National Library of Energy BETA

Sample records for infrastructure project cxs

  1. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  2. Financing infrastructure projects

    E-Print Network [OSTI]

    Eid, Serge Emile

    2008-01-01

    Infrastructure is of great importance to the development and economic growth of communities. Due to the increased demand on sophisticated infrastructure, governments' budgets are not anymore able to satisfy this growing ...

  3. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions for many, as well as a change to the layout of the laboratory due to ancillary projects. The project has received approval to make early purchases in the...

  4. Infrastructure and Operations Improvement Project Director |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure and Operations Improvement Project Director Supervisor(s): Adam Cohen, COO, Director's Office Staff: ENG 08 Requisition Number: 1500151 The Infrastructure and...

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2010.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  7. A Strategic Project Appraisal framework for ecologically sustainable urban infrastructure

    SciTech Connect (OSTI)

    Morrissey, John; Iyer-Raniga, Usha; McLaughlin, Patricia; Mills, Anthony

    2012-02-15

    Actors in the built environment are progressively considering environmental and social issues alongside functional and economic aspects of development projects. Infrastructure projects represent major investment and construction initiatives with attendant environmental, economic and societal impacts across multiple scales. To date, while sustainability strategies and frameworks have focused on wider national aspirations and strategic objectives, they are noticeably weak in addressing micro-level integrated decision making in the built environment, particularly for infrastructure projects. The proposed approach of this paper is based on the principal that early intervention is the most cost-effective and efficient means of mitigating the environmental effects of development projects, particularly macro infrastructure developments. A strategic overview of the various project alternatives, taking account for stakeholder and expert input, could effectively reduce project impacts/risks at low cost to the project developers but provide significant benefit to wider communities, including communities of future stakeholders. This paper is the first exploratory step in developing a more systematic framework for evaluating strategic alternatives for major metropolitan infrastructure projects, based on key sustainability principles. The developed Strategic Project Appraisal (SPA) framework, grounded in the theory of Strategic Environmental Assessment (SEA), provides a means of practically appraising project impacts and alternatives in terms of quantified ecological limits; addresses the neglected topic of metropolitan infrastructure as a means of delivering sustainability outcomes in the urban context and more broadly, seeks to open a debate on the potential for SEA methodology to be more extensively applied to address sustainability challenges in the built environment. Practically applied and timed appropriately, the SPA framework can enable better decision-making and more efficient resource allocation ensuring low impact infrastructure development.

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  9. AVTA: ARRA EV Project Annual Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports summarize charging behavior of drivers that participated in the EV Project, which deployed 14,000 Level 2 PEV chargers and 300 fast chargers.

  10. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  11. AVTA: ARRA EV Project Public Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of public chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  12. AVTA: ARRA EV Project Residential Charging Infrastructure Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed thousands of residential chargers. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  13. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  14. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect (OSTI)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  15. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  16. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers

    Broader source: Energy.gov [DOE]

    Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

  17. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

  18. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    risk of climate change to the energy infrastructure, Natural Gas Facilities in the Delta There is one natural gas storage

  19. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  20. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|Infrastructure (D2SA)

  1. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMedia onInfraredInfrastructure

  2. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    California Energy Demand 2010-2020: Adopted Forecast. CEC-energy infrastructure. Franco and Sanstad (2006) provide an overview and a methodology for demand forecasts

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  4. Structure finance for hybrid infrastructure models : the application of project finance into public-private partnerships for the construction and operation of infrastructure

    E-Print Network [OSTI]

    Patramanis, Theodoros

    2006-01-01

    This thesis studies the application of project finance as the most efficient financing method for the construction and operation of infrastructure projects such as motorways, airports, power plants, pipelines, wastewater/sewage ...

  5. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  6. Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

  7. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  8. A. Dias and P.G. Ioannou Company and Project Evaluation Model for Privately-Promoted Infrastructure Projects Page 1 of 16

    E-Print Network [OSTI]

    A. Dias and P.G. Ioannou Company and Project Evaluation Model for Privately-Promoted Infrastructure Projects Page 1 of 16 COMPANY AND PROJECT EVALUATION MODEL FOR PRIVATELY-PROMOTED INFRASTRUCTURE PROJECTS and project profiles. Example applications of the model include the evaluation of the Eurotunnel

  9. Project no.: IST-FP6-STREP -027513 Project full title: Critical Utility InfrastructurAL Resilience

    E-Print Network [OSTI]

    Neves, Nuno

    to the hybrid composition of those infrastructures: operational network, called generically SCADA, devoted unwittingly, the SCADA network is sometimes connected to. In consequence, in scientific terms, our problem can systems problem including interconnected SCADA/embedded networks, corporate intranets, and Internet

  10. Application of Social Impact Bonds in Built Infrastructure Sustainability Projects 

    E-Print Network [OSTI]

    White, Robert Joseph

    2014-05-01

    This study examines a first look at the implementation of Social Impact Bonds (SIB) for sustainability projects by comparing two cases. The cases are described using System Dynamic (SD) modeling to portray the feedback structures and characteristics...

  11. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  12. Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries

    E-Print Network [OSTI]

    Kumar, Vimal, S.M. Massachusetts Institute of Technology

    2009-01-01

    Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  15. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  16. Project Final Report: Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|SpeedShop

    SciTech Connect (OSTI)

    Galarowicz, James

    2014-01-06

    In this project we created a community tool infrastructure for program development tools targeting Petascale class machines and beyond. This includes tools for performance analysis, debugging, and correctness tools, as well as tuning and optimization frameworks. The developed infrastructure provides a comprehensive and extensible set of individual tool building components. We started with the basic elements necessary across all tools in such an infrastructure followed by a set of generic core modules that allow a comprehensive performance analysis at scale. Further, we developed a methodology and workflow that allows others to add or replace modules, to integrate parts into their own tools, or to customize existing solutions. In order to form the core modules, we built on the existing Open|SpeedShop infrastructure and decomposed it into individual modules that match the necessary tool components. At the same time, we addressed the challenges found in performance tools for petascale systems in each module. When assembled, this instantiation of community tool infrastructure provides an enhanced version of Open|SpeedShop, which, while completely different in its architecture, provides scalable performance analysis for petascale applications through a familiar interface. This project also built upon and enhances capabilities and reusability of project partner components as specified in the original project proposal. The overall project team’s work over the project funding cycle was focused on several areas of research, which are described in the following sections. The reminder of this report also highlights related work as well as preliminary work that supported the project. In addition to the project partners funded by the Office of Science under this grant, the project team included several collaborators who contribute to the overall design of the envisioned tool infrastructure. In particular, the project team worked closely with the other two DOE NNSA laboratories Los Alamos and Sandia leveraging co-funding for Krell by ASC’s Common Computing Environment (CCE) program as laid out in the original proposal. The ASC CCE co-funding, coordinated through LLNL, was for 50% of the total project funding, with the ASC CCE portion of the funding going entirely to Krell, while the ASCR funding itself was split between Krell and the funded partners. This report covers the entire project from both funding sources. Additionally, the team leveraged the expertise of software engineering researchers from Carnegie Mellon University, who specialize in software framework design, in order to achieve a broadly acceptable component framework. The Component Based Tool Framework (CBTF) software has been released to the community. Information related to the project and the released software can be found on the CBTF wiki page at: http://sourceforge.net/p/cbtf/wiki/Home

  17. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan ranging from governmental organizations, for-profit to and non-profit entities. All vehicles were equipped with a data acquisition system that automatically collected statistically relevant data for submission to National Renewable Energy Laboratory (NREL), which monitored the progress of the fuel cell vehicles against the DOE technology validation milestones. The Mercedes Team also provided data from Gen-II vehicles under the similar operations as Gen I vehicles to compare technology maturity during program duration.

  18. ECO-LOGICAL: AN ECOSYSTEM APPROACH TO DEVELOPING TRANSPORTATION INFRASTRUCTURE PROJECTS IN A CHANGING ENVIRONMENT

    E-Print Network [OSTI]

    Bacher-Gresock, Bethaney; Schwarzer, Julianne Siegel

    2009-01-01

    Office of Project Development and Environmental Review, 1200planning and project development. By creating and usingin the planning and project development processes enhances

  19. Part B: Project Summary ITR: A Scalable Enabling IT Infrastructure for Developing Regions (ICT4B)

    E-Print Network [OSTI]

    Mankoff, Jennifer

    , low-power devices, 2) a new approach to low-cost networking based on intermittent connectivity (rather for social science research. The expected 10-100 times reduction in device cost stems from the co times reduction in infrastructure cost comes largely from 1) the focus on intermittent networking, which

  20. Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) – Infrastructure Rehabilitation – Preliminary 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    2003-01-01

    stream_source_info tr230.pdf.txt stream_content_type text/plain stream_size 442152 Content-Encoding UTF-8 stream_name tr230.pdf.txt Content-Type text/plain; charset=UTF-8 TR-230 July 2003 Economic and Conservation... Institute Texas A&M University TR-230 July 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) – Infrastructure Rehabilitation – Preliminary M. Edward Rister Ronald D. Lacewell...

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  2. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  3. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    SciTech Connect (OSTI)

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  4. Stormwater management in Boston : to what extent are demonstration projects likely to enable citywide use of green infrastructure?

    E-Print Network [OSTI]

    Marks, Alex (Alex Corin)

    2014-01-01

    Green infrastructure (GI) has been increasingly recognized as the most effective approach for major cities to manage the environmental impacts of stormwater runoff. However, adoption of this infrastructure has yet to achieve ...

  5. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  6. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  7. What kind of charging infrastructure do Chevrolet Volts Drivers in The EV Project use?

    SciTech Connect (OSTI)

    John Smart

    2013-09-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how much Volt drivers charge at level 1 vs. level 2 rates and how much they charge at home vs. away from home.

  8. Innovative Financing for Green Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  9. Green Infrastructure 

    E-Print Network [OSTI]

    Tildwell, J.

    2011-01-01

    SWM, Green Buildings, Energy Forum, Texas Smartscape) ? Deteriorating Roadways ? ASCE Report Card on Texas Infrastructure for 2008 identified roads as the #1 infrastructure concern ? Congestion ? DFW congestion is growing over 45% faster than...? ? ASCE Sustainability ? Greenroads ? Green Streets ? SmartCode ? New York High Performance Infrastructure Guidelines ? Institute of Transportation Engineers ? American Public Works Association ? ?and many more. Planning ? City and Regional...

  10. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment...

    Energy Savers [EERE]

    NNSA, Infrastructure and Environment (NA-50) 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50) The ongoing and projected Environmental Assessments and...

  11. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery...

  12. The Electricity and Transportation Infrastructure Convergence

    E-Print Network [OSTI]

    The Electricity and Transportation Infrastructure Convergence Using Electrical Vehicles Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Electricity and Transportation Infrastructure Convergence Using Electrical

  13. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  14. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION and Civil Engineering Institute, Ljubljana, Slovenia #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES · Numerical Simulations #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Project

  15. MFC Communications Infrastructure Study

    SciTech Connect (OSTI)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  16. Infrastructure Assurance Center

    E-Print Network [OSTI]

    Kemner, Ken

    years, the use of natural gas is projected to grow by 50% -- making security of this resourceInfrastructure Assurance Center NGFast: rapid assessment of impacts of natural gas pipeline breaks Assurance Center Our nation relies on natural gas to meet about 22% of its energy needs. Within the next 10

  17. Social infrastructure

    E-Print Network [OSTI]

    Kurlbaum, Ryan E. (Ryan Edward)

    2013-01-01

    Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

  18. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  19. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  20. Implementation of advanced LCNG fueling infrastructure in Texas along the I-35/NAFTA Clean Corridor Project. Final report

    SciTech Connect (OSTI)

    Taylor, Stan; Hightower, Jared; Knight, Koby

    2001-05-01

    This report documents the process of planning, siting, and permitting recent LCNG station projects; identifying existing constraints in these processes, and recommendations for improvements; LCNG operating history.

  1. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  2. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  3. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  4. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  5. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  6. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  7. Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) - Infrastructure Rehabilitation - Final 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.; Popp, Michael C.

    2003-01-01

    Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau...

  8. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  9. Energy Infrastructure Events and Expansions Infrastructure Security...

    Broader source: Energy.gov (indexed) [DOE]

    in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of...

  10. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    SciTech Connect (OSTI)

    Shawn Salisbury

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  11. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH

  12. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  13. INFRASTRUCTURE SECURITY & ENERGY

    E-Print Network [OSTI]

    Schrijver, Karel

    INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY DELIVERY & ENERGY RELIABILITY Real Time Monitoring of Energy Infrastructure Status Patrick Willging, PE Office of Electricity Delivery and Energy Reliability #12;INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY

  14. Jefferson Lab Project Control System Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Project Control...

  15. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  16. Feedstock Infrastructure

    SciTech Connect (OSTI)

    None

    2006-06-01

    This project is quantifying the cost and performance benefits and tradeoffs along the entire feedstock assembly and delivery system. A better understanding of the assembly and delivery operations and their combined impact on feedstock value will help achieve the cost targets established by the Office of the Biomass Program (OBP).

  17. Dispersion of agglomeration through transport infrastructure

    E-Print Network [OSTI]

    Fang, Wanli, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    My dissertation aims to assess transport infrastructure's influence on the productivity, scale and distribution of urban economic activities through changing intercity accessibility. Standard project-level cost-benefit ...

