossil fuels, a possible solution to this problem is the recycling of carbon dioxide, possibly captured at its point of generation, to fuels. Researchers in this field are using solar energy for CO2 activation and utilization in severalmore »ways: (i) so-called artificial photosynthesis using photo-induced electrons; (ii) bulk electrolysis of a CO2 saturated solution using electricity produced by photovoltaics; (iii) CO2 hydrogenation using solar-produced H2; and (iv) the thermochemical reaction of metal oxides at extremely high temperature reached by solar collectors. Since the thermodynamics of CO2 at high temperature (> 1000 ºC) are quite different from those near room temperature, only chemistry below 200 ºC is discussed in this review.« less

  20. ELECTRONIC FUEL INJECTION DIESEL LOCOMOTIVES

    E-Print Network [OSTI]

    Jagannatham, Aditya K.

    ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES 13 August, 2011 Diesel Loco Modernisation Works, Patiala #12;ELECTRONIC FUEL INJECTION FOR DIESEL LOCOMOTIVES A Milestone in Green Initiatives by Indian the first major milestone in this direction for its fleet of Diesel Locomotives. Introduction The first

  1. CO2 leakage impacts on shallow groundwater. Field-scale reactive-transport simulations informed by observations at a natural analog site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keating, Elizabeth H.; Hakala, J. Alexandra; Viswanathan, Hari; Carey, J. William; Pawar, Rajesh; Guthrie, George D.; Fessenden-Rahn, Julianna

    2013-03-01

    It is challenging to predict the degree to which shallow groundwater might be affected by leaks from a CO2 sequestration reservoir, particularly over long time scales and large spatial scales. In this study observations at a CO2 enriched shallow aquifer natural analog were used to develop a predictive model which is then used to simulate leakage scenarios. This natural analog provides the opportunity to make direct field observations of groundwater chemistry in the presence of elevated CO2, to collect aquifer samples and expose them to CO2 under controlled conditions in the laboratory, and to test the ability of multiphase reactivemore »transport models to reproduce measured geochemical trends at the field-scale. The field observations suggest that brackish water entrained with the upwelling CO2 are a more significant source of trace metals than in situ mobilization of metals due to exposure to CO2. The study focuses on a single trace metal of concern at this site: U. Experimental results indicate that cation exchange/adsorption and dissolution/precipitation of calcite containing trace amounts of U are important reactions controlling U in groundwater at this site, and that the amount of U associated with calcite is fairly well constrained. Simulations incorporating these results into a 3-D multi-phase reactive transport model are able to reproduce the measured ranges and trends between pH, pCO2, Ca, total C, U and Cl-at the field site. Although the true fluxes at the natural analog site are unknown, the cumulative CO2 flux inferred from these simulations are approximately equivalent to 37.8E-3 MT, approximately corresponding to a .001% leak rate for injection at a large (750 MW) power plant. The leakage scenario simulations suggest that if the leak only persists for a short time the volume of aquifer contaminated by CO2-induced mobilization of U will be relatively small, yet persistent over 100 a.« less

  2. Utilization of the St. Peter Sandstone in the Illinois Basin for CO2 Sequestration

    SciTech Connect (OSTI)

