National Library of Energy BETA

Sample records for infrastructure operations center

  1. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  2. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  3. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  4. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  5. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  6. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  7. <...

  8. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  9. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  10. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  11. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  12. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  13. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Ramps Up Biofuels Infrastructure to someone by E-mail Share Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Facebook Tweet about Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Twitter Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Google Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Delicious Rank Alternative Fuels Data Center: California Ramps

  14. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center:

  15. NISAC | National Infrastructure Simulation and Analysis Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interdependent national infrastructure, including process-based systems dynamics models, mathematical network optimization models, physics-based models of existing infrastructure,...

  16. Sandia Energy - Center for Infrastructure Research and Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Efficient Fuel Cells under Development by Engineers Read More Permalink Gallery High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for Infrastructure...

  17. Infrastructure and Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  18. infrastructure and operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA

  19. Center for Infrastructure Research and Innovation (CIRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  20. Biosciences: Emery Station Operations Center (ESOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences: Emery Station Operations Center (ESOC

  21. Office of Safety Infrastructure & Operations | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Infrastructure & Operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  22. NA 50 - Associate Administrator for Safety, Infrastructure and Operations

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration 50 - Associate Administrator for Safety, Infrastructure and Operations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  1. Operations Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  2. operations center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  3. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  4. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  5. WIPP Activates Emergency Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2015 WIPP Activates Emergency Operations Center At approximately 7:00 p.m. MDT on Tuesday, August 4, the Waste Isolation Pilot Plant (WIPP) activated the Emergency...

  6. How Does Your Data Center Measure Up? Energy Efficiency Metrics and Benchmarks for Data Center Infrastructure Systems

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Ganguly, Srirupa; Sartor, Dale; Tschudi, William

    2009-04-01

    Data centers are among the most energy intensive types of facilities, and they are growing dramatically in terms of size and intensity [EPA 2007]. As a result, in the last few years there has been increasing interest from stakeholders - ranging from data center managers to policy makers - to improve the energy efficiency of data centers, and there are several industry and government organizations that have developed tools, guidelines, and training programs. There are many opportunities to reduce energy use in data centers and benchmarking studies reveal a wide range of efficiency practices. Data center operators may not be aware of how efficient their facility may be relative to their peers, even for the same levels of service. Benchmarking is an effective way to compare one facility to another, and also to track the performance of a given facility over time. Toward that end, this article presents the key metrics that facility managers can use to assess, track, and manage the efficiency of the infrastructure systems in data centers, and thereby identify potential efficiency actions. Most of the benchmarking data presented in this article are drawn from the data center benchmarking database at Lawrence Berkeley National Laboratory (LBNL). The database was developed from studies commissioned by the California Energy Commission, Pacific Gas and Electric Co., the U.S. Department of Energy and the New York State Energy Research and Development Authority.

  7. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  8. DHS/National Operations Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    DHS/National Operations Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  9. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  10. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  11. Operating Experience Level 3, Industrial Equipment Impacts Infrastructure

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document provides information on a safety concern related to heavy industrial equipment that contacts and damages structures and electrical, gas, and water lines. Although these contacts did not cause injuries, the events did impact mission and schedule, divert resources, and change momentum.

  12. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  13. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  14. Data Center Efficiency and IT Equipment Reliability at Wider Operating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature and Humidity Ranges | Department of Energy Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges provides an overview of how operators of data centers can increase energy efficiency at wider operating temperatures and humidity ranges PDF icon data_center_efficiency_and_reliabilit_at_wider_operating_ranges.pdf More Documents &

  15. Alternative Fuels Data Center: Dallas Airport Operates With Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Dallas Airport Operates With Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Dallas Airport Operates With Alternative Fuels on Delicious Rank Alternative Fuels Data

  16. Center for Energy Research and Training (CERT) infrastructure support under USDOE/MEIAP. Final report

    SciTech Connect (OSTI)

    Mallik, A.K.; Rojeski, P. Jr.

    1993-10-01

    As one of the several institutions of higher education, North Carolina Agricultural and Technical State University at Greensboro has received support from the office of Minority Education Institution Assistance Program (MEIAP) of the US Department of Energy primarily to provide infrastructure support to promote and enhance interdisciplinary energy-related research. In this effort, the university was authorized to prepare a plan to create a Center for Energy Research and Training (CERT), which was initiated on September 30, 1987. The goals and objectives for CERT are as specified below: (1) To encourage research by the faculty in many academic disciplines and to enhance their success in finding and obtaining funds for interdisciplinary and multi-school research. (2) To enhance students` energy education with increased opportunities for: theoretical and practical contact with energy issues and technologies; new courses and improved course content; internships and graduate funding; and ability and desire to pursue careers in energy field. (3) To establish training and service programs for off-campus constituents in energy issues, use, and management. (4) To develop cooperative relationships with industry, businesses, universities, and other private and professional organizations and with the State Energy Office. (5) To cooperate in establishing communications and collaborative research projects with various national research laboratories and other federal agencies. (6) To develop a permanent university infrastructure for energy research, training, and community service. Summaries of activities from September, 1992 to September, 1993 are presented.

  17. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  18. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  19. Request for Information: Operation of Regional Test Center Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information: Operation of Regional Test Center Test Bed Located at SolarTAC Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Solicitation...

  20. Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on Alternative Fuels Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center:

  1. Operations Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Committee Operations Committee Robert E. Blankenship DirectorPrincipal Investigator E-mail: blankenship@wustl.edu Phone: 314.935.7971 Dewey Holten Associate Director...

  2. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-10-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a GMW10 engine/compressor after modifications to add high pressure Fuel and a Turbocharger. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  3. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-07-01

    This quarterly report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report documents the second series of tests performed on a turbocharged HBA-6T engine/compressor. It also presents baseline testing for air balance investigations and initial simulation modeling of the air manifold for a Cooper GMVH6.

  4. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris

    2003-01-01

    This report documents work performed in the first quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Research Management Plan; preparation and submission of the Technology Status Assessment; attendance at the Project Kick-Off meeting at DOE-NETL; formation of the Industry Advisory Committee (IAC) for the project; preparation of the Test Plan; acquisition and assembly of the data acquisition system (DAS).

  5. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley

    2003-04-01

    This report documents work performed in the second quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: preparation and submission of the Technology Status Assessment; formation of the Industry Advisory Committee (IAC) for the project; attendance at the first IAC meeting; preparation of the Test Plan; completion of the data acquisition system (DAS); plans for the first field test.

  6. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  7. BLM Operations Center | Open Energy Information

    Open Energy Info (EERE)

    303-236-8857 ParentHolding Organization: Bureau of Land Management Website: www.blm.govnocsten.html Retrieved from "http:en.openei.orgwindex.php?titleBLMOperationsCenter...

  8. PROJECT PROFILE: Regional Test Center Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Regional Test Center Operations PROJECT PROFILE: Regional Test Center Operations Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM SunShot Award Amount: $6,999,432 Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $1,250,000 The Regional Test Center (RTC) program aims to support technical innovation in the U.S. solar sector by validating the performance of new PV products in

  9. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  10. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  11. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2006-01-24

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report presents results of design analysis performed on the TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  13. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-28

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey test performed on an HBA-6 engine/compressor installed at Duke Energy's Bedford Compressor Station. This is one of several tests planned, which will emphasize identification and reduction of compressor losses. Additionally, this report presents a methodology for distinguishing losses in compressor attributable to valves, irreversibility in the compression process, and the attached piping (installation losses); it illustrates the methodology with data from the survey test. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  14. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. Continued ESGF progress will result in a production ultrascale data system for empowering scientists who attempt new and exciting data exchanges that could ultimately lead to breakthrough climate-science discoveries.

  15. The Greening of a Plutonium Facility through Personnel Safety, Operational Efficiency, and Infrastructure Improvements - 12108

    SciTech Connect (OSTI)

    Dodge, Robert L.; Cournoyer, Michael E.

    2012-07-01

    Chemical and metallurgical operations involving plutonium and other hazardous materials account for most activities performed at the Los Alamos National Laboratory's Plutonium Facility (TA-55). Engineered barriers provide the most effective protection from hazardous materials. These safety features serve to protect workers and provide defense in depth against the hazards associated with operations. Although not designed to specifically meet environmental requirements the safety-based design does meet or exceed the requirements of the environmental regulations enacted during and since its construction. TA-55's Waste Services Group supports this safety methodology by ensuring safe, efficient and compliant management of all radioactive and hazardous wastes generated at the TA-55. A key function of this group is the implementation of measures that lower the overall risk of radiological and hazardous material operations. Processes and procedures that reduce waste generation compared to current, prevalent processes or procedures used for the same purpose are identified. Some of these 'Best Practices' include implementation of a chemical control system, elimination of aerosol cans, reduction in hazardous waste, implementation of zero liquid discharge, and the re-cyclization of nitric acid. P2/WMin opportunities have been implemented in the areas of personnel and facility attributes, environmental compliance, energy conservation, and green focused infrastructure expansion with the overall objective of minimizing raw material and energy consumption and waste generation. This increases technical knowledge and augments operational safety. (authors)

  16. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Cialella, A.; Gregory, L.; Lazar, K.; Liang, M.; Ma, L.; Tilp, A.; Wagener, R.

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  17. WIPP Completes State of the Art Emergency Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participants use the new EOC during a recent emergency response drill. The new state-of-the-art EOC improves WIPP's emergency management capabilities. WIPP UPDATE: October 15, 2015 WIPP Completes State of the Art Emergency Operations Center The Waste Isolation Pilot Plant (WIPP) continues to make improvements to the facility's overall emergency response capabilities. Construction was recently completed on a 4,000 square foot, state of the art Emergency Operations Center (EOC). The Skeen-Whitlock

  18. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  19. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the addition of excess fuel to achieve equalizing peak firing pressure, even if some of the compression pressure differences are attributed to differences in cylinder and piston geometry, clearance, and kinematics. The combination of high-pressure fuel injection and turbocharging should produce better mixing of fuel and air in lean mixtures. Test results documented modest improvements in heat rate and efficiency and significant improvements in emissions. The feasibility of a closed-loop control of waste-gate setting, which will maintain an equivalence ratio set point, has been demonstrated. This capability allows more direct tuning to enhance combustion stability, heat rate, or emissions. The project has documented the strong dependence of heat rate on load. The feasibility of directly measuring power and torque using the GMRC Rod Load Monitor (RLM) has been demonstrated. This capability helps to optimize heat rate while avoiding overload. The crankshaft Strain Data Capture Module (SDCM) has shown the sensitivity to changes in operating conditions and how they influence crankshaft bending strain. The results indicate that: balancing reduces the frequency of high-strain excursions, advanced timing directly increases crankshaft dynamic strain, reduced speed directly reduces strain, and high-pressure fuel injection reduces crankshaft strain slightly. The project demonstrated that when the timing is advanced, the heat rate is reduced, and when the timing is retarded, the heat rate is increased. One reason why timing is not advanced as much as it might be is the potential for detonation on hot days. A low-cost knock detector was demonstrated that allowed active control to use timing to allow the heat rate benefit to be realized safely. High flow resistance losses in the pulsation control systems installed on some compressors have been shown to hurt efficiency of both compressor and engine/compressor system. Improved pulsation control systems have the potential to recover almost 10% of available engine power. Integrity enhancements and reduced component failure probability will enhance aggregate

  20. Adaptive Environmentally Contained Power and Cooling IT Infrastructure for the Data Center

    SciTech Connect (OSTI)

    Mann, Ron; Chavez, Miguel, E.

    2012-06-27

    The objectives of this program were to research and develop a fully enclosed Information Technology (IT) rack system for 100 kilowatts (KW) of IT load that provides its own internal power and cooling with High Voltage Alternating Current (HVAC defined as 480 volt) and chilled water as the primary inputs into the system and accepts alternative energy power sources such as wind and solar. For maximum efficiency, internal power to the IT equipment uses distributed High Voltage Direct Current power (HVDC defined as 360-380 volt) from the power source to the IT loads. The management scheme aggressively controls energy use to insure the best utilization of available power and cooling resources. The solution incorporates internal active management controls that not only optimizes the system environment for the given dynamic IT loads and changing system conditions, but also interfaces with data center Building Management Systems (BMS) to provide a complete end-to-end view of power and cooling chain. This technology achieves the goal of a Power Usage Effectiveness (PUE) of 1.25, resulting in a 38% reduction in the total amount of energy needed to support a 100KW IT load compared to current data center designs.