  18. CX-012482: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory

  19. Interdependence of Electricity System Infrastructure and Natural...

    Office of Environmental Management (EM)

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  20. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  1. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  2. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  3. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  4. National Environmental Information Infrastructure

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure: Reference Architecture Contributing to the Australian Government National Plan for Environmental Information initiative #12;National Environmental Information Infrastructure: Reference Architecture v1.1 Environmental Information Programme Publication Series

  5. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia, and reactorsystemoverviews. Training in Action: Gulf Nuclear Energy InfrastructureInstitute In2011,SandiateamedwiththeNuclearSecurity energy safety, security,safeguards,andnonproliferation. Training Sandia National Laboratories experts

  6. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  7. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  8. GREEN INFRASTRUCTURE Researchers

    E-Print Network [OSTI]

    Delaware, University of

    SUPPORTING URBAN GREEN INFRASTRUCTURE Researchers: Jenny Caldwell Catherine Cruz-Ortiz Craig Dsouza are supported at the master's and doctoral levels. #12;Supporting Urban Green Infrastructure Researchers: Jenny's Water Resources Agency, for providing information and guidance in the completion of this research. #12

  9. NGV industry infrastructure

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Current natural gas vehicle (NGV) technology faces a number of problems that must be overcome before vehicles powered by compressed natural gas become accepted in the US. Among these impediments are regulatory uncertainties, codes, standards and the NGV industry infrastructure itself. The marketing/supply infrastructure necessary to support the NGV industry is described.

  10. Infrastructure Institutional Change Principle

    Broader source: Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  11. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Infrastructure Demonstration for Energy reliability and Security) (web link) program to demonstrate: · Cyber-securityEnergy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security

  12. Reinventing Infrastructure: The 101 Freeway and the Revisioning of Downtown Los Angeles

    E-Print Network [OSTI]

    Samuels, Linda C.

    2012-01-01

    utopian and analytical models brought infrastructure back into the architectureutopian projects -- Archigram's Walking City, for example -- which attempted to supplant the existing city with entirely new forms of infrastructure/architecture

  13. Reinventing Infrastructure: The 101 Freeway and the Revisioning of Downtown Los Angeles

    E-Print Network [OSTI]

    Samuels, Linda C.

    2012-01-01

    utopian and analytical models brought infrastructure back into the architecture andutopian projects -- Archigram's Walking City, for example -- which attempted to supplant the existing city with entirely new forms of infrastructure/architecture

  14. State Transmission Infrastructure Authorities: The Story So Far; December 2007 - December 2008

    SciTech Connect (OSTI)

    Porter, K.; Fink. S.

    2008-05-01

    This report examines the status and future direction of state transmission infrastructure authorities. It summarizes common characteristics, discusses current transmission projects, and outlines common issues the state infrastructure authorities have faced.

  15. Final Project Report: DOE Award FG02?04ER25606 Overlay Transit Networking for Scalable, High Performance Data Communication across Heterogeneous Infrastructure

    SciTech Connect (OSTI)

    Micah Beck; Terry Moore

    2007-08-31

    As the flood of data associated with leading edge computational science continues to escalate, the challenge of supporting the distributed collaborations that are now characteristic of it becomes increasingly daunting. The chief obstacles to progress on this front lie less in the synchronous elements of collaboration, which have been reasonably well addressed by new global high performance networks, than in the asynchronous elements, where appropriate shared storage infrastructure seems to be lacking. The recent report from the Department of Energy on the emerging 'data management challenge' captures the multidimensional nature of this problem succinctly: Data inevitably needs to be buffered, for periods ranging from seconds to weeks, in order to be controlled as it moves through the distributed and collaborative research process. To meet the diverse and changing set of application needs that different research communities have, large amounts of non-archival storage are required for transitory buffering, and it needs to be widely dispersed, easily available, and configured to maximize flexibility of use. In today's grid fabric, however, massive storage is mostly concentrated in data centers, available only to those with user accounts and membership in the appropriate virtual organizations, allocated as if its usage were non-transitory, and encapsulated behind legacy interfaces that inhibit the flexibility of use and scheduling. This situation severely restricts the ability of application communities to access and schedule usable storage where and when they need to in order to make their workflow more productive. (p.69f) One possible strategy to deal with this problem lies in creating a storage infrastructure that can be universally shared because it provides only the most generic of asynchronous services. Different user communities then define higher level services as necessary to meet their needs. One model of such a service is a Storage Network, analogous to those used within computation centers, but designed to operate on a global scale. Building on a basic storage service that is as primitive as possible, such a Global Storage Network would define a framework within which higher level services can be created. If this framework enabled a variety of more specialized middleware and supported a wide array of applications, then interoperability and collaboration could occur based on that common framework. The research in Logistical Networking (LN) carried out under the DOE's SciDAC program tested the value of this approach within the context of several SciDAC application communities. Below we briefly describe the basic design of the LN storage network and some of the results that the Logistical Networking community has achieved.

  16. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  17. Seismic Engineering Research Infrastructures for European Synergies (SERIES)

    E-Print Network [OSTI]

    Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing

  18. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  19. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  20. Information and Communications Infrastructure

    E-Print Network [OSTI]

    Communications Utilization and Performance________________________ 20 5.3 Systems Support Utilization and Performance ____________________________ 21 5.4 Radio Communications Systems Utilization and Performance of the communications infrastructure and information systems used during this time period. It addresses resources

  1. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  2. INFRASTRUCTURE BUSINESS AND POLICY

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    COMMUNIQUÉ Australia's Infrastructure Imperative: Getting more value for taxpayer dollars #12;Communiqué. The symposium theme, Getting More Value for Taxpayer Dollars, is one which SMART identified was well overdue

  3. Smarter Physical Infrastructure 

    E-Print Network [OSTI]

    Bartlett, D.

    2013-01-01

    Infrastructure Unleashing Information Technology in the Built Environment David Bartlett, IBM Vice President, Smarter Physical Infrastructure ESL-IC-13-10-57 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec..., Montreal, Quebec, October 8-11, 2013 BMS/metering integration, HVAC sensors/metering point integration, Lighting, Perimeter pre-heat, Chiller optimization, Advanced analytics, Dashboard for energy, carbon, maintenance, space, etc ? 3.3M sq ft , 1950...

  4. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  5. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  6. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  7. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  8. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    include: right Sized reactor, Supercritical Co2 Gas Fast reactor, Compact Sodium Fast reactor, and infrastructure problems. vision all of our reactor designs employ a concurrent engineering approach, and prometheus Space reactor. all of these reactor designs exist only on paper and have been produced as concepts

  9. COLLEGE OF ENGINEERING Infrastructure

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    COLLEGE OF ENGINEERING Infrastructure #12;2 COLLEGE OF ENGINEERING This publication focuses on just a few of the incredible College of Engineering faculty and students who are conducting research related, and students in the Department of Civil and Environmental Engineering are working collaboratively to develop

  10. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2012-1670P Ensuring the Safe Containment

  11. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  12. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Energy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W the computational, physics

  13. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Energy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security

  14. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Nuclear Energy Infrastructure Institute Class of 2012 Kicks Off with 20 Students from the Gulf Cooperation Council Home Energy Assurance Infrastructure Security Infrastructure...

  15. Green Infrastructure for Arid Communities

    Broader source: Energy.gov [DOE]

    On March 24, 2015, from 1:00pm – 2:30pm EDT, EPA's Green Infrastructure Program will launch our 2015 Webcast Series with the webinar Green Infrastructure for Arid Communities. This webinar aims to...

  16. Presented by Petascale System Infrastructure

    E-Print Network [OSTI]

    _Infrastructure_SC10 Visualization and data analysis resources Hardware · Everest Powerwall ­ 30 ft by 8 ft 35

  17. INFRASTRUCTURE Engineering and Physical Sciences

    E-Print Network [OSTI]

    Berzins, M.

    the vital research that underpins this development. The UK Government Strategy for National Infrastructure and resilient infrastructure supplying water, energy, communications, transport systems and waste systems. Infrastructure is a broad topic and is relevant to other sectors including Healthcare, Renewable and Clean Energy

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    dreportoutcaci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E...

  19. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Protection Cyber Vulnerability Assessment More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure Protection...

  20. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities...

  1. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Africa's Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure...

  2. Nahr Beirut : projections on an infrastructural landscape

    E-Print Network [OSTI]

    Frem, Sandra

    2009-01-01

    A century ago, Nahr Beirut was a riparian river which flowed from a mountainous valley to a coastal plain, the Beirut Peninsula, before entering the Julian Beinart Mediterranean Sea. After being for centuries the distant ...

  3. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P

  4. California Hydrogen Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuelHydrogen

  5. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResourcesPowerFuel

  6. Transmission Infrastructure Investment Projects (2009) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| Department ofConstructionvariousfor aEnergy

  7. Sandia Energy - Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscienceInfrastructure Home

  8. National Infrastructure Protection Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram |(Upstate New York) |Infrastructure Protection

  9. National Computational Infrastructure for Lattice Gauge Theory

    SciTech Connect (OSTI)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  10. Transmission Infrastructure Program

    Office of Environmental Management (EM)

    Electric District 5 to Palo Verde Hub 191M Construction & Term Loan Facility Major capex project by Desert South Region of Western to upgrade material segments and expand...

  11. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    clean alternative fuels and energy efficient vehicles, whichEnergy Outlook postulates an ‘Alternative scenario’ to their Reference scenario projection described earlier, in which vehicle

  12. Utilities building NGV infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Gas utilities across the US are aggressively pursuing the natural gas vehicle market by putting in place the infrastructure needed to ensure the growth of the important market. The first annual P and GJ NGV Marketing Survey has revealed many utilities plant to build and continue building NGV fueling facilities. The NGV industry in the US is confronting a classic chicken-or-egg quandary. Fleet operators and individual drivers are naturally unwilling to commit to a natural gas vehicle fuel until sufficient fueling facilities are in place, yet service station operators are reluctant to add NGV refueling capacity until enough CNG vehicles are on the road to create demand. The future of the NGV market is bright, but continued research and product improvements by suppliers as well as LDCs is needed if the potential is to be fulfilled. Advances in refueling facilities must continue if the market is to develop.

  13. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  14. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  15. Alternative Fuel Infrastructure Associate Location: San Diego

    E-Print Network [OSTI]

    California at Davis, University of

    Alternative Fuel Infrastructure Associate Location: San Diego Basic Functions Center an Alternative Fuel Infrastructure Associate that has a passion for sustainability, the environment, and accelerating the transition to a sustainable world powered by clean energy! The Alternative Fuel Infrastructure

  16. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  17. CX-008280: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2009 National Biodiesel Foundation Biodiesel Infrastructure Project CX(s) Applied: B5.2, B5.22 Date: 05/01/2012 Location(s): Iowa Offices(s): National Energy Technology Laboratory

  18. CX-008494: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2009 National Biodiesel Foundation Biodiesel Infrastructure Project CX(s) Applied: B5.22 Date: 07/23/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  19. CX-009454: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2009 National Biodiesel Foundation Biodiesel Infrastructure Project CX(s) Applied: B5.22 Date: 11/02/2012 Location(s): Iowa Offices(s): National Energy Technology Laboratory

  20. CX-008434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2009 National Biodiesel Foundation Biodiesel Infrastructure Project CX(s) Applied: B5.22 Date: 06/27/2012 Location(s): South Dakota Offices(s): National Energy Technology Laboratory

  1. CX-009755: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  2. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    IEA personnel (WBCSD, 2004b), the WEO 2004 and Mobility 2030are quite similar. The WEO 2006 (IEA, 2006b) includes higherwhile the IEA’s more recent WEO 2006 projects transport

  3. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  4. Report: Natural Gas Infrastructure Implications of Increased...

    Energy Savers [EERE]

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  5. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  6. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV...

  8. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Environmental Management (EM)

    CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

  9. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA...

  10. Africa Infrastructure Country Diagnostic Documents: Interactive...

    Open Energy Info (EERE)

    Africa Infrastructure Country Diagnostic Documents: Interactive MAP in PDF, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country...

  11. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  12. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2013 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - May 2013 May 2013 Evaluation to determine whether Infrastructure...

  13. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  15. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda...

  16. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Challenges NOW, DOE, and NEDO December 12, 2013 - 12:00am Addthis The Energy Department will present a live webinar titled "International Hydrogen Infrastructure...

  17. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  18. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  19. A/E Design Guide for Drawings and Spec Section 27 17 51 Communications Infrastructure.

    E-Print Network [OSTI]

    Matrajt, Graciela

    DESIGN CRITERIA A. Major Components The infrastructure design for University projects consists of four the actual design process the criteria for determining number of actual outlets will be based on programingA/E Design Guide for Drawings and Spec Section 27 17 51 Communications Infrastructure. REV: Jan

  20. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  1. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH

  2. Parking Infrastructure and the Environment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Aprad; Madanat, Samer

    2011-01-01

    understand the full cost of parking. ? Nicholas Santero andLY L I T T L E A B O U T how parking infrastructure affectsBecause abundant free parking encourages solo driving and

  3. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  4. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  5. infrastructure Report by Forest Research

    E-Print Network [OSTI]

    ................................................................................................................................................ 10 Sustainable urban drainageBenefits of green infrastructure Report by Forest Research Promoting sustainable greenspace #12;Promoting sustainable greenspace #12;Defra research contract number WC0807 October2010 Promoting sustainable

  6. Current Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A FeedbackShare Page 12 GeV Upgrade Project Link to Website External link Technology Engineering Development Facility Project .pdf file (29KB) Utilities Infrastructure...

  7. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    and energy management. Sandia's projects include a collaborative smart-grid and grid-integration effort building at the center of Forest City's Mesa del Sol model sustainable community. It is the heart forecasting algorithms, and a display center for visualizing NEDO smart-grid system performance

  8. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  9. Applications of Engineering and Financial Analysis to the Valuation of Investments in Railroad Infrastructure 

    E-Print Network [OSTI]

    Roco, Craig E.

    2010-01-16

    This record of study presents the findings of industry research projects performed during a one-year doctoral internship with the Austin Rail Group of HNTB Corporation. Four main internship objectives were established that address infrastructure...