    Will, Robert; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative agreement DE-FE0002068 from 12/08/2009 through 9/31/2014. The study is to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. This report evaluates the potential injectivity of the Ordovician St. Peter Sandstone. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data acquired through funding in this project as well as existing data from two additional, separately funded projects: the US DOE funded Illinois Basin – Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) Project funded through the American Recovery and Reinvestment Act (ARRA), which received a phase two award from DOE. This study addresses the question of whether or not the St. Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois Basin where it lies at greater depths (below the underground source of drinking water (USDW)) than at the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir model created in 2010. Model size and spatial resolution were increased resulting in a 3 fold increase in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an extensive core database was used to develop porosity-permeability relationships. The analysis involved a Base Model representative of the St. Peter at “in-situ” conditions, followed by the creation of two hypothetical models at in-situ + 1,000 feet (ft.) (300 m) and in-situ + 2,000 ft. (600 m) depths through systematic depthdependent adjustment of the Base Model parameters. Properties for the depth shifted models were based on porosity versus depth relationship extracted from the core database followed by application of the porosity-permeability relationship. Each of the three resulting models were used as input to dynamic simulations with the single well injection target of 3.2 million tons per annum (MTPA) for 30 years using an appropriate fracture gradient based bottom hole pressure limit for each injection level. Modeling results are presented in terms of well bottomhole pressure (BHP), injection rate profiles, and three-dimensional (3D) saturation and differential pressure volumes at selected simulation times. Results suggest that the target CO2 injection rate of 3.2 MTPA may be achieved in the St. Peter Sandstone at in-situ conditions and at the in-situ +1,000 ft. (300 m) depth using a single injector well. In the latter case the target injection rate is achieved after a ramp up period which is caused by multi-phase flow effects and thus subject to increased modeling uncertainty. Results confirm that the target rate may not be achieved at the in-situ +2,000 ft. (600 m) level even with multiple wells. These new modeling results for the in-situ case are more optimistic than previous modeling results. This difference is attributed to the difference in methods and data used to develop model permeability distributions. Recommendations for further work include restriction of modeling activity to the in-situ +1,000 ft. (300 m) and shallower depth interval, sensitivity and uncertainty analysis, and refinement of porosity and permeability estimates through depth and area selective querying of the available core database. It is also suggested that further modeling efforts include scope for evaluating project performance in terms of metrics directly related to the Environmental Protection Agency (EPA) Class VI permit requirements for the area of review (AoR) definition and post injection site closure monitoring.

  3. Integration & Co-development of a Geophysical CO2 Monitoring Suite

    SciTech Connect (OSTI)

    Friedmann, S J

    2007-07-24

    Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.

  4. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    SciTech Connect (OSTI)

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  5. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect (OSTI)

    Neeraj Gupta

    2005-05-26

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  6. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01

    Analysis of Building Energy Costs and CO 2 Emissions, ACEEEDistributed   Energy  Costs  and  CO 2  Abatement:     A  of Building Distributed Energy Costs and CO 2 Abatement: A

  7. Experimental study of rock-fluid interaction using automated multichannel system operated under conditions of CO2-based geothermal systems

    E-Print Network [OSTI]

    Petro, M.

    2014-01-01

    Interactions in CO 2 -based EGS,” 38 th Workshop onimportant aspects of the CO 2 -EGS reservoir development andof a potential CO 2 -EGS project. Originally, both illite

  8. The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results

    E-Print Network [OSTI]

    Xu, T.

    2014-01-01

    K. , 2006. Enhanced Geothermal Systems (EGS) Using CO 2 asinteractions in enhanced geothermal systems (EGS) with CO 2behavior of enhanced geothermal systems with CO 2 as Working

  9. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska

    SciTech Connect (OSTI)

    Roy Chowdhury, Taniya; Herndon, Elizabeth M; Phelps, Tommy Joe; Elias, Dwayne A; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D; Graham, David E

    2015-01-01

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.

  10. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    SciTech Connect (OSTI)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.

  11. Injection and Monitoring at the Wallula Basalt Pilot Project

    SciTech Connect (OSTI)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show that mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.

  12. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; Thompson, Christopher J.; Brown, Christopher F.

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore »mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  13. COS: A new tracer to constrain photosynthetic CO2 fluxes

    E-Print Network [OSTI]

    Einat, Aharonov

    COS: A new tracer to constrain photosynthetic CO2 fluxes Dan Yakir1, Max Berkelhammer2, Hulin Chen2 COS (110-190) Indirect CS2, DMS (149-330) Unknown (~600) Stratosphere COSàSO2 OH uptake (82-110) Global COS Budget (Gg S a-1; Kettle et al., 2002; Montzka et al., 2007; Berry et al., 2013 ) Mean

  14. Chemical Looping Combustion for inherent CO2 capture in a

    E-Print Network [OSTI]

    HRSG Stack Steam TurbineFuel Compr. Air Flue gas H2O CO2 to compression Depleted air HP Steam not possible with Ni/NiO 6 CLC in a combined cycle power plant Fuel Reactor Air Reactor Gas Turbine Gas Turbine) ­ adiabatic, 20 bar Stoichiometric MeO Air-fuel ratio Stoichiometric ­ 3*Stoicihometric Gas turbine