  1. Energy Assurance Technical Training and Awareness Program/Energy Infrastructure Training and Analysis Center

    SciTech Connect (OSTI)

    Barbara McCabe

    2005-11-15

    This report covers the work completed during Year One (Year One has a 16 month project period) of a five- year Cooperative Agreement (DE-FC26-03NT41895) between the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) and the U. S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). This final technical report is being submitted, as required by the Cooperative Agreement, within 90 (calendar) days after the project period ends (December 31, 2004). The resources allocated to Year One of the Cooperative Agreement were adequate for the completion of the required deliverables. All deliverables have been completed and sent to AAD Document Control as directed in the cooperative agreement. The allocation for Year One required 20-25 trainers to be trained in each of five Train-the-Trainer courses and a total of 6,000 workers trained throughout the country. Through cost savings employed for the scheduling and conduct of Train-the-Trainer, instructor refreshers, and direct training classes, 3171 workers have been trained to date. This total incorporates 159 trainers and members from management, local, county, state and federal organizations identified in the Strategic Plan. The largest percentage of personnel trained is heavy equipment operators, and building engineers, which is the largest targeted population identified under this cooperative agreement. The OENHP, using existing curriculum as appropriate, has modified and developed new training modules that have been used to establish four different levels of training courses. The four courses are: (1) EA 500 Energy Assurance Train-the-Trainer, (2) EA 400 Energy Assurance Instructor Refresher, (3) EA 300 Energy Assurance, and (4) EA 100 Energy Assurance Awareness. Training modules cover topics, such as, but not limited to, facility vulnerability and vulnerability assessment, physical security- heating, ventilation, air conditioning, terrorism awareness, weapons of mass destruction, respiratory protection, and decontamination. All of the courses and training modules are described in detail in the ''Training Course and Module Description Catalog'', April 2004. The OENHP has developed a Compendium of reference materials, training demonstration/hands-on models, and is revising its student manual. Course and instructor evaluations and the input of a general Advisory Board and an Advisory Board made up of Stationary (Building) Engineers has provided direction for modification and improvement of the Energy Security (Assurance) Training Program. The OENHP has identified the target training population, IUOE Stationary (Building) Engineers as being the primary population and IUOE heavy equipment operators as also being a targeted population. The OENHP however, has also identified several applicable populations outside of its membership, such as the Transport Workers Union and special populations within its membership, such as IUOE Local Union 25 Maritime Division. During Year One, a redesigned web site and brochures have been developed to assist in promotion of the energy security (assurance) program and the benefits of its training courses.

  2. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  3. Energy and Commerce Departments Announce New Centers for Building Operations Excellence

    Broader source: Energy.gov [DOE]

    Part of Administration’s Better Buildings Initiative, Centers Will Focus on Energy Efficiency Workforce Development for Building Operations Professionals

  4. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  5. EA-2014: Emergency Operations Center Project; Oak Ridge, TN | Department of

    Office of Environmental Management (EM)

    Energy 4: Emergency Operations Center Project; Oak Ridge, TN EA-2014: Emergency Operations Center Project; Oak Ridge, TN Summary In this Environmental Assessment (EA), the National Nuclear Security Administration (NNSA) proposes to design and build a new emergency response facility to support the Y-12 National Security Complex (Y-12) missions. The proposed action would consolidate the Plant Shift Superintendent's (PSS) Office, the Emergency Command Center (ECC), the Technical Support Center

  6. U-276: VMware vCenter Operations Cross-Site Scripting Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in VMware vCenter Operations, which can be exploited by malicious people to conduct cross-site scripting attacks.

  7. infrastructure and operations

    National Nuclear Security Administration (NNSA)

    5%2A en Performance Evaluations http:www.nnsa.energy.govaboutusouroperationsapmperfevals

    P...

  8. infrastructure and operations

    National Nuclear Security Administration (NNSA)

    5%2A en Performance Evaluations http:nnsa.energy.govaboutusouroperationsapmperfevals

    Page...

  9. Request for Information: Operation of Regional Test Center Test Bed Located

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at SolarTAC | Department of Energy Operation of Regional Test Center Test Bed Located at SolarTAC Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Solicitation Title: Request for Information: Operation of Regional Test Center Test Bed Located at SolarTAC Funding Number: DE-FOA-0001454 Description: The Department of Energy launched five Regional Test Center (RTC) sites across the country in 2011 to conduct validation testing and systems monitoring on a

  10. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect (OSTI)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  11. EA-0642: Operation of the Pinellas Plant Child Development Center/Partnership School

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a joint venture proposal to operate a Partnership School and Child Development Center at the U.S. Department of Energy's Pinellas Plant in New Mexico.

  12. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  13. operations center

    National Nuclear Security Administration (NNSA)

    logistics and mobilization actions during periods of national emergencies, natural and man-made disasters, acts of terrorism, or other extraordinary situations requiring...

  14. Innovative Financing for Green Infrastructure

    Broader source: Energy.gov [DOE]

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  15. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  16. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  17. Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  18. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Emergency Operations Center training manual

    SciTech Connect (OSTI)

    Not Available

    1990-02-28

    The objective of this training is to: describe the responsibilities, resources, and goals of the Emergency Operations Center and be able to evaluate and interpret this information to best direct and allocate emergency, plant, and other resources to protect life and the Paducah Gaseous Diffusion Plant.

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Small Modular reactors projects. the collaboration takes place under the umbrella of a joint oUSnl "Center for Energy, Security and Society". the Center serves to...

  20. HySA Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop, National Renewable Energy Laboratory, Golden, Colorado, Feb 27-28, 2014 Current Initiatives for Electrolytic H 2 Production at HySA Infrastructure Dmitri Bessarabov DST HySA Infrastructure Center of Competence, NWU/CSIR http://www.hysainfrastructure.org/ South African Energy Profile Coal 72.1% *CR&W 10.2% Gas 2.8% Nuclear 2.2% Oil 12.6% Hydro 0.1% Current South Africa Total Primary Energy Supply  Coal supplies ~75 % of South Africa's primary energy and 90 % of its electricity

  1. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  2. EA-1376: Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NMThe Proposed Action is the construction and operation of a new Interagency Emergency Operations Center (Center) at Technical Area 69. The new Center would include a 30,000-square-foot (2,700-square-meter) facility, a garage, a 130-car parking lot, and a 150-foot (45-meter) tall fire suppression water storage tank with antenna attachments on about a 5-acre (2-hectare) site. The new Center would be designed as a state-of-the-art multi-use facility housing about 30 fulltime University of California and Los Alamos County (or their contractor) staff.

  3. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery & receipt locations * Advances in physical & tracking technologies need to be factored in * Cost-benefit analysis of new technology Training & Dry Runs * Begin as soon as possible * Suggested order: #1-demonstrations, #2-training, #3-dry-runs * Don't re-invent the wheel- look at international programs *

  4. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision Important applications of these capabilities include performing assessment of facility vulnerabilities and resultant consequences of a range of attack scenarios related to nuclear facilities after 9/11. these comprehensive analyses were able to realistically represent the actual attack, the response of the facility to the

  6. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision the capability set needed to address safe and secure management of these radioactive materials includes a broad set of engineering and scientific disciplines such as physics; nuclear, mechanical, civil, and systems engineering; and chemistry. In addition, Sandia has a tool set that enhances the ability to perform high level

  7. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project

    SciTech Connect (OSTI)

    Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

    2013-06-24

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a buildings system efficiencies, and how well it is correlated to a buildings actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their buildings operation and maintenance.

  10. Transportation Infrastructure Requirement Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National

  11. Data Center Optimization Plan | Department of Energy

    Office of Environmental Management (EM)

    Data Center Optimization Plan Data Center Optimization Plan The Department of Energy (DOE) is committed to the overall reduction in the number of its data centers, consolidation of IT services, energy efficiency improvements, and cost reductions in data center / IT infrastructure operations. In coordination with DOE's Strategic Sustainability Performance Plan (SSPP), DOE has set goals and performance targets that meet or exceed FDCCI objectives while introducing transformational IT services and

  12. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  13. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  14. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 and Infrastructure K. Moriarty National Renewable Energy Laboratory J. Yanowitz Ecoengineering, Inc. Produced under direction of Renewable Fuels Association by the National Renewable Energy Laboratory (NREL) under Technical Services Agreement No. TSA 14-665 and Task No. WTJZ.1000. Strategic Partnership Project Report NREL/TP-5400-64156 May 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  15. EA-1238: Proposed Construction and Operation of the Nonproliferation and International Security Center, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate the Nonproliferation and International Security Center within the U.S. Department of Energy's Los Alamos...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bio-Based Transportation Research Funding The Surface Transportation Research, Development, and Deployment (STRDD) Program funds activities that promote innovation in transportation infrastructure, services, and operations. A portion of the funding made available to STRDD is set aside for the Bio-Based Transportation Research program to carry out bio-based research of national importance at research centers and through the National Biodiesel Board. For more information, see the STRDD Program

  17. Facilities and Infrastructure Program FY 2017 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  18. Infrastructure & Sustainability

    National Nuclear Security Administration (NNSA)

    scientific, engineering and operational measures that mitigate the impacts of climate change and by managing our natural and cultural resources."

  19. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  20. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  1. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current work is centered on development of the Supercritical Carbon Dioxide (sCo2) Closed Brayton Cycle. Using supercritical fluids, Brayton Cycles can achieve higher energy conversion efficiencies in 1/100th of the volume and 1/10th the cost of comparable steam rankine cycles. the technology is being demonstrated in the nuclear Energy Systems laboratory/Brayton lab (Brayton lab link). Commercialization efforts are underway with the goal of demonstrating a 10 megawatt electric (MWe) system

  2. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  3. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

  4. Feedstock Infrastructure

    SciTech Connect (OSTI)

    None

    2006-06-01

    This project is quantifying the cost and performance benefits and tradeoffs along the entire feedstock assembly and delivery system. A better understanding of the assembly and delivery operations and their combined impact on feedstock value will help achieve the cost targets established by the Office of the Biomass Program (OBP).

  5. Center for Control System Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control System Security Critical Infrastructure is at Risk As America's infrastructures have become more complex and interconnected, their operation and control has become more...

  6. Geographically-Based Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Previous and Ongoing * HYDS ME - Evaluates best infrastructure options * Interstate Infrastructure Analysis - Minimal infrastructure to facilitate interstate travel during ...

  7. DOE EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE AT DOE LABORATORIES

    Office of Environmental Management (EM)

    | Department of Energy DOE EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE AT DOE LABORATORIES DOE EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE AT DOE LABORATORIES Joseph McBrearty, Deputy Director for Field Operations, Office of Science presented gave a briefing on DOE efforts to revitalize facilities and infrastructure at DOE laboratories. Robert Haledman, Director of Infrastructure Operations and Modernization briefed the Commission on maintaining the infrastructure to support

  8. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ExcEptional sErvicE in thE national intErEst Investigating Containment Integrity Sandia is a nationally and internationally recognized leader in Nuclear Reactor containment research, supporting operations, lifetime extensions, and security and vulnerability assessments over a broad range of phenomena. Sandia's expertise includes evaluation of containment when subjected to high velocity impacts, enormous pressures and stresses, and attacks by saboteurs. Sandia's resources enable the completion of

  9. Facilities and Infrastructure Program At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Program includes EERE's capital investments, operations and maintenance, ... control at ESIF. Key Accomplishments * Capital Investments: Capital investments at NREL ...

  10. Department of Energy Support for Operations of the WMO/GAW Quality Control/Science Activity Center for the Americas

    SciTech Connect (OSTI)

    Hicks, B. B.

    2003-11-13

    As a formal activity of the World Meteorological Organization's Global Atmosphere Watch, to provide, through agency collaboration, a center of excellence in the United States that would impose quality assurance techniques on data collected by national air and precipitation quality networks operating in the Americas (north, south, and central).