  10. Support Analytical Infrastructure and Further Development of a Statewide Bacterial Source Tracking Library 

    E-Print Network [OSTI]

    DiGiovanni, G.; Casarez, E.; Gentry, T.; Martin, E.; Gregory, L.; Wagner, K.

    2013-01-01

    The project titled Support Analytical Infrastructure and Further Development of a Statewide Bacterial Source Tracking Library funded by the Texas State Soil and Water Conservation Board was established to provide needed resources to expand...

  11. NISTIR 7823 Advanced Metering Infrastructure

    E-Print Network [OSTI]

    by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests of management, administrative, technical, and physical standards and guidelines for the cost-effective security Michaela Iorga Computer Security Division Information Technology Laboratory National Institute of Standards

  12. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  13. Participatory infrastructure monitoring : design factors and limitations of accountability technologies

    E-Print Network [OSTI]

    Offenhuber, Dietmar

    2014-01-01

    This dissertation investigates practices of participatory infrastructure monitoring and their implications for the governance of urban infrastructure services. By introducing the concept of infrastructure legibility, the ...

  14. Florida State University Telecommunications Infrastructure Standard

    E-Print Network [OSTI]

    Document developed by: Information Technology Services Network Infrastructure Division #12;Florida State University ­ ITS Telecommunications Infrastructure Standards 2 INTRODUCTION ........3 REVISION HISTORY Information Technology Services Network & Communications Technology Division 644 W. Call Street Tallahassee

  15. Road Infrastructure and Climate Change in Vietnam

    E-Print Network [OSTI]

    Chinowsky, Paul

    Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam ...

  16. National Environmental Information Infrastructure Reference Architecture

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure Reference Architecture Consultation Draft Contributing to the Australian Government National Plan for Environmental Information initiative #12;National Environmental Information Infrastructure Reference Architecture: Consultation Draft Environmental Information

  17. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

    E-Print Network [OSTI]

    SERIES SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES LNEC/NESDE Main activities · Seismic action characterization studies, seismic hazard and seismic risk · Seismic assessment of structures

  18. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer...

  20. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P. [Los Alamos National Laboratory

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  1. Towards Collaborative Robots for Infrastructure Security Applications

    E-Print Network [OSTI]

    Guo, Yi

    , infrastructure security and monitoring of sensitive national security sites (e.g. nuclear facilities, powerTowards Collaborative Robots for Infrastructure Security Applications Yi Guo School of Electrical.madhavan@nist.gov Abstract-- We discuss techniques towards using collaborative robots for infrastructure security

  2. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    SciTech Connect (OSTI)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research&Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorist's actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  3. Performance characteristics of Jefferson Lab's new SRF infrastructure

    SciTech Connect (OSTI)

    Reece, Charles E.; Denny, Philip; Reilly, Anthony

    2013-09-01

    In the past two years, Jefferson Lab has reconfigured and renovated its SRF support infrastructure as part of the Technology and Engineering Development Facility project, TEDF. The most significant changes are in the cleanroom and chemistry facilities. We report the initial characterization data on the new ultra-pure water systems, cleanroom facilities, describe the reconfiguration of existing facilities and also opportunities for flexible growth presented by the new arrangement.

  4. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Masterâ??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Masterâ??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Masterâ??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  5. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  6. QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, DC: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure Resiliency and...

  7. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    managers in the development of work plans for fiscal year (FY) 2004. The tables below list the projects & Delivery: FUNDING Project Number Project, Performing Organization Avg. Score Con- tinued Discon- tinued Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v

  8. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  9. LHCb - Automated Testing Infrastructure for the Software Framework Gaudi

    E-Print Network [OSTI]

    Clemencic, M

    2009-01-01

    An extensive test suite is the first step towards the delivery of robust software, but it is not always easy to implement it, especially in projects with many developers. An easy to use and flexible infrastructure to use to write and execute the tests reduces the work each developer has to do to instrument his packages with tests. At the same time, the infrastructure gives the same look and feel to the tests and allows automated execution of the test suite. For Gaudi, we decided to develop the testing infrastructure on top of the free tool QMTest, used already in LCG Application Area for the routine tests run in the nightly build system. The high flexibility of QMTest allowed us to integrate it in the Gaudi package structure. A specialized test class and some utility functions have been developed to simplify the definition of a test for a Gaudi-based application. Thanks to the testing infrastructure described here, we managed to quickly extend the standard Gaudi test suite and add tests to the main LHCb appli...

  10. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect (OSTI)

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  11. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  12. infrastructure

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feedholiday |hpc2/%2A en

  13. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|

  14. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigning Resilient Infrastructure: The Argonne

  15. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    development managers in the development of work plans for fiscal year (FY) 2004. The tables below list & Delivery: FUNDING Project Number Project, Performing Organization Avg. Score Con tinued Discon tinued Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v

  16. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  17. Microsoft Word - Critical Infrastructure Security and Resilience...

    Broader source: Energy.gov (indexed) [DOE]

    White House Office of the Press Secretary For Immediate Release October 31, 2013 Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL...

  18. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  19. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  20. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles...

  1. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C...

  4. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance Group A Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report Breakout session...

  5. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  6. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  7. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

  8. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2012 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - March 2012 March 2012 Evaluation to determine whether the...

  9. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications HYDROGEN TO THE HIGHWAYS Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Safety Analysis of Type 4 Tanks in CNG Vehicles...

  10. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    Alternative Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of...

  11. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, Options and Trade-offs, Transition and Long-term Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term Presentation on Hydrogen...

  12. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  13. A Sustainable approach to large ICT Science based infrastructures; the case for Radio Astronomy

    E-Print Network [OSTI]

    Barbosa, Domingos; Boonstra, Albert-Jan; Aguiar, Rui; van Ardenne, Arnold; de Santander-Vela, Juande; Verdes-Montenegro, Lourdes

    2014-01-01

    Large sensor-based infrastructures for radio astronomy will be among the most intensive data-driven projects in the world, facing very high power demands. The geographically wide distribution of these infrastructures and their associated processing High Performance Computing (HPC) facilities require Green Information and Communications Technologies (ICT). A combination is needed of low power computing, efficient data storage, local data services, Smart Grid power management, and inclusion of Renewable Energies. Here we outline the major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science.

  14. Valuation of Governmental Guarantee in BOT Project Finance with Real Option Analysis 

    E-Print Network [OSTI]

    Jun, Jae Bum

    2010-01-14

    The limitation of public funds available for infrastructure projects has induced governments to attract private entities to participate in long-term contracts for financing, constructing, and operating huge infrastructure ...

  15. Securing the information infrastructure for EV charging

    E-Print Network [OSTI]

    Poll, Erik

    Securing the information infrastructure for EV charging Fabian van den Broek1 , Erik Poll1 , and B for the information exchanges in the infrastructure for EV charging being tri- alled in the Netherlands, which. Key words: EV charging, congestion management, end-to-end security, smart grids 1 Introduction

  16. Scanning the Technology Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    -free electricity; banking and finance depends on the robustness of electric power, cable, and wireless infrastructures and increased demand for high-quality and reliable electricity for our digital economy is becoming, and algorithmic develop- ments. Keywords--Critical infrastructure protection, electric power grid, emergency

  17. PEV Infrastructure Needs UC Davis Policy Institute

    E-Print Network [OSTI]

    California at Davis, University of

    ,000 sales in 2012, ramp up to 20,000/yr in 2013 2012 Honda Fit EV 2012 Tesla Model S Infrastructure needs vary PEVs Available in 2012 Increasing Battery size, PHEV - BEV #12;5 PEV Charging Infrastructure · Tesla · Toyota Regional Government · CAPCOA, Sonoma · BAAQMD · SCAQMD Utilities · LADWP · PG&E · SCE

  18. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  19. ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System for Microsoft's Cloud Infrastructure Online Services Security and Compliance Executive summary This paper describes the Microsoft Cloud Infrastructure and Operations (MCIO) Information Security Management System (ISMS) program

  20. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding

  1. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  2. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  3. InstItute for Infrastructure

    E-Print Network [OSTI]

    Bosché, Frédéric

    management is critical to the continuation of life on earth. Based in both of our edinburgh and dubai-disciplinary research projects designed to deliver cutting-edge solutions to real world problems in each of these areas

  4. Rainwater in the Urban Landscape: The Garrison Creek Demonstration Project [Infrastructure as Landscape, Landscape as Infrastructure

    E-Print Network [OSTI]

    Brown, James; Storey, Kim

    1996-01-01

    public space. Toronto's Garrison Creek is a typical exampleit V ..-v..-. Urban The Garrison Creek Bemonstration Projectl Co-evolving systems: Toronto's Garrison Creek Ravine, city

  5. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Environmental Management (EM)

    of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and...

  6. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...

  7. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

  8. Improving Risk Assessment to Support State Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Risk Assessment to Support State Energy Infrastructure Decision Making Improving Risk Assessment to Support State Energy Infrastructure Decision Making May 22, 2015 -...

  9. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  10. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  11. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  12. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  13. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher

    2005-01-01

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  14. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  15. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) The Year-in-Review (YIR): 2012 Energy...

  16. NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014

    E-Print Network [OSTI]

    NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014 1. Introduction This companion Roadmap to the Framework for Improving Critical Infrastructure Cybersecurity ("the

  17. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure...

    Office of Environmental Management (EM)

    Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 17, 2015 - 5:45pm...

  18. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  19. Webinar March 10: 2nd International Hydrogen Infrastructure Challenges...

    Energy Savers [EERE]

    Webinar March 10: 2nd International Hydrogen Infrastructure Challenges Webinar Webinar March 10: 2nd International Hydrogen Infrastructure Challenges Webinar March 4, 2015 -...

  20. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  1. Track 3: Sustainable Infrastructure I. Sustainability in Infrastructure Rehabilitation

    E-Print Network [OSTI]

    Angeles is searching for a lower cost way to rehabilitate nearly 65 miles of large sewers built, reducing costs in water and electrical projects through distributed energy, and conserving energy Public Utilities Commission!!!! Innovations in Sewer Technology Keith Hanks, City of Los Angeles!! Los

  2. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    SciTech Connect (OSTI)

    Gottlieb, Steven Arthur [Indiana University; DeTar, Carleton [University of Utah; Tousaint, Doug [University of Arizona

    2014-07-24

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  3. GREEN INFILL FOR CLEAN STORMWATER Detrimental impacts of stormwater runoff from transportation infrastructure have been well

    E-Print Network [OSTI]

    GREEN INFILL FOR CLEAN STORMWATER ABSTRACT Detrimental impacts of stormwater runoff from transportation infrastructure have been well documented.The Green Infill for Clean Stormwater Project promotes found in the Bay. PCB concentrations were twice as high in the stormwater runoff compared to Bay

  4. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    SciTech Connect (OSTI)

    Carlos H. Rentel

    2007-03-31

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  5. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  6. Modeling Risks in Infrastructure Asset Management 

    E-Print Network [OSTI]

    Seyedolshohadaie, Seyed Reza

    2012-10-19

    The goal of this dissertation research is to model risk in delivery, operation and maintenance phases of infrastructure asset management. More specifically, the two main objectives of this research are to quantify and measure financial risk...

  7. Opportunistic infrastructure : the Trans-Manhattan Expressway

    E-Print Network [OSTI]

    O'Koren, Jason F

    2010-01-01

    Urban Infrastructure: bridges, expressways, and on and off ramps often create barriers and uninhabitable spaces within the urban context. This phenomenon is evident in northern Manhattan where the Trans-Manhattan Expressway ...

  8. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure & Technology Group, Inc., related to a Form Wood Timber Fire at the Salt Waste Processing Facility at the Savannah River Site On July 13, 2009, the U.S....

  9. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  10. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  11. Recognition and interpretation of meetings: The AMI and AMIDA projects 

    E-Print Network [OSTI]

    Renals, Steve; Hain, Thomas; Bourlard, Herve

    2007-01-01

    The AMI and AMIDA projects are concerned with the recognition and interpretation of multiparty meetings. Within these projects we have: developed an infrastructure for recording meetings using multiple microphones and ...

  12. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA RegionforUS Forest

  13. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    such as population growth and technology advancement) thatsuch as population growth and technology advancement) that

  14. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    for assessing climate change impacts and adaptations. IPCCFranco. 2006. Scenarios of Climate Change in California: Anand R. Flick. 2009. Climate Change Scenarios and Sea Level

  15. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    facilities, electric transmission and distribution system,facilities, electric transmission and distribution system,affect the electric resistance of transmission line

  16. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    et al. (2009) for coastal flood risk were based on those2100 it will be at risk of annual flood events. A 100-yearPotentially at Risk to a 100-year Flood with 1.4 m Sea Level

  17. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    in natural gas power plant generating capacity of 3 to 6cycle natural gas power plant generating capacity between 3coastal power plants with a combined generating capacity of

  18. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Climate change and electricity demand in California. ”Extreme Heat, and Electricity Demand in California. CEC-500-Future Residential Electricity Demand." Energy Institute at

  19. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    installed at California power plants. Furthermore, recentlyinformation for California’s power plants. Personalinformation for California’s power plants. Personal

  20. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    TABLES Table 1. Key Assumptions for Natural Gas Power PlantCalifornia Natural Gas Power Plants Between Current Perioda decrease in natural gas power plant generating capacity of

  1. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    during heat spells; wildfires near transmission lines; seaduring heat spells; wildfires near transmission lines; seaduring heat spells; wildfires near transmission lines; and

  2. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    2005. Potential Changes in Hydropower Production from Globalon high elevation hydropower generation in California'ssources include imports (hydropower from the north, thermal

  3. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    the California Coast. ” Climatic Change 87 (Suppl. 1), S57–and Water Resources. ” Climatic Change Fried, J. , M. Torn,in California. ” Climatic Change 87:139–151. Frederick, K.