  15. CO2 Storage and Sink Enhancements: Developing Comparable Economics

    E-Print Network [OSTI]

    capital, engineering and home office overhead, project and process contingencies, and miscellaneousCO2 Storage and Sink Enhancements: Developing Comparable Economics B.R. Bock1 , R.G. Rhudy2 , and H Research Institute, Palo Alto, CA, USA 3 Laboratory for Energy and the Environment, Massachusetts Institute

  16. Carbonation: An Efficient and Economical Process for CO2 Sequestration

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

  17. Challenges in elevated CO2 experiments on forests

    E-Print Network [OSTI]

    Oren, Ram

    of Illinois, Urbana-Champaign, IL, USA 4 Technical University of Denmark, Roskilde, Denmark 5 University concentrations in future experiments to better predict the effects of climate change? Plantations and natural. Forest ecosystems under climate change Carbon dioxide (CO2) is the most important greenhouse gas emitted

  18. REVIEW ARTICLE Nitrogen cycle responses to elevated CO2 depend

    E-Print Network [OSTI]

    Thomas, David D.

    carbon dioxide (CO2) concentra- tion leads to an increase in the net flux of carbon (C) from sequestration of C (Drigo et al. 2008). Potentially, the additional sequestration of C in SOM will also cause-Liebig-University Giessen, Gießen, Germany 123 Nutr Cycl Agroecosyst DOI 10.1007/s10705-015-9683-8 #12;(N) sequestration

  19. Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration

    E-Print Network [OSTI]

    Israelsson, Peter H. (Peter Hampus), 1973-

    2008-01-01

    This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

  20. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  1. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    capture of CO 2 from gasifier process producing electricalPlaquemine, Louisiana. The gasifier is a proprietary designGasifier .

  2. Probabilistic cost estimation methods for treatment of water extracted during CO2 storage and EOR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Enid J. Sullivan; Chu, Shaoping; Pawar, Rajesh J.

    2015-08-08

    Extraction and treatment of in situ water can minimize risk for large-scale CO2 injection in saline aquifers during carbon capture, utilization, and storage (CCUS), and for enhanced oil recovery (EOR). Additionally, treatment and reuse of oil and gas produced waters for hydraulic fracturing will conserve scarce fresh-water resources. Each treatment step, including transportation and waste disposal, generates economic and engineering challenges and risks; these steps should be factored into a comprehensive assessment. We expand the water treatment model (WTM) coupled within the sequestration system model CO2-PENS and use chemistry data from seawater and proposed injection sites in Wyoming, to demonstratemore »the relative importance of different water types on costs, including little-studied effects of organic pretreatment and transportation. We compare the WTM with an engineering water treatment model, utilizing energy costs and transportation costs. Specific energy costs for treatment of Madison Formation brackish and saline base cases and for seawater compared closely between the two models, with moderate differences for scenarios incorporating energy recovery. Transportation costs corresponded for all but low flow scenarios (3/d). Some processes that have high costs (e.g., truck transportation) do not contribute the most variance to overall costs. Other factors, including feed-water temperature and water storage costs, are more significant contributors to variance. These results imply that the WTM can provide good estimates of treatment and related process costs (AACEI equivalent level 5, concept screening, or level 4, study or feasibility), and the complex relationships between processes when extracted waters are evaluated for use during CCUS and EOR site development.« less

  3. Deep Pacific CaCO3 compensation and glacialinterglacial atmospheric CO2

    E-Print Network [OSTI]

    Lynch-Stieglitz, Jean

    Analysis of air trapped in Antarctic ice cores indicates that atmospheric CO2 concentrations have varied

  4. Industrial CO2 emissions as a proxy for anthropogenic influence on lower tropospheric temperature trends

    E-Print Network [OSTI]

    Laat, Jos de

    Industrial CO2 emissions as a proxy for anthropogenic influence on lower tropospheric temperature­2001 are spatially correlated to anthropogenic surface CO2 emissions, which we use as a measure of industrialization change, CO2 emissions. Citation: de Laat, A. T. J., and A. N. Maurellis (2004), Industrial CO2 emissions

  5. Economically Efficient Operation of CO2 Capturing Process Part II: Control Layer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    be considered as the CO2 recovery in the absorber and the CO2 mole fraction at the bottom of the stripper Efficient Operation of CO2 Capturing Process Part II: Control Layer Mehdi Panahi, Sigurd Skogestad regions of a post-combustion CO2 capturing process using the top-down steady-state economic part