  11. Final Report- "An Algorithmic and Software Framework for Applied Partial Differential Equations (APDEC): A DOE SciDAC Integrated Software Infrastructure Center (ISIC)

    SciTech Connect (OSTI)

    Elbridge Gerry Puckett

    2008-05-13

    All of the work conducted under the auspices of DE-FC02-01ER25473 was characterized by exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). This included having one of my graduate students - Sarah Williams - spend the summer working with Dr. Ann Almgren a staff scientist in the Center for Computational Sciences and Engineering (CCSE) which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. As a result of this visit Sarah decided to work on a problem suggested by Dr. John Bell the head of CCSE for her PhD thesis, which she finished in June 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is a long established tradition at the University of California and I have always encouraged my students to consider doing this. For example, in 2000 one of my graduate students - Matthew Williams - finished his PhD thesis while working with Dr. Douglas Kothe at the Los Alamos National Laboratory (LANL). Matt is now a staff scientist in the Diagnostic Applications Group in the Applied Physics Division at LANL. Another one of my graduate students - Christopher Algieri - who was partially supported with funds from DE-FC02-01ER25473 wrote am MS Thesis that analyzed and extended work published by Dr. Phil Colella and his colleagues in 1998. Dr. Colella is the head of the Applied Numerical Algorithms Group (ANAG) in the National Energy Research Supercomputer Center at LBNL and is the lead PI for the APDEC ISIC which was comprised of several National Laboratory research groups and at least five University PI's at five different universities. Chris Algieri is now employed as a staff member in Dr. Bill Collins' research group at LBNL developing computational models for climate change research. Bill Collins was recently hired at LBNL to start and be the Head of the Climate Science Department in the Earth Sciences Division at LBNL. Prior to this he had been a Deputy Section Head at the National Center for Atmospheric Research in Colorado. My understanding is that Chris Algieri is the first person that Bill hired after coming to LBNL. The plan is that Chris Algieri will finish his PhD thesis while employed as a staff scientist in Bill's group. Both Sarah and Chris were supported in part with funds from DE-FC02-01ER25473. In Sarah's case she received support both while at U.C. Davis (UCD) taking classes and writing an MS thesis and during some of the time she was living in Berkeley, working at LBNL and finishing her PhD thesis. In Chris' case he was at U.C. Davis during the entire time he received support from DE-FC02-01ER25473. More specific details of their work are included in the report below. Finally my own research conducted under the auspices of DE-FC02-01ER25473 either involved direct collaboration with researchers at LBNL - Phil Colella and Peter Schwartz who is a member of Phil's Applied Numerical Algorithms Group - or was on problems that are closely related to research that has been and continues to be conducted by researchers at LBNL. Specific details of this work can be found below. Finally, I would like to note that the work conducted by my students and me under the auspices of this contract is closely related to work that I have performed with funding from my DOE MICS contract DE-FC02-03ER25579 'Development of High-Order Accurate Interface Tracking Algorithms and Improved Constitutive Models for Problems in Continuum Mechanics with Applications to Jetting' and with my CoPI on that grant Professor Greg Miller of the Department of Applied Science at UCD. In theory I tried to use funds from the SciDAC grant DE-FC02-01ER25473 to support work that directly involved implementing algorithms developed by my research group at U.C. Davis in software that was developed and is maintained by my SciDAC CoPI's at LBNL.

  12. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  13. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect (OSTI)

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  14. NNSA Completes Successful Facilities and Infrastructure Recapitalization

    National Nuclear Security Administration (NNSA)

    Program | National Nuclear Security Administration Successful Facilities and Infrastructure Recapitalization Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  15. Strategic Security Infrastructure Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Strategic Security Infrastructure Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  16. QER Public Meeting in New York, NY: Energy Infrastructure Finance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy York, NY: Energy Infrastructure Finance QER Public Meeting in New York, NY: Energy Infrastructure Finance Meeting Date and Location New York University Kimmel Center for University Life Room 914 60 Washington Square South New York, New York 10010 Meeting Information Agenda: Energy Infrastructure Finance Click Here to comment on the Energy Infrastructure Finance public meeting. Click here to watch a video of the meeting. . See links below to download PDFs of the meeting

  17. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) and Fueling Infrastructure Rebates - Texas Gas Service The Texas Gas Service Conservation Program offers a rebate of up to $2,000 for the purchase of a qualified NGV or $3,000 for the conversion of a gasoline powered vehicle to operate on natural gas. The rebate is available for up to five vehicles per customer, and only centers certified by the Railroad Commission of Texas may perform conversions. A rebate of $1,000 is also available for the purchase of a natural gas

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  20. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  1. Control Center and Data Management Improvements Modernize Bulk Power Operations in Georgia

    Office of Environmental Management (EM)

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Georgia System Operations Corporation's (GSOC) Smart Grid Investment Grant (SGIG) project modernized bulk

  2. Assessing Vulnerabilities, Risks, and Consequences of Damage to Critical Infrastructure

    SciTech Connect (OSTI)

    Suski, N; Wuest, C

    2011-02-04

    Since the publication of 'Critical Foundations: Protecting America's Infrastructure,' there has been a keen understanding of the complexity, interdependencies, and shared responsibility required to protect the nation's most critical assets that are essential to our way of life. The original 5 sectors defined in 1997 have grown to 18 Critical Infrastructures and Key Resources (CIKR), which are discussed in the 2009 National Infrastructure Protection Plan (NIPP) and its supporting sector-specific plans. The NIPP provides the structure for a national program dedicated to enhanced protection and resiliency of the nation's infrastructure. Lawrence Livermore National Laboratory (LLNL) provides in-depth, multi-disciplinary assessments of threat, vulnerability, and consequence across all 18 sectors at scales ranging from specific facilities to infrastructures spanning multi-state regions, such as the Oil and Natural Gas (ONG) sector. Like many of the CIKR sectors, the ONG sector is comprised of production, processing, distribution, and storage of highly valuable and potentially dangerous commodities. Furthermore, there are significant interdependencies with other sectors, including transportation, communication, finance, and government. Understanding the potentially devastating consequences and collateral damage resulting from a terrorist attack or natural event is an important element of LLNL's infrastructure security programs. Our work began in the energy sector in the late 1990s and quickly expanded other critical infrastructure sectors. We have performed over 600 physical assessments with a particular emphasis on those sectors that utilize, store, or ship potentially hazardous materials and for whom cyber security is important. The success of our approach is based on building awareness of vulnerabilities and risks and working directly with industry partners to collectively advance infrastructure protection. This approach consists of three phases: The Pre-Assessment Phase brings together infrastructure owners and operators to identify critical assets and help the team create a structured information request. During this phase, we gain information about the critical assets from those who are most familiar with operations and interdependencies, making the time we spend on the ground conducting the assessment much more productive and enabling the team to make actionable recommendations. The Assessment Phase analyzes 10 areas: Threat environment, cyber architecture, cyber penetration, physical security, physical penetration, operations security, policies and procedures, interdependencies, consequence analysis, and risk characterization. Each of these individual tasks uses direct and indirect data collection, site inspections, and structured and facilitated workshops to gather data. Because of the importance of understanding the cyber threat, LLNL has built both fixed and mobile cyber penetration, wireless penetration and supporting tools that can be tailored to fit customer needs. The Post-Assessment Phase brings vulnerability and risk assessments to the customer in a format that facilitates implementation of mitigation options. Often the assessment findings and recommendations are briefed and discussed with several levels of management and, if appropriate, across jurisdictional boundaries. The end result is enhanced awareness and informed protective measures. Over the last 15 years, we have continued to refine our methodology and capture lessons learned and best practices. The resulting risk and decision framework thus takes into consideration real-world constraints, including regulatory, operational, and economic realities. In addition to 'on the ground' assessments focused on mitigating vulnerabilities, we have integrated our computational and atmospheric dispersion capability with easy-to-use geo-referenced visualization tools to support emergency planning and response operations. LLNL is home to the National Atmospheric Release Advisory Center (NARAC) and the Interagency Modeling and Atmospheric Assessment Center (IMAAC). NA

  3. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  4. FAA Airworthiness Assurance NDI Validation Center (AANC) operated by Sandia National Laboratories.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Hartman, Roger D.

    2010-09-01

    Airworthiness Assurance NDI Validation Center (AANC) objectives are: (1) Enhance aircraft safety and reliability; (2) Aid developing advanced aircraft designs and maintenance techniques; (3) Provide our customers with comprehensive, independent, and quantitative/qualitative evaluations of new and enhanced inspection, maintenance, and repair techniques; (4) Facilitate transferring effective technologies into the aviation industry; (5) Support FAA rulemaking process by providing guidance on content & necessary tools to meet requirements or recommendations of FARs, ADs, ACs, SBs, SSIDs, CPCP, and WFD; and (6) Coordinate with and respond to Airworthiness Assurance Working Group (AAWG) in support of FAA Aviation Rulemaking Advisory Committee (ARAC).

  5. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect (OSTI)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  6. Transmission Infrastructure Program

    Energy Savers [EERE]

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent

  7. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  8. infrastructure | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  9. Alternative Fuels Data Center: States Enact Natural Gas Vehicle and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Incentives States Enact Natural Gas Vehicle and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: States Enact Natural Gas Vehicle and Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center:

  10. LABORATORY EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE | Department

    Office of Environmental Management (EM)

    of Energy LABORATORY EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE LABORATORY EFFORTS TO REVITALIZE FACILITIES AND INFRASTRUCTURE Lanny Bates, Director of the Office of Campus Development, Brookhaven National Laboratory, presented Brookhaven's ten year strategic infrastructure plan in the session on lab efforts to revitalize facilities and infrastructure. Jeff Smith, Deputy Director of Operations, Oak Ridge National Laboratory, was unable to attend due to weather-related travel issues.

  11. Infrastructure Institutional Change Principle

    Broader source: Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  12. Facilities and Infrastructure FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Energy's (EERE's) capital investment and operations, as well as the ... FACILITIES AND INFRASTRUCTURE FY 2016 BUDGET AT-A-GLANCE Key Accomplishments Capital ...

  13. Don Cook discusses NNSA's Defense Programs at Woodrow Wilson Center |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration discusses NNSA's Defense Programs at Woodrow Wilson Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  14. FOIA Requester Service Centers, FOIA Public Liaisons and Web Pages |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Requester Service Centers, FOIA Public Liaisons and Web Pages | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  15. Federal Radiological Monitoring and Assessment Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiological Monitoring and Assessment Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  16. National Atmospheric Release Advisory Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Atmospheric Release Advisory Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  17. Nuclear Security Centers of Excellence: Fact Sheet | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Centers of Excellence: Fact Sheet | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  18. Radiation Emergency Assistance Center / Training Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiation Emergency Assistance Center / Training Site | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  19. Chief Scientist, Los Alamos National Laboratory - Center for Integrated

    National Nuclear Security Administration (NNSA)

    Nanotechnologies | National Nuclear Security Administration Chief Scientist, Los Alamos National Laboratory - Center for Integrated Nanotechnologies | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  20. Sandia's Cooperative Monitoring Center celebrates 20 years | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Sandia's Cooperative Monitoring Center celebrates 20 years | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  1. Students learn STEM leadership skills at Space Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration leadership skills at Space Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs

  2. Facilities and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities and Infrastructure Facilities and Infrastructure Program Offices and Headquarters elements share the responsibility for management and overall stewardship of the Department's real property assets. Proper management and stewardship ensures real property assets are maintained in a manner that promotes operational readiness, safety, environmental protection, property preservation, and life-cycle cost-effectiveness while meeting the Department's missions. DOE Order 430.1B "Real

  3. QER Public Meeting in Bismarck, ND: Infrastructure Constraints | Department

    Energy Savers [EERE]

    of Energy Bismarck, ND: Infrastructure Constraints QER Public Meeting in Bismarck, ND: Infrastructure Constraints Meeting Date and Location August 8, 2014 - 11:00 AM Bismarck State College National Energy Center of Excellence - Bavendick Stateroom (No. 415) 1200 Schafer Street Bismarck, ND 58506 Meeting Information Federal Register Notice Agenda - Infrastructure Constraints See below to download a PDF of the meeting transcript.1 See below to download a PDF of the background memo for the

  4. Modernizing Infrastructure Permitting

    Broader source: Energy.gov [DOE]

    On May 14, 2014, the Obama Administration released a comprehensive plan to accelerate and expand Federal infrastructure permitting reform government-wide. The Office of Electricity Delivery and Energy Reliability is actively engaged in this process for transmission development.

  5. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  6. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  7. Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a

  9. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central LANL technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  10. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Projects June 3, 2010 What do you think of the TEDF? How about the UIM project? What would have happened if we had not got the ARRA funding for the NP GPP projects last year? Gobbledegook!? Acronymia? Certainly different from the usual PREx, or QWeak, or DVCS that we hear from the physics side of the house! TEDF, UIM and the others are acronyms used by the facilities people, those trying to build, modernize and maintain our infrastructure. TEDF (Technology and Engineering

  11. National Infrastructure Protection Plan

    Office of Environmental Management (EM)

    Infrastructure Protection Plan 2006 Preface Preface i The ability to protect the critical infrastructure and key resources (CI/KR) of the United States is vital to our national security, public health and safety, economic vitality, and way of life. U.S. policy focuses on the importance of enhancing CI/KR protection to ensure that essential governmental missions, public services, and economic functions are maintained in the event of a terrorist attack, natural disaster, or other type of

  12. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  13. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  15. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  16. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  17. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -

    Office of Environmental Management (EM)

    Report, March 2013 | Department of Energy CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the

  18. Infrastructure and Facilities Management | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Facilities Management | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs

  19. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  20. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  1. Hydrogen Infrastructure Transition Analysis: Milestone Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Milestone Report NREL/TP-540-38351 January 2006 Hydrogen Infrastructure Transition Analysis M. Melendez and A. Milbrandt Prepared under Task No. HY55.2200 Milestone Report NREL/TP-540-38351 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest

  2. Infrastructure Impacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACInfrastructure Impacts content top National Population, Economic, and Infrastructure Impacts of Pandemic Influenza with Strategic Recommendations Posted by Admin on Mar 2, 2012 in | Comments 0 comments Results of NISAC's two-year study on the potential impacts of pandemic influenza in the United States were published in October 2007 and released to the public in 2008. The summary report and supplemental analysis reports can be downloaded from the column to the right. Pandemic Influenza

  3. NNSA lab stops bad guys from weaseling into critical infrastructure |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration stops bad guys from weaseling into critical infrastructure | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  4. New Mexico competition helps students learn about infrastructure of towns |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration competition helps students learn about infrastructure of towns | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  5. Office of National Infrastructure & Sustainability | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration National Infrastructure & Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  6. Y-12 hosts NNSA aging infrastructure workshop | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration NNSA aging infrastructure workshop | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  7. Green Infrastructure for Arid Communities

    Broader source: Energy.gov [DOE]

    On March 24, 2015, from 1:00pm – 2:30pm EDT, EPA's Green Infrastructure Program will launch our 2015 Webcast Series with the webinar Green Infrastructure for Arid Communities. This webinar aims to...

