Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

STEM-ing the Tide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STEM-ing the Tide STEM-ing the Tide STEM-ing the Tide September 29, 2010 - 4:29pm Addthis Ali Zaidi Special Assistant to the Secretary of Energy Yesterday, the MacArthur Foundation rolled out its latest class of "geniuses" - 23 Americans who stand out because of their creativity and enterprise. Each recipient of the honor (and the $500,000 prize) has made an extraordinary contribution. One of those recipients is Amir Abo-Shaeer, an engineer in the aerospace and telecommunications industries who decided 10 years ago to go back to high school - this time as a teacher. At his alma mater, Dos Pueblos High School (in Santa Barbara, California), Amir created "a school within a school" built around a hands-on curriculum that helps students learn by connecting the ideas of physics, engineering and mathematics through

2

Personnel Change Notification ImagIng: GRSF/T  

E-Print Network (OSTI)

Personnel Change Notification OGS Form 3 ImagIng: GRSF/T Admit Year/Term: GS Web Front Desk: Office., reviewers, coordinators and chairs) Update: View all AIM Graduate Studies pages and enter decisions on GS02: Search for and view applicants; edit emails Connect: Add, search for and communicate with prospects

Hart, Gus

3

"Dark Web: Exploring and Min-ing the Dark Side of the Web"  

E-Print Network (OSTI)

Title: "Dark Web: Exploring and Min- ing the Dark Side of the Web" Speaker: Director, Prof will review the emerging research in Terrorism Informatics based on a web mining perspective. Recent progress in the internationally re- nowned Dark Web project will be reviewed, including: deep/dark web spider- ing (web sites

Michelsen, Claus

4

13:00 Begrung und Symposiumserffnung Prof. Dr.-Ing. Gerd Holbach  

E-Print Network (OSTI)

Windenergie-Gewinnung Dipl.-Ing. Jörgen Thiele Stiftung Offshore-Windenergie, Varel 14:45 Evolution der Meyer Werft GmbH, Papenburg 14:00 Energiewende als Chance und Heraus- forderung am Beispiel der Offshore challenges for ships and offshore structures (Englisch) Dr.-Ing. Bas Buchner, Maritime Research Institute

Berlin,Technische Universität

5

"Cook"ing at Y-12 for 70 years | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

"Cook"ing at Y-12 ... "Cook"ing at Y-12 ... "Cook"ing at Y-12 for 70 years Posted: December 5, 2013 - 4:48pm At a Nov. 14 visit to Y-12, National Nuclear Security Administration's Deputy Administrator for Defense Don Cook shared his outlook on the future and his thanks to employees for continuing their 70-year tradition of making America safer. "There are three things to remember," Cook told a meeting of NNSA Production Office and Y-12 employees. "We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America." Cook also shared his thanks for preparing for the potential furlough in October because of the government shutdown and lack of appropriations. During what was the longest government shutdown to date, Cook said Y-12

6

TRANSPORTATION SYSTEMS are the build-ing blocks of modern society. Efficient and  

E-Print Network (OSTI)

TRANSPORTATION SYSTEMS are the build- ing blocks of modern society. Efficient and safe movement. How- ever, transportation systems by their very nature also affect the environment through operations, construction, and maintenance of transportation facilities, and through the travel behaviors they encourage

Wang, Yuhang

7

Water is used for many purposes, includ-ing growing crops, producing copper,  

E-Print Network (OSTI)

WATER USES Water is used for many purposes, includ- ing growing crops, producing copper, generating electricity, watering lawns, keeping clean, drinking and recreation. Bal- ancing the water budget comes down of the water budget. Reducing demand involves re- ducing how much water each person uses, lim- iting the number

8

ing system  

E-Print Network (OSTI)

Oct 29, 2002 ... GAs are search algorithms based on the mechanics of natural selection and natural genetics. They combine the concept of survival of the.

9

Material development in the SI sub 3 N sub 4 system using glass encapsulated Hip'ing  

DOE Green Energy (OSTI)

This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP'ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

1992-04-01T23:59:59.000Z

10

Passive Cooling of a Micromechanical Oscillator with a ...  

Science Conference Proceedings (OSTI)

... Closely related passive cooling has been reported in [9,20 ... Although rather modest cooling is obtained here ... eventually provide ground state cool- ing ...

2007-09-26T23:59:59.000Z

11

Publications Dipl.-Ing. Ing. Hana Krsn (ne Spickov)  

E-Print Network (OSTI)

analýzu VLBI dat. Konferenz des CEDR ­ Center for Earth's Dynamic Research. Trest, Czech Republic, 14 ­ 16

Schuh, Harald

12

Material development in the SI{sub 3}N{sub 4} system using glass encapsulated Hip`ing. Final report, Phase 2: DOE/ORNL Ceramic Technology Project  

DOE Green Energy (OSTI)

This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP`ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

1992-04-01T23:59:59.000Z

13

Hydraulic fractur ing--also called hy  

E-Print Network (OSTI)

reported four species of pollinators (Riley, 1892; Davis, 1967; Frack, 1982; Powell, 1984), including three

Goodman, Robert M.

14

E(Race)ing gender: Stratified identities  

E-Print Network (OSTI)

In the discussion that follows, I will examine, on the broadest level, Hurston's complex negotiation of identity, as manifested in Their Eyes Were Watching God. Central to this investigation is an understanding of the strategies that women, specifically African American women, have adopted, under the auspices of marriage and the patronage system, to seek an equal place within a hegemonic culture. Most importantly, I want to address the cultural and social price exacted for accepting (as seen in the appropriation of white standards, and rejecting (as seen in Janie's trial for her husband's death) those institutions as the basis of one's identity. The cultural and social price that Janie pays, furthermore, challenges her adaptive capacity to stratify her racial and gender identity. Finally, it exacts a toll on the community as a whole, a fact Hurston repeatedly suggests by illustrating the extent to which the community has absorbed hegemonic standards of value and beauty with little or no inspection of or reflection on the effects to itself or to its individual members.

Nguyen, Le Thuy Thi

2000-01-01T23:59:59.000Z

15

IMPROVED GROOVING TOOL FOR TU ING  

te hnology readiness level: 6 a market deliverable has been demonstrated in relevant environments and is in final development . author: alexandra ...

16

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

17

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

18

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

19

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Intensity (thousand Btusquare foot) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

20

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

22

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

23

EPIC Muon Cooling Simulations using COSY INFINITY  

SciTech Connect

Next generation magnet systems needed for cooling channels in both neutrino factories and muon colliders will be innovative and complicated. Designing, simulating and optimizing these systems is a challenge. Using COSY INFINITY, a differential algebra-based code, to simulate complicated elements can allow the computation and correction of a variety of higher order effects, such as spherical and chromatic aberrations, that are difficult to address with other simulation tools. As an example, a helical dipole magnet has been implemented and simulated, and the performance of an epicyclic parametric ionization cooling system for muons is studied and compared to simulations made using G4Beamline, a GEANT4 toolkit.

J.A. Maloney, B. Erdelyi, A. Afanasev, R.P. Johnson, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov

2011-03-01T23:59:59.000Z

24

Table E1. Major Fuel Consumption (Btu) by End Use for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other

25

Table E6. Electricity Consumption (kWh) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

26

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

27

Table E3A. Electricity Consumption (Btu) by End Use for All ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

28

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

29

Table E5A. Electricity Consumption (kWh) by End Use for All ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other

30

Table E6A. Electricity Consumption (kWh) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other

31

Go-ing for the prediction of protein folding mechanisms  

E-Print Network (OSTI)

of Chemistry, Faculty of Science, Kobe University, Kobe, 657-8501, Japan Protein folding has been a long-lived could be relatively simple. These three ingredients are linked together with an almost one-line free work (8, 9). The surprise of the three papers is that apparently one can have both simplicity and fair

Takada, Shoji

32

The physical function-ing of a city sometimes  

E-Print Network (OSTI)

insurance. It is recommended that parents carefully review their homeowners, auto and health insurance. Parents should check their homeowners policy to see whether it will cover a student's possessions while

33

Inproved Performance of an Air Cooled Condenser (ACC) Using SPX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved performance of an aIr cooled condenser (acc) UsIng spX WInd gUIde Technology aT coal-fIred ThermoelecTrIc poWer planTs promIsprojecT no. : de-nT0006549 Background As the...

34

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

35

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity (kWhsquare foot) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

36

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

37

Improving Data Center Efficiency with Rack or Row Cooling Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

38

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

39

Simulation of a method for forming a laser-cooled positron plasma A. S. Newbury,* B. M. Jelenkovic,  

E-Print Network (OSTI)

axis at the same frequency as the 9 Be ions . Therefore, a centrifugal separation will occur, forcing beams of high brightness for a number of different ex- periments 4,6,18 . A dense gas of positrons-temperature buffer gas of N2 to provide trapping and cooling. By remov- ing the buffer gas, the base pressure

40

ing the distribution of those galaxies, the way they clump and spread out, scientists  

E-Print Network (OSTI)

illuminated realms as small as a single molecule and as large as a gamma ray burst. of the Year Agony ex- plosions in the universe: titanic blasts of en- ergy called gamma ray bursts (GRBs). Most notably of black holes and other phenomena in the gamma ray region of the spectrum. And the Wilkinson Microwave

Yildiz, Ahmet

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg130  

E-Print Network (OSTI)

. Journal of "Solar Energy Materials and Solar Cells". Proceedings of IEEE Photovoltaic Specialist Conferences. Proceedings of European Photovoltaic Solar Energy Conferences. #12;Module 2/Photovoltaics, Wiley, 1995. R.H.Bube, Photovoltaic Materials, Imperial College Press, 1998. Journal of "Solar Energy

42

CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT  

U.S. Energy Information Administration (EIA) Indexed Site

MCKEESPORT MCKEESPORT COR AOPOLIS-MOON REDHAW ST. CLAIR SC ROGGSFIELD FRANKLIN -OAK FOREST RIMERSBURG RENNERD AL E GREENVILL E PAT MOS CRABTR EE BLAC K ASH ROYALT ON N BAKERSTOWN QUEEN ROU GH RUN LUCAS BLAC K H ILL CRESTON WAT TSVILLE WADSWORTH -NORT H OAKLAN D HOM EWORT H UNIT Y ESSELBRUN ALAMED A PAR K-CROOKED RU CHERRY GROVE FRENC HTOWN ST EWART RUN MILL C REEK GLENF IELD-MOU NT NEBO HICKORY E HARRISVILLE E LEST ER GRIGGS CORNERS EN GLAN D WEST VIL LE LAKE BAILEY LAKE OAKFORD BR UNSWICK N HOR ACE WALBORN RESERVOIR YOUN GSVILLE RPD-LORAIN -1 INGOMAR-GRUBBS BIG MEADOWS GARD EN ISLE TURT LE CREEK LEWIST ON E BR USH CR EEK FOOT VILLE BU LL CREEK BESSEMER EAGLEVILLE LIVER POOL E RIDGEVILLE E EVANS CIT Y GUIT ONVILLE WOLF S COR NERS WIN DFALL ABBEYVILLE ROC K CAMP LEATH ER WOOD AR COLA CR EEK MEC HANICST OWN NINE MILE RU N WALKCHALK RENFR EW-MCCALMONT BU FFALO N VALENCIA WELLIN GT ON

43

Spring'ing' Forward Into the Finals . . . Of A Competition Like...  

Office of Science (SC) Website

& Testimony Recovery Act Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 03.11.13...

44

'March'ing Into The Finals . . . Of A Competition Like No Other  

Office of Science (SC) Website

& Testimony Recovery Act Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 03.04.13...

45

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg102  

E-Print Network (OSTI)

when carbon dioxide is introduced into thermal conversion processes such as the gasification of coal to syngas, leaving behind only a carbonless char. Castaldi estimates that if the biomass were used

46

Kurzlebenslauf (CV) Stand September 2011 Dr.-Ing. Diplom-Physiker  

E-Print Network (OSTI)

:30 Panel: Erneuerbare Energien: Rentable Investitionen oder teure Experimente? Christof Stein (KfW Bank) Dr für Klima, Umwelt und Energie) Matthias Willenbacher (JuWi Holding) Moderation: Monika Seynsche

47

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Bcker  

E-Print Network (OSTI)

, e.g. Interior permanent magnet synchronous motors (IPMSM)Interior permanent magnet synchronous rings Permanent Magnet Synchronous Motor integrated into the rotor outlines Active magnetic bearing motors (IPMSM) Switched reluctance drives FPGA based control Self optimizing systems (Collaborative

Noé, Reinhold

48

Programme Coordination Professor Dr.-Ing. habil. Dr. h. c. Karl J. Thom-Kozmiensky  

E-Print Network (OSTI)

Waste Management · Recycling · Waste-to-Energy Recovery of Biowastes · Mechanical-Biological Treatment of the European Suppliers of Waste to Energy Technology (ESWET), Brussels, Belgium 10.30 Hrs. Waste Framework.V., Gent, Belgium 12.30 Hrs. Waste incineration in the 21st century ­ Energy-efficient and climate

Hone, James

49

Wolfram Hoefer, Dr.-Ing. Assistant Professor Department of Landscape Architecture  

E-Print Network (OSTI)

Landentwicklung. Gärtner im Garten- und Landschaftsbau. (State exam for professional degree as gardener, landscape Ltd. London 1984-86 Apprenticeship as landscape gardener with Hermann Kretz, Garten und Landschaftsbau

Goodman, Robert M.