  4. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    Value of Water Use at Combined-Cycle Power Plants. CEC-500-Value of Water Use at Combined-Cycle Power Plants. CEC-500-temperature on combined-cycle power-plant performance. ”

  5. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    electricity through the state is highly variable, but generally travels along links connecting cheapest

  6. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    1968. McDonald Island Gas-Storage Field, San Joaquin County,include: 1. Natural gas storage tanks. 2. Natural gasand distribution lines, and gas storage facilities and

  7. Exploring design and policy options for orbital infrastructure projects

    E-Print Network [OSTI]

    Putbrese. Benjamin L

    2015-01-01

    The space industry is currently at a significant inflection point. New economies are forming in low- Earth orbit (LEO), driven by miniaturization of technologies and the promise of lower launch costs, which should then ...

  8. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    rise. Keywords: Electricity, Transmission, Climate Change,energy losses in electricity transmission and distributionWildfire Risk to Electricity Transmission Several studies

  9. SLT Power Infrastructure Projects Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,RushS.K EnterpriseTwoSKG Sangha JumpSLPSLT

  10. NEUP Project Selections_September212011_IRP and Infrastructure Improvements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy009 248.2Read anYour $50,000/year| Department

  11. Charging Infrastructure for Electric Vehicles (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavalloCerionChannahon,7 JumpEnergy

  12. Category:Smart Grid Projects - Advanced Metering Infrastructure | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:GeothermalNEPAReferenceSmall Wind

  13. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  14. CIV498 Design Project 2016 Project Title: Business and Operations Development

    E-Print Network [OSTI]

    Toronto, University of

    CIV498 Design Project 2016 Project Title: Business and Operations Development INSTRUCTOR: Paul resolution. Design teams will choose a project and work directly with the local Holcim personnel to develop and provide construction services to many of Canada's largest infrastructure projects. Our business divisions

  15. The scientific case for eInfrastructure in Norway

    E-Print Network [OSTI]

    Helgaker, Trygve

    The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel #12;2 3 The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel Appointed by the Research Council of Norway Galen Gisler (chair) Physics of Geological

  16. SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabi

    E-Print Network [OSTI]

    SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129

  17. Civil engineering studies for major projects after LHC

    E-Print Network [OSTI]

    Osborne, John; Perez-Duenas, Eliseo

    2011-01-01

    CERN civil engineers are heavily involved in studying several major potential collider projects to succeed/complement the LHC. Infrastructure works typically represent one third of the cost of major physics projects, so it's critical that the construction costs are well understood from the conceptual stage. For example, CERN are studying infrastructure requirements for the Linear Collider (CLIC & ILC) and the LHeC projects. This paper presents some of the key civil engineering challenges faced in such large scale projects.

  18. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    SciTech Connect (OSTI)

    Hedges, Edward T.

    2015-01-31

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  19. Project no.: IST-FP6-STREP -027513 Project full title: Critical Utility InfrastructurAL Resilience

    E-Print Network [OSTI]

    Neves, Nuno

    and protocols (general purpose network services as well as SCADA specific ones). The third and fourth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.4 Overview and high-level analysis of the data . . . . . . . . . . . . . . 33 3.4 SCADA honeypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1 SCADA honeypot ar

  20. Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions

    E-Print Network [OSTI]

    COSTSHARE TOTAL COST (includes costshare) Nox (kg/yr) VOC (kg/yr) CO (kg/yr) PM (kg/yr) 2006 CFAT Projects(7 Energy Alternatives, LLC Biodiesel refueling infrastructure1,3 $150,000 $147,520 $297,520 -496 385 900,004 $1,097,397 3143 -285 25900 147 2009 CFAT Project(1 project) North Carolina Solar Center 1

  1. The Regional Response to Federal Fundingfor Bicycle and Pedestrian Projects: Executive Summary

    E-Print Network [OSTI]

    2009-01-01

    to Federal Funding for Bicycle and Pedestrian Projects %\\ %costs. Pedestrian and bicycle infrastructure is increasinglyinterest in funding for bicycle and pedestrian (bike/ped)

  2. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  3. An Infrastructure for Adaptive Dynamic Optimization

    E-Print Network [OSTI]

    Amarasinghe, Saman

    An Infrastructure for Adaptive Dynamic Optimization Derek Bruening, Timothy Garnett, and Saman,timothyg,saman}@lcs.mit.edu Abstract Dynamic optimization is emerging as a promising ap- proach to overcome many of the obstacles static optimizations, there are very few for developing dynamic optimizations. We present a framework

  4. Critical National Infrastructure Reliability Modeling and Analysis

    E-Print Network [OSTI]

    . · Telecommunications: Congestion or disruption of key communications nodes by fire, wind, water, or sabotage · Power of Homeland Security is protection of our critical national infrastructures including power, communications, transportation, and water. This paper presents models to quantify the interdependencies of critical

  5. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  6. AIFdb: Infrastructure for the Argument Web

    E-Print Network [OSTI]

    Reed, Chris

    AIFdb: Infrastructure for the Argument Web John LAWRENCE, Floris BEX, Chris REED and Mark SNAITH, a database solution for the Ar- gument Web. AIFdb offers an array of web service interfaces allowing a wide Interchange Format, argument web 1. Introduction The Argument Web [3] is a vision for a large-scale Web

  7. The Pulse Protocol: Energy Efficient Infrastructure Access

    E-Print Network [OSTI]

    Awerbuch, Baruch

    The Pulse Protocol: Energy Efficient Infrastructure Access Baruch Awerbuch, David Holmer, herb}@cs.jhu.edu Abstract-- We present the Pulse protocol which is designed for multi-hop wireless. The Pulse protocol utilizes a periodic flood initiated at the network gateways which provides both routing

  8. Information Systems as Infrastructure for University Research

    E-Print Network [OSTI]

    Information Systems as Infrastructure for University Research Now and in the Future Merrill Series.......................................................................................................1 Senior Fellow, Association of Public and Land Grant Universities Information Systems................................................................................................................ 69 Vice Chancellor for Research, University of Kansas Medical Center The Role of Information Systems

  9. Infrastructure Constraints in New England Background Memo

    Broader source: Energy.gov [DOE]

    On Monday, April 21, 2014 the U.S. Department of Energy (DOE), acting in its capacity as the Secretariat for the QER Task Force, will convene a two-part public meeting to examine energy infrastructure constraints in New England and regional approaches to addressing them.

  10. Global Internet Measurement Infrastructure Paul Barford

    E-Print Network [OSTI]

    Barford, Paul

    Global Internet Measurement Infrastructure Paul Barford Computer Science Department University@cs.wisc.edu Abstract Over the past ten years, measurements of Internet behavior have been made for a range of applications: from research focused on understanding Internet behavior in the form of invariant characteristics

  11. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  12. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    E-Print Network [OSTI]

    Davis, SJ; Caldeira, K; Matthews, HD

    2010-01-01

    to 336) Gt CO 2 from primary energy infrastructure beforemore numerous than primary energy infrastructure, monitoringare similar to those of primary energy infrastructure, which

  13. Program Development Tools and Infrastructures

    SciTech Connect (OSTI)

    Schulz, M

    2012-03-12

    Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

  14. Using Mobile Phone Data for Electricity Infrastructure Planning

    E-Print Network [OSTI]

    Martinez-Cesena, Eduardo Alejandro; Ndiaye, Mamadou; Schläpfer, Markus

    2015-01-01

    Detailed knowledge of the energy needs at relatively high spatial and temporal resolution is crucial for the electricity infrastructure planning of a region. However, such information is typically limited by the scarcity of data on human activities, in particular in developing countries where electrification of rural areas is sought. The analysis of society-wide mobile phone records has recently proven to offer unprecedented insights into the spatio-temporal distribution of people, but this information has never been used to support electrification planning strategies anywhere and for rural areas in developing countries in particular. The aim of this project is the assessment of the contribution of mobile phone data for the development of bottom-up energy demand models, in order to enhance energy planning studies and existing electrification practices. More specifically, this work introduces a framework that combines mobile phone data analysis, socioeconomic and geo-referenced data analysis, and state-of-the-...

  15. Asset Management of Cri cal Infrastructure Our critical infrastructure--roads, bridges,

    E-Print Network [OSTI]

    , aviation, schools, drinking water, wastewater, dams, solid waste, hazardous waste, navigable waterways. · Innovative optimization tools to assess tradeoffs between construction, maintenance, and demolition over Navigation Investment Model (ORNIM) for maintenance, rehab, and construction of navigation infrastructure

  16. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  17. Year-in-Review: 2011 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    1 Energy Infrastructure Events and Expansions (April 2012) Year-in-Review: 2011 Energy Infrastructure Events and Expansions (April 2012) The 2011 Year-in-Review (YIR) provides a...

  18. Climate Change and Energy Infrastructure Exposure to Storm Surge...

    Energy Savers [EERE]

    Climate Change and Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise Climate Change and Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise This study...

  19. Critical Infrastructure Integration Modeling and William J. Tolone1

    E-Print Network [OSTI]

    Raja, Anita

    2003 blackout in the northeastern U.S. and eastern Canada. A series of unintentional events led infrastructures, let alone across infrastructures. While the August 2003 blackout may not be considered

  20. Europe's liquid commons : towards a public territorial infrastructure

    E-Print Network [OSTI]

    De Vries, Christoper (Christoper Hendrick John)

    2011-01-01

    'his thesis examines the possibility of using intermodal logistics infrastructure on the Rhine-Danube waterway, as part of the Trans European Infrastructure Network, as a means to create a symbolic and operative commons ...

  1. Building a Community Infrastructure for Scalable On-Line Performance Analysis Tools around Open|Speedshop

    SciTech Connect (OSTI)

    Miller, Barton

    2014-06-30

    Peta-scale computing environments pose significant challenges for both system and application developers and addressing them required more than simply scaling up existing tera-scale solutions. Performance analysis tools play an important role in gaining this understanding, but previous monolithic tools with fixed feature sets have not sufficed. Instead, this project worked on the design, implementation, and evaluation of a general, flexible tool infrastructure supporting the construction of performance tools as “pipelines” of high-quality tool building blocks. These tool building blocks provide common performance tool functionality, and are designed for scalability, lightweight data acquisition and analysis, and interoperability. For this project, we built on Open|SpeedShop, a modular and extensible open source performance analysis tool set. The design and implementation of such a general and reusable infrastructure targeted for petascale systems required us to address several challenging research issues. All components needed to be designed for scale, a task made more difficult by the need to provide general modules. The infrastructure needed to support online data aggregation to cope with the large amounts of performance and debugging data. We needed to be able to map any combination of tool components to each target architecture. And we needed to design interoperable tool APIs and workflows that were concrete enough to support the required functionality, yet provide the necessary flexibility to address a wide range of tools. A major result of this project is the ability to use this scalable infrastructure to quickly create tools that match with a machine architecture and a performance problem that needs to be understood. Another benefit is the ability for application engineers to use the highly scalable, interoperable version of Open|SpeedShop, which are reassembled from the tool building blocks into a flexible, multi-user interface set of tools. This set of tools targeted at Office of Science Leadership Class computer systems and selected Office of Science application codes. We describe the contributions made by the team at the University of Wisconsin. The project built on the efforts in Open|SpeedShop funded by DOE/NNSA and the DOE/NNSA Tri-Lab community, extended Open|Speedshop to the Office of Science Leadership Class Computing Facilities, and addressed new challenges found on these cutting edge systems. Work done under this project at Wisconsin can be divided into two categories, new algorithms and techniques for debugging, and foundation infrastructure work on our Dyninst binary analysis and instrumentation toolkits and MRNet scalability infrastructure.

  2. USING GREEN INFRASTRUCTURE TO MANAGE URBAN STORMWATER QUALITY

    E-Print Network [OSTI]

    Minor, Emily

    USING GREEN INFRASTRUCTURE TO MANAGE URBAN STORMWATER QUALITY: A Review of Selected Practices.................................................................30 The International Stormwater BMP Database..................................................34

  3. FRP for Transportation and Civil Engineering Infrastructure: Reality and Vision

    E-Print Network [OSTI]

    FRP for Transportation and Civil Engineering Infrastructure: Reality and Vision S. Rizkalla and M polymer (FRP) composite materials in civil engineering and transportation infrastructure applications. Due in infrastructure applications. While the use of FRP composites has become common practice in civil engineering

  4. Impact of Natural Gas Infrastructure on Electric Power Systems

    E-Print Network [OSTI]

    Fu, Yong

    Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

  5. Brazos River Erosion Management Project (BREM) Briefing Paper

    E-Print Network [OSTI]

    US Army Corps of Engineers

    in Section 219, Water Resources Development Act of 1992, for Environmental Infrastructure Projects of historic Brazos River alluvium, extending downstream to the Gulf of Mexico. Additional scour and soil loss by Fort Bend County and private property. Additionally, further erosion will impact public infrastructure

  6. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  7. Infrastructure and Logistics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department ofInfrastructure and Logistics

  8. A New Project Execution Methodology; Integrating Project Management Principles with Quality Project Execution Methodologies

    E-Print Network [OSTI]

    Schriner, Jesse J.

    2008-07-25

    Approach ........................................................................................3 The ITIL Approach ..................................................................................................5 Quality Project Methodologies Summary.... 2006. Six Sigma for IT Management. Van Haren Publishing. The main purpose of this book is to both introduce Six Sigma and Information Technology Infrastructure Library (ITIL) and then integrate the two methodologies for application...