  8. DOE/NNSA visits Mumbai in support of India's Global Center for Nuclear

    National Nuclear Security Administration (NNSA)

    Energy Partnership | National Nuclear Security Administration visits Mumbai in support of India's Global Center for Nuclear Energy Partnership | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library

  9. Alternative Fuels Data Center: Massachusetts Sees Significant Growth in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles and Infrastructure Massachusetts Sees Significant Growth in Electric Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Sees Significant Growth in Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Sees Significant Growth in Electric Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Sees Significant Growth in Electric Vehicles

  10. Child Development Centers

    Broader source: Energy.gov [DOE]

    Headquarters operates National Association for the Education of Young Children (NAEYC) accredited child development centers at its Forrestal and Germantown facilities. Each center provides day care...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, repair, or renovate equipment used in alternative fueling infrastructure and in the conversion of any engine to operate on an alternative fuel. This includes original equipment manufacturer engines dedicated to operate on an alternative fuel. Plug-in electric vehicles (PEVs), PEV charging infrastructure, and PEV

  12. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  13. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Roof Infrastructure Urban Heat Islands: Cool Roof Infrastructure Lead Performer: Lawrence Berkeley National Laboratory - U.S.-China Clean Energy Research Center Project Partners: -- Guangdong Provincial Academy of Building Research - Guangdong, China -- Chongqing University - Chongqing, China -- Research Institute of Standards and Norms - China -- Chinese Academy of Sciences - Beijing, China DOE Funding: $795,000 Project Term: Jan. 2011 - Dec. 2015 Project Objective The U.S.-China Clean

  14. QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resiliency and Addressing Vulnerabilities | Department of Energy Washington, DC: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities Meeting Date and Location: April 11, 2014 10:00 A.M.. to 5:00 P.M.. EST United States Capitol Visitors Center, Congressional Auditorium, East Capitol Street, N.E. and First Street N.E. Washington, D.C. 20001 Meeting Information

  15. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  16. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ti001_scarpino_2010_o.pdf More Documents & Publications Clean Cities 2009 Petroleum Displacement Awards EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council

  17. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  18. Financing Tribal Energy Infrastructure & Energy Optimization Infrastructure

    Office of Environmental Management (EM)

    4 Kilpatrick Townsend Financing Tribal Energy Infrastructure & Energy Optimization Infrastructure (EOI) Matt Ferguson National Tribal Energy Summit: A Path to Economic Sovereignty September 2015 OPPORTUNITY Regulations and market influences have created an opportunity to provide service in ways that transcend business as usual Energy Optimization Infrastructure (EOI) www.projectseastar.org WHERE WHAT Tribe's role? * Entrepreneur * Investor * Government WHO Want's the money: * Private Entity

  19. Presidential Proclamation: Critical Infrastructure Security and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013 A ...

  20. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  1. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities ...

  2. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  4. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  5. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Energy Savers [EERE]

    Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized...

  6. Los Alamos Neutron Science Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Neutron Science Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs

  7. Pantex night held at discovery center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration night held at discovery center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for

  8. Pantex to Become Wind Energy Research Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration to Become Wind Energy Research Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  9. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  10. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  11. Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles and Infrastructure Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Google

  12. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  13. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Facilities * Provides context for CHP in critical infrastructure ... Employees were not even aware of the blackout at first because they saw no interruption in ...

  14. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presidential Policy Directive (PPD) 21 - Critical Infrastructure Security and Resilience. Its objective is to advance "a national unity of effort to strengthen and maintain...

  15. COMMON VULNERABILITIES IN CRITICAL INFRASTRUCTURE CONTROL SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMON VULNERABILITIES IN CRITICAL INFRASTRUCTURE CONTROL SYSTEMS Jason Stamp, John Dillinger, and William Young Networked Systems Survivability and Assurance Department Jennifer DePoy Information Operations Red Team & Assessments Department Sandia National Laboratories Albuquerque, NM 87185-0785 22 May 2003 (2 nd edition, revised 11 November 2003) Copyright © 2003, Sandia Corporation. All rights reserved. Permission is granted to display, copy, publish, and distribute this document in its

  16. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  17. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  18. Natural Gas Infrastructure R&D and Methane Mitigation Woekshop Nov. 12-13, 2014

    Office of Environmental Management (EM)

    Natural Gas Infrastructure R&D and Methane Mitigation Workshop - Nov. 12-13, 2014 Improving Compressor System Operational Efficiency Natural Gas Infrastructure R&D and Methane Mitigation Workshop Nov. 12-13, 2014 Improving Compressor System Operational Efficiency W. Norm Shade, PE Sr. Consultant & Pres.-Emeritus ACI Services Inc. Cambridge, OH 1 Natural Gas Infrastructure R&D and Methane Mitigation Workshop - Nov. 12-13, 2014 Improving Compressor System Operational Efficiency

  19. Distributed Data Integration Infrastructure

    SciTech Connect (OSTI)

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired actions. In order to provide access to the largest number of resources possible, our lowest level utilizes automatic wrapper generation techniques to create information and data wrappers capable of interacting with the complex interfaces typical in scientific analysis. The remainder of this document outlines our work in these three areas, the impact our work has made, and our plans for the future.

  20. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  1. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Zeitoun, A.

    1994-08-01

    This two-volume Final Environmental Impact Statement (FEIS) was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA). Volume 1 contains the assessment of the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana, by Louisiana Energy Services, LP. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are construction, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning (D&D)- of the site. Issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment. The FEIS supports issuance of a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (NGV) and Infrastructure Initiative The West Virginia Natural Gas Vehicle Task Force was established to perform a cost-benefit analysis of NGVs; research and analyze the potential for the state to operate pilot public access natural gas fueling stations; communicate with executive agencies in states that are in the process of transitioning their fleets to natural gas and encourage infrastructure development; explore partnerships with the natural gas industry; examine options for

  3. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  4. Development and operativity of a real-time radiological monitoring network centered on the nuclear power plant of Almaraz (Spain)

    SciTech Connect (OSTI)

    Baeza, A.; Miro, C.; Puerto, J.A. del; Rio, M. del; Ortiz, F.; Paniagua, J.M.

    1993-12-01

    This work presents the hardware and software characteristics of the environmental surveillance radiological network that has been installed around the nuclear power station of Almaraz (Spain). A description is given of the program RADLINE which allows radiological data to be logged in real time, and a study is made of the operativity of the network and the methodology followed in establishing the radiological pre-alert and alert levels.

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  6. Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration

    Office of Environmental Management (EM)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy August 2011 OE/ISER Report 8/31/11 i For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about information in this report

  7. Task Force on Biofuels Infrastructure

    Broader source: Energy.gov [DOE]

    Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation’s transportation fuel supply. Specifically, the Task Force explored issues and developed recommendations for advancing the infrastructure investments needed to support timely and cost-effective implementation of the current biofuels mandate.

  8. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  9. Science Laboratories Infrastructure (SLI) Program | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Science Laboratories Infrastructure (SLI) Program Operations Program Management (OPM) OPM Home About Science Laboratories Infrastructure (SLI) Program Current Projects Safeguards & Security (S&S) Program Sustainability Contact Information Operations Program Management U.S. Department of Energy SC-33/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-8429 F: (301) 903-7047 More Information » Science Laboratories Infrastructure (SLI) Program

  10. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  11. infrastructure | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Infrastructure The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO2 and provide the basis for commercial-scale CO2 projects. Research is needed to prove adequate injectivity, available storage resource, and

  12. Cyber Security for Electric Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Electric Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  13. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides Download presentation slides from the...

  14. Report: Natural Gas Infrastructure Implications of Increased...

    Office of Environmental Management (EM)

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  15. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  16. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth...

  17. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  18. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  20. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  1. Office of Infrastructure Planning & Analysis | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Infrastructure Planning & Analysis Office of Infrastructure Planning & Analysis...

  2. Strategic plan for infrastructure optimization

    SciTech Connect (OSTI)

    Donley, C.D.

    1998-05-27

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  3. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  4. Economics in Criticality and Restoration of Energy Infrastructures.

    SciTech Connect (OSTI)

    Boyd, Gale A.; Flaim, Silvio J.; Folga, Stephen M.; Gotham, Douglas J.; McLamore, Michael R.; Novak, Mary H.; Roop, Joe M.; Rossmann, Charles G.; Shamsuddin, Shabbir A.; Zeichner, Lee M.; Stamber, Kevin L.

    2005-03-01

    Economists, systems analysts, engineers, regulatory specialists, and other experts were assembled from academia, the national laboratories, and the energy industry to discuss present restoration practices (many have already been defined to the level of operational protocols) in the sectors of the energy infrastructure as well as other infrastructures, to identify whether economics, a discipline concerned with the allocation of scarce resources, is explicitly or implicitly a part of restoration strategies, and if there are novel economic techniques and solution methods that could be used help encourage the restoration of energy services more quickly than present practices or to restore service more efficiently from an economic perspective. AcknowledgementsDevelopment of this work into a coherent product with a useful message has occurred thanks to the thoughtful support of several individuals:Kenneth Friedman, Department of Energy, Office of Energy Assurance, provided the impetus for the work, as well as several suggestions and reminders of direction along the way. Funding from DOE/OEA was critical to the completion of this effort.Arnold Baker, Chief Economist, Sandia National Laboratories, and James Peerenboom, Director, Infrastructure Assurance Center, Argonne National Laboratory, provided valuable contacts that helped to populate the authoring team with the proper mix of economists, engineers, and systems and regulatory specialists to meet the objectives of the work.Several individuals provided valuable review of the document at various stages of completion, and provided suggestions that were valuable to the editing process. This list of reviewers includes Jeffrey Roark, Economist, Tennessee Valley Authority; James R. Dalrymple, Manager of Transmission System Services and Transmission/Power Supply, Tennessee Valley Authority; William Mampre, Vice President, EN Engineering; Kevin Degenstein, EN Engineering; and Patrick Wilgang, Department of Energy, Office of Energy Assurance.With many authors, creating a document with a single voice is a difficult task. Louise Maffitt, Senior Research Associate, Institute for Engineering Research and Applications at New Mexico Institute of Mining & Technology (on contract to Sandia National Laboratories) served a vital role in the development of this document by taking the unedited material (in structured format) and refining the basic language so as to make the flow of the document as close to a single voice as one could hope for. Louise's work made the job of reducing the content to a readable length an easier process. Additional editorial suggestions from the authors themselves, particularly from Sam Flaim, Steve Folga, and Doug Gotham, expedited this process.

  5. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3-70). Volume 2, Public comments and NRC response

    SciTech Connect (OSTI)

    Zeitoun, A.

    1994-08-01

    The Final Environmental Impact Statement (FEIS) (Volume 1), was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA), to assess the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana by Louisiana Energy Services, L.P. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are co on, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning of the site. In order to help assure that releases from the operation of the facility and potential impacts on the public are as low as reasonably achievable, an environmental monitoring program was developed by LES to detect significant changes in the background levels of uranium around the site. Other issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment, and proposes to issue a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility. The letters in this Appendix have been divided into three sections. Section One contains letters to which the NRC responded by addressing specific comments. Section Two contains the letters that concerned the communities of Forest Grove and Center Springs. Section Three is composed of letters that required no response. These letters were generally in support of the facility.

  6. The Adaptive Multi-scale Simulation Infrastructure

    SciTech Connect (OSTI)

    Tobin, William R.