50

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg 141  

E-Print Network (OSTI)

- onry is also crucial to their safe storage. Plutonium, an active ingredient in nuclear weap- ons, has to determine how the electrons within these materials will behave. "The plutonium in the weapons ages, and we have to be able to predict the proper- ties of plutonium under a variety of conditions," Chris

51

Protective interior wall and attach8ing means for a fusion reactor vacuum vessel  

DOE Patents (OSTI)

An array of connected plates mounted on the inside wall of the vacuum vessel of a magnetic confinement reactor in order to provide a protective surface for energy deposition inside the vessel. All fasteners are concealed and protected beneath the plates, while the plates themselves share common mounting points. The entire array is installed with torqued nuts on threaded studs; provision also exists for thermal expansion by mounting each plate with two of its four mounts captured in an oversize grooved spool. A spool-washer mounting hardware allows one edge of a protective plate to be torqued while the other side remains loose, by simply inverting the spool-washer hardware.

Phelps, Richard D. (Greeley, CO); Upham, Gerald A. (Valley Center, CA); Anderson, Paul M. (San Diego, CA)

1988-01-01T23:59:59.000Z

52

Pico-ing into the future of mobile projection and contexts  

Science Conference Proceedings (OSTI)

Ten years ago, we were on the verge of having cameras built into our mobile phones, but knew very little about what to expect or how they would be used. Now we are faced with the same unknowns with mobile projector phones. This research seeks to explore ... Keywords: Diary study, Experience sampling, Mobile, Pico-projectors

Max L. Wilson; Dan Craggs; Simon Robinson; Matt Jones; Kristian Brimble

2012-01-01T23:59:59.000Z

53

Koordination: Prof. Dr.-Ing. J. Seume Institut fr Turbomaschinen und Fluid-Dynamik  

E-Print Network (OSTI)

of installation of offshore wind farms (from Wiese 2008: Auswirkungen der Offshore-Windenergie auf den Betrieb von and offshore applications require appropriate planning and design. For most of them, statistics of extreme wind coastDat have been used in a large variety of coastal, offshore and terrestrial applications

54

Sandra Koch Dipl.-Ing. (FH) Telefon: 04921-807-1489  

E-Print Network (OSTI)

die Voraussetzung geschaffen, um die Stromerzeugung aus Windenergie Offshore langfristig erfolgreich geschaffen, um die Stromerzeugung aus Offshore Windenergie langfristig erfolgreich und effizient entwickeln-02 Bestimmung von Wärme- und Impulsfluss in der marinen atmosphärischen Grenzschicht für die Offshore

Damm, Werner

55

CANTON LAKESHORE CANTON E BEST CON NEAUT GIDD INGS EAST N ELLSWORT  

Annual Energy Outlook 2012 (EIA)

RURAL RID GE ROWSBUR G SH ERRETT MON AC A QUEEN JUN CTION YELLOW CR EEK SMELTZ ER CAT FISH R UN POLK E JEROMESVILLE N FLORENCE-FIVE POINTS ATEN CLARINGTON MILLERSBURG...

56

Following weeks of purging and organiz-ing, phase one of the School's reloca-  

E-Print Network (OSTI)

in August. The depart- ments of Consumer Science and Human Development and Family Studies, as well as UW from top: Gloria McCord, Human Ecology financial specialist, casts a spell at the punch-bowl cauldron

Sheridan, Jennifer

57

INFORMATION EXCELLENTIA CoLumbIA ENgINEErINg238  

E-Print Network (OSTI)

that bends and twists. "Computers, geometry, and physics are my ingredients. I mix them up in a bowl and what science as well. B.A.Sc., University of Toronto (Canada), 1997; M.S., California Institute of TechnologySPUn Associate Professor of Computer Science #12;

Hone, James

58

METHOD FOR REDU ING A KGROUND LUTTER IN A AMERA IMAGE  

... bulky and heavy, expensive, fragile, short-range, sensitive to vibration, and unreliable for outdoor use in bright sunlight conditions. The ...

59

SOLAR TRA ING SENSORS FOR MAXIMUM SOLAR ON ENTRATOR EFFI IEN Y  

POTENTIAL APPLI ATIONS Parabolic dish & trough solar concentrating collectors Solar energy and renewable energy Electric utility

60

whITe PaPer The ChaNgINg DYNaMICS OF  

E-Print Network (OSTI)

of the smart grid, which integrates AMI with distribution automation and other tech- nologies to connect consumers Network Automation And Analytics Smart Meters Distributed Generation Today: Centralized and One smart grid and advanced metering deployments. Bob Brnilovich, IBM www.UtilitiesProject.com/10803

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Natural vs. mechanical ventilation and cooling.  

E-Print Network (OSTI)

cant and well-docu- mented. ASHRAE Standard 55 prescribes aless comfortable. ASHRAE Standard 55-2004 includes an adap-and standards, includ- ing ASHRAE Standard 90.1. Mechanical

Brager, Gail; Alspach, Peter; Nall, Daniel H.

2011-01-01T23:59:59.000Z

62

Technical Report Documentation Page 1. Report No.  

E-Print Network (OSTI)

.-Ing. Biljana Milivojevic Dipl.-Ing. Vitali Mirvoda Stip. Dipl.-Ing. Timo Pfau Dr.-Ing. David Sandel Dr

63

Institutsleitung: Univ.-Prof. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult. Engelbert Westkmper Kontakt: Birgit Spaeth Presse-und ffentlichkeitsarbeit  

E-Print Network (OSTI)

Universitätsprofessor ernannt wird. Thomas Bauernhansl, 1969 im fränkischen Miltenberg geboren, hat Maschinenbau an der

Möbius, Bernd

64

Tactical urbanism, public policy reform, and 'innovation spotting' by government : from Park(ing) Day to San Francisco's parklet program  

E-Print Network (OSTI)

This thesis examines the prospects and impacts of tactical urbanism (TU). While tactical urbanism remains primarily a subcultural movement, it is beginning to gain traction in popular culture in traditionally politically ...

Davidson, Mariko Mura

2013-01-01T23:59:59.000Z

65

The Burning Man festival is a unique happen-ing. For one week in September every year,  

E-Print Network (OSTI)

spaces, the city as it alters over the seven days and from year to year, exhibiting emergent properties- ance of oversized gas-guzzling camper vans, fossil-fuel-powered generators and gratuitous combustion, it is no Utopia. But the City's Alternative Energy Zone, with its huge bank of solar panels, multiple experiments

Bourne, Philip E.

66

Cultivat(ing) modernities : the Society for National Heritage, political propaganda and public architecture in twentieth-century Iran  

E-Print Network (OSTI)

Beginning in 1922, under the auspices of the Pahlavi dynasty of Iran, the tombs of selected historical figures were systematically destroyed to make way for modern mausoleums erected as metaphors for an "Aryan" nation in ...

Grigor, Talinn, 1972-

2005-01-01T23:59:59.000Z

67

58 UTS ANNUAL REPORT 2008 sUppoRtING oUR objEctIvEs  

E-Print Network (OSTI)

improvingenvironmentalsustainabilityin ourcampusoperations.Itisoverseenby asteeringcommitteeandsevenworking groups:waste,transport,energy into the atmosphere. The proposal from students Antony Henry and Kavit Pandya was to put this wasted energy through Energy-efficientlightinginmorethan> 60percentoftheUniversity Savingtheequivalentof45Olympic

University of Technology, Sydney

68

HOW ENVIRONMENTAL RISK FROM LEACH ING OF HEAVY METALS IN ASH RESIDUES FROM COMBUSTION OF MUNIC IPAL SOLID WASTE  

E-Print Network (OSTI)

Laboratories which led to the use of acid tests such as the EP and TCLP tests. [25] 13 #12;CONCLUSIONS and soluble metals in the ash from Waste-to Energy (WTE) facilities has led to a public concern about why has led to the requirement for continuous monitoring of oxygen , carbon monoxide (CO) , and acid gases

Columbia University

69

COMPARISON OF PROPORTIONAL AND ON/OFF COLLECTOR LOOP CONTROL STRATEGIES USING A DYNAMIC COLLECTOR MODEL  

E-Print Network (OSTI)

Department of Energy. "Solar heating and Cooling ProjectProgram." ings of the Solar Heating and Operational Resultsin the Control of Solar Heating and Cooling Systems."

Schiller, Steven R.

2013-01-01T23:59:59.000Z

70

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

71

Clemson University Preservation master Plan Part III: ExIstIng CondItIons ChaPtEr Four FEbruary 2009 JMa, InC. 70  

E-Print Network (OSTI)

,337 CFDA # 15.922 - Native American Graves Protection and Repatriation Act Direct Federal Awards 16,227 525,830 - 4,830 Lawrence Berkeley Natl Lab RF HANFORD SEDM THOMP-6875736 48,614 2,965 45,649 Savannah River Nuclear Solutns RF RIVERBASIN GRUND-AC716760 132,105 9,248 122,857 Savannah River Nuclear Solutns RF SUP

Stuart, Steven J.

72

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

from Smoldering Biomass Combustion. Atmos. Chem. Phys. , 10,aerosols emitted during biomass combustion [Robinson et al.burning samples. Combustion of biomass produces EC a and

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

73

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Tar Balls from Smoldering Biomass Combustion. Atmos. Chem.gases and particles from biomass burning in Brazil, J. Ge-for smoke from African biomass burning, J. Geophys. Res. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

74

Early and sustained interventions which strongly feature mentoring are essential in help-ing Native American and Latino students navigate an unfamiliar academic system that is  

E-Print Network (OSTI)

(Navajo) is the largest, with 170,000 members. Others include the Oglala Sioux, Cherokee Nation, Blackfeet

Benitez-Nelson, Claudia

75
76

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

DOE Green Energy (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

77

MICRO-MACHINED THIN FILM HYDROGEN GAS SENSORS Frank DiMeo, Jr., Ing-Shin Chen, Philip Chen, Jeffrey Neuner  

E-Print Network (OSTI)

;Introduction The reputation of hydrogen as the next generation energy delivery agent, supplementing electricity of Electric Power Research Institute, in a recent The Industrial Physicist column, observed the multifaceted as a national security priority. While fuel cell cars often feature prominently in news media and are touted

78

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

2001. Kerminen, V. -M. , Makela, T. E. , Ojanen, C. H. ,Saarikoski, S. , Frey, A. , Mkel, T. , and Hillamo, R. :Acker, K. , Hillamo, R. , Mkel, T. : Intercomparison of

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

79

CS-03-02 A PIvotIng PRocEDuRE FoR A ClAss oF SEconD-oRDER ...  

E-Print Network (OSTI)

linear function over an intersection of an affine set and second-order cones. SOCP is a .... Note that the e q uality constraints of does not contain!7# .

80

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Crutzen, P. : Atmospheric Aerosols: Biogeochemical sourcesof optically active aerosol particles over the Amazonproperties of Amazonian aerosol particles: Rev. Geophys. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

Science Conference Proceedings (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

82

Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance  

E-Print Network (OSTI)

IEEE Transactions on Smart Grid, ings. Journal of Solaroperations. With continu- ing Smart Grid development, there

Addy, Nathan

2013-01-01T23:59:59.000Z

83

STATE OF GREEN bUSINESS 2012  

Science Conference Proceedings (OSTI)

... Cool technologies are start- ing to make home energy efficiency more com ... years, hundreds of millions of households and businesses worldwide will ...

2013-07-29T23:59:59.000Z

84

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

85

Section 4.1.3 Natural Ventilation: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

in and through build- ings. These airflows may be used both for ventilation air and for passive cooling strategies. Natural ventila- tion is often strongly preferred by building...

86

Energy Star Building Upgrade Manual Introduction Chapter 1  

NLE Websites -- All DOE Office Websites (Extended Search)

offer- ings. The label now covers new homes, commercial and institutional buildings, residential heating and cooling equipment, major appliances, office equipment, lighting,...

87

Contract No. EG-77-C-01-4042OPTIMIZING 'l%E PERFORWANCE OF DESICCANT BEDS FOB SOLAR RJXENEXATED COOLING  

E-Print Network (OSTI)

Lavan and Lunde have recognized this problem and have advocated nonadiabatic drying of the air; Lavan (4) investigating a crosscooled desiccant bed, and Lunde (5> propos-Ing a series of desiccant beds and heat exchangers. The purpose in both concepts is to keep the temperature of the silica gel low during adsorption so that the moisture capacity remains high. 1.

Kirk Collier; Robert Barlow; Kirk Collier

1981-01-01T23:59:59.000Z

88

Automatic annotation of organellar genomes with DOGMA  

E-Print Network (OSTI)

for 98 chloroplast protein cod- ing genes (with two entriessimilarly to the protein cod- ing genes, except that

Wyman, Stacia; Jansen, Robert K.; Boore, Jeffrey L.

2004-01-01T23:59:59.000Z

89

fr Elektrotechnik und Informationstechnik  

E-Print Network (OSTI)

Mitarbeiter und Stipendiaten Dr. Olaf Adamczyk Dr.-Ing. Suhas Bhandare Stip. M. Sc. Mohamed Ebrahim Fahmy Taha El-Darawy Stip. M. Sc. Vijitha Herath M. Sc. Ariya Hidayat Dipl.-Ing. Sebastian Hoffmann Dr Stip. Dipl.-Ing. Timo Pfau Dr.-Ing. David Sandel Dr.-Ing. Sunil Survaiya Dr.-Ing. Hongbin Zhang

Noé, Reinhold

90

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

91

Tel. +49-541-969 2872/2890 -Fax. +49-541-969 1221/2262 -Email. Junge@uni-osnabrueck.de 1 Prof. Dr.-Ing. Wolfgang Junge Gutenbergstrae 36, 49076 Osnabrck  

E-Print Network (OSTI)

for Biophysics, Osnabrück 1992 95th Conference of the Deutsche Bunsengesellschaft für Physikalische Chemie, Jena Chemie Deutsche Gesellschaft für Biophysik Deutsche Gesellschaft für Naturforscher und ?rzte Gesellschaft for Biophysics Chair 1984-1985 Section "Membranes" of Gesellschaft für Biologische Chemie, Board Member 1987

Junge, Wolfgang

92

 

Gasoline and Diesel Fuel Update (EIA)

. Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 ....................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ..................... 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ..................... 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ................... 405 16 57 65 7 158 2 29 6 18 45

93

EPRI Journal: Summer 2007  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

operation because of its inability to withdraw a suffi- cient amount of water to meet its thermal discharge permit. According to John Maulbetsch, a cool- ing systems expert and...