  6. Forest Sensitivity to Elevated Atmospheric CO2 and its Relevance to Carbon Management Richard J. Norby

    E-Print Network [OSTI]

    the airborne fraction of CO2 from fossil fuel combustion, and, therefore, the rate of increase of CO2Forest Sensitivity to Elevated Atmospheric CO2 and its Relevance to Carbon Management Richard J the responses of forest trees to rising concentrations of atmospheric CO2 has for the past two decades been

  7. Efficient parallel simulation of CO2 geologic sequestration in saline aquifers

    E-Print Network [OSTI]

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

    2007-01-01

    +6s, no salt, 3D CO2 Mass Fraction Z (m) Y(m) Figure 6. CO 2s), salt=12.5%, 3D CO2 mass fraction Z (m) X (m) Figure 7.25% with Large K, 3D CO2 mass fraction Z (m) Y (m) Figure 9.

  8. Stoichiometry of CH4 and CO2 flux in a California Rice Paddy

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

    2007-01-01

    harvest. Respiratory losses (positive fluxes of CO 2 ) were highest following the drainage of standing water

  9. Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification

    E-Print Network [OSTI]

    are a strong motivation to reduce CO2 emissions from industrial processes. Burning of fossil fuel to generate electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gasEnhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification Youn-Sang Bae

  10. Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements

    E-Print Network [OSTI]

    Ray, Jaideep

    for source locations #12;Background on ffCO2 inversion · Unlike biogenic CO2 emissions, anthropogenicWavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements J. Ray1, V: Develop a technique to estimate anthropogenic (fossil- fuel) CO2 emissions from sparse observations

  11. CARBON DIOXIDE -CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    CARBON DIOXIDE - CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: CARBON DIOXIDE - CO2, GASEOUS CARBON DIOXIDE - CO2, CRYOGENIC CARBON DIOXIDE - CO2, SOLID Document Number: 001013 PRODUCT USE: For general analytical

  12. Observations and simulations of synoptic, regional, and local variations in atmospheric CO2

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Observations and simulations of synoptic, regional, and local variations in atmospheric CO2 Jih] Synoptic events may play an important role in determining the CO2 spatial distribution and temporal 2001, which had the most significant CO2 concentration variation in our case pool. The CO2

  13. Using CO2:CO correlations to improve inverse analyses of carbon fluxes

    E-Print Network [OSTI]

    Palmer, Paul

    Using CO2:CO correlations to improve inverse analyses of carbon fluxes Paul I. Palmer,1,2 Parvadha 30 June 2006. [1] Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse

  14. CO2 enrichment accelerates successional development of an understory plant community

    E-Print Network [OSTI]

    Post, Wilfred M.

    CO2 enrichment accelerates successional development of an understory plant community Contact Research · Over 11 years of CO2 enrichment in the ORNL FACE experiment, the understory community changed dramatically. · Aboveground biomass was on average 25% greater in elevated [CO2] than in ambient [CO2] plots

  15. Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate , Gary T. Rochelle1

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate Eric Chen1 , Gary pilot for CO2 capture was successfully operated using potassium carbonate promoted with piperazine heat duty for a given CO2 removal efficiency than 6.4m K+ /1.6m PZ. Keywords: CO2, pilot plant

  16. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration

    E-Print Network [OSTI]

    CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration amounts of CO2 to the atmosphere, while the magnitude of CO2 degassing from small streams remains a major was as terrestrially-respired CO2 dissolved within soils, over 90% of which evaded to the atmosphere within headwater

  17. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

  18. Physical controls on the isotopic composition of soil-respired CO2

    E-Print Network [OSTI]

    Physical controls on the isotopic composition of soil-respired CO2 Nick Nickerson1 and Dave Risk1] Measurement of the isotopic composition of soil and soil-respired CO2 (d13 CO2) has become an invaluable tool in understanding the effects of diffusive transport on soil CO2 isotopic composition, it is crucial

  19. Summary Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and

    E-Print Network [OSTI]

    ), nighttime respiration, number of mitochondria. Introduction Terrestrial plant photosynthesis and respiration the atmosphere and terrestrial biosphere are large, because photosynthesis assimilates about 120 Pg C year­1- nistically explained in large part by the direct effect of ele- vated [CO2] on Rubisco kinetics (Farquhar

  20. Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

    2013-08-12

    A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Young’s modulus, and Poisson’s ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. The injection pressure and ground surface displacement are often monitored for injection well safety, and are believed can partially reflect the risk of fault reactivation and seismicity. Based on the reduced order model and response surface, the input parameters can be screened for control the risk of induced seismicity. The uncertainty of the subsurface structure properties cause the numerical simulation based on a single or a few samples does not accurately estimate the geomechanical response in the actual injection site. Probability of risk can be used to evaluate and predict the risk of injection when there are great uncertainty in the subsurface properties and operation conditions.