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  7. Financing Clean Energy Infrastructure in Africa | Department of Energy

    Office of Environmental Management (EM)

    Financing Clean Energy Infrastructure in Africa Financing Clean Energy Infrastructure in Africa September 24, 2014 - 4:03pm Addthis Upon arrival to Addis Ababa, Ethiopia, for the U.S.-Africa Energy Ministerial, U.S. Secretary of Energy Ernest Moniz is greeted on the tarmac by Ethiopian Minister of Water and Energy, Alemayehu Tegenu (right), and U.S. Ambassador to Ethiopia, Patricia Haslach (center). | Photo courtesy of the U.S. Embassy in Addis Ababa. Upon arrival to Addis Ababa, Ethiopia, for

  8. Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and

  9. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  10. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  11. Vulnerability and Mitigation Studies for Infrastructure

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Morris, J

    2007-08-02

    The summary of this presentation is that: (1) We do end-to-end systems analysis for infrastructure protection; (2) LLNL brings interdisciplinary subject matter expertise to infrastructure and explosive analysis; (3) LLNL brings high-fidelity modeling capabilities to infrastructure analysis for use on high performance platforms; and (4) LLNL analysis of infrastructure provides information that customers and stakeholders act on.

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  13. Production Maintenance Infrastructure

    Energy Science and Technology Software Center (OSTI)

    2005-11-01

    PMI is a XML framework for formulating tests of software and software environments which operate in a relatively push button manner, i.e., can be automated, and that provide results that are readily consumable/publishable via RSS. Insofar as possible the tests are carried out in manner congruent with real usage. PMI drives shell scripts via a perl program which is charge of timing, validating each test, and controlling the flow through sets of tests. Testing inmore » PMI is built up hierarchically. A suite of tests may start by testing basic functionalities (file system is writable, compiler is found and functions, shell environment behaves as expected, etc.) and work up to large more complicated activities (execution of parallel code, file transfers, etc.) At each step in this hierarchy a failure leads to generation of a text message or RSS that can be tagged as to who should be notified of the failure. There are two functionalities that PMI has been directed at. 1) regular and automated testing of multi user environments and 2) version-wise testing of new software releases prior to their deployment in a production mode.« less

  14. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Chapter V: Improving Shared Transport Infrastructures QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 6-1 Chapter VI This chapter takes a broader look at the current energy trade and the continuing integration of energy markets and infrastructure in the North American region. Its discussion includes cross-border infrastructure with Canada and Mexico, impacts of climate

  15. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  16. Sandia Energy Center for Infrastructure Research and Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -national-labs-team-to-tackle-long-standing-automotive-hydrogen-storage-challengefeed 0 Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port http:...

  17. Analysis of Critical Infrastructure Dependencies and Interdependencies

    SciTech Connect (OSTI)

    Petit, Frederic; Verner, Duane; Brannegan, David; Buehring, William; Dickinson, David; Guziel, Karen; Haffenden, Rebecca; Phillips, Julia; Peerenboom, James

    2015-06-01

    The report begins by defining dependencies and interdependencies and exploring basic concepts of dependencies in order to facilitate a common understanding and consistent analytical approaches. Key concepts covered include; Characteristics of dependencies: upstream dependencies, internal dependencies, and downstream dependencies; Classes of dependencies: physical, cyber, geographic, and logical; and Dimensions of dependencies: operating environment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operations From there, the report proposes a multi-phase roadmap to support dependency and interdependency assessment activities nationwide, identifying a range of data inputs, analysis activities, and potential products for each phase, as well as key steps needed to progress from one phase to the next. The report concludes by outlining a comprehensive, iterative, and scalable framework for analyzing dependencies and interdependencies that stakeholders can integrate into existing risk and resilience assessment efforts.

  18. Facilities and Infrastructure Program FY 2016 Budget At-A-Glance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Facilities and Infrastructure Program FY 2016 Budget At-A-Glance Facilities and Infrastructure Program FY 2016 Budget At-A-Glance The Facilities and Infrastructure Program manages the Office of Energy Efficiency and Renewable Energy's (EERE's) capital investment and operations, as well as the maintenance of the National Renewable Energy Laboratory (NREL). NREL is the nation's only national laboratory with a primary mission dedicated to the research, development and

  19. DOE Bioenergy Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Implementation Working Group A hydrogen implementation working group, consisting of federal, state, and county agency representatives and industry stakeholders, facilitates the establishment of infrastructure and policies across all state agencies with the goal of promoting the expansion of hydrogen-based energy in Hawaii. The Director of the Hawaii Center for Advanced Transportation Technologies serves as the state Hydrogen Implementation Coordinator (Coordinator). The Coordinator must

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Parking Incentive Programs The California Department of General Services (DGS) and California Department of Transportation (DOT) must develop and implement AFV parking incentive programs in public parking facilities operated by DGS with 50 or more parking spaces and park-and-ride lots owned and operated by DOT. The incentives must provide meaningful and tangible benefits to drivers, such as preferential spaces, reduced fees, and fueling infrastructure. Fueling

  3. infrastructure

    National Nuclear Security Administration (NNSA)

    insulated roofs and more energy efficient HVAC systems. The cool roof has high solar reflectance, so it emits absorbed solar radiation back into the atmosphere, which...

  4. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significance Approach (cont.) Sandia National Laboratories Anthony Lentine, Jeff Nelson, Scott Kuszmaul, Sig Gonzales , Steven Goldsmith, Dave Schoenwald , Shannon Spires,...

  5. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  6. Before the House Transportation and Infrastructure Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public ...

  7. Transmission Infrastructure Investment Projects (2009) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Transmission Infrastructure Investment Projects (2009) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation...

  8. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_joseck.pdf More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 H2A Delivery Models and Results Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout

  9. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: Energy.gov (indexed) [DOE]

    tv03veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

  10. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  11. Agent-based Infrastructure Interdependency Model

    Energy Science and Technology Software Center (OSTI)

    2003-10-01

    The software is used to analyze infrastructure interdependencies. Agent-based modeling is used for the analysis.

  12. Chapter V: Improving Shared Transport Infrastructures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | April 2015 Chapter VI: Integrating ... including oil and refined products, gas, and electricity. ... The Energy Information Administration (EIA) reported ...

  13. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Energization | Department of Energy Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February 12, 2015 - 2:30pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization Transmission Line Increases Reliability, Access to Affordable Energy in Southwest States WASHINGTON

  14. CMS centres worldwide: A new collaborative infrastructure

    SciTech Connect (OSTI)

    Taylor, Lucas; Gottschalk, Erik; /Fermilab

    2010-01-01

    The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

  15. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  16. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

  17. B&W Y-12 donates $75,000 to Emory Valley Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration B&W Y-12 donates $75,000 to Emory Valley Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  18. Today's announcement is a direct investment in CCS-related infrastructure

    Energy Savers [EERE]

    among electric power and industrial facilities, academic institutions, and other organizations operating across the United States | Department of Energy Today&#8217;s announcement is a direct investment in CCS-related infrastructure among electric power and industrial facilities, academic institutions, and other organizations operating across the United States Today&#8217;s announcement is a direct investment in CCS-related infrastructure among electric power and industrial

  19. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  1. Resilient Infrastructure Publications | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Argonne National Laboratory researchers have published a wide range of resiliency-related reports, papers and articles, some of which are shown below. Analysis of Critical Infrastructure Dependencies and Interdependencies Petit, F., Verner, D., Brannegan, D., Buehring, W., Dickinson, D., Guziel, K., Haffenden, R., Phillips, J., Peerenboom, J., June 2015, Analysis of Critical Infrastructure Dependencies and Interdependencies. An Approach to Critical Infrastructure Resilience Petit,

  2. Pennsylvania Regional Infrastructure Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania Regional Infrastructure Project Pennsylvania Regional Infrastructure Project Presentation by 11-Wang to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 11_wang_infra.pdf More Documents & Publications Hydrogen Regional Infrastructure Program in Pennsylvania Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Pipeline and Pressure Vessel R&D under the Hydrogen Regional

  3. Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop: Preliminary Results Hydrogen Infrastructure Market Readiness Workshop: Preliminary Results Preliminary results from the Hydrogen Infrastructure Market Readiness Workshop held February 16-17, 2011. This presentation was disseminated to workshop attendees to convey the aggregate and "raw" feedback collected during the workshop. PDF icon wkshp_market_readiness_preliminary_results.pdf More Documents & Publications Hydrogen Infrastructure Market

  4. DOE Extends Portsmouth Infrastructure Support Services Contract |

    Energy Savers [EERE]

    Department of Energy Portsmouth Infrastructure Support Services Contract DOE Extends Portsmouth Infrastructure Support Services Contract July 17, 2015 - 12:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it is extending its contract for Infrastructure Support Services at the Portsmouth Gaseous Diffusion Plant site for a period of six months. The contract period for the current

  5. National Infrastructure Protection Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Protection Plan National Infrastructure Protection Plan Protecting the critical infrastructure and key resources (CI/KR) of the United States is essential to the Nation's security, public health and safety, economic vitality, and way of life. Attacks on CI/KR could significantly disrupt the functioning of government and business alike and produce cascading effects far beyond the targeted sector and physical location of the incident. Direct terrorist attacks and natural, manmade,

  6. Addressing Deferred Maintenance, Infrastructure Costs, and Excess

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities at Portsmouth and Paducah | Department of Energy Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Presentation from the 2015 DOE National Cleanup Workshop by William E. Murphie, Manager, Portsmouth/Paducah Project Office (PPPO). PDF icon Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth

  7. Infrastructure Development - Building America Top Innovations | Department

    Office of Environmental Management (EM)

    of Energy Infrastructure Development - Building America Top Innovations Infrastructure Development - Building America Top Innovations August 25, 2014 - 11:23am Addthis Infrastructure Development - Building America Top Innovations Top Innovations in this category include research results that have influenced codes and standards and improvements in education and the transaction process. Educating Professionals Projects are underway in this category. Check back for profiles to be posted soon.

  8. Infrastructure and Logistics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing & Supply Chain » Infrastructure and Logistics Infrastructure and Logistics The United States wind industry is progressing from a period of experimentation and development to a period of wide scale demonstration and actualization, which is leading to advancements in infrastructure. As the wind industry continues to grow, logistical constraints must be identified and resolved in order to prevent bottlenecking in the supply chain and

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  10. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  11. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupcreportoutcaci.pdf More Documents & Publications EV Everywhere...

  12. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  14. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  15. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on ...

  16. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen (PDF 257 KB), Dean Fry, BP Panel Session III: Innovation and Coordination Moderator: Stefan ...

  18. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as ...

  19. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  1. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  3. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing...

  4. Tarini Infrastructure Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: New Delhi, Delhi (NCT), India Zip: 110024 Sector: Hydro Product: New Delhi-based small hydro project developer. References: Tarini Infrastructure Ltd.1 This article is a...

  5. National Critical Infrastructure Security and Resilience Month...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, ...

  6. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  7. Wyoming Infrastructure Authority | Open Energy Information

    Open Energy Info (EERE)

    Name: Wyoming Infrastructure Authority Abbreviation: WIA Address: 200 E. 17th Street, Unit B Place: Cheyenne, WY Zip: 82001 Year Founded: 2004 Phone Number: (307) 635-3573...

  8. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  9. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  10. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  11. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  12. Acquasol Infrastructure Limited | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Acquasol Infrastructure Limited Place: Adelaide, South Australia, Australia Zip: 5000 Sector: Solar Product: Adelaide based solar thermal project and...

  13. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    to enable widespread residentialMDU and workplace charging infrastructure * Include use case data collected to date and collect data not available * Work with DOT and planning...

  14. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon...

  15. Infrastructure Institutional Change Principle | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Also, it planned to explore incorporating provisions for sustainable building design in grants and loans targeted for infrastructure improvements at academic institutions, and to ...

  16. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geographically-Based Infrastructure Analysis for California H2FIRST Reference Station Design Task: Project Deliverable 2-2 Utah Clean Cities Transportation Sector Petroleum ...

  17. Infrastructure Development and Financial Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A ...

  18. Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape...

    Open Energy Info (EERE)

    ARCGIS Shape File, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country Diagnostic Documents: ARCGIS Shape File, all Countries...

  19. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    were to convene industry and other stakeholders to share current status and state-of-the-art technologies for natural gas and hydrogen infrastructure; identify key challenges, both...

  20. Final Report- Hydrogen Delivery Infrastructure Options Analysis

    Broader source: Energy.gov [DOE]

    This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

  1. Offshore Infrastructure Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Offshore Infrastructure Associates Inc Region: Puerto Rico Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  2. Resilient Infrastructure Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Power Network Modeling (EPfast) EPfast is an electric power infrastructure modeling tool used to examine the impacts of power outages on large electric grid systems. ...