94

Surface Water Temperatures At Shore Stations, United States West Coast 1984  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Trinidadthat monitors the cool- ing intake water for the generators.

Scripps Institution of Oceanography

1985-01-01T23:59:59.000Z

95

Surface Water Temperatures At Shore Stations, United States West Coast 1986  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Farallnthat monitors the cool ing intake water for the generators.

Scripps Institution of Oceanography

1987-01-01T23:59:59.000Z

96

Surface Water Temperatures At Shore Stations, United States West Coast 1983  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory. MonoStation Off rocks near water intake for laboratory Granitethat monitors the cool ing intake water for the generators.

Scripps Institution of Oceanography

1984-01-01T23:59:59.000Z

97

Surface Water Temperatures At Shore Stations, United States West Coast 1985  

E-Print Network (OSTI)

off the rocks near the water intake for the laboratory.Station Off rocks near water intake for laboratory Farallnthat monitors the cool ing intake water for the generators.

Scripps Institution of Oceanography

1986-01-01T23:59:59.000Z

98

A-1 2012 SITE ENVIRONMENTAL REPORT APPENDIX A: GLOSSARY  

E-Print Network (OSTI)

that cross contamination has not occurred. blowdown ­ Water discharged from either a boiler or cool- ing procedure SPCC Spill Prevention Control and Countermeasures SPDES* State Pollutant Discharge Elimination Compliance Assurance Process TCE* trichloroethylene TCLP toxicity characteristic leaching procedure TEAM

99

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

100

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

102

Short Desc Long Desc Short Desc Long Desc Short Desc Long Desc Short Desc Long Desc 401k 401k D PP PT2 Dental Pre-Paid PT 2 Misc Miscellaneous Deductions ROTH ROTH 401(k)  

E-Print Network (OSTI)

FICA Additional Medicare Tax ORP ING1 ORP Retirement ING 10% TCRS NF TCRS Retirement Non-Faculty AFLACSIC Aflac - Sickness Indemnity Foundat Foundation ORP ING2 ORP Retirement ING Two Split TCRS TCB Closed Teacher Class B Contrib AFLCIEET Aflac - Critical ILL-EE-Tobacco Foundat ETSU Foundation ORP ING3

Karsai, Istvan

103

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

104

fr Elektrotechnik und Informationstechnik  

E-Print Network (OSTI)

Bhandare M. Sc. Abas Ahmad Fauzi Stip. M. Sc. Vijitha Herath M. Sc. Ariya Hidayat Dipl.-Ing. Sebastian Hoffmann M. Sc. Selwan K. Ibrahim Dr.-Ing. Biljana Milivojevic Dipl.-Ing. Vitali Mirvoda Stip. Dipl

Noé, Reinhold

105

"Hot" for Warm Water Cooling  

E-Print Network (OSTI)

liquid cooling, dry cooler, cooling tower 1. INTRODUCTIONsolutions for cooling. Substituting cooling towers,hybrid cooling towers, or dry coolers that provide warmer

Coles, Henry

2012-01-01T23:59:59.000Z

106

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

107

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

108

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

109

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

110

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

111

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

cubic feet) Natural Gas Energy Intensity (cubic feetsquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

112

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

113

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

(trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

114

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

(million gallons) Fuel Oil Energy Intensity (gallonssquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

115

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

116

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

117

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

118

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

119

Proceedings of the TOUGH Symposium 2009  

E-Print Network (OSTI)

and oil recovery by waterflood- ing, SPE ReservoirY. and N.R. Morrow, Waterflood performance by injection ofof low-salinity waterflood- ing, the exact mechanisms

Moridis, George J.

2010-01-01T23:59:59.000Z

120

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

122

'Radio Wave Cooling' Offers New Twist on Laser Cooling  

Science Conference Proceedings (OSTI)

'Radio Wave Cooling' Offers New Twist on Laser Cooling. From NIST Tech Beat: September 13, 2007. ...

2013-07-08T23:59:59.000Z

123

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

124

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

125

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

126

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

127

Released: June 2006  

U.S. Energy Information Administration (EIA) Indexed Site

5. Percent of Floorspace Cooled, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" 5. Percent of Floorspace Cooled, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Build- ings*","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Build- ings*","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings* ...............",4645,1020,985,629,2011,64783,7843,16598,13211,27132 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,710,407,279,1155,6789,1782,1206,781,3021 "5,001 to 10,000 ..............",889,157,226,133,374,6585,1177,1704,995,2710

128

Economic Contributions of the California Nursery Industry  

E-Print Network (OSTI)

energy and input costs, government regulation, chang- ing market structure, competition, information,

Carman, Hoy; Rodriguez, Ana Maria

2004-01-01T23:59:59.000Z

129

Chemical Education Today JChemEd.chem.wisc.edu Vol. 75 No. 5 May 1998 Journal of Chemical Education 537  

E-Print Network (OSTI)

esoteric than necessary. Chemistry is certainly a complicated subject, but shroud- ing it in esoteric

Rioux, Frank

130

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)  

E-Print Network (OSTI)

power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

Shinozuka, Masanobu

131

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

132

Arizona - State Energy Profile Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

133

fr Elektrotechnik und Informationstechnik  

E-Print Network (OSTI)

Wissenschaftliche Mitarbeiter und Stipen- diaten Dr. Olaf Adamczyk Stip. M. Sc. Ali Al-Bermani Stip. M. Sc. Mohamed Ebrahim Fahmy Taha El-Darawy Stip. M. Sc. Vijitha Herath M. Sc. Ariya Hidayat Dr.-Ing. Sebastian Hoffmann Dipl.-Ing. Benjamin Koch Dr. rer. nat. Manfred Lichtinger Dr.-Ing. Vitali Mirvoda Stip. Dipl.-Ing. Timo

Noé, Reinhold

134

fr Elektrotechnik und Informationstechnik  

E-Print Network (OSTI)

/2009 ­ 02/2010) Prof. Dr.-Ing. Reinhold Noé Personal Wissenschaftliche Mitarbeiter und Stipendiaten Stip. M. Sc. Ali Al-Bermani Stip. M. Sc. Mohamed Ebrahim Fahmy Taha El-Darawy Stip. M. Sc. Vijitha Herath Dr.-Ing. Timo Pfau Stip. M. EE. Kidsanapong Puntsri Dr.-Ing. David Sandel Dr.-Ing. Stephan Schulz Technische

Noé, Reinhold

135

News Briefs  

Science Conference Proceedings (OSTI)

... ing and cleanup, decontamination and decommissioning efforts, testing for ... the commercial radioactivity laboratories, nuclear power radiochemistry ...

1997-11-25T23:59:59.000Z

136

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

137

RADIATION RESEARCH 153, 220238 (2000) 0033-7587/00 $5.00  

E-Print Network (OSTI)

): the light water reactor [(LWR) in both pressurized and boil- ing versions]; heavy water (CANDU) reactor

138

DOI: 10.1126/science.1184167 , 76 (2010);328Science  

E-Print Network (OSTI)

, includ- ing nanolubricants and components in micro- and nanoeletromechanical systems devices. References

Kim, Philip

139

About EIA - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, ... Environment. Greenhouse gas data, voluntary report- ing, ... Office of Personnel Management;

140

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Event-Places in North America: City Meaning and Making [Research and Debate  

E-Print Network (OSTI)

events in the cityscape triggers both memories and anticipation, bridg- ing the gap between performances.

Frenchman, Dennis

2004-01-01T23:59:59.000Z

142

United States - Search - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

143

- Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

144

UNIVERSITY of MIAMI e d u c a t i o n m e e t s t h e w o r l d  

E-Print Network (OSTI)

office build- ings [9]. This type of system is often used since it is able to heat and cool areas while - Merced {verickson,mcarreira-perpinan,acerpa}@ucmerced.edu ABSTRACT Heating, cooling and ventilation uncomfortable [13]. If not properly calibrated, these sensors can also be inaccurate [13]. Electrical loads have

Miami, University of

145

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network (OSTI)

office build- ings [9]. This type of system is often used since it is able to heat and cool areas while - Merced {verickson,mcarreira-perpinan,acerpa}@ucmerced.edu ABSTRACT Heating, cooling and ventilation uncomfortable [13]. If not properly calibrated, these sensors can also be inaccurate [13]. Electrical loads have

Carreira-Perpiñán, Miguel Á.

146

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

147

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

148

Cooling System Functions  

Science Conference Proceedings (OSTI)

...size Flow restrictions Heat exchanger size and design All of these factors must be considered. Every component in the cooling

149

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these...

150

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

151

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

152

Stochastic cooling in RHIC  

SciTech Connect

After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

2009-05-04T23:59:59.000Z

153

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

154

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

155

SOLERAS solar cooling project  

Science Conference Proceedings (OSTI)

In view of the increasing demand for cooling in both the United States and Saudi Arabia, solar cooling systems are being considered as serious alternatives to the energy intensive conventional systems, especially when confronted with rising fossil fuel costs. Saudi Arabia and the hot, southern regions of the United States, having abundant sunshine and high cooling demand, are obvious candidates for solar active cooling systems and passive cooling design. Solar active cooling has yet to be shown to be either technologically mature or economically feasible, but efforts have been, and are presently being made within the United States National Solar Cooling Program to develop reliable systems which can compete economically with conventional cooling systems. Currently, the program is funding research and development projects in the areas of absorption, Rankine, dessicant, and advanced technologies. Saudi Arabia has a long and successful tradition of building cooling using passive architectural designs. Combining these past achievements with a program of research and development in both active and passive solar cooling should permit an early economical introduction of entirely solar cooled buildings to Saudi Arabia and the southern United States.

Corcoleotes, G.; Williamson, J.S.

1982-01-01T23:59:59.000Z

156

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

157

Stochastic cooling in RHIC  

SciTech Connect

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

158

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

159

 

Gasoline and Diesel Fuel Update (EIA)

0. Cooling Energy Sources, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 0. Cooling Energy Sources, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Build- ings* Build- ings with Cooling Cooling Energy Sources (more than one may apply) All Build- ings* Build- ings with Cooling Cooling Energy Sources (more than one may apply) Elec- tricity Natural Gas District Chilled Water Elec- tricity Natural Gas District Chilled Water All Buildings* ............................... 4,645 3,625 3,589 17 33 64,783 56,940 54,321 1,018 2,853 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 1,841 1,838 Q Q 6,789 5,007 4,994 Q Q 5,001 to 10,000 .............................. 889 732 727 Q Q 6,585 5,408 5,367 Q Q

160

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Passive containment cooling system  

DOE Patents (OSTI)

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

162

Power electronics cooling apparatus  

DOE Patents (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

163

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

164

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

165

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

166

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

167

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

168

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

169

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

170

Solar Desiccant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

171

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

172

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

173

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

174

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

175

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

176

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

177

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

178

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

179

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

180

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LBNL's Novel Approach to Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

systems department, chilled water, cooling water tower, double exchanger cooling, dual heat exchanger, high tech and industrial systems group, inrow, lawrence berkeley national...

182

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

183

Optimization of Cooling Water  

E-Print Network (OSTI)

A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems.

Matson, J.

1985-05-01T23:59:59.000Z

184

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

and Passive Cooling Marlo Martin and Paul Berdahl SeptemberNTIS. 3. P. Berdahl and M. Martin, "The Resource for Radia-1978) p. 684. 4. M. Martin and P. Berdahl, "Description of a

Martin, M.

2011-01-01T23:59:59.000Z

185

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

186

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

187

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

188

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

189

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

190

Stimulated radiative laser cooling  

E-Print Network (OSTI)

Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host, into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

Muys, Peter

2007-01-01T23:59:59.000Z

191

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Mller

2013-08-08T23:59:59.000Z

192

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

193

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

194

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

195

WATER COOLED RETORT COVER  

DOE Patents (OSTI)

A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

Ash, W.J.; Pozzi, J.F.