  9. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  10. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  11. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  12. CX-007687: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Charles River Associates International Inc. - Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation CX(s) Applied: A9 Date: 11/15/2011 Location(s): Massachusetts, Pennsylvania, Washington Offices(s): Advanced Research Projects Agency-Energy

  13. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  14. Infrastructure & Sustainability | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|Infrastructure

  15. Infrastructure at the Savannah River Site:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR0987P Uncertainty in ComplexPThermal Infrastructure

  16. SARDINIA2003_2_Infrastructure.doc 1 Waste Treatment Infrastructure in North Rhine-Westphalia,

    E-Print Network [OSTI]

    Columbia University

    commercial and industrial waste management sector. For the turn of the year 2001/2002, this infrastructure Environmental Office of NRW (www.lua.nrw.de). 1. Introduction, characteristics of waste management in North responsibility and investment risk for appropriate waste management facilities. Favorable for the development

  17. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore »mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  18. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buksas, Mike W. [Stellar Science Ltd. Co., Albuquerque, NM (United States); Berndt, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lipnikov, Konstantin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coon, Ethan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moulton, John D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Painter, Scott L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  19. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  20. Engaging Non-IT Executives in IT Infrastructure Decisions

    E-Print Network [OSTI]

    Fonstad, Nils O.

    2008-07-01

    This case study describes how information technology (IT) managers from Insurance Co. successfully engaged non-IT executives in IT infrastructure investment decisions. This

  1. "Insurance as a Risk Management Instrument for Energy Infrastructure...

    Energy Savers [EERE]

    "Insurance as a Risk Management Instrument for Energy Infrastructure Security and Resilience" Report (March 2013) "Insurance as a Risk Management Instrument for Energy...

  2. Interoperable simulation gaming for strategic infrastructure systems design

    E-Print Network [OSTI]

    Grogan, Paul Thomas, 1985-

    2014-01-01

    Infrastructure systems are large physical networks of interrelated components which produce and distribute resources to meet societal needs. Meeting future sustainability objectives may require more complex systems with ...

  3. Climate Change and Energy Infrastructure Exposure to Storm Surge

    Energy Savers [EERE]

    of 18 Climate Change and Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise James Bradbury, Melissa Allen, and Rebecca Dell Office of Energy Policy and...

  4. Publication of "Year in Review 2010: Energy Infrastructure Events...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    changes in: U.S. energy infrastructure Energy flows within and into the United States Oil and gas exploration, production, movement, and demand worldwide Published daily,...

  5. DAME: a Web Oriented Infrastructure for Scientific Data Mining & Exploration

    E-Print Network [OSTI]

    Longo, Giuseppe

    DAME: a Web Oriented Infrastructure for Scientific Data Mining & Exploration Massimo Bresciaa (DAta Mining & Exploration) is an innovative, general purpose, Web-based, VObs compliant, distributed

  6. The U.S. Electric Transmission Grid: Essential Infrastructure...

    Open Energy Info (EERE)

    Grid: Essential Infrastructure in need of Comprehensive Legislation Abstract Renewable Energy Transmission Company Inc (Retco) is a small, start-up company dedicated to building...

  7. Natural Gas Infrastructure Implications of Increased Demand from...

    Broader source: Energy.gov (indexed) [DOE]

    examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive...

  8. Visualizing Energy Infrastructure Exposure to Storm Surge and...

    Energy Savers [EERE]

    energy infrastructure, focused on four major metropolitan statistical areas (MSAs): New York City, Houston, Miami, and Los Angeles. Since then, Boston, Philadelphia, and Norfolk...

  9. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 - data October - December 2013 - data More Documents & Publications AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports AVTA: 2013 Ford C-Max Energi...

  10. Breakout Session #2 - Discussion of Technology and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging...

  11. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  12. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    with Existing Infrastructure Throughout Supply Chain on May 9, 2012, at the Pyrolysis Oil Workshop. pyrolysischallenge2.pdf More Documents & Publications Conversion...

  13. Quadrennial Energy Review Public Meeting #13: Energy Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Director of Gas Supply Consolidated Edison Opportunities and Challenges for Natural Gas and Liquid Fuels Transmission, Storage and Distribution Infrastructure Good afternoon....

  14. H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional...

    Broader source: Energy.gov (indexed) [DOE]

    An in-depth comparative analysis of promising infrastructure options for hydrogen delivery and distribution to refueling stations from central, semi-central, and distributed...

  15. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    November 18: Live Webinar on Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a...

  16. Potential Role of Exergy in Analysis of Hydrogen Infrastructure

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2008-01-01

    The objective of this paper is to demonstrate the potential role of exergy (second-law) analysis, as a complementary tool for economic assessments of hydrogen infrastructures.

  17. Reducing Cyber Risk to Critical Infrastructure: NIST Framework...

    Office of Environmental Management (EM)

    Order (EO) 13636 "Improving Critical Infrastructure Cybersecurity" of February 2013 directed the National Institute of Standards and Technology (NIST) to work with...

  18. Combined Heat and Power: Enabling Resilient Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat and Power: Enabling Resilient Energy Infrastructure for Critical Facilities March 2013 Prepared for: Oak Ridge National Laboratory ICF International 1725 Eye St. NW Washington...

  19. Deadline Extended for RFI Regarding Hydrogen Infrastructure and...

    Broader source: Energy.gov (indexed) [DOE]

    from interested stakeholders regarding strategies for a robust market introduction of hydrogen supply, infrastructure, and fuel cell electric vehicles (FCEVs). This input will...

  20. Managing Critical Infrastructures C.I.M. Suite

    ScienceCinema (OSTI)

    None

    2013-05-28

    protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. QER Public Meeting Santa Fe, NM Electricity Infrastructure Transmissio...

    Broader source: Energy.gov (indexed) [DOE]

    QER Public Meeting Santa Fe, NM Electricity Infrastructure Transmission, Storage, and Distribution - Jurisdictional issues and priorities Remarks of Susan Ackerman, Chair, Oregon...

  2. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    compatible fuels 6. How do we identify low-cost options? Challenge 2. Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain EERE Business...

  3. Analyzing Energy Infrastructure Exposure to Storm Surge and Sea...

    Office of Environmental Management (EM)

    nation's energy infrastructure. As part of our commitment to understand the risks from climate change and extreme events and help improve the resilience of the nation's electric...

  4. Improving Risk Assessment to Support State Energy Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    of Electricity Delivery and Energy Reliability (OE) is leading a State Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure...

  5. Geographically-Based Hydrogen Demand & Infrastructure Rollout Scenario Analysis (Presentation)

    SciTech Connect (OSTI)

    Melendez, M.

    2007-05-17

    This presentation by Margo Melendez at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Hydrogen Demand & Infrastructure Rollout Scenario Analysis.

  6. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More DOE Announces Webinars on Hydrogen Fueling...

  7. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Energy Savers [EERE]

    associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle...

  8. Safety Hazard and Risk Identification and Management In Infrastructure Management 

    E-Print Network [OSTI]

    Campbell, Jennifer Mary

    2008-01-01

    Infrastructure such as transportation networks improves the condition of everyday lives by facilitating public services and systems necessary for economic activity and growth. However, constructing and maintaining ...

  9. FROM: KYLE E. MCSLARROW SUBJEcr A Single Integrated IT Infrastructure...

    Office of Environmental Management (EM)

    In this context, the DOE infrastructure incorporates utility-like functions (networks, desk-top computing, help desk and support) that are similar across all components....

  10. DOE Launches Natural Gas Infrastructure R&D Program Enhancing...

    Energy Savers [EERE]

    DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

  11. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  12. Toward sustainable stormwater management : overcoming barriers to green infrastructure

    E-Print Network [OSTI]

    Hammitt, Sarah A. (Sarah Ann)

    2010-01-01

    With their high concentrations of impervious surface, urban areas generate stormwater runoff that overwhelms existing infrastructure causing flooding, sewer overflows, water pollution, and habitat degradation. Under pressure ...

  13. NA 50 - Associate Administrator for Safety, Infrastructure and...

    National Nuclear Security Administration (NNSA)

    50 - Associate Administrator for Safety, Infrastructure and Operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  14. Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower Project,

    E-Print Network [OSTI]

    Asselin, Hugo

    Plant biodiversity and ethnobotany inside the projected impact area of the Upper Seti Hydropower hydropower project, currently under feasibility study. The objective of the study was to document plant the construction of major hydropower infrastructure (Pokharel 2001; Bartle 2002). However, potential impacts

  15. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  16. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  17. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01

    Prospects for Building a Hydrogen Energy Infrastructure."A global survey of hydrogen energy research, development andof Engineering (2004). the Hydrogen Economy: Opportunities,

  18. NNSA Completes Successful Facilities and Infrastructure Recapitalizati...

    National Nuclear Security Administration (NNSA)

    and reduced deteriorated condition. Completed nine utility line item projects including power grid upgrades at Los Alamos National Laboratory, an electrical substation and a...

  19. Western Area Power Administration Transmission Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    connecting near line's midpoint 161 million in TIP funding; 213 million project cost Substation construction began June 2010 Transmission construction began...

  20. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy...

  1. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    SciTech Connect (OSTI)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federation policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.

  2. Innovations in Nuclear Infrastructure and Education

    SciTech Connect (OSTI)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  3. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    and Monuments:In the case of Historic Buildings and Monuments: assessment of safety and seismic stabilityS E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION and Methodius" University in Skopje, MK #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

  4. SUSTAINABLE INFRASTRUCTURE MATERIAL DESIGN Michael D. Lepech1

    E-Print Network [OSTI]

    Lepech, Michael D.

    to an infrastructure application for increased sustainability. 1. INTRODUCTION The impact of the United States. Therefore, the need for sustainable development of this system is essential. Consuming 33.2 million tons infrastructure sustainability is the development and use of new materials, deliberately designed

  5. Protection of Coastal Infrastructure under Rising Flood Risk

    E-Print Network [OSTI]

    Protection of Coastal Infrastructure under Rising Flood Risk Megan J. Lickley, Ning Lin and Henry D://globalchange.mit.edu/ Printed on recycled paper #12;Protection of Coastal Infrastructure under Rising Flood Risk Megan J to an increasing risk of flooding. We study the combined impacts of anticipated sea level rise, hurricane activity

  6. Risk communication for critical civil infrastructure systems Jack Baker1

    E-Print Network [OSTI]

    Baker, Jack W.

    1 Risk communication for critical civil infrastructure systems Jack Baker1 , Jason Coray2 , Paul De for communicating risk within the context of infrastructure management decision support systems. A generic model-based management systems discussed in the paper includes the communication of risk to system users. The paper

  7. Electric Vehicle Infrastructure: Where, How Many and Why?

    E-Print Network [OSTI]

    California at Davis, University of

    for EVs Driving Patterns Demand for Charging Infrastructure Charging Supply 1. Home charging 2. Public-2 QC per 1000 vehicles · Workplace charging accommodates 5-7% more EV travel ­ About 70 Thomas Turrentine UCDavis University of California #12;Why do We Need Charging Infrastructure? Demand

  8. Microsoft's Cloud Infrastructure Datacenters and Network Fact Sheet

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Corp. delivers more than 200 cloud services, including Bing, MSN, Outlook.com, Office 365, One operations centers. This infrastructure is supported by one of the world's largest multi- terabit global and listen to our cloud energy strategist's presentation. #12;Microsoft's cloud infrastructure by the numbers

  9. ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors

    E-Print Network [OSTI]

    Lee, Jenq-Kuen

    ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors Cheng-Wei Chen, Chung-Lin Tang our experiences in deploying ORC infrastructures for a novel 32-bit VLIW DSP processor (known as PAC. We also present methods in retargeting ORC compilers for PAC VLIW DSP processors. In addition

  10. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  11. Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure

    E-Print Network [OSTI]

    Karakostas, George

    of scheduling for energy efficient road-side infrastructure. In certain scenarios, vehicle locations can be predicted with a high degree of accuracy, and this information can be used to reduce downlink infrastructure-to-vehicle energy communication costs. The paper first presents off-line scheduling results which provide lower

  12. Performance Analysis of Multi-Channel Wireless Infrastructure Networks

    E-Print Network [OSTI]

    Ramasubramanian, Srinivasan

    between channels with some tuning delay. A node is a stationary wireless router which is mounted usuallyPerformance Analysis of Multi-Channel Wireless Infrastructure Networks Sangman Cho, Srinivasan, Washington, DC 20052 Abstract--Wireless infrastructure networks that provide ubiq- uitous connectivity

  13. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  14. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.

  15. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  16. BIOTRON INFRASTRUCTURE RENOVATION A 6.1 million dollar infrastructure renovation will begin this fall at the Biotron with completion

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    for in advance. Major features of the renovation include: Installation of energy efficient lighting in the plant to research rooms The renovation and energy conservation opportunities are estimated to save $430,090 a yearBIOTRON INFRASTRUCTURE RENOVATION A 6.1 million dollar infrastructure renovation will begin

  17. A MULTI-DISCIPLINARY APPROACH TO PROTECTION OF INFRASTRUCTURE FROM SEISMIC ACTIONS QUEENSLAND UNIVERSITY OF TECHNOLOGY

    E-Print Network [OSTI]

    -DISCIPLINARY APPROACH TO PROTECTION OF INFRASTRUCTURE FROM SEISMIC ACTIONS STRENGTH DEMAND EXCEEDS CODE COMPLIANT DESIGN TO PROTECTION OF INFRASTRUCTURE FROM SEISMIC ACTIONS CURRENT STRUCTURAL DESIGN PRACTICE · SEISMIC ENERGYA MULTI-DISCIPLINARY APPROACH TO PROTECTION OF INFRASTRUCTURE FROM SEISMIC ACTIONS QUEENSLAND

  18. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research in

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research Infrastructures (RI) in regions of high seismicity. · Limited access of the Scientific and Technical (S resources at some RIs. #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES KEY POINTS

  19. The DOE infrastructure support program at the University of Texas at El Paso. Final report

    SciTech Connect (OSTI)

    NONE

    1998-11-01

    The University of Texas at El Paso (UTEP) is located on 300 acres, only a few hundred years from the US/Mexico border. The DOE Infrastructure Support Program was initiated at UTEP in 1987. The purpose of the program was to assist the University in building the infrastructure required for its emerging role as a regional center for energy-related research. Equally important was the need to strength the University`s ability to complete for sponsored energy-related programs at the state and national levels and to provide opportunities for faculty, staff and students to participate in energy-related research and outreach activities. The program had four major objectives, as follows: (1) implement energy research, outreach and demonstration projects already funded, and prepare new proposals to fund university research interests; (2) establish an Energy Center as a separate operational entity to provide continuing infrastructure support for energy-related programs; (3) strengthen university/private sector energy research linkages; and (4) involve minority graduate and undergraduate students in energy research and outreach activities. Each of the above objectives has been exceeded substantially, and, as a consequence, the University has become a regional leader in energy and environmental research and outreach efforts.