  3. Climate Change and Infrastructure, Urban Systems, and Vulnerabilities

    SciTech Connect (OSTI)

    Wilbanks, Thomas J; Fernandez, Steven J

    2014-01-01

    This Technical Report on Climate Change and Infrastructure, Urban Systems, and Vulnerabilities has been prepared for the U.S. Department of Energy by the Oak Ridge National Laboratory in support of the U.S. National Climate Assessment (NCA). It is a summary of the currently existing knowledge base on its topic, nested within a broader framing of issues and questions that need further attention in the longer run. The report arrives at a number of assessment findings, each associated with an evaluation of the level of consensus on that issue within the expert community, the volume of evidence available to support that judgment, and the section of the report that provides an explanation for the finding. Cross-sectoral issues related to infrastructures and urban systems have not received a great deal of attention to date in research literatures in general and climate change assessments in particular. As a result, this technical report is breaking new ground as a component of climate change vulnerability and impact assessments in the U.S., which means that some of its assessment findings are rather speculative, more in the nature of propositions for further study than specific conclusions that are offered with a high level of confidence and research support. But it is a start in addressing questions that are of interest to many policymakers and stakeholders. A central theme of the report is that vulnerabilities and impacts are issues beyond physical infrastructures themselves. The concern is with the value of services provided by infrastructures, where the true consequences of impacts and disruptions involve not only the costs associated with the clean-up, repair, and/or replacement of affected infrastructures but also economic, social, and environmental effects as supply chains are disrupted, economic activities are suspended, and/or social well-being is threatened. Current knowledge indicates that vulnerability concerns tend to be focused on extreme weather events associated with climate change that can disrupt infrastructure services, often cascading across infrastructures because of extensive interdependencies threatening health and local economies, especially in areas where human populations and economic activities are concentrated in urban areas. Vulnerabilities are especially large where infrastructures are subject to multiple stresses, beyond climate change alone; when they are located in areas vulnerable to extreme weather events; and if climate change is severe rather than moderate. But the report also notes that there are promising approaches for risk management, based on emerging lessons from a number of innovative initiatives in U.S. cities and other countries, involving both structural and non-structural (e.g., operational) options.

  4. Alternative Energy Generation Opportunities in Critical Infrastructure: New Jersey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Energy Generation Opportunities in Critical Infrastructure New Jersey E. Hotchkiss, I. Metzger, J. Salasovich, and P. Schwabe Produced under direction of U.S. Federal Emergency Management Agency by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-13-1902 and Task No. WFU11000. Technical Report NREL/TP-7A40-60631 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the

  5. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  6. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  7. Operations and Maintenance Savings from Advanced Metering Infrastructure - Initial Results

    Energy Savers [EERE]

    U.S. Department of Energy |December 2012 Table of Contents Executive Summary ............................................................................................................... ii 1. Introduction ................................................................................................................... 1 1.1 Purpose and Scope...................................................................................................... 1 1.2 Organization of this

  8. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; Jha, Shantenu; Parashar, Manish

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  9. Center for Inverse Design: Organization of the Center for Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    serve as primary point of contact with the U.S. Department of Energy (DOE) Office of Science; direct and manage all Center technical operations; lead the Center's Energy...

  10. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles and Infrastructure in Chicago, Illinois, Through the Congestion Mitigation and Air Quality Improvement Program on Facebook Tweet about Alternative

  11. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  12. Interdependence of Electricity System Infrastructure and Natural Gas

    Energy Savers [EERE]

    Infrastructure - EAC 2011 | Department of Energy Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation's electric infrastructure and natural gas infrastructure. PDF icon EAC - Interdependence of Electricity System

  13. NREL: Energy Systems Integration Facility - Research Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The foundation of the Energy Systems Integration Facility is its research infrastructure. In addition to extensive fixed equipment, the facility incorporates electrical, thermal, fuels, and data acquisition bus work throughout. These research buses tie individual laboratories together and allow interconnection of equipment between laboratories as well as rapid reconfiguration of systems under test. The Energy Systems Integration Facility offers the following research

  14. NRG Energy Center Paxton | Open Energy Information

    Open Energy Info (EERE)

    adjacent to Bruce Mangione Steam Plant. Operates as NRG Energy Center Paxton, a merchant plant owned by parent company NRG Thermal. References: NRG Energy Center Paxton1 This...

  15. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  16. Fluxnet Synthesis Dataset Collaboration Infrastructure

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Humphrey, Marty; van Ingen, Catharine; Beekwilder, Norm; Goode, Monte; Jackson, Keith; Rodriguez, Matt; Weber, Robin

    2008-02-06

    The Fluxnet synthesis dataset originally compiled for the La Thuile workshop contained approximately 600 site years. Since the workshop, several additional site years have been added and the dataset now contains over 920 site years from over 240 sites. A data refresh update is expected to increase those numbers in the next few months. The ancillary data describing the sites continues to evolve as well. There are on the order of 120 site contacts and 60proposals have been approved to use thedata. These proposals involve around 120 researchers. The size and complexity of the dataset and collaboration has led to a new approach to providing access to the data and collaboration support and the support team attended the workshop and worked closely with the attendees and the Fluxnet project office to define the requirements for the support infrastructure. As a result of this effort, a new website (http://www.fluxdata.org) has been created to provide access to the Fluxnet synthesis dataset. This new web site is based on a scientific data server which enables browsing of the data on-line, data download, and version tracking. We leverage database and data analysis tools such as OLAP data cubes and web reports to enable browser and Excel pivot table access to the data.

  17. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    SciTech Connect (OSTI)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  18. Demonstration of Data Center Energy Use Prediction Software

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve; Tschudi, William

    2013-09-30

    This report documents a demonstration of a software modeling tool from Romonet that was used to predict energy use and forecast energy use improvements in an operating data center. The demonstration was conducted in a conventional data center with a 15,500 square foot raised floor and an IT equipment load of 332 kilowatts. It was cooled using traditional computer room air handlers and a compressor-based chilled water system. The data center also utilized an uninterruptible power supply system for power conditioning and backup. Electrical energy monitoring was available at a number of locations within the data center. The software modeling tool predicted the energy use of the data center?s cooling and electrical power distribution systems, as well as electrical energy use and heat removal for the site. The actual energy used by the computer equipment was recorded from power distribution devices located at each computer equipment row. The model simulated the total energy use in the data center and supporting infrastructure and predicted energy use at energy-consuming points throughout the power distribution system. The initial predicted power levels were compared to actual meter readings and were found to be within approximately 10 percent at a particular measurement point, resulting in a site overall variance of 4.7 percent. Some variances were investigated, and more accurate information was entered into the model. In this case the overall variance was reduced to approximately 1.2 percent. The model was then used to predict energy use for various modification opportunities to the data center in successive iterations. These included increasing the IT equipment load, adding computer room air handler fan speed controls, and adding a water-side economizer. The demonstration showed that the software can be used to simulate data center energy use and create a model that is useful for investigating energy efficiency design changes.

  19. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  20. 2nd International Hydrogen Infrastructure Challenges Webinar Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. PDF icon 2nd International Hydrogen Infrastructure Challenges Webinar Slides More Documents & Publications International Hydrogen Infrastructure Challenges Workshop Summary

  1. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  2. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect (OSTI)

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  4. The Kansas City Responsive Infrastructure Manufacturing and Sourcing Program, OAS-L-13-12

    Energy Savers [EERE]

    Kansas City Responsive Infrastructure Manufacturing and Sourcing Program OAS-L-13-12 August 2013 Department of Energy Washington, DC 20585 August 1, 2013 MEMORANDUM FOR THE MANAGER, KANSAS CITY FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Kansas City Responsive Infrastructure Manufacturing and Sourcing Program" BACKGROUND The Kansas City Plant, managed and operated by Honeywell Federal

  5. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  6. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  7. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  8. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  9. Materials Science and Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Engineering Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  11. Agenda: Energy Infrastructure Finance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sullivan, CEODirector of Investments, Grand River Dam Authority * Humayun Tai, Director, McKinsey Company * Steven J. Zucchet, SVP, Borealis Infrastructure 12:00 p.m. - 1:00 p.m. ...

  12. 2011 Biomass Program Platform Peer Review. Infrastructure

    SciTech Connect (OSTI)

    Lindauer, Alicia

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Infrastructure Platform Review meeting.

  13. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Parsons Infrastructure & Technology Group, Inc., related to a Form Wood Timber Fire at the Salt Waste Processing Facility at the Savannah River Site On July 13, 2009, the...

  14. Fuzzy architecture assessment for critical infrastructure resilience

    SciTech Connect (OSTI)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systems architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.

  15. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C....

  16. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  17. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  18. IPHE Infrastructure Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop IPHE Infrastructure Workshop This interactive workshop, held February 25-26, 2010, in Sacramento, CA, focused on realistic, practical issues with the aim of producing information to help develop policies, technologies, and incentives that will contribute to the success of hydrogen fuel retailers. Organizers of the workshop include IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy), the U.S. Department of Energy, California Fuel Cell

  19. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  1. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_05_sell.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers HYDROGEN TO THE HIGHWAYS Lean Gasoline System Development

  2. Safety, Security & Resilience of Energy Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of Energy Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  3. Geographically Based Hydrogen Demand and Infrastructure Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon melendez_geo_h2_demand.pdf More Documents & Publications 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - 10, 2006 Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

  4. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt082_ti_bowen_2012_o.pdf More Documents & Publications The Future of Home Heating StateActivity.pdf Hydrogen & Fuel Cells Program Overview

  5. Public Meeting In Chicago - Rail Infrastructure Presentation

    Energy Savers [EERE]

    QER August 8 th Public Meeting In Chicago - Rail Infrastructure Presentation Dave Wanner - Wisconsin Public Service Corporation ____________________________________________________________________________ Page 1 of 3 First of all, I would like to thank the Department of Energy for allowing me to speak today about the importance of the nation's rail infrastructure to my company and to all of our customers. My name is Dave Wanner. I am the Manager of Fuel Services for Wisconsin Public Service

  6. Natural Gas Infrastructure Modernization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Modernization Natural Gas Infrastructure Modernization A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. In order to help modernize the nation's natural gas

  7. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations." - Lester R. Brown, Founder and President, Worldwatch Institute Department of Energy facilities managers have a significant role to play in achieving the goals of E.O. 13423, Strengthening Federal Environmental Energy and Transportation Management and E.O. 13514, Federal Leadership in

  8. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector This...

  9. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  10. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at ...

  11. SLT Power Infrastructure Projects Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    SLT Power Infrastructure Projects Pvt Ltd Jump to: navigation, search Name: SLT Power & Infrastructure Projects Pvt Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500044 Sector:...

  12. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA, Infrastructure and Environment (NA-50) 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50) The ongoing and projected Environmental Assessments and ...

  13. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The...

  14. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon...

  15. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  16. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) The Year-in-Review (YIR): 2012 Energy...

  17. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's ...

  18. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  19. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential ...

  20. Technical Innovation in Management and Infrastructure | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Innovation in Management and Infrastructure The MFRC administers a program (TIMI) that addresses the application of new technology to the infrastructure and management of...

  1. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern...

  2. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Environmental Management (EM)

    of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and...

  3. Feed Materials Production Center. Final phase-in report volume 1 of 15 operations and maintenance, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Britton, W.H.

    1986-01-17

    The basic purpose of the transition program in the operations area was to obtain a detailed understanding of the FMPC operations with emphasis on equipment and organization, Also considered in this evaluation were several extant conditions at FMPC which may have significant impact on initiatives adopted in the operations area. These conditions are as follows: capital expenditures over the last several years averaged less than 20% of what might be considered minimum to sustain such a facility in a good operating condition; the production load is ramping up placing greater demands on an old facility; the workforce is relatively inexperienced (68% with less than five (5) years) at FMPC; plans are in place to institute major upgrading of FMPC facilities; the RFP described the need for a major effort in the Environment, Safety and Health Area. Considering the above concerns, the transition program was focused in the following areas: Procedures - An inexperienced workforce operating in an atmosphere requiring rigid compliance with more rigorous environmental criteria necessitates clear, concise up-to-date procedures to enhance performance; Training - New equipment, new people and rigorous environmental constraints demand an aggressive, focused training program. Equipment - Site conditions are not conducive to reliable equipment performance. Specific knowledge of forecasted equipment performance is imperative to control the present and plan the future. Restoration - The massive planned expenditures must be well understood to ensure that the future production needs are satisfied and that priorities are aligned with need. Maintenance - Based on the site descriptions provided in the RFP, it was clear that the past maintenance practice has been reactive. The facility upgrade program, to be successful, must be complemented by an agressively managed maintenance program.

  4. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  5. Clean Energy Infrastructure Educational Initiative

    SciTech Connect (OSTI)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master’s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master’s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master’s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit The state offers an income tax credit of 36% of the cost of converting a vehicle to operate on an alternative fuel, the incremental cost of purchasing an original equipment manufacturer AFV, and the cost of alternative fueling equipment. Alternatively, a taxpayer may take a tax credit of 7.2% of the cost of the motor vehicle, up to $1,500. To qualify for the tax credit, vehicles must be dedicated AFVs and registered in

  7. Field Communications Control Center Technical Organizational

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Communications Control Center Technical Organizational Operational Physical Security AuthenticatorsPasswords Network TopologyBackdoor and Vendor Connections Software...