1962-05-01T23:59:59.000Z

196

 

Gasoline and Diesel Fuel Update (EIA)

A. Electricity Consumption (kWh) by End Use for All Buildings, 2003 A. Electricity Consumption (kWh) by End Use for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ......................... 1,043 49 141 128 26 393 7 112 20 46 122 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 115 6 13 5 3 28 2 40 2 3 11 5,001 to 10,000 ....................... 86 5 11 5 2 28 1 17 2 3 11 10,001 to 25,000 ..................... 142 8 16 15 4 54 1 17 3 6 19 25,001 to 50,000 ..................... 116 5 18 16 3 41 (*) 11 2 5 14 50,001 to 100,000 ................... 153 8 22 23 4 59 1 10 2 6 17

197

 

Gasoline and Diesel Fuel Update (EIA)

E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003 E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ......................... 3,559 167 481 436 88 1,340 24 381 69 156 418 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 392 19 44 18 11 96 7 138 8 12 39 5,001 to 10,000 ....................... 293 18 38 18 8 95 4 57 6 10 39 10,001 to 25,000 ..................... 485 26 55 52 14 184 3 57 10 20 63 25,001 to 50,000 ..................... 397 18 62 55 12 140 2 37 7 17 48 50,001 to 100,000 ................... 523 28 77 78 15 202 3 35 7 20 59

198

 

Gasoline and Diesel Fuel Update (EIA)

. Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003 . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 890 34 116 113 15 335 6 104 19 43 105 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 113 5 13 5 3 27 2 40 2 3 11 5,001 to 10,000 ....................... 77 4 10 5 2 24 1 16 2 3 10 10,001 to 25,000 ..................... 119 6 14 13 2 44 1 15 3 6 16 25,001 to 50,000 ..................... 103 4 16 15 3 35 (*) 10 2 5 12 50,001 to 100,000 ................... 119 5 17 19 2 46 1 9 2 5 13

199

 

Gasoline and Diesel Fuel Update (EIA)

. Major Fuel Consumption (Btu) by End Use for Non-Mall Buildings, 2003 . Major Fuel Consumption (Btu) by End Use for Non-Mall Buildings, 2003 Total Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 5,820 2,203 431 384 448 1,143 167 354 64 148 478 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 672 207 45 18 48 93 48 137 8 12 55 5,001 to 10,000 ....................... 516 198 36 17 40 83 35 56 6 9 39 10,001 to 25,000 ..................... 776 324 47 44 43 151 25 53 9 19 62 25,001 to 50,000 ..................... 673 262 57 50 55 121 13 34 7 16 58 50,001 to 100,000 ................... 759 293 59 65 55 158 11 29 6 18 64

200

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

 

Gasoline and Diesel Fuel Update (EIA)

A. Major Fuel Consumption (Btu) by End Use for All Buildings, 2003 A. Major Fuel Consumption (Btu) by End Use for All Buildings, 2003 Total Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ......................... 6,523 2,365 516 436 501 1,340 190 381 69 156 569 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 685 213 46 18 49 96 49 138 8 12 56 5,001 to 10,000 ....................... 563 212 39 18 43 95 37 57 6 10 46 10,001 to 25,000 ..................... 899 357 57 52 51 184 29 57 10 20 83 25,001 to 50,000 ..................... 742 281 63 55 60 140 16 37 7 17 66 50,001 to 100,000 ................... 913 325 79 78 67 202 17 35 7 20 83

202

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

bio-oil, crude distillation, chalcogenide nanoparticles, nanoparticle inks and photovoltaic printing are highlighted -- frying foods with minimal oil and rapidly cooling eggs. Purdue has been a leader in computing and conducting polymer electronic devices us- ing well-established, solution-based (e.g., inkjet printing

Pittendrigh, Barry

203

0. Beckermann Department of Mechanical Engineering,  

E-Print Network (OSTI)

by conducting a series of experiments covering a wide range of hot and cold wall temperatures. It is found at the fusion temperature. Because the cooled wall is held below the fusion temperature of the metal, the solid the steady-state interface is almost vertical andparallel to the cold wall. Strong subcool- ing results

Beckermann, Christoph

204

ccsd00001511, Bloch oscillations of ultracold atoms: a tool for a metrological determination of h=mRb  

E-Print Network (OSTI)

transfer (absorption and emission of a single photon). Furthermore, by increas- ing the interrogation time, laser cooling leads to an im- provement of more than two orders of magnitude in both stability-induced spectral doubling of the CH 4 saturated absorption peaks [17]. Since then, al- most all recent measurements

205

REVIEW PAPER Biodeterioration of crude oil and oil derived  

E-Print Network (OSTI)

, oil pipelines, industrial systems of water cooling, systems of water preparation for pump- ing specific problem such as microbial contamination of stored crude oil and petroleum products. The Russian lubricants (technical vaselines, rope and gun oil) made of petroleum HCs are readily affected by fungi

Appanna, Vasu

206

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

207

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

208

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

209

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

210

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

211

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

212

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

213

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

214

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

215

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

216

Turbomachine rotor with improved cooling  

SciTech Connect

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

217

Five solar cooling projects  

Science Conference Proceedings (OSTI)

The jointly funded $100 million five-year international agreement (SOLERAS) between Saudi Arabia and the United States was undertaken to promote the development of solar energy technologies of interest to both nations. Five engineering field tests of active solar cooling systems funded under the SOLERAS agreement for installation and operation in the U.S. southwest are described.

Davis, R.E.; Williamson, J.S.

1980-01-01T23:59:59.000Z

218

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

219

Dynamic Model of Facial Cooling  

Science Conference Proceedings (OSTI)

Recent modifications to windchill forecasting have motivated the development of a rate-of-tissue-cooling model for the purpose of predicting facial cooling times. The model assumes a hollow cylindrical geometry with a fixed internal boundary ...

Peter Tikuisis; Randall J. Osczevski

2002-12-01T23:59:59.000Z

220

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING ...  

Science Conference Proceedings (OSTI)

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING SYSTEM AS A TOTAL ... and evaluation studies on active and passive fire protection ...

2011-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

72 5.1.2 Memory thermal and cooling model . . . . . . . . 75Energy, Thermal and Cooling Management . . . . . . . .Conclusion . . Chapter 4 Thermal and Cooling Management in

Ayoub, Raid

2011-01-01T23:59:59.000Z

222

Guide to Minimizing Compress-based Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling (direct or indirect), or various liquid cooled solutions. In addition to weather data, the Green Grid organization has developed a free cooling map tool to aid in...

223

AIR COOLED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

Fermi, E.; Szilard, L.

1958-05-27T23:59:59.000Z

224

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

225

Proceedings: Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affect availability and heat rate in fossil and nuclear power plants. Twenty-two papers presented at the 1997 Cooling Tower Technology Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions.

1997-08-13T23:59:59.000Z

226

Conduction cooling: multicrate fastbus hardware  

SciTech Connect

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

227

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

228

Cooling your home naturally  

SciTech Connect

This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

NONE

1994-10-01T23:59:59.000Z

229

SCINTILLATION DETECTOR COOLING SYSTEM  

SciTech Connect

A well logging apparatus for irradiating earth formations with neutrons and recording the gamma rays emitted therefrom is designed which hss a scintillation decay time of less than 3 x 10/sup -8/ sec and hence may be used with more intense neutron sources. The scintillation crystal is an unactivated NaI crystal maintained at liquid N/sub 2/ temperature. The apparatus with the cooling system is described in detail. (D.L.C.)

George, W.D.; Jones, S.B.; Yule, H.P.

1962-08-14T23:59:59.000Z

230

Mansaa thai June is, 1989  

E-Print Network (OSTI)

.ing cell.ing cell.iving cell.ging cell.nnn ccccggggng cell.ggggg cng cell.eelg cell.eee l.lke up every

Kemner, Ken

231

he Romberg Tiburon Center in Marin County is not an easy place to find. While running late and driving too  

E-Print Network (OSTI)

is complete as yellow sun rays blend with the rust-colored towers of the iconic Golden Gate Bridge. Dur- ing originally built for offload- ing coal. Later, it was used to support the assembly of submarine nets

232

Network computing : limits and achievability  

E-Print Network (OSTI)

insufficiency of linear network cod- ing. 2009. [88] R.and K. Zeger. Network cod- ing for computing. In Allertonto target function f is C cod (N , f ) = sup k : ? (k, n)

Karamchandani, Nikhil

2011-01-01T23:59:59.000Z

233

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

234

Copyright 2008 No part of this presentation may be reproduced in any form without prior authorization.  

E-Print Network (OSTI)

demon- stration project for Xcel Energy, convert- ing a Ford Escape Hybrid PHEV vehicle to put power. Utilizing fully automated fast processing, the new technology will be capable of produc- ing one solar cell

Amin, S. Massoud

235

74 Scientific American, April 2011 Illustration by Tom Whalen Earthquake early-warning networks  

E-Print Network (OSTI)

, but it is enough to send shutdown warn- ings to power plants and rail networks, automatically open ele- vator doors comes in two parts: a fast- moving, sudden jolt and a slower-mov- ing wave that causes the great

Allen, Richard M.

236

Natural Gas Productive Capacity for the Lower 48 States 1986 ...  

U.S. Energy Information Administration (EIA)

con strued as ad vo cat ing or re flect ing any pol icy po si tion of the De part ment of En ergy o r any other or - gani za tion. Preface

237

BUILDING CORRELATORS WITH MANY-CORE HARDWARE Rob V. van Nieuwpoort and John W. Romein  

E-Print Network (OSTI)

- ing techniques, but more on signal-processing techniques. For example, LOFAR [1], MeerKAT (Karoo Array International Conference on Supercomput- ing, New York, NY, June 2009, pp. 440­449. [11] "Karoo array telescope

Romein, John W.

238

 

U.S. Energy Information Administration (EIA) Indexed Site

0. Cooling Equipment, Number of Buildings for Non-Mall Buildings, 2003 0. Cooling Equipment, Number of Buildings for Non-Mall Buildings, 2003 Number of Buildings (thousand) All Build- ings* Cooled Build- ings Cooling Equipment (more than one may apply) Resid- ential- Type Central Air Condi- tioners Heat Pumps Indiv- idual Air Condi- tioners District Chilled Water Central Chillers Pack- aged Air Condi- tioning Units Swamp Coolers Other All Buildings* ............................... 4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 1,841 581 260 383 Q Q 678 58 Q 5,001 to 10,000 .............................. 889 732 207 78 134 Q Q 367 26 Q 10,001 to 25,000 ............................ 738 629 140 87 114 Q 26 332 26 Q

239

Passive cooling system for top entry liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system for liquid metal cooled, top entry loop nuclear fission reactors. It comprises: a liquid metal cooled nuclear reactor plant; a passive cooling system; and a secondary passive cooling system.

Boardman, C.E.; Hunsbedt, A.; Hui, M.M.

1992-10-27T23:59:59.000Z

240

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

with four cooling fans of different designs available on thedesign, installation, and use, the performance of cooling fans

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

242

OFFICE OF AUDITOR OF STATE STATE OF IOWA  

E-Print Network (OSTI)

users 16-ID-D · HP-CAT · Materials science, geoscience · Nuclear resonant scatter- ing, inelastic x

Daniels, Thomas E.

243

Public servants A key part of the  

E-Print Network (OSTI)

users 16-ID-D · HP-CAT · Materials science, geoscience · Nuclear resonant scatter- ing, inelastic x

Manapat, Michael

244

B U S I N E S SB U S I N E S S ROBERT H. SMITH SCHOOL OF BUSINESS UNIVERSITY OF MARYLAND SPRING 2011 VOL. 12 NO. 1  

E-Print Network (OSTI)

and cellphone products. Employees were asked daily over a period of 10 work- ing days to list any incidents

Milchberg, Howard

245

e3_Coyote Case Study2000/L&J  

Science Conference Proceedings (OSTI)

... graphic design technology; biotechnology; heat- ing, ventilating ... the local school districts and work ... HVAC Heating, Ventilating, and Air Conditioning ...

2013-06-04T23:59:59.000Z

246

Cross-market relationships strengthened in the third quarter of ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... The correlation between prompt-month West Texas Intermediate ...

247

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... What is shale gas and why is it important? ...

248

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

249

More recycling raises average energy content of waste used to ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

250

Annual Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

251

EIA - Emissions of Greenhouse Gases in the United States 2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

252

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

253

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

254

Cross State Air Pollution Rule requires emissions reductions from ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

255

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

256

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

257

Does EIA have maps or information on the location of natural gas ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

258

The geology of natural gas resources - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

259

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS -UFR SCIENCES Ecole Doctorale Sciences et Technologies de l'Information et de la Communication  

E-Print Network (OSTI)

- ing the properties of such a ladder in this poorly explored regime. Acknowledgements The work at ORNL

Paris-Sud XI, Université de

260

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... CBECS enters the final phase of questionnaire design.

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Paycheck Deduction Codes 01/10 Deduct Code Description  

E-Print Network (OSTI)

Garnishment GFNOPROV GF Mand Ret-No Providor Chosen GFTSAING GF - TSA ING GFTSALINC GF - TSA Lincoln GFTSASEC

Peterson, Blake R.

262

Electricity use by machine drives varies significantly by ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Fossil fuels may be used to drive turbines, reciprocating engines, ...

263

Fermi and the ergodic problem Giovanni Gallavotti  

E-Print Network (OSTI)

the esoteric (quasi) ergodic problem. Consider- ing a `{degrees of freedom system, ` > 2, with Hamilto- nian H

Roma "La Sapienza", Università di

264

Reference List 1751-2000  

Science Conference Proceedings (OSTI)

... 1934. Wurmb-Schwark, N. v, Michaela Harbeck, Urs Wiesbrock, Inge Schroeder, Stefanie Ritz-Timme, and Manfred Oehmichen. ...

2003-12-18T23:59:59.000Z

265

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

storm and double-pane windows, insulat- ing shutters, caulking and weatherstripping, fur- nace retrofits, and active and passive solar

Authors, Various

2010-01-01T23:59:59.000Z

266

Underwater 3D Mapping: Experiences and Lessons learned  

E-Print Network (OSTI)

in Okinawa in 1998[5]. Monitoring the health of coral reefs is a difficult and time consum- ing task

Jenkin, Michael R. M.

267

Mid-Atlantic electricity market reacts to Tuesday's earthquake ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, ... after the event. ...

268

Selected publications, with commentary William Bialek February 11, 2004  

E-Print Network (OSTI)

synergistic cod- ing, and this synergy is a significant component of the high coding efficiency seen in [66

269

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Generation and thermal output; Electric power plants generating capacity;

270

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Generation and thermal output; Electric power plants generating capacity;

271

Electric Power Monthly - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Generation and thermal output; Electric power plants generating capacity;

272

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

273

Markov decision process (MDP) framework for software power optimization using call profiles on mobile phones  

E-Print Network (OSTI)

Duke researchers [21] extend this approach to the system level by formulat- ing a general framework to manage energy

Jung, Eric; Maker, Frank; Cheung, Tang Lung; Liu, Xin; Akella, Venkatesh

2010-01-01T23:59:59.000Z

274

View / Download  

Science Conference Proceedings (OSTI)

developing fields of technology, mak- ing major advancements in traditional fields of engineering, or developing/ implementing innovative approaches.

275

THE CORROSION OF SILICATE MATERIALS BY HYDROGEN GAS AND HYDROFLUORIC ACID SOLUTION  

E-Print Network (OSTI)

occurring in the coal gasifier and then find- ing a methodmaterial for the coal gasifier applica- tion. The corrosion

Tso, Stephen T.