  20. Low-Infrastructure Hydroelectric Generator To design and build a portable, self

    E-Print Network [OSTI]

    van den Berg, Jur

    !! Low-Infrastructure Hydroelectric Generator To design and build a portable, self contained, hydroelectric generator that functions without the requisite infrastructure of today's more common hydroelectric

  1. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01

    17. Parker, N. , Using Natural Gas Transmission PipelineANALYZING NATURAL GAS BASED HYDROGEN INFRASTRUCTURE –distribution infrastructure (natural gas and electricity)

  2. The geography of strategy : an exploration of alternative frameworks for transportation infrastructure strategy development

    E-Print Network [OSTI]

    Dunn, Travis P

    2010-01-01

    This thesis introduces the notion of a strategy development framework for transportation infrastructure systems. A strategy development framework has several dimensions: the organizations that own.infrastructure, the ...

  3. Nuclear Infrastructure Development: Strategies and Methods for Engaging Nuclear Energy Seeking States

    SciTech Connect (OSTI)

    Frazar, Sarah L.; Kessler, Carol A.; Kreyling, Sean J.; Morris, Frederic A.; Mathews, Caroline E.; Bissani, Mo; Vergino, Eileen; Essner, Jonathan; Babcock, Rose A.; Eipeldauer, Dawn; Shipwash, Jacqueline; Apt, Kenneth E.

    2009-01-31

    This is the final report for the three infrastructure development workshops PNNL hosted or supported: the two infrastructure development seminars and the Como conference

  4. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  5. Water Resource Infrastructure in New York: Assessment, Management, & Planning Year 3

    E-Print Network [OSTI]

    Walter, M.Todd

    Water Resource Infrastructure in New York: Assessment, Management, & Planning & Srinagesh Gavirneni NEW YORK STATE WATER RESOURCES INSTITUTE Resource Infrastructure in New York: Assessment, Management, & Planning ­ Year 3

  6. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  7. Critical infrastructure systems of systems assessment methodology.

    SciTech Connect (OSTI)

    Sholander, Peter E.; Darby, John L.; Phelan, James M.; Smith, Bryan; Wyss, Gregory Dane; Walter, Andrew; Varnado, G. Bruce; Depoy, Jennifer Mae

    2006-10-01

    Assessing the risk of malevolent attacks against large-scale critical infrastructures requires modifications to existing methodologies that separately consider physical security and cyber security. This research has developed a risk assessment methodology that explicitly accounts for both physical and cyber security, while preserving the traditional security paradigm of detect, delay, and respond. This methodology also accounts for the condition that a facility may be able to recover from or mitigate the impact of a successful attack before serious consequences occur. The methodology uses evidence-based techniques (which are a generalization of probability theory) to evaluate the security posture of the cyber protection systems. Cyber threats are compared against cyber security posture using a category-based approach nested within a path-based analysis to determine the most vulnerable cyber attack path. The methodology summarizes the impact of a blended cyber/physical adversary attack in a conditional risk estimate where the consequence term is scaled by a ''willingness to pay'' avoidance approach.

  8. CMS centres worldwide: A new collaborative infrastructure

    SciTech Connect (OSTI)

    Taylor, Lucas; Gottschalk, Erik; /Fermilab

    2010-01-01

    The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

  9. Technology Trend of Ubiquitous Computing Infrastructure This article aims to estimate the level of present technology and a realistic possibility by defining the kernel

    E-Print Network [OSTI]

    Bahk, Saewoong

    I Technology Trend of Ubiquitous Computing Infrastructure This article aims to estimate the level experience of UCN project. Keywords: Ubiquitous computing Infra, Ubiquitous Intelligence, Ubiquitous Network to prepare for realization of ubiquitous society and examining the present trend. For this purpose, we

  10. Protection of Coastal Infrastructure under Rising Flood Risk

    E-Print Network [OSTI]

    Lickley, M.J.

    The 2005 hurricane season was particularly damaging to the United States, contributing to significant losses to energy infrastructure—much of it the result of flooding from storm surge during hurricanes Katrina and Rita. ...

  11. Sustainability of Concrete forSustainability of Concrete for Infrastructure

    E-Print Network [OSTI]

    Bertini, Robert L.

    Sustainability of Concrete forSustainability of Concrete for Infrastructure Dr. Jason H. Ideker University #12;Overview · Background and research at OSU · Sustainability and the link to durability · What limits sustainability in concrete materials? ­ Degradation: Alkali-silica reaction ­ Environmental

  12. ITIS (Information Technology Infrastructure Services) About our Team: ..................................................................................................................................................... 2

    E-Print Network [OSTI]

    Pittendrigh, Barry

    : ..................................................................................................................................................... 2 Telecommunications Design & Engineering:....................................................... 9 Items that MUST be complete BEFORE installing network gear in new telecom rooms of the voice services, data networks, and telecom infrastructure groups. We are responsible for the design

  13. Artificial nature : water infrastructure and its experience as natural space

    E-Print Network [OSTI]

    Demirta?, Fatma Asl?han, 1970-

    2000-01-01

    This work is about water infrastructure and its experience as urban and natural space. It deals with the concepts of nature/geography, technology, and the integral experiential space by analyzing water dams and reservoirs ...

  14. Identification of critical locations across multiple infrastructures for terrorist actions

    E-Print Network [OSTI]

    Patterson, Sean A. (Sean Albert), 1981-

    2005-01-01

    This paper discusses a possible approach to ranking geographic regions that can influence multiple infrastructures. Once ranked, decision makers can determine whether these regions are critical locations based on their ...

  15. Exploring Opportunities for Social Infrastructure in Congestive Heart

    E-Print Network [OSTI]

    Chen, Yiling

    Exploring Opportunities for Social Infrastructure in Congestive Heart Failure Management Sunyoung Congestive Heart Failure (CHF), since it is one of serious health threats among the elderly population diseases. Author Keywords Congestive heart failure, Chronic disease, Healthcare technology, Self

  16. RoadRunner: Infrastructure-less vehicular congestion control

    E-Print Network [OSTI]

    Gao, Jason Hao

    RoadRunner is an in-vehicle app for traffic congestion control without costly roadside infrastructure, instead judiciously harnessing vehicle-to-vehicle communications, cellular connectivity, and onboard computation and ...

  17. Architecture of the rail : exploring the potential of urban infrastructure

    E-Print Network [OSTI]

    Iboshi, Gregory Kenji

    1994-01-01

    This thesis is the pursuit of a sensitivity for the relationship between urban infrastructure and architectural form, an attempt to restore a quality of "publicness" in the urban landscape through the implementation of a ...

  18. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (

  19. Scanning the Issue Special Issue on Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    to absolutely defend. The report on the northeastern blackout of August 2003 by the U.S.­Canada Power System Outage Task Force 2003 places the focus directly on the infrastructure of electric power. This blackout

  20. Strategic indicators for characterization of water system infrastructure and management

    E-Print Network [OSTI]

    Garvin, Michael J. (Michael Joseph)

    2001-01-01

    Shifts in the US water industry are characteristic of the flux found across all infrastructure sectors. Economic, environmental, market, regulatory and systemic forces are pushing the industry toward a different future ...

  1. Fig 2 -Cloud energy collect infrastructure Energy Efficient (Green) Cloud !

    E-Print Network [OSTI]

    Lefčvre, Laurent

    Fig 2 - Cloud energy collect infrastructure Energy Efficient (Green) Cloud ! The Compatible software components Energy Monitoring of physical and virtual resources Energy usage exposing for users and clouds managers Energy monitoring streams for upper layers software Design Energy aware software

  2. Copyright 2009 200916 Sustainable Design and Manufacturing of Precast Infrastructure

    E-Print Network [OSTI]

    Lepech, Michael D.

    Materials Development ­ High performance construction materials using industrial waste streams of Precast Infrastructure CIFE TAC 2009 2 The big idea The construction of concrete buildings, typically cast are provided for ­ Sustainable Manufacturing ­ Construction & Skilled Trades ­ Transportation · Foundational

  3. An Engineering Information Service Infrastructure for Ubiquitous Computing

    E-Print Network [OSTI]

    Stanford University

    An Engineering Information Service Infrastructure for Ubiquitous Computing David Liu1 , Jinxing framework for the development of a ubiquitous computing environment for distributed engineering information services. A prototype for the ubiquitous computing environment has been developed that incorporates

  4. An Inter-Cloud Architecture for Future Internet Infrastructures

    E-Print Network [OSTI]

    Petrakis, Euripides G.M.

    An Inter-Cloud Architecture for Future Internet Infrastructures STELIOS SOTIRIADIS, Technical, Technical University of Crete, Greece Iaan latest years, the concept of interconnecting clouds to allow of cloud resources from Internet users. An efficient common management between different clouds

  5. Embracing the shadows : inhabitation of an infrastructural landscape

    E-Print Network [OSTI]

    Luther, Rebecca M. (Rebecca Marie), 1976-

    2004-01-01

    This thesis embraces the slots of space left behind by regional transportation infrastructure: It proposes an inhabitation of the places over, under and within existing enclaves and impasses, through an engagement of the ...

  6. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles and InfrastructureinInfrastructure

  7. The Nautilus project

    SciTech Connect (OSTI)

    Salis, J. de

    1996-02-01

    The objective of the Nautilus project is to design, build, and evaluate a subsea multiphase electrical booster system to demonstrate its operability and reliability. The subsea station will reflect the integration of existing, tested, and recently developed equipment. The integration of various technologies, control, and maintenance in a subsea environment represents the challenging aspect of the project. Boosted by a helicoaxial pump, the produced multiphase effluent receives enough energy to reach either a host platform or the shore where the classical separation and treatment operations are performed. For deep offshore developments, the concept should induce a lower investment than alternative solutions. The concept should also give access to marginal fields, currently undeveloped for economical reasons, with the benefit of maximizing existing infrastructure. Furthermore, where sea traffic or environment concerns may limit offshore surface developments, Nautilus should demonstrate itself as an economical alternative.

  8. Building infrastructural piers in East Boston

    E-Print Network [OSTI]

    McDonnell, Sean

    1992-01-01

    The thesis is an inquiry into the urban waterfront and access to it. In particular, it is about the waterfront of Boston which ought to be more accessible, more public, and more present in the life of the city. The project ...

  9. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  10. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  11. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  14. An Integrated Framework for Optimizing Automatic Monitoring Systems in Large IT Infrastructures

    E-Print Network [OSTI]

    Li, Tao

    and cost. IT Infrastructure Library (ITIL) addresses monitoring as a con- tinual cycle of monitoring

  15. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  16. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION OF THE EUROPEAN COMMUNITIES FP7- INFRASTRUCTURES-2008-1 SP4-Capacities #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

  17. The micro-foundations of alignment among sponsors and contractors on large engineering projects

    E-Print Network [OSTI]

    McKenna, Nicholas A. (Nicholas Alan)

    2006-01-01

    Large engineering projects design, engineer and construct much of the world's energy, transportation and defense infrastructure. These large scale engineering endeavors are highly visible, have long lasting impacts and are ...

  18. Dartmouth College November 2010 http://www.ists.dartmouth.edu/projects/healthit_security/tish/

    E-Print Network [OSTI]

    Smith, "Dr. Jekyll or Mr. Hyde: Information Security in the Ecosystem://www.ists.dartmouth.edu/projects/healthit_security/tish/ Trustworthy Information Systems for Healthcare (TISH) Overview Technology infrastructure and controlling costs. Yet developing, deploying and using information technology

  19. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    SciTech Connect (OSTI)

    Not Listed

    2012-03-01

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  20. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  1. Site Development Infrastructure Phase 4 Bid Results

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    PROJECT NO.: 906050 BID RELEASE 1 Trade Package 01 Bobo Construction McCarthy Buillding Companies BIDDER C,000 $29,000 A4 Accepted $60,000 $101,000 A5 Accepted $6,500 $7,000 A6 A7 A8 Accepted $25,000 $31,000 A9 A1, A2, A3, A4, A5, A8, $266,500 $330,000 $0 $3,574,010 $2,906,000 $0 $266,500 $330,000 $0 $3,840,510 $3

  2. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |EnergyAll 50Batteries

  3. Sandia Energy - Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyber Engineering Research Laboratory

  4. DIGITAL ARCHITECTURE PROJECT PLAN

    SciTech Connect (OSTI)

    Thomas, Ken

    2014-09-01

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new technologies.

  5. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    SciTech Connect (OSTI)

    Bachner, Katherine M.; Mladineo, Stephen V.

    2011-07-20

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support the Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.