  8. Detailed workplan for innovative technology demonstrations to support existing treatment operations at the Installation Logistics Center, DSERTS Site FTLE-33, Fort Lewis, Washington

    SciTech Connect (OSTI)

    Liikala, T.L.

    1998-07-01

    This workplan is an assemblage of documents for use by Pacific Northwest National Laboratory (PNNL) to direct and control project activities at Fort Lewis, Washington. Fort Lewis is a FORSCOM installation, whose Logistics Center (DSERTS Site FTLE-33) was placed on the National priorities List (NPL) in December 1989, as a result of trichloroethene (TCE) contamination in groundwater beneath the site. Site background information and brief descriptions of the Fort Lewis project and the main supporting documents, which will be used to direct and control the project activities, are provided. These are followed by a summary of the Work Breakdown Structure (WBS) elements, a general project schedule, a list of major deliverables, and a budget synopsis. Test plans for specific elements (Bench-Scale Testing) will be developed separately as those elements are initiated. If additional activities not specifically addressed in the Project Management Plan (Attachment 1) are added to the work scope, addendums to this workplan will be prepared to cover those activities.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  10. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  11. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  12. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 373

  13. NEUP Project Selections_September212011_IRP and Infrastructure Improvements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projectsselections for NEUP 2011 under Integrated Research Projects and University Research Infrastructure Improvements.

  14. Hydrogen Vehicle and Infrastructure Codes and Standards Citations

    Broader source: Energy.gov [DOE]

    This document lists codes and standards typically used for US hydrogen vehicle and infrastructure projects.

  15. Hydrogen Regional Infrastructure Program in Pennsylvania | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania. Objectives: Capture data pertinent to H2 delivery in PA PDF icon hpwgw_pa_reginfra_klingenberg.pdf More Documents & Publications Pennsylvania Regional Infrastructure Project Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues New Materials for Hydrogen Pipelines

  16. Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment

    Energy Savers [EERE]

    | Department of Energy Critical Infrastructure Protection Cyber Vulnerability Assessment Guide to Critical Infrastructure Protection Cyber Vulnerability Assessment This document describes a customized process for cyber vulnerability assessment in compliance with the Critical Infrastructure Protection standards adopted by the North American Electric Reliability Corporation in 2006. This guide covers the planning, execution, and reporting process. PDF icon Guide to Critical Infrastructure

  17. Presidential Proclamation: Critical Infrastructure Security and Resilience Month, 2013

    Broader source: Energy.gov [DOE]

    A proclamation from President Barack Obama declaring November 2013 Critical Infrastructure Security and Resilience Month.

  18. PIA - EERE Infrastructure-EERE Reviewer Management System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PIA - EERE Infrastructure-EERE Reviewer Management System PDF icon PIA - EERE Infrastructure-EERE Reviewer Management System More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - HSPD-12 Physical and Logical Access System PIA - Bonneville Power Adminstration Ethics Helpline

  19. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect (OSTI)

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

  20. Operating Experience Level 3, Industrial Equipment Impacts Infrastruct...

    Energy Savers [EERE]

    mission and schedule, divert resources, and change momentum. PDF icon OE-3 2014-06: Industrial Equipment Impacts infrastructure More Documents & Publications Operating...

  1. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    SciTech Connect (OSTI)

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean—an expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean’s role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)’s Ocean Studies Board was asked by the National Science and Technology Council’s Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation’s attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions–enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales. Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure – autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits of each potential infrastructure investment, and funding those investments that collectively produce the largest expected net benefit over time. While this type of process is clearly subject to budget constraints, it could quantify the often informal evaluation of linkages between infrastructure, ocean research, the value of information produced, societal objectives, and economic benefits. Addressing the numerous complex science questions facing the entire ocean research enterprise in 2030–from government to academia, industry to nonprofits, local to global scale–represents a major challenge, requiring collaboration across the breadth of the ocean sciences community and nearly seamless coordination between ocean-related federal agencies.

  2. Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities

    Broader source: Energy.gov [DOE]

    Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, U. S. Department of Energy (DOE) Public Meeting on “Enhancing Resilience in Energy Infrastructure and Addressing Vulnerabilities” On Friday, April 11, 2014, at 10 a.m. in room HVC-215 of the U.S. Capitol, the Department of Energy (DOE), acting as the Secretariat for the Quadrennial Energy Review Task Force, will hold a public meeting to discuss and receive comments on issues related to the Quadrennial Energy Review (QER). The meeting will focus on infrastructure vulnerabilities related to the electricity, natural gas and petroleum transmission, storage and distribution systems (TS&D). The meeting will consist of two facilitated panels of experts on identifying and addressing vulnerabilities within the nation’s energy TS&D infrastructure. Following the panels, an opportunity will be provided for public comment via an open microphone session. The meeting will be livestreamed at energy.gov/live

  3. Securing Infrastructure from High Explosive Threats

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  4. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  5. Lessons and Challenges for Early Hydrogen Refueling Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Challenges for Early Hydrogen Refueling Infrastructure Lessons and Challenges for Early Hydrogen Refueling Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon lessons_melaina_final.pdf More Documents & Publications Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Hydrogen Infrastructure Strategies Technical

  6. GIS-Based Infrastructure Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling GIS-Based Infrastructure Modeling Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon parks_gis_infrastructure_modeling.pdf More Documents & Publications DOE Hydrogen Transition Analysis Workshop Geographically-Based Infrastructure Analysis for California Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  7. Geographically-Based Infrastructure Analysis for California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Geographically-Based Infrastructure Analysis for California Geographically-Based Infrastructure Analysis for California Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon ogden_geo_infrastructure_analysis.pdf More Documents & Publications Hydrogen Infrastructure Strategies EIS-0105: Draft Environmental Impact Statement Natural

  8. Securing energy assets and infrastructure 2007

    SciTech Connect (OSTI)

    2006-06-15

    This report describes in detail the energy industry's challenges and solutions for protecting critical assets including oil and gas infrastructure, transmission grids, power plants, storage, pipelines, and all aspects of strategic industry assets. It includes a special section on cyber-terrorism and protecting control systems. Contents: Section I - Introduction; U.S Energy Trends; Vulnerabilities; Protection Measures. Section II - Sector-wise Vulnerabilities Assessments and Security Measures: Coal, Oil and Petroleum, Natural Gas, Electric Power, Cybersecurity and Control Systems, Key Recommendations; Section III - Critical Infrastructure Protection Efforts: Government Initiatives, Agencies, and Checklists.

  9. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 th , 2015 2 Questions and Answers  Please type your question into the question box Agenda  Overview  Hydrogen Infrastructure by Region  Fueling  Quality  Metering  Station Hardware  Q&A 3 4 Overview The 2nd International Workshop on Hydrogen Infrastructure & Transportation continued the work of the first workshop that was held in Berlin on June 24th-26th, 2013. The workshop aimed to identify solutions, share experience, best practices and progress on four key

  10. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    SciTech Connect (OSTI)

    N /A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  11. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.

  12. QER- Comment of Wyoming Infrastructure Authority

    Broader source: Energy.gov [DOE]

    Office of Energy Policy and Systems Analysis: Please accept the attached letter of comments pursuant to the above referenced meeting. I have also mailed the letter. We appreciate the scheduling of the meeting in Cheyenne and the opportunity to provide comments on permitting and siting of infrastructure on public lands. Regards,

  13. Infrastructure Constraints in New England Background Memo

    Broader source: Energy.gov [DOE]

    On Monday, April 21, 2014 the U.S. Department of Energy (DOE), acting in its capacity as the Secretariat for the QER Task Force, will convene a two-part public meeting to examine energy infrastructure constraints in New England and regional approaches to addressing them.

  14. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  15. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  16. ACRF Data Collection and Processing Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 ACRF Data Collection and Processing Infrastructure December 2004 M.C. Macduff, Pacific Northwest National Laboratory R.C. Eagan Argonne National Laboratory Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research M.C. Macduff et al., November 2004, ARM TR-046 Contents 1. Introduction ............................................................................................................................................ 1 2. Global

  17. Portland, Oregon Climate-Friendly Infrastructure:

    Energy Savers [EERE]

    Portland, Oregon Climate-Friendly Infrastructure: Tilikum Crossing, Bridge of the People A White House Climate Action Champions Case Study INDEX Executive Summary...............................2 Climate Action Champion.....................2 Project Spotlight.................................3-5 Co-benefits.............................................6 Challenges and lessons learned...........6 Resources & Contacts............................7 2 Executive Summary The City of Portland's 2015

  18. Webinar: International Hydrogen Infrastructure Challenges Workshop Summary

    Broader source: Energy.gov (indexed) [DOE]

    - NOW, NEDO, and DOE | Department of Energy Above is the webinar recording for the Fuel Cell Technologies Office webinar, "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE," originally presented on December 16, 2013. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  19. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect (OSTI)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.

  20. Center for Nanoscale Materials Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The Center for Nanoscale Materials at Argonne National Laboratory is a premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. PDF icon cnm_fact_sheet

  1. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nations energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEACs. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEACs for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEACs for EPAs Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the awards incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  2. Operation Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation Schedule Daily Hours of Operation

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements Jurisdictions must develop regulations to allow the use of PEV infrastructure and battery charging stations in all areas except critical areas or areas zoned for residential or resource use. The Washington Department of Commerce included a model ordinance, development regulations, and guidance for local governments for site assessment and installing PEV infrastructure in Electric Vehicle Infrastructure: A Guide for Local

  4. International Hydrogen Infrastructure Challenges Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO and DOE December 16th 2013 1 Partner: Timetable * Introduction to the Webinar (2 min) Erika Sutherland * Remarks (10 min) Sunita Satyapal, Klaus Bonhoff, Eiji Ohira * Speaker Introduction (3 min) Erika Sutherland * General country overview (15 min) Hanno Butsch * H2-Fueling (15 min) Jesse Schneider * H2 Quality (15 min) Jesse Schneider on behalf of Georgios Tsotridis * H2-Metering (15 min) Tetsuji Nakamura *

  5. Infrastructure at the Savannah River Site:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure at the Savannah River Site: Modernizing for 21 st Century Missions January 2011 Executive Summary As it has for more than 60 years, the Savannah River Site (SRS) remains one of the crown jewels in America's quest for national security, innovative technology and new energy sources. SRS is well-suited to continue to perform nuclear-related missions with every assurance of quality, safety and innovation. SRS is not a closure site. It has clearly defined future missions extending

  6. Indian Country Energy and Infrastructure Working Group

    Office of Environmental Management (EM)

    INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG APPROVED MEMBERS Blue Lake Rancheria  Jana Ganion, BLR Energy Director Confederated Tribes of the Warm Springs Reservation of Oregon  Chief Delvis Health  Jim Manion, General Manager, Warm Springs Power Ewiiaapaayp Band of Kumeyaay Indians  William Micklin, CEO Gila River Indian Community  Robert Stone, District 5 Community Councilman Ho-Chunk Nation  Representative Susan Waukon Mississippi Band of Choctaw Indians

  7. Climate Change and Energy Infrastructure Exposure to Storm Surge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Change and Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise Climate Change and Energy Infrastructure Exposure to Storm Surge and Sea-Level Rise This study provides ...

  8. Year-in-Review: 2011 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    1 Energy Infrastructure Events and Expansions (April 2012) Year-in-Review: 2011 Energy Infrastructure Events and Expansions (April 2012) The 2011 Year-in-Review (YIR) provides a...

  9. Operations Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rachel Ruggirello Dan Allen Dan Allen Multimedia Specialist Read more about Dan Allen Dewey Holten Associate DirectorTheme 3 LeaderPrincipal Investigator Read more about Dewey...

  10. Securing the United States' power infrastructure

    SciTech Connect (OSTI)

    Happenny, Sean F.

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  11. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  12. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects.

  13. Africa's Infrastructure: A Time for Transformation | Open Energy...

    Open Energy Info (EERE)

    Not Available Website: siteresources.worldbank.orgINTAFRICAResourcesaicdoverviewenglish This article provides an extensive knowledge base of the African infrastructure...

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2010.

  15. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  16. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  17. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  18. Natural Gas Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. natural gas vehicle and infrastructure projects.