2011-01-01T23:59:59.000Z

276

Fuel economy standards have affected vehicle efficiency - Today in ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Notes: Combined means both foreign and domestic vehicles.

277

Second-Generation Nickel-Base Single Crystal Superalloy  

Science Conference Proceedings (OSTI)

creased, the demands placed on turbine airfoils have escalated dramatically. ... The demand- ing goals established ..... (maximum tensile strain at minimum...

278

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights

279

ICAL: A Tool for Analyzing Imperfect Comparison Algorithms Wee-Chong Oon and Martin Henz  

E-Print Network (OSTI)

[7] that was based on temporal difference learn- ing, and the checkers program Anaconda [1, 2] based

Henz, Martin

280

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network (OSTI)

of develop- ing a photovoltaic cell, based on a catalyst (has been shown that a photovoltaic cell can be constructed

authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessing regional evapotranspiration and water balance across a Mediterranean montane climate gradient  

E-Print Network (OSTI)

topography and calculated solar radiation. Hydrol. Process.al. (2011). Incom- ing solar radiation was derived from the

Anderson, Ray G.; Jin, Yufang; Goulden, Michael L.

2012-01-01T23:59:59.000Z

282

Puerto Rico - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Puerto Rico Energy Affairs Administration, Administracin de Asuntos Energticos;

283

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Puerto Rico* Saint Kitts and Nevis Saint Lucia Saint Vincent ...

284

Markov Random field edge-centric image/video processing  

E-Print Network (OSTI)

using adaptive fast B-spline ?lter- ing, IEEE Internationalimage resizing using modi?ed B-splines, IEEE International

Li, Min

2007-01-01T23:59:59.000Z

285

How is electricity used in U.S. homes? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... heating elements, and motors not listed above. Learn more:

286

U.S. total motor gasoline exports down slightly from last year but ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... Total motor gasoline = finished motor gasoline + motor gasoline blending components.

287

COMBINING MAGNETIC SHIELDING AND CRYOPUMPING FOR A NEUTRAL BEAM SOURCE  

E-Print Network (OSTI)

generated by the fusion reactor while the cold surface willfor the Toka. -nak Fusion Test Reactor", in Proceed ings of

Tanabe, J.

2010-01-01T23:59:59.000Z

288

Integrating Rhetorical-Semantic Relation Models for Query ...  

Science Conference Proceedings (OSTI)

... In Galia Angelova, Kalina Bontcheva, Ruslan Mitkov, Nicolas Nicolov, and Nikolai Nikolov, editors, Proceed- ings of the International Conference ...

2006-10-03T23:59:59.000Z

289

Common coastal foraging areas for loggerheads in the Gulf of Mexico: Opportunities for marine conservation  

E-Print Network (OSTI)

and its find- ings validated. On the other hand, to confirm the validity of the new tag tracking method

Florida, University of

290

Illinois coal production pushes Illinois Basin production above ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... based on the Mine Safety and Health Administration (MSHA).

291

Alkylation is an important source for octane in gasoline - Today ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. ... (like temperature and pressure) along with different safety considerations.

292

Eastern Mediterranean natural gas exploration focused on the ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Gaza Marine: 1: unknown: Sources: EIA estimates, IHS, ...

293

Error-reducing corrections for the method of regularized Stokeslet for fluid-membrane interactions  

E-Print Network (OSTI)

for SDS [1], and sec- ond, we investigate the summarisation of XML documents by tak- ing into account

Ullmer, Brygg

294

Applied and Computational Mathematics Division Applied and ...  

Science Conference Proceedings (OSTI)

... ing, materials science, chemistry, bioscience, engineering, fire ... mathematics are fundamental tools enabling ... The NIST Handbook of Mathematical ...

2013-05-08T23:59:59.000Z

295

Arizona - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Markets & Finance. Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, ...

296

EXPERIMENTAL ANALYSIS OF HEURISTICS FOR THE ...  

E-Print Network (OSTI)

order from inaccurate adjacency information [19], medical image process- ing [2] ...... salesman problem, Research Report, Department of Computer Science,...

297

- Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Greenhouse gas data, voluntary report- ing, electric power plant ...

298

Kazakhstan - Analysis - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power ... by the Kazakhstan's Electricity Grid Operating ... regional electricity distribution .. ...

299

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

300

Superconducting magnet cooling system  

DOE Patents (OSTI)

A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

Vander Arend, Peter C. (Center Valley, PA); Fowler, William B. (St. Charles, IL)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cooled, temperature controlled electrometer  

DOE Patents (OSTI)

A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

Morgan, John P. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

302

Cooling apparatus and method  

DOE Patents (OSTI)

A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

Mayes, James C. (Sugar Land, TX)

2009-05-05T23:59:59.000Z

303

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

304

Spray Cooling Enhancement of Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Dry cooling of power plants may be an attractive alternative to wet cooling, particularly where water conservation and environmental protection pose critical siting issues. However, dry cooling technology may be unable to maintain design plant output during the hottest periods of the year, which are often periods of peak system demand. This studycosponsored by EPRI, the California Energy Commission, and Crockett Cogeneration Co.evaluated the use of a low-pressure spray enhancement system to...

2003-09-29T23:59:59.000Z

305

Indirect passive cooling system for liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system. It is for liquid metal cooled nuclear reactors having a pool of liquid metal coolant with the heat generating fissionable fuel core substantially immersed in the pool of liquid metal coolant. The passive cooling system including a combination of spaced apart side-by-side partitions in generally concentric arrangement and providing for intermediate fluid circulation and heat transfer therebetween.

Hunsbedt, A.; Boardman, C.E.

1990-09-25T23:59:59.000Z

306

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

307

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

308

SIMULATING THE COOLING FLOW OF COOL-CORE CLUSTERS  

SciTech Connect

We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any active galactic nucleus (AGN) heating, focusing instead on cooling in order to understand how gas reaches the supermassive black hole at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the cooling of gas out to 100 kpc with the cold gas accretion in the central 100 pc, potentially closing the loop between cooling and heating. Isotropic heat conduction does not affect the result significantly, but we show that including the potential well of the brightest cluster galaxy is necessary to obtain the correct result. Also, we found that the outcome is sensitive to resolution, requiring very high mass resolution to correctly reproduce the small transition radius.

Li Yuan; Bryan, Greg L. [Department of Astronomy, Pupin Physics Laboratories, Columbia University, New York, NY 10027 (United States)

2012-03-01T23:59:59.000Z

309

Emergency core cooling system  

DOE Patents (OSTI)

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

310

Beam cooling: Principles and achievements  

SciTech Connect

After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

Mohl, Dieter; Sessler, Andrew M.

2003-05-18T23:59:59.000Z

311

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

312

Muon Cooling R&D  

E-Print Network (OSTI)

International efforts are under way to design and test a muon ionization cooling channel. The present R&D program is described, and future plans outlined.

Steve Geer

2001-08-15T23:59:59.000Z

313

"Hot" for Warm Water Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Published 112011 Conference Location Seattle, WA Call Number LBNL-5128E Abstract Liquid cooling is key to reducing energy consumption for this generation of supercomputers and...

314

Influence of Cooling on Distortion  

Science Conference Proceedings (OSTI)

Table 11   Factors that influence the cooling intensity of liquid quenchants...the vapor pressure is, the more difficult the

315

Laser Cooling of Trapped Ions.  

Science Conference Proceedings (OSTI)

... period, so it can be assumed to give an in- stantaneous impulse to the ... In sympathetic laser cooling, two different ion species are loaded into a trap. ...

2002-11-15T23:59:59.000Z

316

Theory of Semiconductor Laser Cooling .  

E-Print Network (OSTI)

??Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order (more)

Rupper, Greg

2010-01-01T23:59:59.000Z

317

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

318

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H. (Powell, TN), Wereszczak, Andrew A. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Lowe, Kirk T. (Knoxville, TN)

2010-09-14T23:59:59.000Z

319

Film cooling for a closed loop cooled airfoil  

DOE Patents (OSTI)

Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

2003-01-01T23:59:59.000Z

320

GAS COOLED NUCLEAR REACTORS  

DOE Patents (OSTI)

A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

Long, E.; Rodwell, W.

1958-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

Forsberg, Charles W. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

322

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

323

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

324

Laser cooling to quantum degeneracy  

E-Print Network (OSTI)

We report on Bose-Einstein condensation (BEC) in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1\\muK on a narrow-linewidth transition. The critical phase-space density for BEC is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^5 atoms can be repeatedly formed on a timescale of 100ms, with prospects for the generation of a continuous atom laser.

Stellmer, Simon; Grimm, Rudolf; Schreck, Florian

2013-01-01T23:59:59.000Z

325

Keeping cool in the job  

Science Conference Proceedings (OSTI)

Describes cooling garments used at nuclear plants to keep workers cooler for longer periods of time, safeguard health, boost efficiency, and elevate morale. Examines 2 cooling concepts tested by EPRI in laboratory and field conditions: using circulating liquids for cooling (represented by 2 commercially available personal cooling systems); and using frozen water for cooling (represented by 2 prototype garments recently developed by EPRI). Explains that pipes and pressure vessels inside nuclear power plants give off significant amounts of waste heat, with temperatures reaching up to 55C (131F)-not very comfortable for maintenance workers who are swathed in radiation protection gear and doing repair work. Finds that the frozen-water concept may considerably extend working time in the power plant. Concludes that the right research can overcome heat, humidity, and close quarters which conspire to make maintenance work in power plants a tough task.

Lihach, N.; O'Brien, J.

1982-09-01T23:59:59.000Z

326

Film cooling air pocket in a closed loop cooled airfoil  

SciTech Connect

Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

327

Predictive pre-cooling control for low lift radiant cooling using building thermal mass  

E-Print Network (OSTI)

Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

Gayeski, Nicholas (Nicholas Thomas)

2010-01-01T23:59:59.000Z

328

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

329

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

330

Acoustic cooling engine  

DOE Patents (OSTI)

An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

1988-01-01T23:59:59.000Z

331

Non-intrusive cooling system  

DOE Patents (OSTI)

A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

2001-05-22T23:59:59.000Z

332

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

333

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

334

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

between the cooling effect (measured with a thermal manikin)output is the body cooling effect [5]. Thermal manikins withThermal manikins can be used to measure the fan cooling

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

335

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

of the cooling effect measured with the thermal manikin andThe mea- sured cooling effect with the thermal manikin isby a thermal manikin to quantify the cooling effects of air

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

336

MUCOOL: Ionization Cooling R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory MUCOOL Muon Ionization Cooling R&D Welcome to the muon ionization cooling experimental R&D page. The MuCool collaboration has been formed to pursue the development of a...

337

Cooling arrangement for a tapered turbine blade  

SciTech Connect

A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

Liang, George (Palm City, FL)

2010-07-27T23:59:59.000Z

338

IEP - Water-Energy Interface: Cooling Water Intake Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

The types of cooling water systems to be evaluated are: Wet Cooling Tower - The condenser is cooled with water recirculated to a mechanical draft cooling tower. Because there...

339

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

Distributed Generation, Absorption Cooling, Space Cooling,use heat to drive an absorption cooling cycle, and the heatlargest drivers for absorption cooling technology adoption

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

340

Economic Evaluation of Alternative Cooling Technologies  

Science Conference Proceedings (OSTI)

Water use and conservation at electric power plants are becoming increasingly important siting issues. At most plants, the requirement for condensing exhaust steam from the steam turbine, generically known as power plant cooling, is the major use of water. Alternative cooling systems exist, including once-through cooling, wet-recirculating cooling, dry cooling, and hybrid (or wet/dry cooling), some of which offer significant opportunity for water conservation. These water savings normally, but perhaps no...

2012-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

342

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

78 5.2 Combined Energy, Thermal and CoolingOne reason for thermal and energy variations betweenWe propose a combined energy, thermal and cooling management

Ayoub, Raid

2011-01-01T23:59:59.000Z

343

Vehicle Cooling Systems - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and ... The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a ...

344

Cooling Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Power Plant Cooling Technologies Cooling Technologies Cooling tower at Steamboat Springs geothermal power plant in Steamboat Springs, NV. Power generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling technologies to reject the heat that is created. The second law of thermodynamics states: "No process can convert heat absorbed from a reservoir at one temperature directly into work without also rejecting heat to a cooler reservoir. That is, no heat engine is 100% efficient"[1] In the context of power generation from thermal energy, this means that any heat that is created must be rejected. Heat is most commonly rejected in

345

Multi-Photon Laser Cooling  

Science Conference Proceedings (OSTI)

... used traditional cooling beams at 852 nm in the x-y plane, but replaced the usual two beams along z with lasers at 795 nm. This laser only couples ...

2011-10-04T23:59:59.000Z

346

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

347

Convective Cooling of Lightning Channels  

Science Conference Proceedings (OSTI)

We report experimental data which trace the time development of electric discharge channels in air and which demonstrate the turbulent cooling of such channels. These data provide qualitative confirmation of the model proposed and used by Hill, ...

J. M. Picone; J. P. Boris; J. R. Greig; M. Raleigh; R. F. Fernsler

1981-09-01T23:59:59.000Z

348

Energy Savers: Cool Summer Tips  

SciTech Connect

A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed.

Miller, M.

2001-06-18T23:59:59.000Z

349

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and...

350

Advance in MEIC cooling studies  

Science Conference Proceedings (OSTI)

Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

351

Absorption Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial...

352

Cooling Towers, Energy Conservation Machines  

E-Print Network (OSTI)

Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water returning from the cooling tower, greater chemical product volume can be condensed and less energy is required to run compressors. This paper will discuss two case histories and the rapid cost-effective savings thereby accruing through retrofit.

Burger, R.