  6. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  7. Strategic Plan for a Scientific Cloud Computing infrastructure for Europe

    E-Print Network [OSTI]

    Lengert, Maryline

    2011-01-01

    Here we present the vision, concept and direction for forming a European Industrial Strategy for a Scientific Cloud Computing Infrastructure to be implemented by 2020. This will be the framework for decisions and for securing support and approval in establishing, initially, an R&D European Cloud Computing Infrastructure that serves the need of European Research Area (ERA ) and Space Agencies. This Cloud Infrastructure will have the potential beyond this initial user base to evolve to provide similar services to a broad range of customers including government and SMEs. We explain how this plan aims to support the broader strategic goals of our organisations and identify the benefits to be realised by adopting an industrial Cloud Computing model. We also outline the prerequisites and commitment needed to achieve these objectives.

  8. Briefing Memo: Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session.

  9. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  10. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect (OSTI)

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    This Technical Report on Climate Change and Infrastructure, Urban Systems, and Vulnerabilities has been prepared for the U.S. Department of Energy by the Oak Ridge National Laboratory in support of the U.S. National Climate Assessment (NCA). It is a summary of the currently existing knowledge base on its topic, nested within a broader framing of issues and questions that need further attention in the longer run. The report arrives at a number of assessment findings, each associated with an evaluation of the level of consensus on that issue within the expert community, the volume of evidence available to support that judgment, and the section of the report that provides an explanation for the finding. Cross-sectoral issues related to infrastructures and urban systems have not received a great deal of attention to date in research literatures in general and climate change assessments in particular. As a result, this technical report is breaking new ground as a component of climate change vulnerability and impact assessments in the U.S., which means that some of its assessment findings are rather speculative, more in the nature of propositions for further study than specific conclusions that are offered with a high level of confidence and research support. But it is a start in addressing questions that are of interest to many policymakers and stakeholders. A central theme of the report is that vulnerabilities and impacts are issues beyond physical infrastructures themselves. The concern is with the value of services provided by infrastructures, where the true consequences of impacts and disruptions involve not only the costs associated with the clean-up, repair, and/or replacement of affected infrastructures but also economic, social, and environmental effects as supply chains are disrupted, economic activities are suspended, and/or social well-being is threatened. Current knowledge indicates that vulnerability concerns tend to be focused on extreme weather events associated with climate change that can disrupt infrastructure services, often cascading across infrastructures because of extensive interdependencies threatening health and local economies, especially in areas where human populations and economic activities are concentrated in urban areas. Vulnerabilities are especially large where infrastructures are subject to multiple stresses, beyond climate change alone; when they are located in areas vulnerable to extreme weather events; and if climate change is severe rather than moderate. But the report also notes that there are promising approaches for risk management, based on emerging lessons from a number of innovative initiatives in U.S. cities and other countries, involving both structural and non-structural (e.g., operational) options.

  11. Center for Energy Research and Training (CERT) infrastructure support under USDOE/MEIAP. Final report

    SciTech Connect (OSTI)

    Mallik, A.K.; Rojeski, P. Jr.

    1993-10-01

    As one of the several institutions of higher education, North Carolina Agricultural and Technical State University at Greensboro has received support from the office of Minority Education Institution Assistance Program (MEIAP) of the US Department of Energy primarily to provide infrastructure support to promote and enhance interdisciplinary energy-related research. In this effort, the university was authorized to prepare a plan to create a Center for Energy Research and Training (CERT), which was initiated on September 30, 1987. The goals and objectives for CERT are as specified below: (1) To encourage research by the faculty in many academic disciplines and to enhance their success in finding and obtaining funds for interdisciplinary and multi-school research. (2) To enhance students` energy education with increased opportunities for: theoretical and practical contact with energy issues and technologies; new courses and improved course content; internships and graduate funding; and ability and desire to pursue careers in energy field. (3) To establish training and service programs for off-campus constituents in energy issues, use, and management. (4) To develop cooperative relationships with industry, businesses, universities, and other private and professional organizations and with the State Energy Office. (5) To cooperate in establishing communications and collaborative research projects with various national research laboratories and other federal agencies. (6) To develop a permanent university infrastructure for energy research, training, and community service. Summaries of activities from September, 1992 to September, 1993 are presented.

  12. Open?|?SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schulz, Martin; Galarowicz, Jim; Maghrak, Don; Hachfeld, William; Montoya, David; Cranford, Scott

    2008-01-01

    Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open?|?SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open?|?SpeedShop has two different faces: it provides an interoperable tool set covering themore »most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open?|?SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less

  13. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    SciTech Connect (OSTI)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca; Crichton, Daniel; Danvil, Sebastian; Drach, Bob; Fiore, Sandro; Gonzalez, Estanislao; Harney, John F; Mattmann, Chris; Kershaw, Philip; Morgan, Mark; Pascoe, Stephen; Shipman, Galen M; Wang, Feiyi

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  14. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    SciTech Connect (OSTI)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill; Mattmann, Chris; Harney, John F; Shipman, Galen M; Wang, Feiyi; Bell, Gavin; Drach, Bob; Ananthakrishnan, Rachana; Pascoe, Stephen; Fiore, Sandro; Schweitzer, Roland; Danvil, Sebastian; Morgan, Mark

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  15. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    SciTech Connect (OSTI)

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean�an expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean�s role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)�s Ocean Studies Board was asked by the National Science and Technology Council�s Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation�s attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions�enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales. Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure � autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating

  16. Distributing the Cost of Securing a Transportation Infrastructure

    E-Print Network [OSTI]

    Chawathe, Sudarshan S.

    on such division of costs has been the topic of much political controversy and threatens to derail initiatives new regulations. However, there are also indirect costs such as noise, pollution, and dangerDistributing the Cost of Securing a Transportation Infrastructure Sudarshan S. Chawathe Computer

  17. Building Web-based Infrastructures for Smart Andreas Kamilaris1

    E-Print Network [OSTI]

    on the RESTful gateways described in [2], to bridge proprietary Smart Meters with the Web. Gateways canBuilding Web-based Infrastructures for Smart Meters Andreas Kamilaris1 , Vlad Trifa2 Abstract. Smart Meters have been massively deployed recently, in or- der to provide energy awareness

  18. A Scalable Digital Library Infrastructure Expands Search and Beyond

    E-Print Network [OSTI]

    Bieber, Michael

    A Scalable Digital Library Infrastructure Expands Search and Beyond Min Song1 , Shuyuan Mary Ho a challenge as the number of digital libraries increases, and so does the demand of sophisticated users for searching requirements over several digital libraries and search engines before getting to the desired book

  19. Toward Digital Ecologies:Intelligent Agent Networks Controlling Interdependent Infrastructures

    E-Print Network [OSTI]

    Ulieru, Mihaela

    peak demand for energy enables reduction in total energy production, reducing demand for non-renewable, renewable forms of energy production into the grid (e.g., wind, solar). As demand falls and non-renewable AND MOTIVATION ritical infrastructures, such as power distribution systems are designed according to two

  20. REAL TIME MONITORING OF INFRASTRUCTURE USING TDR TECHNOLOGY: CASE HISTORIES

    E-Print Network [OSTI]

    REAL TIME MONITORING OF INFRASTRUCTURE USING TDR TECHNOLOGY: CASE HISTORIES Kevin M. O Reflectometry (TDR) is a versatile technology amenable to a variety of measurements and nondestructive in a companion paper and this paper focuses on case histories in which TDR was used to monitor deformation

  1. "Developing Nationally Significant Infrastructure: the Future Role of Energy Planning"

    E-Print Network [OSTI]

    Martin, Ralph R.

    to about 1/3 of current overall capacity. The 2003 Energy Review placed growing emphasis on renewable energy. There is currently a national target of 5% renewable generation by 2007, and 10% by 2015 infrastructure in 2005.4 Emphasis was placed upon clean energy: renewable energy and the efficient use of natural

  2. Disruptions in Interdependent Infrastructure Systems: A Network Flows Approach1

    E-Print Network [OSTI]

    Mitchell, John E.

    system affects one or more other infrastructure systems. The approach is to model the salient elements of these systems and provide decision makers with a means to manipulate the set of models, i.e. a decision support (including roads, bridges, water and rail); energy (including electric power, gas and liquid fuels

  3. MANENT: An Infrastructure for Integrating, Structuring and Searching Digital Libraries

    E-Print Network [OSTI]

    Mascardi, Viviana

    of Digital Library con- tent management and record classification and retrieval. It is hosted on a serverChapter 1 MANENT: An Infrastructure for Integrating, Structuring and Searching Digital Libraries Angela Locoro, Daniele Grignani, Viviana Mascardi Abstract Digital Libraries represent the commitment

  4. I. INTRODUCTION Civil and critical infrastructure systems such as

    E-Print Network [OSTI]

    Oren, Shmuel S.

    of scientific principles to the design, maintenance and improvement of the critical infrastructures in our of any one element (e.g. generator, transmission line, transformer etc.). The last two decades brought System Engineering Research Center (PSERC) and by the Center for Electric Reliability Technology

  5. Web Portal for Photonic Technologies Using Grid Infrastructures

    E-Print Network [OSTI]

    H. V. Astsatryan; T. V. Gevorgyan; A. R. Shahinyan

    2013-01-09

    The modeling of physical processes is an integral part of scientific and technical research. In this area, the Extendible C++ Application in Quantum Technologies (ECAQT) package provides the numerical simulations and modeling of complex quantum systems in the presence of decoherence with wide applications in photonics. It allows creating models of interacting complex systems and simulates their time evolution with a number of available time-evolution drivers. Physical simulations involving massive amounts of calculations are often executed on distributed computing infrastructures. It is often difficult for non expert users to use such computational infrastructures or even to use advanced libraries over the infrastructures, because they often require being familiar with middleware and tools, parallel programming techniques and packages. The P-RADE Grid Portal is a Grid portal solution that allows users to manage the whole life-cycle for executing a parallel application on the computing Grid infrastructures. The article describes the functionality and the structure of the web portal based on ECAQT package.

  6. Secure Cloud Computing with a Virtualized Network Infrastructure

    E-Print Network [OSTI]

    Akella, Aditya

    Secure Cloud Computing with a Virtualized Network Infrastructure Fang Hao, T.V. Lakshman, Sarit the rapid development in the field of cloud com- puting, security is still one of the major hurdles to cloud to users. At the other end of the spectrum, highly secured cloud services (e.g. Google "government cloud

  7. Integrated Energy/Transportation Continent-wide Infrastructure Design

    E-Print Network [OSTI]

    McCalley, James D.

    to fracking impact: water/earthquake 2. GHG-induced climate change occurs rapidly re- quiring gas useIntegrated Energy/Transportation Continent-wide Infrastructure Design 1 James McCalley Harpole Wolf 13 11/20 14 12/4 RyanKonopinski (GE) 15 12/11 Huiyi Zhang, Nick Brown,DavidJahn #12;1. US energy

  8. Fast/Fair Mobile Localization in Infrastructure Wireless Sensor Networks

    E-Print Network [OSTI]

    Krishnamachari, Bhaskar

    Fast/Fair Mobile Localization in Infrastructure Wireless Sensor Networks Kiran Yedavalli, Bhaskar and Technology Center, Palo Alto, CA, USA We introduce the problem of fast and fair localization of mobile units and fairness of localization and investigate a heuristic algorithm for fast and fair localization. Simulation

  9. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  10. 1 INTRODUCTION 1.1 Complex IT Systems and Infrastructure

    E-Print Network [OSTI]

    Stanford University

    to the management of complex manufactur- ing systems, including the management of the en- hanced agile/lean/integration and configurable manufacturing systems. Key Words: autonomic computing enterprise IT IT infrastructure topology based model SLA QoS IT management paradigm agile manufacturing #12;4. calculating the QoS and SLA based

  11. MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM

    E-Print Network [OSTI]

    MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM WITH CO2 SEQUESTRATION Joan M. Ogden demand centers and CO2 sequestration sites. MODEL OF A FOSSIL HYDROGEN ENERGY SYSTEM WITH CO2 Production of hydrogen (H2) from fossil fuels with capture and sequestration of CO2 offers a route toward

  12. Wireless Sensing for Structural Health Monitoring of Civil Infrastructures

    E-Print Network [OSTI]

    Stanford University

    in southern New Mexico. With wireless radios consuming large amounts of power, energy preservation can1 Wireless Sensing for Structural Health Monitoring of Civil Infrastructures J.P. Lynch1 , Y. Wang2-cost wireless sensing unit for installation in structural monitoring systems. The prototype wireless sensing

  13. "Developing the infrastructure and skills needed to handle big data."