  1. Experimental Assessment of CO2Mineral-Toxic Ion Interactions in a Simplified Freshwater Aquifer: Implications for CO2 Leakage from

    E-Print Network [OSTI]

    that remobilization of trace elements by CO2 intrusion is not a universal physicochemical effect. In fact goethite, a decrease in pH resulting from CO2 intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite, arsenite As(III) is significantly adsorbed on goethite, but is partially remobilized by CO2 intrusion

  2. 1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd Skogestad 18.10.2011 AIChE Annual Meeting #12;2M. Panahi, S. Skogestad ' Optimal Operation of a CO2

  3. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01

    2008), Reservoir monitoring and characterization usingcharacterization Capacity & injectivity over time Plume movement in reservoir (characterization Seal (and wellbore) integrity over time Mitigation strategies Reservoir

  4. Numerical Modeling Studies of The Dissolution-Diffusion-Convection Process During CO2 Storage in Saline Aquifers

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Properties of the Supercritical CO2–Water Pure Interface, J.and pressure conditions, supercritical CO2 (scCO2) has lowerthe overlying free supercritical CO2 phase. This is modeled

  5. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  6. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    SciTech Connect (OSTI)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta; Wang, Zheming; Hess, Nancy J.; Felmy, Andrew R.

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followed a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.

  7. Monitoring CO2 Storage at Cranfield, Mississippi with Time-Lapse Offset VSP – Using Integration and Modeling to Reduce Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daley, Thomas M.; Hendrickson, Joel; Queen, John H.

    2014-12-31

    A time-lapse Offset Vertical Seismic Profile (OVSP) data set was acquired as part of a subsurface monitoring program for geologic sequestration of CO2. The storage site at Cranfield, near Natchez, Mississippi, is part of a detailed area study (DAS) site for geologic carbon sequestration operated by the U.S. Dept. of Energy’s Southeast Regional Carbon Sequestration Partnership (SECARB). The DAS site includes three boreholes, an injection well and two monitoring wells. The project team selected the DAS site to examine CO2 sequestration multiphase fluid flow and pressure at the interwell scale in a brine reservoir. The time-lapse (TL) OVSP was partmore »of an integrated monitoring program that included well logs, crosswell seismic, electrical resistance tomography and 4D surface seismic. The goals of the OVSP were to detect the CO2 induced change in seismic response, give information about the spatial distribution of CO2 near the injection well and to help tie the high-resolution borehole monitoring to the 4D surface data. The VSP data were acquired in well CFU 31-F1, which is the ~3200 m deep CO2 injection well at the DAS site. A preinjection survey was recorded in late 2009 with injection beginning in December 2009, and a post injection survey was conducted in Nov 2010 following injection of about 250 kT of CO2. The sensor array for both surveys was a 50-level, 3-component, Sercel MaxiWave system with 15 m (49 ft) spacing between levels. The source for both surveys was an accelerated weight drop, with different source trucks used for the two surveys. Consistent time-lapse processing was applied to both data sets. Time-lapse processing generated difference corridor stacks to investigate CO2 induced reflection amplitude changes from each source point. Corridor stacks were used for amplitude analysis to maximize the signal-to-noise ratio (S/N) for each shot point. Spatial variation in reflectivity (used to ‘map’ the plume) was similar in magnitude to the corridor stacks but, due to relatively lower S/N, the results were less consistent and more sensitive to processing and therefore are not presented. We examined the overall time-lapse repeatability of the OVSP data using three methods, the NRMS and Predictability (Pred) measures of Kragh and Christie (2002) and the signal-to-distortion ratio (SDR) method of Cantillo (2011). Because time-lapse noise was comparable to the observed change, multiple methods were used to analyze data reliability. The reflections from the top and base reservoir were identified on the corridor stacks by correlation with a synthetic response generated from the well logs. A consistent change in the corridor stack amplitudes from pre- to post-CO2 injection was found for both the top and base reservoir reflections on all ten shot locations analyzed. In addition to the well-log synthetic response, a finite-difference elastic wave propagation model was built based on rock/fluid properties obtained from well logs, with CO2 induced changes guided by time-lapse crosswell seismic tomography (Ajo-Franklin, et al., 2013) acquired at the DAS site. Time-lapse seismic tomography indicated that two reservoir zones were affected by the flood. The modeling established that interpretation of the VSP trough and peak event amplitudes as reflectivity from the top and bottom of reservoir is appropriate even with possible tuning effects. Importantly, this top/base change gives confidence in an interpretation that these changes arise from within the reservoir, not from bounding lithology. The modeled time-lapse change and the observed field data change from 10 shotpoints are in agreement for both magnitude and polarity of amplitude change for top and base of reservoir. Therefore, we conclude the stored CO2 has been successfully detected and, furthermore, the observed seismic reflection change can be applied to Cranfield’s 4D surface seismic for spatially delineating the CO2/brine interface.« less