1980-01-01T23:59:59.000Z

353

Quantum limit of photothermal cooling  

E-Print Network (OSTI)

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone; Nori, Franco

2010-01-01T23:59:59.000Z

354

Energy Efficient Electronics Cooling Project  

SciTech Connect

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

355

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

356

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

357

"Hot" for Warm Water Cooling  

Science Conference Proceedings (OSTI)

Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

2011-08-26T23:59:59.000Z

358

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

359

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

360

Definition: Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Water Cooling Water Cooling Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process.[1] View on Wikipedia Wikipedia Definition Water cooling is a method of heat removal from components and industrial equipment. As opposed to air cooling, water is used as the heat conductor. Water cooling is commonly used for cooling automobile internal combustion engines and large industrial facilities such as steam electric power plants, hydroelectric generators, petroleum refineries and chemical plants. Other uses include cooling the barrels of machine guns, cooling of

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

362

Dry Cooling: Perspectives on Future Needs  

Science Conference Proceedings (OSTI)

The total number of dry-cooled power plants in the United States has increased significantly in recent years. This is because nonutility generators are using dry-cooling systems to meet environmental protection and water conservation requirements. A survey shows that utility planners expect that dry cooling could become an important cooling-system option for new utility plants.

1991-08-19T23:59:59.000Z

363

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

364

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network (OSTI)

heat recovery and absorption cooling are selected in allself- generated and absorption cooling displaces a further

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

365

Parametric Study of Turbine Blade Internal Cooling and Film Cooling  

E-Print Network (OSTI)

Gas turbine engines are extensively used in the aviation and power generation industries. They are used as topping cycles in combined cycle power plants, or as stand alone power generation units. Gains in thermodynamic efficiency can be realized by increasing the turbine inlet temperatures. Since modern turbine inlet temperatures exceed the melting point of the constituent superalloys, it is necessary to provide an aggressive cooling system. Relatively cool air, ducted from the compressor of the engine is used to remove heat from the hot turbine blade. This air flows through passages in the hollow blade (internal cooling), and is also ejected onto the surface of the blade to form an insulating film (film cooling). Modern land-based gas turbine engines use high Reynolds number internal flow to cool their internal passages. The first part of this study focuses on experiments pertaining to passages with Reynolds numbers of up to 400,000. Common turbulator designs (45degree parallel sharp-edged and round-edged) ribs are studied. Older correlations are found to require corrections in order to be valid in the high Reynolds number parameter space. The effect of rotation on heat transfer in a typical three-pass serpentine channel is studied using a computational model with near-wall refinement. Results from this computational study indicate that the hub experiences abnormally high heat transfer under rotation. An experimental study is conducted at Buoyancy numbers similar to an actual engine on a wedge shaped model trailing edge, roughened with pin-fins and equipped with slot ejection. Results show an asymmetery between the leading and trailing surfaces due to rotation - a difference which is subdued due to the provision of pin-fins. Film cooling effectiveness is measured by the PSP mass transfer analogy technique in two different configurations: a flat plate and a typical high pressure turbine blade. Parameters studied include a step immediately upstream of a row of holes; the Strouhal number (quantifying rotor-stator interaction) and coolant to mainstream density ratio. Results show a deterioration in film cooling effectiveness with on increasing the Strouhal number. Using a coolant with a higher density results in higher film cooling effectiveness.

Rallabandi, Akhilesh P.

2010-08-01T23:59:59.000Z

366

Personal cooling apparatus and method  

DOE Patents (OSTI)

A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

Siman-Tov, Moshe (Knoxville, TN); Crabtree, Jerry Allen (Knoxville, TN)

2001-01-01T23:59:59.000Z

367

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air conditioning load, which is highly coincident with HL&P's system peak, provided a large market for cool storage technologies. Initial market research made it very clear that a special cool storage rate was required to successfully market the technology. Development of the rate required an integrated, multidepartment effort and extensive use of DSManager, an integrated resource planning model. An experimental version of the rate was initially implemented as part of the initial phase of the cool storage program. A permanent rate, incorporating lessons learned from the experimental rate, was then developed for the long term implementation of the program. The permanent rate went through a lengthy regulatory approval process which included intervention by a local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation.

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

368

Cooling Towers, Energy Conservation Strategies  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. After it is put on the line and the cold water temperature or volume becomes inadequate, they look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: (1) The present service needed is now greater than the original requirements which the tower was purchased for; (2) 'Slippage' due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation; (3) The installation could have been originally undersized due to the low bidder syndrome; and (4) New plant expansion needs colder temperatures off the tower.

Burger, R.

1983-01-01T23:59:59.000Z

369

Oxygen Absorption in Cooling Flows  

E-Print Network (OSTI)

The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.

David A. Buote

2000-01-19T23:59:59.000Z

370

arch layout 11.21.98  

NLE Websites -- All DOE Office Websites (Extended Search)

jpg IMAGE imgs/esl337.jpg jpg IMAGE imgs/esl337.jpg IMAGE imgs/esl338.jpg IMAGE imgs/esl339.jpg ering the solar heat gain coefficient to reduce cooling while maintaining the visual transmission of the glass to capture daylight savings. However, harnessing daylight in a build- ing poses asignificanttechnicalchallenge because ofthe great variability in daylight intensity. Achieving higher energy savings under these conditions requires looking beyond static systemstodynamic systemsthatrespond tochanging climatic or occupant conditions. By linking a dimmableelectric light- ing system with daylighting controls to a fenestrationsystem that can automatically modify the transmission of daylight, we can get real-time control of the cooling and lighting en- ergy balance while addressing glare and thermal comfort.

371

cooling | OpenEI Community  

Open Energy Info (EERE)

cooling cooling Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

372

Keeping Cool at Fermilab INSIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 1996 June 28, 1996 Number 13 Keeping Cool at Fermilab INSIDE 2 University Close-Up: The University of Minnesota 6 Summer at Fermilab by Eric Berger, Office of Public Affairs As debate heats up among lawmakers on the fate of the nation's helium reserve, Fermilab researchers prepare for a long, cold summer. How cold? Minus 450 degrees Fahrenheit-the temperature of the liquid helium that cools the Tevatron's supercon- ducting magnets. Proposed congressional changes to the 1960 Helium Act, however, could ultimately affect Fermilab's vital cooling operation, which uses 13 million cubic feet of gaseous helium annually. Electric current travels through a supercon- ductor friction-free, like skaters on smooth ice, allowing physicists to run accelerators at higher f energies, while using far less electricity than

373

Thermal performance of cooling towers  

SciTech Connect

Wet cooling towers are often used in HVAC applications to reject heat to the atmosphere. Heat rejection is accomplished within the tower by heat and mass transfer between hot water droplets and ambient air. These heat and mass transfer processes and the resulting coefficient of performance are often misunderstood and misinterpreted. To demystify these concepts, the heat and mass transfer exchange at the water droplet level are reviewed. This is followed by an analysis of an idealized spray-type tower to show how cooling tower performance is affected by fill height, water retention time, and air and water mass flow rates. Finally, the so-called coefficient of performance of cooling towers is examined.

Bernier, M.A. [Ecole Polytechnique de Montreal, Quebec (Canada)

1995-04-01T23:59:59.000Z

374

Quench cooling under reduced gravity  

E-Print Network (OSTI)

We report the quench cooling experiments performed with liquid O2 under different levels of gravity simulated with the magnetic gravity compensation. A copper disk is quenched from 270K to 90K. It is found that the cooling time in microgravity is very long in comparison with any other gravity level. This phenomenon is explained by the isolation effect of the gas surrounding the disk. The liquid subcooling is shown to drastically improuve the heat exchange thus reducing the cooling time (about 20 times). The effect of subcooling on the heat transfer is analyzed at different gravity levels. It is shown that such type of experiments cannot be used for the analysis of the critical heat flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is analyzed instead.

Chatain, D; Nikolayev, V S; Beysens, D

2013-01-01T23:59:59.000Z

375

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160F, can be achieved using natural gas or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough moisture to meet the latent portion of the load while the sensible portion is met by a vapor compression cooling system; desiccant regeneration is achieved by using the heat rejected from the condenser together with other thermal sources. At present, residential desiccant cooling systems are in actual operation but are more costly than vapor compression systems, resulting in relatively long payback periods. Component efficiencies need to be improved, particularly the efficiency of the dehumidifier.

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

376

Cooling Tower Inspection with Scuba  

E-Print Network (OSTI)

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling tower pump suction basin was accomplished by diving into the basin using SCUBA gear. It was possible to see a build-up of debris on the pump suction basket strainers and on the floor of the sumps. Also, it was discovered that one of the four baskets had been installed incorrectly. Photographs of the basket strainers were taken to aid in describing their exact condition. With the aid of SCUBA it was possible to sufficiently clean the pump sumps so that costly downtime was avoided. Likewise, using this technique, steps were taken to greatly reduce the chance for further contamination of the circulating cooling water system.

Brenner, W.

1982-01-01T23:59:59.000Z

377

Lamination cooling system formation method  

SciTech Connect

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

2012-06-19T23:59:59.000Z

378

Guidelines for Selecting Cool Roofs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

379

Cooling assembly for fuel cells  

DOE Patents (OSTI)

A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

1990-01-01T23:59:59.000Z

380

Lamination cooling system formation method  

Science Conference Proceedings (OSTI)

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

2009-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantum noise in photothermal cooling  

SciTech Connect

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. We achieve this by developing a Langevin formalism for the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone [Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Lambert, Neill [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2011-03-15T23:59:59.000Z

382

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

383

 

Gasoline and Diesel Fuel Update (EIA)

E4. Electricity Consumption (Btu) Intensities by End Use for Non-Mall Buildings, 2003 E4. Electricity Consumption (Btu) Intensities by End Use for Non-Mall Buildings, 2003 Electricity Energy Intensity (thousand Btu/square foot) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 48.0 1.8 6.3 6.1 0.8 18.1 0.3 5.6 1.0 2.3 5.6 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 60.8 2.9 6.8 2.9 1.7 14.6 1.1 21.6 1.2 1.9 6.0 5,001 to 10,000 ....................... 42.2 2.0 5.6 2.8 0.9 13.3 0.7 9.0 0.9 1.5 5.7 10,001 to 25,000 ..................... 35.8 1.7 4.1 3.9 0.7 13.3 0.3 4.6 0.8 1.7 4.7 25,001 to 50,000 ..................... 41.8 1.8 6.6 6.0 1.0 14.4 0.2 4.1 0.8 1.9 5.0

384

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

385

 

Gasoline and Diesel Fuel Update (EIA)

E4A. Electricity Consumption (Btu) Intensities by End Use for All Buildings, E4A. Electricity Consumption (Btu) Intensities by End Use for All Buildings, 2003 Electricity Energy Intensity (thousand Btu/square foot) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ......................... 50.7 2.4 6.9 6.2 1.3 19.1 0.3 5.4 1.0 2.2 6.0 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 60.6 2.9 6.8 2.8 1.7 14.8 1.1 21.2 1.2 1.8 6.0 5,001 to 10,000 ....................... 44.0 2.6 5.7 2.8 1.1 14.3 0.7 8.6 0.9 1.4 5.8 10,001 to 25,000 ..................... 38.8 2.1 4.4 4.1 1.1 14.7 0.2 4.5 0.8 1.6 5.1 25,001 to 50,000 ..................... 43.7 2.0 6.8 6.1 1.3 15.4 0.2 4.0 0.8 1.9 5.3

386

 

Gasoline and Diesel Fuel Update (EIA)

A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003 Electricity Energy Intensity (kWh/square foot) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ......................... 14.9 0.7 2.0 1.8 0.4 5.6 0.1 1.6 0.3 0.7 1.7 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 17.8 0.9 2.0 0.8 0.5 4.4 0.3 6.2 0.4 0.5 1.8 5,001 to 10,000 ....................... 12.9 0.8 1.7 0.8 0.3 4.2 0.2 2.5 0.3 0.4 1.7 10,001 to 25,000 ..................... 11.4 0.6 1.3 1.2 0.3 4.3 0.1 1.3 0.2 0.5 1.5 25,001 to 50,000 ..................... 12.8 0.6 2.0 1.8 0.4 4.5 0.1 1.2 0.2 0.6 1.5

387

1 0 N J I T M A G A Z I N E | F A L L 2 0 0 8 At the edge in solAr reseArch  

E-Print Network (OSTI)

the future. His work in solar physics, and his guiding role at the Big Bear observatory, are advanc- ing our1 0 N J I T M A G A Z I N E | F A L L 2 0 0 8 At the edge in solAr reseArch The cool, calm water. But that's where NJIT operates one of the world's foremost solar- research facilities, on a narrow causeway

Bieber, Michael

388

Global Cool Cities Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

389

Heating & Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

390

 

U.S. Energy Information Administration (EIA) Indexed Site

5. Percent of Floorspace Cooled, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 5. Percent of Floorspace Cooled, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Build- ings* Not Cooled 1 to 50 Percent Cooled 51 to 99 Percent Cooled 100 Percent Cooled All Build- ings* Not Cooled 1 to 50 Percent Cooled 51 to 99 Percent Cooled 100 Percent Cooled All Buildings* ............................... 4,645 1,020 985 629 2,011 64,783 7,843 16,598 13,211 27,132 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 710 407 279 1,155 6,789 1,782 1,206 781 3,021 5,001 to 10,000 .............................. 889 157 226 133 374 6,585 1,177 1,704 995 2,710 10,001 to 25,000 ............................ 738 109 225 126 277 11,535 1,612 3,517 2,034 4,372

391

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

392

Solar-powered cooling system  

SciTech Connect

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

393

Evaporative cooling enhanced cold storage system  

DOE Patents (OSTI)

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

394

Multi-pass cooling for turbine airfoils  

SciTech Connect

An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

Liang, George (Palm City, FL)

2011-06-28T23:59:59.000Z

395

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

396

Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud  

SciTech Connect

A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

2002-01-01T23:59:59.000Z

397

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

398

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

399

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

400

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

C F Cooling Effect (?t eq ) C F Fan Power, W (P f ) Cooling-Fan Efficiency (CFE) C/W F/Wand B. Jones. 1983. Ceiling fans as extenders of the summer

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental Study of Hybrid Cooled Heat Exchanger.  