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    "Developing the infrastructure and skills needed to handle big data." Don Brown W.S. Calcott Engineering University of Virginia Charlottesville, VA 434.982.2074 Big Data Research Group Our research group and uncertain behaviors. Methodological interests in these areas include data- mining, simulation

  14. A Comparison of the Akenti and PERMIS Authorization Infrastructures

    E-Print Network [OSTI]

    Kent, University of

    ) by PERMIS (after the ISO Access Control Framework [ISO]). Both have a gateway controlling user access their policies in XML, and store their policies in certificates. Both of them can store their user credentials as certificates in LDAP directories. Hence on the face of it, the Akenti and PERMIS authorisation infrastructures

  15. Deployment of Broadband Infrastructure in the Region of Western Greece

    E-Print Network [OSTI]

    Deployment of Broadband Infrastructure in the Region of Western Greece Antonios Alexiou1, Patras, Greece 3 University of Ioannina, Greece 4 University of Aegean, Greece {alexiua, bouras, igglesis that is taking place in the Region of Western Greece in order to develop state-of-the- art broadband

  16. Baton: Key Agility for Android without a Centralized Certificate Infrastructure

    E-Print Network [OSTI]

    Van Oorschot, Paul

    Baton: Key Agility for Android without a Centralized Certificate Infrastructure David Barrera,dmccarney}@ccsl.carleton.ca {clark,paulv}@scs.carleton.ca ABSTRACT Android's trust-on-first-use application signing model asso transfer signing au- thority to a new signing key. Our proposal, Baton, modifies Android's app installation

  17. QER Public Meeting: New England Regional Infrastructure Constraints Part II

    Broader source: Energy.gov [DOE]

    The Department of Energy will convene a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review. The purpose of the meeting is to examine energy infrastructure constraints in New England and regional approaches to addressing them

  18. QER Public Meeting: New England Regional Infrastructure Constraints Part I

    Broader source: Energy.gov [DOE]

    The Department of Energy will convene a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review. The purpose of the meeting is to examine energy infrastructure constraints in New England and regional approaches to addressing them

  19. XPOLA An Extensible Capability-based Authorization Infrastructure for Grids

    E-Print Network [OSTI]

    , especially with the host account maintenance and certificate management. This paper proposes a capability-based infrastructure that provides a fine-grained authorization solution to Web service deployments, and also manages collaboration and resource sharing securely across multiple domains. Interests from academia and industry

  20. Energy and Water Scarcity: Impacts on Infrastructure, Growth and

    E-Print Network [OSTI]

    Scott, Christopher

    Techno-economic Evaluation Of A Solar Powered Water Desalination Plant. In L. Rizzuti et al. (edsEnergy and Water Scarcity: Impacts on Infrastructure, Growth and Economic Development in Arizona Demand AZ 2030 * Phoenix 2005; **Tucson 2005; 150=smart growth +66% +53% +45% From 2006 base #12;Water

  1. Charging Infrastructure Public chargers could make BEVs more

    E-Print Network [OSTI]

    McGaughey, Alan

    Charging Infrastructure Public chargers could make BEVs more attractive, but for PHEVs public charger investment is an expensive way to save gasoline ­ costing much more than the price of gasoline per of U.S. vehicles lack dedicated off-street parking at an owned residence where a charger could

  2. Assessing the Vulnerability of the Fiber Infrastructure to Disasters

    E-Print Network [OSTI]

    Cohen, Reuven

    , as well as to physical attacks, such as an Electromagnetic Pulse (EMP) attack. Such real-world events-optic, Electromagnetic Pulse (EMP). I. INTRODUCTION The global communications infrastructure is primarily based on fiber by any- thing from Electromagnetic Pulse (EMP) attacks [14], [15], [31] to dragging anchors [8], [36

  3. HF Radio in the International Information Infrastructure Eric E. Johnson

    E-Print Network [OSTI]

    Johnson, Eric E.

    HF Radio in the International Information Infrastructure Eric E. Johnson New Mexico State into the rapidly expanding global Internet. 1. INTRODUCTION Advancements in the international information network and the Internet (the latter relying largely upon the services of the former). However, some

  4. Implications of Security Enhancements and Interventions for Core Internet Infrastructure

    E-Print Network [OSTI]

    New Mexico, University of

    Implications of Security Enhancements and Interventions for Core Internet Infrastructure Sharon University of New Mexico First posted August 15, 2014. Last revised September 9, 2014. Abstract Security enhancements to the Internet are often implemented as hierarchical and centralizing structures grafted onto

  5. Knowledge Infrastructure for the Fifth Freedom in the

    E-Print Network [OSTI]

    Elmroth, Erik

    #12;#12;Knowledge Infrastructure for the Fifth Freedom in the Baltic Sea Area Erik Elmroth Area TemaNord 2010:516 © Nordic Council of Ministers, Copenhagen 2010 ISBN 978-92-893-2020-7 Print, and three autonomous areas: the Faroe Islands, Green- land, and Ĺland. Nordic cooperation has firm

  6. 190 India Infrastructure Report 2006 URBAN ENERGY MANAGEMENT

    E-Print Network [OSTI]

    Columbia University

    approach for (i) providing uninterrupted supply of energy, (ii) promoting energy conservation and (iii off from the outside world by now. If your landline phone works without power supply a major objective of the planners. Energy is a vital component of urban infrastructure. Be it water supply

  7. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Qualification

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Qualification of Seismic Research Facilities in Europe Maurizio Zola (P&P LMC - Bergamo) ­ Fabio Taucer (JRC ­ Ispra) #12;SEISMIC The qualification of the RTD facilities Standardization of the qualification of the RTD Facilities #12;SEISMIC

  8. A Survey of Software Infrastructures and Frameworks for Ubiquitous Computing

    E-Print Network [OSTI]

    A Survey of Software Infrastructures and Frameworks for Ubiquitous Computing Christoph Endres aspects of the ubiquitous computing vision as described by Mark Weiser [60]. This survey is meant computing devices are only an intermediate stage in this evolution, but the vision of ubiquitous computing

  9. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  10. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    & Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive

  11. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    . Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing

  12. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    SciTech Connect (OSTI)

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-critical monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  14. Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing Techniques

    E-Print Network [OSTI]

    Do, Hyunsook

    Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing@cse.unl.edu January 18, 2004 Abstract Where the development, understanding, and assessment of software testing infrastructure to support controlled experimentation with software testing and regression testing techniques

  15. Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing Techniques

    E-Print Network [OSTI]

    Do, Hyunsook

    Infrastructure Support for Controlled Experimentation with Software Testing and Regression Testing@cse.unl.edu April 13, 2005 Abstract Where the development, understanding, and assessment of software testing infrastructure to support controlled experimentation with software testing and regression testing techniques

  16. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

  17. The role of research in improving infrastructure : an analysis of U.S. transportation research & development

    E-Print Network [OSTI]

    Frazier, Kyle Andrew

    2010-01-01

    Infrastructure systems are central to quality of life and economic competitiveness in nations worldwide, but daunting challenges stand in the way of providing systems capable of delivering needed infrastructure services. ...

  18. Hydrogen Fuel Infrastructure PON-11-609 Attachment F Local Health Impacts Information

    E-Print Network [OSTI]

    Hydrogen Fuel Infrastructure PON-11-609 Attachment F ­ Local Health Impacts Information Air Quality Percentage of population under 5 years and over 65 years of age #12;Hydrogen Fuel Infrastructure PON-11

  19. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Local government leaders, utilities, car makers and electric-vehicle infrastructure providers came together to discuss how they can best coordinate their efforts at the Plug-in Vehicle and Infrastructure Workshop.

  20. Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure

    E-Print Network [OSTI]

    Struben, Jeroen J.R.,

    2007-04-27

    This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

  1. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 1 SERIES Final Workshop , Ispra, 28-30 May 2013

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 1 SERIES Final Workshop , Ispra, 28-30 May 2013 SERIES Networking Activities: Distributed database and Qualification of Research Infrastructures Opening remarks Pierre Pegon (JRC) #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN

  2. Information-Centric Energy Infrastructure Page 1 An Information-Centric Energy Infrastructure: The Berkeley View1

    E-Print Network [OSTI]

    California at Irvine, University of

    , integrating intermittent renewable sources and intelligently adapting loads to match the available energy. Key together of distributed communication technologies and distributed renewable energies via an open access and Motivation 1.1. The Energy Challenge Today's energy infrastructure is a marvel of the Industrial Age, yet

  3. Reuter et al. Social Software as an Infrastructure for Crisis Management Social Software as an Infrastructure for Crisis

    E-Print Network [OSTI]

    as an Infrastructure for Crisis Management - a Case Study About Current Practice and Potential Usage Christian Reuter Research School Business & Economics University of Siegen christian.reuter@uni-siegen.de Alexandra Marx leakages, energy breakdowns or crises caused by humans like rampages and terror attacks affect both

  4. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  5. Wellcome Trust SUBMISSION OF EVIDENCE Wellcome Trust response to Scientific Infrastructure inquiry

    E-Print Network [OSTI]

    Rambaut, Andrew

    Infrastructure for the 21st Century', and previous Large Facilities Roadmaps. 3. One of the Trust's key

  6. Commuting and health in Cambridge: a study of a 'natural experiment' in the provision of new transport infrastructure

    E-Print Network [OSTI]

    Ogilvie, David; Griffin, Simon J.; Jones, Andy; Mackett, Roger; Guell, Cornelia; Panter, Jenna R.; Jones, Natalia; Cohn, Simon; Yang, Lin; Chapman, Cheryl

    2010-11-16

    is modified, as in the M74 study of urban motorway con- struction in Glasgow [17,18] or the iConnect study of walking and cycling infrastructure projects around the UK [19], and others in which people move to a comple- tely new environment, as in the RESIDE... . Concurrent changes in the local built environment include a new housing development at Orchard Park adjacent to the route on the northwestern edge of the city [36]; the construction of a new access road and cycle route to the Cambridge Biomedical Campus from...

  7. Heterogeneous IPv6 Infrastructure for Smart Energy Efficient Leila Ben Saad

    E-Print Network [OSTI]

    Boyer, Edmond

    Heterogeneous IPv6 Infrastructure for Smart Energy Efficient Building Leila Ben Saad CITI INSA infrastructure, PLC is mandatory in several place of the smart-grid metering and command infrastructure. Also PLC constrained networking devices. Moreover, low energy PLC, will be able to provide smart grid monitoring

  8. A Noninvasive Threat Analyzer for Advanced Metering Infrastructure in Smart Grid

    E-Print Network [OSTI]

    Wang, Yongge

    1 A Noninvasive Threat Analyzer for Advanced Metering Infrastructure in Smart Grid Mohammad Ashiqur--Advanced Metering Infrastructure (AMI) is the core component in a smart grid that exhibits a highly complex network--Advanced metering infrastructure, security analysis, formal verification. I. INTRODUCTION Smart grids provide

  9. CyberNET is a research infrastructure that enables cybersecurity scientists and engineers to rigorously develop,

    E-Print Network [OSTI]

    Objective CyberNET is a research infrastructure that enables cybersecurity scientists and engineers a three-pronged approach to solving the identified problems. First, the CyberNET research infrastructure interactions. #12;September 2014 PNNL-SA-105343 Achievements · Stood up the CyberNET research infrastructure

  10. Tosic et al. Web Service Offerings Infrastructure (WSOI) -... 1 Web Service Offerings Infrastruc-

    E-Print Network [OSTI]

    Tosic et al. Web Service Offerings Infrastructure (WSOI) - ... 1 Web Service Offerings Infrastruc Engineering, Carleton University, Ottawa, Canada August 16, 2003 #12;Tosic et al. Web Service Offerings Infrastructure (WSOI) - ... 2 #12;Tosic et al. Web Service Offerings Infrastructure (WSOI) - ... 3 Web Service

  11. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    E-Print Network [OSTI]

    Victoria, University of

    Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Sustainable Demand-side Infrastructure for Power System Ancillary Services by Simon Christopher Parkinson B highly-distributed sustainable demand- side infrastructure, in the form of heat pumps, electric vehicles

  12. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  13. CX-006225: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Upgrades - Materials and Fuel Complex (MFC)- Irradiated Materials Characterization Laboratory (IMCL) CX(s) Applied: B3.6 Date: 06072011 Location(s): Idaho Falls,...

  14. CX-005950: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Determination Wisconsin Clean Transportation Partnership: Riteway Bus Services Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 06012011 Location(s): Oak Creek,...

  15. CX-006893: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Columbus Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): Columbus,...

  16. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  17. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  18. NM WAIDS: A PRODUCED WATER QUALITY AND INFRASTRUCTURE GIS DATABASE FOR NEW MEXICO OIL PRODUCERS

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Ibrahim Gundiler; Andrew Sung

    2003-09-24

    The New Mexico Water and Infrastructure Data System (NM WAIDS) seeks to alleviate a number of produced water-related issues in southeast New Mexico. The project calls for the design and implementation of a Geographical Information System (GIS) and integral tools that will provide operators and regulators with necessary data and useful information to help them make management and regulatory decisions. The major components of this system are: (1) Databases on produced water quality, cultural and groundwater data, oil pipeline and infrastructure data, and corrosion information. (2) A web site capable of displaying produced water and infrastructure data in a GIS or accessing some of the data by text-based queries. (3) A fuzzy logic-based, site risk assessment tool that can be used to assess the seriousness of a spill of produced water. (4) A corrosion management toolkit that will provide operators with data and information on produced waters that will aid them in deciding how to address corrosion issues. The various parts of NM WAIDS will be integrated into a website with a user-friendly interface that will provide access to previously difficult-to-obtain data and information. Primary attention during the first six months of this project was focused on creating the water quality databases for produced water and surface water, along with collecting of corrosion information and building parts of the corrosion toolkit. Work on the project to date includes: (1) Creation of a water quality database for produced water analyses. The database was compiled from a variety of sources and currently has over 7000 entries for New Mexico. (2) Creation of a web-based data entry system for the water quality database. This system allows a user to view, enter, or edit data from a web page rather than having to directly access the database. (3) Creation of a semi-automated data capturing system for use with standard water quality analysis forms. This system improves the accuracy and speed of water quality data entry. (4) Acquisition of ground water data from the New Mexico State Engineer's office, including chloride content and TDS (Total Dissolved Solids) for over 30,000 data points in southeast New Mexico. (5) Creation of a web-based scale prediction tool, again with a web-based interface, that uses two common scaling indices to predict the likelihood of scaling. This prediction tool can either run from user input data, or the user can select samples from the water analysis database. (6) Creation of depth-to-groundwater maps for the study area. (7) Analysis of water quality data by formation. (8) Continuation of efforts to collect produced water quality information from operators in the southeast New Mexico area. (9) Qualitative assessment of produced water from various formations regarding corrosivity. (10) Efforts at corrosion education in the region through operator visits. Future work on this project will include: (1) Development of an integrated web and GIS interface for all the information collected in this effort. (2) Continued development of a fuzzy logic spill risk assessment tool that was initially developed prior to this project. Improvements will include addition of parameters found to be significant in determining the impact of a brine spill at a specific site. (3) Compilation of both hard copy and online corrosion toolkit material.

  19. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  20. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.