  8. The role of CO2 in CH4 exsolution from deep brine: Implications for geologic carbon sequestration

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01

    to CO 2 -enhanced geothermal systems. Trans. Porous Med.to CO 2 -enhanced geothermal systems. Trans. Porous Med.

  9. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect (OSTI)

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

  10. Photodesorption of ices I: CO, N2 and CO2

    E-Print Network [OSTI]

    Karin I. Oberg; Ewine F. van Dishoeck; Harold Linnartz

    2009-01-23

    A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense inter- and circumstellar regions. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. This paper aims to determine the UV photodesorption yields and to constrain the photodesorption mechanisms of three astrochemically relevant ices: CO, N2 and CO2. In addition, the possibility of co-desorption in mixed and layered CO:N2 ices is explored. The ice photodesorption is studied experimentally under ultra high vacuum conditions and at 15-60 K using a hydrogen discharge lamp (7-10.5 eV). The ice desorption during irradiation is monitored by reflection absorption infrared spectroscopy of the ice and simultaneous mass spectrometry of the desorbed molecules. Both the UV photodesorption yields per incident photon and the photodesorption mechanisms are molecule specific. CO photodesorbs without dissociation from the surface layer of the ice. N2, which lacks an electronic transition in this wavelength range, has a photodesorption yield that is more than an order of magnitude lower. This yield increases significantly due to co-desorption when N2 is mixed in with or layered on top of CO ice. CO2 photodesorbs through dissociation and subsequent recombination from the top 10 layers of the ice. At low temperatures (15-18 K) the derived photodesorption yields are 2.7x10^-3 and CO2 photodesorption yield is 1.2x10^-3x(1-e^(-X/2.9)) + 1.1x10^-3x(1-e^(-X/4.6)) molecules photon-1, where X is the ice thickness in monolayers and the two parts of the expression represent a CO2 and CO photodesorption pathway.

  11. Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

    2013-10-01

    A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Young’s modulus, and Poisson’s ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations.

  12. STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.

    2012-04-03

    This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulator’s capabilities.

  13. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices

    E-Print Network [OSTI]

    Karin I. Oberg; Helen J. Fraser; A. C. Adwin Boogert; Suzanne E. Bisschop; Guido W. Fuchs; Ewine F. van Dishoeck; Harold Linnartz

    2006-10-25

    H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending and the 13 um libration band intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect relative strengths of the 3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral features at 15-135 K. We find that the H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.

  14. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01

    both during drilling and completion, as well as during the2 injection. Drilling and completion of wells through layersdrilling. However, severe instability problems were encountered in the first well (

  15. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  16. 2015 CO2 Capture Technology Meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril 30, 2013Program95 CalendarCO2 Capture

  17. CantorCO2e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick,CalendarFork Electric Coop,CantorCO2e Jump

  18. CO2 Capture Poject CCP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-The World FactbookCN Solar CoCO2

  19. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86)ContractorsCNG Exports by Truck out ofCO2

  20. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming Upgrades toFreezingHSA BankFriendshipsFrom CO2

  1. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage...