E-Print Network (OSTI)

??A test system for a hybrid cooled heat exchanger was designed, and the test facility was constructed based on ASHRAE Standard 41.2-1987. A conventional air-cooled (more)

Tsao, Han-Chuan

2011-01-01T23:59:59.000Z

402

Cooling Towers--Energy Conservation Strategies  

E-Print Network (OSTI)

A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers, and other associates heat rejection equipment.

Matson, J.

1991-06-01T23:59:59.000Z

403

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

404

Data Center Alternative Cooling Analysis Tool  

amounts of energy. Consistent large loads of energy are required for data center efficiency and reliability. Four different cooling technologies, ...

405

Modeling Cathode Cooling Due to Power Interruption  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling Cathode Cooling Due to Power Interruption ... Development and Application of SAMI's Low Voltage Energy-Saving Technology.

406

Engineered design of SSC cooling ponds  

SciTech Connect

The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project`s successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency.

Bear, J.B.

1993-05-01T23:59:59.000Z

407

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network (OSTI)

of the chillers and cooling towers, the thermal storage tankthe chillers and cooling towers, the thermal storage tank,of thermal energy storage in building cooling systems.

Ma, Yudong

2010-01-01T23:59:59.000Z

408

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

COOLING AND DOUBLE WALLBOARD COMPARISON OF THERMAL STORAGEThermal Performance of Phase Change Wallboard for Residential CoolingThermal Performance of Phase Change Wallboard for Residential Cooling

Feustel, H.E.

2011-01-01T23:59:59.000Z

409

Viability of dynamic cooling control in a data center environment  

E-Print Network (OSTI)

A. Beitelmal, Thermal Considerations in Cooling Large Scalesmart cooling, dynamic thermal control, energy optimization,thermal management conditions. EP-04-1163, BASH Keywords: Data center cooling,

Boucher, T.; Auslander, D.; Bash, C.; Federspiel, C.; Patel, C.

2006-01-01T23:59:59.000Z

410

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the effect of thermal mass on cooling loads, and thereforelift radiant cooling using building thermal mass, Departmentlevel thermal modelling are recommended for design cooling

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

411

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

OF THIS DOCUME THERMAL FOR COOLING ENERGY STORAGE BUILDINGSi- LBL-25393 THERMAL FOR COOLING w ENERGY STORAGE BUILDINGSpeak power periods, thermal storage for cooling has become a

Akbari, H.

2010-01-01T23:59:59.000Z

412

On-chip high speed localized cooling using superlattice microrefrigerators  

E-Print Network (OSTI)

for on-chip cooling solution, thermal characterization andActive cooling can provide an effective thermal resistance (cooling of electron gas and by reducing the lattice thermal

Zhang, Y; Christofferson, J; Shakouri, A; Zeng, G H; Bowers, J E; Croke, E T

2006-01-01T23:59:59.000Z

413

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

the shortcomings of alternative cooling sources, or to avoidthe shortcomings of alternative cooling sources, or to avoidC . Blumstein; "Alternatives to Compressor Cooling in

Feustel, H.E.

2011-01-01T23:59:59.000Z

414

Rapid cooling technology could aid surgery patients, heart attack...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling technology could aid surgery patients, heart attack victims Diagram shows how ice slurry cools blood INTERNAL COOLING - An ice slurry, delivered through an endotracheal...

415

What's so cool about Curiosity  

NLE Websites -- All DOE Office Websites (Extended Search)

What's so cool about Curiosity? What's so cool about Curiosity? Curiosity, the Mars Science Laboratory, is the largest and most complicated device we have ever landed on a planet other than Earth.  About the size of a small SUV -- ten feet long (not including the arm), nine feet wide and seven feet tall  900 kilograms (2,000 pounds) (Spirit and Opportunity, earlier research vehicles sent to Mars were 384 pounds)  Uses aerobraking, parachute, retro rockets and skycrane concepts to land gently (Spirit and Opportunity used aerobraking, parachutes and airbags that bounced them to the surface) Curiosity carries three instruments from Los Alamos National Laboratory.  The Radioisotope Thermoelectric Generator supplies electricity and heat to the rover

416

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

417

Proceedings of the Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

The performance of cooling towers and associated systems strongly affects availability and heat rate in fossil and nuclear power plants. Twenty-four papers presented at the 2012 Cooling Tower Technology Conference, held August 89, 2012, in Pensacola, Florida, discuss research results, industry experience, and case histories of cooling tower problems and solutions. ...

2012-09-13T23:59:59.000Z

418

Cooling Evolution of Hybrid Stars  

E-Print Network (OSTI)

The cooling of compact isolated objects for different values of the gravitational mass has been simulated for two alternative assumptions. One is that the interior of the star is purely hadronic and second that the star can have a rather large quark core. It has been shown that within a nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. For a realistic choice of parameters the equation of state (EoS) allows for 2SC quark matter with a large quark gap ~ 100 MeV for u and d quarks of two colors that coexists with normal quark matter within a mixed phase in the hybrid star interior. We argue that, if in the hadronic phase the neutron pairing gap in 3P_2 channel is larger than few keV and the phases with unpaired quarks are allowed, the corresponding hybrid stars would cool too fast. Even in the case of the essentially suppressed 3P_2 neutron gap if free quarks occur for M cooling data existing by today. It is suggested to discuss a "2SC+X" phase, as a possibility to have all quarks paired in two-flavor quark matter under neutron star constraints, where the X-gap is of the order of 10 keV - 1 MeV. Density independent gaps do not allow to fit the cooling data. Only the presence of an X-gap that decreases with increase of the density could allow to appropriately fit the data in a similar compact star mass interval to that following from a purely hadronic model.

H. Grigorian

2005-02-28T23:59:59.000Z

419

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

420

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

1995-09-05T23:59:59.000Z

422

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

1995-01-01T23:59:59.000Z

423

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

Gamble, B.B.; Sidi-Yekhlef, A.

1998-12-15T23:59:59.000Z

424

Improvements in solid desiccant cooling  

Science Conference Proceedings (OSTI)

The DINC (Direct-Indirect Evaporative Cooling) cycle was proposed in 1986 by Texas A and M researchers. The idea was to combine the benefits of direct and indirect evaporative cooling with desiccant dehumidifying using a rotating solid silica-gel dehumidifier. Recent parametric studies completed for the Texas Energy Research in Applications Program have developed a computer design for a nominal 3-ton system that would minimize the energy consumption (both thermal and electric) while maintaining a sensible heat ratio of 75% or less. That optimum design for the original 1986 DINC cycle was modified to improve its energy efficiency. The modifications described in this paper were: (1) staging the desiccant regeneration air and (2) recirculation of the primary air to the secondary side of the indirect evaporative cooling. Computer simulations were run to study the effect of the modifications on the performance of the system. American Refrigeration Institute (AIR) standard conditions (Ambient air at 35C, 40% R.H. and Room air at 26.7C, 50% R.H.) were used for all the modifications. Results were also compared to the familiar Pennington (ventilation) cycle. The study indicated that recirculating the indirect evaporative cooler air only degenerated the performance. However, staging a portion of the regeneration air could improve the thermal coefficient of Performance by 25% over the non-staged DINC cycle. Compared to a similar staged-regeneration Pennington cycle it is a 16% improvement in thermal COP and the sensible heat ratio was 70%.

Waugaman, D.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-01-01T23:59:59.000Z

425

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA)

1998-01-01T23:59:59.000Z

426

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

427

Western Cooling Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Efficiency Center Efficiency Center Jump to: navigation, search Name Western Cooling Efficiency Center Place Davis, CA Website http://http://wcec.ucdavis.edu References Western Cooling Efficiency Center [1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections Western Cooling Efficiency Center is a research institution located in Davis, CA, at the University of California at Davis (UC Davis). References ↑ "Western Cooling Efficiency Center" Retrieved from "http://en.openei.org/w/index.php?title=Western_Cooling_Efficiency_Center&oldid=382319" Categories: Clean Energy Organizations

428

Alternate Cooling Methods for Industrial Plants  

E-Print Network (OSTI)

Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect evaporative, desiccant, and absorption cooling. Cooling effectiveness, operating cost and investment are also presented. Data for this evaluation was collected from clients served by Georgia Tech's Industrial Energy Extension Service, a state-sponsored energy conservation assistance program.

Brown, M.; Moore, D.

1990-06-01T23:59:59.000Z

429

Passive containment cooling water distribution device  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

Conway, Lawrence E. (Hookstown, PA); Fanto, Susan V. (Plum Borough, PA)

1994-01-01T23:59:59.000Z

430

Passive cooling system for top entry liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

1992-01-01T23:59:59.000Z

431

Fans for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fans for Cooling Fans for Cooling Fans for Cooling May 30, 2012 - 7:46pm Addthis Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger What does this mean for me? You may be able to keep your home cool with energy-efficient and well-placed fans. Fans are less expensive to operate than air conditioners. Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of fans,

432

VORPAL Simulations Relevant to Coherent Electron Cooling  

SciTech Connect

Coherent electron cooling (CEC)* combines the best features of electron cooling and stochastic cooling, via free-electron laser technology**, to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations*** of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results. In particular, we compare the semi-analytic binary collision model with electrostatic particle-in-cell (PIC).

Bell, G.I.; Bruhwiler, D.L.; Sobol, A.V.; Ben-Zvi, Ilan; Litvinenko, Vladimir; Derbenev, Yaroslav

2008-07-01T23:59:59.000Z

433

VORPAL simulations relevant to coherent electron cooling  

Science Conference Proceedings (OSTI)

Coherent electron cooling (CEC) [1] combines the best features of electron cooling and stochastic cooling, via free-electron laser technology [2], to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the modulator and kicker regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations [3] of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results.

Bell,G.; Bruhwiler, D.; Sobol, A.; Ben-Zvi, I.; Litvinenko, V.; Derbenev, Y.

2008-06-23T23:59:59.000Z

434

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

435

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why Cool Roofs? Why Cool Roofs? Why Cool Roofs? Addthis Description By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills. Speakers Secretary Steven Chu Duration 1:46 Topic Tax Credits, Rebates, Savings Commercial Weatherization Commercial Heating & Cooling Fossil Oil Credit Energy Department Video SECRETARY OF ENERGY STEVEN CHU: The reason we wanted the Department of Energy to take the lead in cool roofs is to demonstrate that this really saves money. If you have a roof and it's black, it's absorbing energy from the sun

436

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism res...

Maunz, P; Schuster, I; Syassen, N; Pinkse, P W H; Rempe, G

2004-01-01T23:59:59.000Z

437

Passive cooling program element. [Skytherm system  

DOE Green Energy (OSTI)

An outline of the Passive Cooling R and D program element is presented with significant technical achievements obtained during FY 1978. Passive cooling mechanisms are enumerated and a survey of ongoing projects is made in the areas of cooling resource assessment and system development. Results anticipated within the next fiscal year are discussed and the direction of the R and D effort is indicated. Passive cooling system development has centered primarily about the Skytherm system. Two projects are underway to construct such systems in regions having a higher cooling load than the original Skytherm site at Atascadero, California. Component development and commercialization studies are major goals of these two projects and a third project at Atascadero. A two-story passive cooling test module has been built to study radiative, evaporative and convective cooling effects in a structure making use of the thermosiphon principle, but not equipped with a roof pond.

Wahlig, M.; Martin, M.

1978-09-01T23:59:59.000Z

438

ION-BY-ION COOLING EFFICIENCIES  

SciTech Connect

We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2012-03-01T23:59:59.000Z

439

Cooling by Heat Conduction Inside Magnetic Flux Loops and the Moderate Cluster Cooling Flow Model  

E-Print Network (OSTI)

I study non-radiative cooling of X-ray emitting gas via heat conduction along magnetic field lines inside magnetic flux loops in cooling flow clusters of galaxies. I find that such heat conduction can reduce the fraction of energy radiated in the X-ray band by a factor of 1.5-2. This non-radiative cooling joins two other proposed non-radiative cooling processes, which can be more efficient. These are mixing of cold and hot gas, and heat conduction initiated by magnetic fields reconnection between hot and cold gas. These processes when incorporated into the moderate cooling flow model lead to a general cooling flow model with the following ingredients. (1) Cooling flow does occur, but with a mass cooling rate about 10 times lower than in old versions of the cooling flow model. Namely, heating occurs such that the effective age of the cooling flow is much below the cluster age, but the heating can't prevent cooling altogether. (2) The cooling flow region is in a non-steady state evolution. (3) Non-radiative cooling of X-ray emitting gas can bring the model to a much better agreement with observations. (4) The general behavior of the cooling flow gas, and in particular the role played by magnetic fields, make the intracluster medium in cooling flow clusters similar in some aspects to the active solar corona.

Noam Soker

2003-11-02T23:59:59.000Z

440

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

DOE Green Energy (OSTI)

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

442

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

443

Efficient cooling: Making it happen  

SciTech Connect

This article presents a series of solutions that can help everyone to some basic questions about air conditioning: what`s the best way to size a residential air conditioner? to what extent do air conditioners tend to be oversized? how can energy research and programs help promote optimal sizing of cooling systems? Topics covered include the following: defining the debate over sizing of air conditioners; methods for sizing; evaluating simple {open_quotes}rules of thumb{close_quotes}; working with HVAC contractors; creating consumer demand for proper sizing. 1 fig. 1 tab.

Sherman, C.; Hildebrandt, E. [Sacramento Municipal Utility District, CA (United States)

1998-03-01T23:59:59.000Z

444

Indirect evaporative cooling in retail  

Science Conference Proceedings (OSTI)

JCPenney Co., Inc., recently opened a 126,000-sq ft, two-level retail store in Albuquerque, NM. The project construction was accomplished using a design-build format. This process allows preliminary construction processes to begin while the design is finalized. Law/Kingdom, Inc. was assigned the architectural and engineering services for this building. During the process of design, the team decided to study the addition of evaporative cooling into the air system. This article reviews system design, selection, and performance using an indirect evaporative system in the HVAC system. It also demonstrates the company`s design approach on the original equipment selection for a typical anchor store.

Bartlett, T.A. [JCPenney Co., Plano, TX (United States)

1996-12-01T23:59:59.000Z

445

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Cool roofs, cool research, at DOE Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network National Library of Energy OSTIblog Science.gov Science Accelerator

446

Cooling Evolution of Hybrid Stars  

E-Print Network (OSTI)

The cooling of compact isolated objects for different values of the gravitational mass has been simulated for two alternative assumptions. One is that the interior of the star is purely hadronic and second that the star can have a rather large quark core. It has been shown that within a nonlocal chiral quark model the critical density for a phase transition to color superconducting quark matter under neutron star conditions can be low enough for these phases to occur in compact star configurations with masses below 1.3 M_sun. For a realistic choice of parameters the equation of state (EoS) allows for 2SC quark matter with a large quark gap ~ 100 MeV for u and d quarks of two colors that coexists with normal quark matter within a mixed phase in the hybrid star interior. We argue that, if in the hadronic phase the neutron pairing gap in 3P_2 channel is larger than few keV and the phases with unpaired quarks are allowed, the corresponding hybrid stars would cool too fast. Even in the case of the essentially supp...

Grigorian, H

2005-01-01T23:59:59.000Z

447

Heat pipe turbine vane cooling  

SciTech Connect

The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

Langston, L.; Faghri, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

448

Mechanically-reattachable liquid-cooled cooling apparatus  

DOE Patents (OSTI)

An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.

Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E

2013-09-24T23:59:59.000Z

449

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

450

Definition: Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate.[1] References ↑ http://en.wikipedia.org/wiki/Evaporative_cooler Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Evaporative_Cooling&oldid=601323" Category: Definitions What links here Related changes

451

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

452

Cool Farm Tool | Open Energy Information  

Open Energy Info (EERE)

Cool Farm Tool Cool Farm Tool Jump to: navigation, search Tool Summary Name: Cool Farm Tool Agency/Company /Organization: Unilever Sector: Land Focus Area: Agriculture Topics: Co-benefits assessment, Resource assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.unilever.com/aboutus/supplier/sustainablesourcing/tools/?WT.LHNAV= Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool [1] Overview "The Cool Farm Tool is a new greenhouse gas calculator for farming. It's easy to use and gives instant results that invite users to try out alternatives and ask 'what if' questions. The tool was commissioned by Unilever from the University of Aberdeen The tool is ideal for farmers, supply chain managers and companies interested in quantifying their

453

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

454

Microsoft PowerPoint - Cool Roofs_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for: for: Quarterly Facilities and Infrastructure Meeting Presented by: The Office of Engineering and Construction Management Content Excerpted From Presentation of: Bob Schmidt - NNSA Kansas City Plant Cool Roofs - An Overview August 4, 2009 2 *The terms "white roof" and "cool roof" are often mistakenly used interchangeably. A white roof is not necessarily a cool roof and a cool roof is not necessarily white. *"Cool Roofs" come in many style as defined by industry standard and can include: Metal Single ply Modified bitumen Acrylic coated White Roof vs. Cool Roof 3 Solar reflectance alone can significantly influence surface temperature, with the white stripe on the brick wall about 5 to 10° F (3-5° C) cooler than the surrounding, darker

455

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

456

Abstract Radiative Cooling in Hot Humid Climates  

E-Print Network (OSTI)

Passive radiative cooling of buildings has been an underachieving concept for decades. The few deployments have generally been in dry climates with low solar angles. The greatest need for cooling is in the tropics. The high humidity endemic to many of these regions severely limits the passive cooling available per radiative area. To wrest temperature relief from humid climates, not just nocturnal cooling but solar irradiance, both direct and indirect, must be addressed. This investigation explores the extent to which thermal radiation can be used to cool buildings in the tropics. It concludes that inexpensive materials could be fabricated into roof panels providing passive cooling day and night in tropical locations with an unobstructed view of sky.

Aubrey Jaffer

2006-01-01T23:59:59.000Z

457

Cooling of Neutron Stars. Hadronic Model  

E-Print Network (OSTI)

We study the cooling of isolated neutron stars. The main cooling regulators are introduced: EoS, thermal transport, heat capacity, neutrino and photon emissivity, superfluid nucleon gaps. Neutrino emissivity includes main processes. A strong impact of medium effects on the cooling rates is demonstrated. With taking into account of medium effects in reaction rates and in nucleon superfluid gaps modern experimental data can be well explained.

D. Blaschke; H. Grigorian; D. N. Voskresensky

2004-03-07T23:59:59.000Z

458

A Comparative Demonstration of Alternative Milk Cooling  

Science Conference Proceedings (OSTI)

A newly-designed groundwater-ice bank milk cooling system significantly reduces energy use and peak electric demand by about 30% over a conventional direct expansion bulk tank cooling system. This study compared the energy efficiency, electrical demands, and milk quality obtained using the new and conventional systems. Overall, the new system represents a viable, cost-effective alternative for dairy farms that are upgrading or replacing milk cooling equipment.

1993-10-01T23:59:59.000Z

459

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

460

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar cooling R and D overview  

DOE Green Energy (OSTI)

The status of the principal solar energy conversion processes for cooling is reviewed; applications ready for demonstrations are identified; and directions for near term R and D efforts needed to bring other potentially successful cooling systems to the point of demonstration are recommended. The principal solar cooling methods are classified as: absorption, heat engine/vapor compression, desiccant, solar assisted heat pump, photovoltaic heat pump, and passive and others.

Auh, P.C.

1978-09-01T23:59:59.000Z

462

Evaporative Enhancement for Air Cooled Condensers  

Science Conference Proceedings (OSTI)

This report summarizes research into condenser air evaporative pre-cooling technologies and the associated potential for energy and peak power savings. The interest in this project is evaluation of the specific application of evaporative cooling to the inlet air of condenser coils, particularly for large roof-top type air cooled chillers. While the technology is established and understood particularly well for hot, dry climates, this report is intended to also examine evaporative ...

2013-03-06T23:59:59.000Z

463

Cool! Nanoparticle Research Points to Energy Savings  

Science Conference Proceedings (OSTI)

... The double-bubble effect enhances boiling heat transfer and, ultimately, could help to boost the energy efficiency of industrial-sized cooling systems ...

2011-05-02T23:59:59.000Z

464

Magneto-Optical Cooling of Atoms  

E-Print Network (OSTI)

We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity.

Raizen, Mark G; Rochester, Simon; Narevicius, Julia; Narevicius, Edvardas

2013-01-01T23:59:59.000Z

465

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.

P. Maunz; T. Puppe; I. Schuster; N. Syassen; P. W. H. Pinkse; G. Rempe

2004-03-03T23:59:59.000Z

466

Failure of Cooling Tower West Virginia 1978  

Science Conference Proceedings (OSTI)

... The Willow Island disaster was the collapse of a cooling tower under ... In response to this request, NBS carried out field, laboratory and analytical ...

2011-08-12T23:59:59.000Z

467

Complete Muon Cooling Channel Design and Simulations  

Science Conference Proceedings (OSTI)

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

468

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

469

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water (more)

Rulff, David

2011-01-01T23:59:59.000Z

470

The Greenest Way to Stay Cool - NREL  

Coolerado The Elevator Brief Patented Heat Exchanger that cools air using 50 -90% less energy peak demand and total KWh -than conventional AC

471

NIST Quantum Refrigerator Offers Extreme Cooling and ...  

Science Conference Proceedings (OSTI)

... NIST's prototype solid-state refrigerator uses quantum physics in the square chip mounted on the green circuit board to cool the much larger copper ...

2013-03-05T23:59:59.000Z

472

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

473

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

Evaluation of the Cooling Fan Efficiency indexfor a desk fan anda computer fan Stefano Schiavon 1,2,* , M. Sc. PhD

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

474

Dew-Point Evaporative Comfort Cooling (Presentation)  

SciTech Connect

Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

Dean, J.

2012-10-01T23:59:59.000Z

475

Bee Cool Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Product Producer of polysilicon solar panels and solar trackers, and solar battery chargers. References Bee Cool Inc1 LinkedIn Connections CrunchBase Profile No...

476

Heat pipe cooling of metallurgical furnace equipment.  

E-Print Network (OSTI)

??Current water-cooling technology used in the metallurgical industry poses a major safety concern. In addition, these systems are expensive to operate and result in significant (more)

Navarra, Pietro, 1979-

2006-01-01T23:59:59.000Z

477

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

478

AEDG Implementation Recommendations: Cool Roofs | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

section of the guide and focus on cool roofs, which are recommended for metal building roofs and roofs with insulation entirely above deck. Publication Date: Wednesday,...

479

Green Cooling: Improving Chiller Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

480

Cool CAVEs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAVEs CAVEs Cool CAVEs January 5, 2011 - 6:18pm Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? The Idaho National Laboratory's "CAVE" -- 3-D Computer-Assisted Virtual Environment -- allows scientists to literally walk into their data and look at it from multiple perspectives. Projectors, mounted behind the walls and on the ceiling, are manipulated by researchers using 3-D goggles and a handheld controller -- and allow them to study everything from terrain to applied nuclear research, to active sites of proteins. To escape the holiday chaos, many folks found refuge in caves - dark places with sticky floors, lumpy seating and Jeff Bridges playing scenes against a computer-enhanced younger version of himself . . . at least if

Note: This page contains sample records for the topic "ing cool ing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

482

Reactor core isolation cooling system  

DOE Patents (OSTI)

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

483

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

484

Emergency cooling system and method  

DOE Patents (OSTI)

An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

Oosterkamp, W.J.; Cheung, Y.K.

1994-01-04T23:59:59.000Z

485

Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path  

DOE Patents (OSTI)

A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

486

Cooling circuit for steam and air-cooled turbine nozzle stage  

SciTech Connect

The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

Itzel, Gary Michael (Clifton Park, NY); Yu, Yufeng (Guilderland, NY)

2002-01-01T23:59:59.000Z

487

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

488

Comparative report: performance of active-solar space-cooling systems, 1981 cooling season  

DOE Green Energy (OSTI)

This report provides a detailed analysis of solar absorption cooling and solar Rankine cooling processes as represented by the National Solar Data Network (NSDN) systems. There is comprehensive data on four absorption chiller cooling systems and one Rankine cooling system. Three of these systems, including the Rankine system, demonstrated that solar cooling can be operated efficiently and provide energy savings. Good designs and operating procedures are discussed. Problems which reduce savings are identified. There is also a comparison of solar cooling by absorption, Rankine, and photovoltaic processes. Parameters and performance indices presented include overall system delivered loads, solar fraction of the load, coefficient of performance, energy collected and stored, and various subsystem efficiencies. The comparison of these factors has allowed evaluation of the relative performance of various systems. Analyses performed for which comparative data are provided include: energy savings and operating costs in terms of Btu; energy savings in terms of dollars; overall solar cooling efficiency and coefficient of performance; hourly building cooling loads; actual and long-term weather conditions; collector performance; collector area to tons of chiller cooling capacity; chiller performance; normalized building cooling loads per cooling degree-day and building area; and cooling solar fractions, design and measured.

Wetzel, P.; Pakkala, P.

1981-01-01T23:59:59.000Z

489

Theory of cooling neutron stars versus observations  

E-Print Network (OSTI)

We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

Yakovlev, D G; Kaminker, A D; Potekhin, A Yu

2007-01-01T23:59:59.000Z

490

Performance of cross-cooled desiccant dehumidifiers  

DOE Green Energy (OSTI)

A cross-cooled silica gel desiccant dehumidifier model was designed, built and tested. The performance of the unit was studied as a function of inlet process stream dew point, process stream and cooling stream flowrates and regeneration stream temperature and dew point. The tests were also simulated by a computer program and were compared to the experimental results.

Mei, V.C.; Lavan, Z.

1980-01-01T23:59:59.000Z

491

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

492

2006 EPRI Cooling Tower Technology Conference Proceedings  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Fifteen papers presented at a 2006 Conference in Des Moines, Iowa discussed industrial experience and provided case histories of cooling tower problems and solutions.

2006-08-01T23:59:59.000Z

493

Liquid cooled counter flow turbine bucket  

DOE Patents (OSTI)

Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

Dakin, James T. (Schenectady, NY)

1982-09-21T23:59:59.000Z

494

One Cool Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

495

Solar space cooling | Open Energy Information  

Open Energy Info (EERE)

cooling cooling Jump to: navigation, search Solarcooling.jpg Contents 1 Introduction 2 Solar Absorption Technology 3 Solar Desiccant Technology 4 Passive Solar Cooling 5 References Introduction There are many benefits to Solar Cooling systems. For one the sun is a clean energy resource that we should be using more often. It also produces no emissions and is replenished naturally, it reduces greenhouse gases, it saves the release of 1.6 lbs. of carbon dioxide (CO2) for each kilowatt-hour (kWh) produced, it saves the use of one-half gallon of water for each kWh of solar energy produced, it saves the release of other emissions that result from the burning of fossil fuels such as nitrogen oxides, sulfur dioxide or mercury and it provides customers with options to reduce their electric bills. But up to this point Solar Cooling systems are

496

Debris trap in a turbine cooling system  

SciTech Connect

In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

497

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

498

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

499

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

500

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed1, 2 for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing3, 4. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules2 (which do not have a closed transition) and collective excitations of

P. Maunz; I. Schuster; N. Syassen; P. W. H. Pinkse; G. Rempe

2004-01-01T23:59:59.000Z