  2. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    SciTech Connect (OSTI)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane. The remaining carbonaceous material is essentially bio-inactive and is permanently sequestered. The feasibility of using algae to convert carbon dioxide to a biomass has been demonstrated. This biomass provides a sustainable means to produce methane, ethanol, and/or bio diesel. The first application of concept demonstrated by the project could be to use algal biomass production to capture carbon dioxide associated with ethanol production.

  3. Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"

    E-Print Network [OSTI]

    Lumley, D.

    2010-01-01

    on “CO 2 Sequestration Geophysics” David Lumley (U. W.on “CO 2 Sequestration Geophysics” was held August 23-27,sequestration: Model Studies: Geophysics, 73, WA105-WA112.

  4. Advanced Development Of The Coal Fired Oxyfuel Process With CO2...

    Open Energy Info (EERE)

    Advanced Development Of The Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name: Advanced Development Of The Coal-Fired Oxyfuel Process With CO2...

  5. Biases of CO2 Storage in Eddy Flux Measurements pertinent to...

    Office of Scientific and Technical Information (OSTI)

    Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging Citation Details In-Document Search Title: Biases...

  6. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01

    for CO2 geological storage, Int. J. Greenhouse Gas Control,1008, DOI Bachu, S. CO2 Storage in Geological Media: Role,R.H. Worden. Geological Storage of Carbon Dioxide, in: S.J.

  7. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage...

    Energy Savers [EERE]

    DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site June 3, 2015 - 8:44am Addthis Photo...

  8. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    of Enhanced Geothermal Systems? , paper presented at ThirdPruess, K. Enhanced Geothermal Systems (EGS) Using CO2 asBehavior of Enhanced Geothermal Systems with CO 2 as Working

  9. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    to all DER technologies, PV adoption increases, but only in2 Pricing Scheme on CHP/PV adoption and CO 2 emissions SinceCO 2 price, PV and solar thermal adoption increases in all

  10. Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6

    E-Print Network [OSTI]

    Schipper, Lee

    2008-01-01

    related to fuel use or emissions than car ownership alone.Limiting CO2 Emissions from new cars promulgated by the EU (of 120 gm/km CO2 emissions from new cars, which corresponds

  11. Interaction between CO2-rich solutions and reservoir-seal rocks. Experimentation

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    coal systems 5.Use of CO2 in enhanced coal bed methane recovery 6.Other suggested options (basalts, oil shales, cavities) #12;Motivation CO2 subsurface behavior and trapping mechanisms Four basic trapping

  12. Nonclassical hydrodynamic behavior of Sn plasma irradiated with a long duration CO2 laser pulse

    E-Print Network [OSTI]

    Tao, Y.; Tillack, M. S.; Yuseph, S.; Burdt, R.; Najmabadi, F.

    2010-01-01

    a long duration CO 2 laser pulse Y. Tao · M.S. Tillack · S.a long duration CO 2 laser pulse is much shorter than thatsource. When an intense laser pulse arrives at the surface

  13. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in an2 instead of water as heat transmission fluid (D.W. Brown,

  14. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    either CO 2 or water as heat transmission fluid. For a modelsystems (EGS), heat transmission, thermal breakthrough, CO 2instead of water as heat transmission fluid was proposed by

  15. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    E-Print Network [OSTI]

    Davis, SJ; Caldeira, K; Matthews, HD

    2010-01-01

    Future CO 2 Emissions and Climate Change from Existing Energynon-energy emissions could diminish in the future. In viewfuture CO 2 emissions is much greater in China, because China’s energy

  16. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency...

  17. Porous compaction in transient creep regime and implications for melt, petroleum, and CO2 circulation

    E-Print Network [OSTI]

    Kaminski, Edouard

    Porous compaction in transient creep regime and implications for melt, petroleum, and CO2 in transient creep regime and implications for melt, petroleum, and CO2 circulation, J. Geophys. Res., 113, B

  18. Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

  19. Non-CO2, Non-Greenhouse, Non-Gas Forcing Stephen E. Schwartz

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    AEROSOLS: Non-CO2, Non-Greenhouse, Non-Gas Forcing Stephen E. Schwartz Symposium on Controlling Emissions of Non-CO2 Greenhouse Gases and Aerosols: Scientific and Policy Challenges http

  20. CO2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems 

    E-Print Network [OSTI]

    Nassif, N.

    2011-01-01

    CO2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO2-based DCV under ASHRAE 62.1.2004 through 2010...