  19. Hydrogen Infrastructure Market Readiness Workshop Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workshop Agenda Hydrogen Infrastructure Market Readiness Workshop Agenda Agenda from the Hydrogen Infrastructure Market Readiness Workshop, hosted by the U.S. Department of Energy's National Renewable Energy Laboratory, February 16-17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_agenda.pdf More Documents & Publications Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market

  20. Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  1. Energy and Infrastructure Analysis Group: D-4, Decision Applications: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Energy and Infrastructure Analysis, D-4 Energy & Infrastructure Analysis Home CONTACTS Group Leader Timothy McPherson Deputy Group Leader James Doyle Group Administrator Pauline Borrego (505) 667-2266 d division logo image Energy and Infrastructure Analysis Group Our mission is to perform basic and applied research focused on increasing the security of the nation's energy infrastructure. We specialize in the development and use of macromodels and microsimulations. These provide detailed,

  2. Energy Department Infrastructure Improvement Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Infrastructure Improvement Plan Energy Department Infrastructure Improvement Plan AGENCY PLAN FOR IMPROVING PERFORMANCE OF FEDERAL PERMITTING AND REVIEW OF INFRASTRUCTURE PROJECTS On March 22, 2012, the President issued Executive Order 13604 (EO), which is intended to improve the performance of Federal agencies in the permitting and review of infrastructure projects. Among its many objectives, the EO describes the President's government-wide initiative to modernize Federal

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Infrastructure Group D Breakout Report | Department of Energy D Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group D Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_d_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer

  4. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Infrastructure Group E Breakout Report | Department of Energy E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_e_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer

  5. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Energy Savers [EERE]

    Department of Energy Simulating Impacts of Disruptions to Liquid Fuels Infrastructure Simulating Impacts of Disruptions to Liquid Fuels Infrastructure This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for

  6. Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects.

  7. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to

  8. Energy Critical Infrastructure and Key Resources Sector-Specific

    Office of Environmental Management (EM)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR)

  9. Reducing Cyber Risk to Critical Infrastructure: NIST Framework | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Cyber Risk to Critical Infrastructure: NIST Framework Reducing Cyber Risk to Critical Infrastructure: NIST Framework Recognizing that the national and economic security of the United States depends on the reliable functioning of critical infrastructure, the President under Executive Order (EO) 13636 "Improving Critical Infrastructure Cybersecurity" of February 2013 directed the National Institute of Standards and Technology (NIST) to work with stakeholders to

  10. Infrastructure Security and Energy Restoration (ISER) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Infrastructure Security and Energy Restoration (ISER) Infrastructure Security and Energy Restoration (ISER) Infrastructure Security and Energy Restoration (ISER) Helping to Ensure a Secure and Reliable Flow of Energy to the Nation Applying the Department of Energy's technical expertise to help ensure the security, resiliency and survivability of key energy assets and critical energy infrastructure. We work with the Department of Homeland Security, the Federal Energy Regulatory

  11. 2011 Biomass Program Platform Peer Review: Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Infrastructure 2011 Biomass Program Platform Peer Review: Infrastructure This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program's Infrastructure Platform Review meeting, held on February 3, 2011, in Washington, D.C. PDF icon 2011_infrastructure_review.pdf More Documents & Publications 2011 Biomass Program Platform Peer

  12. Microsoft Word - Critical Infrastructure Security and Resilience Month.docx

    Office of Environmental Management (EM)

    White House Office of the Press Secretary For Immediate Release October 31, 2013 Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013 - - - - - - - BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Over the last few decades, our Nation has grown increasingly dependent on critical infrastructure, the backbone of our national and economic security. America's critical infrastructure is

  13. Distribution Infrastructure and End Use | Department of Energy

    Office of Environmental Management (EM)

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  14. Saving Energy at Data Centers

    SciTech Connect (OSTI)

    2007-10-12

    Data centers provide mission-critical computing functions essential to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components.

  15. Energy 101: Energy Efficient Data Centers

    Broader source: Energy.gov [DOE]

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of...

  16. Management Technology for Energy Efficiency in Data Centers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Telecommunications Facilities | Department of Energy Management Technology for Energy Efficiency in Data Centers and Telecommunications Facilities Management Technology for Energy Efficiency in Data Centers and Telecommunications Facilities Technologies Optimize System Cooling and Power Demand Globally, demand for computing and data interconnectivity continues to rise, which in turn has increased the size of the data center infrastructure and its energy consumption. Between 2005 and 2010,

  17. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  18. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  19. Karen Nunez, Procedures Center Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Karen Nunez, Procedures Center Manager Print Procedures Center Manager Karen Nunez has been working somewhat "behind the scenes" at the ALS for the past seven years, ensuring that documentation for the many procedures involved in ALS operations is clear, correct, and up to date. She works with a plethora of ALS engineers, operators, technicians, and scientists, who all lend their technical expertise to her work. "I maintain the documents that help people maintain the

  20. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    SciTech Connect (OSTI)

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason; Stout, William M.S.; Lee, Erik

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  1. Operations Committee Report

    Broader source: Energy.gov (indexed) [DOE]

    Presented to the Commission to Review Effectiveness of National Energy Laboratories Jeff Smith Deputy for Operations Oak Ridge National Laboratory February 24, 2015 The Importance of Core Infrastructure 2 Mission Inadequate functionality No place for microscope Can't do specific pathogen free genetics Unable to support supercomputer Safety ES&H impacts Near miss occurrence - fallen concrete ~25% of injuries due to legacy issues Failure in power supply to ventilation fans Cost Expensive to

  2. Transmission and Storage Operations

    Energy Savers [EERE]

    Transmission and Storage Operations Natural Gas Infrastructure R&D and Methane Mitigation Workshop Mary Savalle, PMP, LSSGB Compression Reliability Engineer November 12, 2014 Agenda * DTE Gas Snapshot * NOx & CO - Combustion stability * Methane - Packing - Blowdowns * Capture vs Flare 2 SNAPSHOT * DTE Gas - 41 Units * Age Range: 8-59yrs (Average 45yrs) - 118,200HP * 1,000-15,000HP - 7 different manufacturers * Cooper-Bessemer, Solar, Waukesha, DeLaval, IR, CAT, Ariel - Complete Mixture *

  3. Chapter 20: Data Center IT Efficiency Measures

    SciTech Connect (OSTI)

    Huang, R.; Masanet, E.

    2015-01-01

    Data centers use about 2% of the electricity in the United States; a typical data center has 100 to 200 times the energy use intensity of a commercial building. Data centers present tremendous opportunities--energy use can be reduced as much as 80% between inefficient and efficient data centers. Data center efficiency measures generally fall into the following categories: power infrastructure (e.g., more efficient uninterruptible power supplies, power distribution units); cooling (e.g., free cooling, variable-speed drives, temperature and humidity set points); airflow management (e.g., hot aisle/cold aisle, containment, grommets); and information technology efficiency (e.g., server virtualization, efficient servers, efficient data storage).

  4. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect (OSTI)

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  5. SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC

    Energy Savers [EERE]

    1 0-SA-02 September 2013 SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT FOR PLUTONIUM-238 PRODUCTION FOR RADIOISOTOPE POWER SYSTEMS (DOE/EIS-031 0-SA-02) U.S. DEPARTMENT OF ENERGY 1.0 1.6 2.0 3.0 4.0 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 TABLE OF CONTENTS INTRODUCTION ............................................................................................................ 1 Overview

  6. The Center for SCADA Security Assets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for SCADA Security Assets - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  7. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Testing Center (PV RTC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  8. DOE Metal Hydride Center of Excellence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Hydride Center of Excellence - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  10. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  11. National Computational Infrastructure for Lattice Gauge Theory

    SciTech Connect (OSTI)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  12. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Todays society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS, examines the interrelationships between infrastructure networks. CIMS development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwins theory of evolution. A GA can be coupled with CIMS to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS and the preliminary results.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives The Zero Emissions Airport Vehicle and Infrastructure Pilot Program provides funding to airports for 50% of the eligible cost to acquire ZEVs. The vehicles must be used in on-road applications, employed exclusively for airport purposes, and must meet the Federal Aviation Administration's Buy American requirements. Airports are also eligible for funding to install or modify fueling infrastructure to support the vehicles involved in

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Infrastructure Bank PEV registration fees will contribute to the state's Electric Vehicle Infrastructure Bank to deploy charging stations through public-private partnerships. The Washington State Department of Transportation will develop a pilot program based on private sector and public input to design the program and identify potential transportation corridors for charging infrastructure. (Reference Revised Code of Washington 47.04.403 and 47.04.404

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Grants The Maryland Energy Administration (MEA) administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. MEA is accepting applications until February 10, 2016, or until funding has

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Grants As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) provides grant funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. The grant funds 75% of the cost of public access fueling infrastructure and 50% of the cost of private access fueling

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit An income tax credit is available for 50% of the cost of alternative fueling infrastructure, up to $5,000. Qualifying infrastructure includes electric vehicle supply equipment and equipment to dispense fuel that is 85% or more natural gas, propane, or hydrogen. Unused credits may be carried over into future tax years. The credit expires December 31, 2017. For additional information, including information on how to claim the credit, please see the New York State

  19. Reducing Data Center Loads for a Large-Scale, Net Zero Office Building (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Case study highlighting the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy-efficient data center to support its operations. NREL's efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center performance as a baseline, the new facility cut energy use by nearly 1,450,000 kWh, delivering cost savings of approximately $82,000. The data center's average total load was 165 kW less than the legacy center's average total load, resulting in a 60% reduction in overall power. Finally, the limited use of cooling and fan energy enabled the new data center to achieve a 1.16 average power utilization effectiveness (PUE) rating, compared to the legacy data center's PUE of 2.28. The laboratory had been relying on individual servers with an energy utilization rate of less than 5%. NREL employed building best practices, innovative design techniques and energy-efficient technologies to support its energy goals for the new data center. To counteract the extensive heat generated by data center equipment, the laboratory implemented a cooling system using outdoor air and evaporative cooling to meet most of the center's needs. Inside the data center, NREL replaced much of its legacy equipment with new, energy-efficient technology. By exchanging this infrastructure for virtualized blade servers, NREL reduced its server energy footprint by 96%. Additionally, NREL replaced its 80%-efficient uninterruptible power supply (UPS) with a UPS that is 95% efficient; deployed ultra efficient power distribution units (PDU) to handle higher UPS voltages; and implemented vacancy sensors to drive down lighting loads. Using best practices and energy-efficient technology, NREL was able to successfully design an optimized data center with a minimal energy footprint. At 958,000 kWh, the annual energy use for the RSF data center is approximately 60% less than the legacy data center's annual energy use, surpassing the laboratory's project goal. As specified, the building is equipped with enough onsite renewable energy generation to offset annual energy consumption. The facility has achieved a PUE of 1.16 and ERE of 0.91 in its first 11 months of operation and is using PUE to as a metric to gauge success towards its ultimate goal. Based on the status of its RSF data center project, NREL is advising other government organizations on data center efficiency. The laboratory places great emphasis on the use of key metrics - such as PUE and ERE - to track performance. By carefully monitoring these metrics and making adjustments, NREL is able to continuously improve the performance of its data center operations.

  20. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  2. Track 6: Integrating Safety Into Security Operations

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

  3. Data Center Efficiency and IT Equipment Reliability at Wider...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and...

  4. Innovations in Nuclear Infrastructure and Education

    SciTech Connect (OSTI)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  5. Policy Option for Hydrogen Vehicles and Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Policy Option for Hydrogen Vehicles and Infrastructure Policy Option for Hydrogen Vehicles and Infrastructure Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. PDF icon scenario_analysis_unnasch_0_07.pdf More Documents & Publications Scenario Analysis Meeting Hydrogen Policy and Analyzing the Transition Asia/ITS

  6. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis | Department of Energy HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon welch_hydive.pdf More Documents & Publications Discrete Choice Analysis: Hydrogen FCV Demand Potential Technical Workshop:

  7. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator | Department of Energy Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator Hydrogen Infrastructure Market Readiness: Opportunities and Potential for

  8. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Report | Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report This document summarizes the comments provided by the Merit Review Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Merit Review and Peer Evaluation, held on May

  9. FY 2014 Scientific Infrastructure Support for Consolidated Innovative

    Energy Savers [EERE]

    Nuclear Research FOA | Department of Energy Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance

  10. GNEP Nations Hold Infrastructure Development Working Group Meeting |

    Energy Savers [EERE]

    Department of Energy GNEP Nations Hold Infrastructure Development Working Group Meeting GNEP Nations Hold Infrastructure Development Working Group Meeting December 10, 2008 - 5:11pm Addthis WASHINGTON, DC - Representatives from the U.S. Department of Energy (DOE) participated this week in the third Global Nuclear Energy Partnership (GNEP) Infrastructure Development Working Group (IDWG), underscoring the Department's commitment to ensuring that global expansion of civilian nuclear power is

  11. Department of Energy Cites Parsons Infrastructure & Technology Group, Inc.

    Energy Savers [EERE]

    for Worker Safety and Health Violations | Department of Energy Parsons Infrastructure & Technology Group, Inc. for Worker Safety and Health Violations Department of Energy Cites Parsons Infrastructure & Technology Group, Inc. for Worker Safety and Health Violations October 8, 2010 - 12:00am Addthis WASHINGTON, D.C. - The Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Parsons Infrastructure & Technology Group, Inc. for violations of DOE's worker safety

  12. Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure

    Energy Savers [EERE]

    (April 2013) | Department of Energy Northeast Hurricanes on Energy Infrastructure (April 2013) Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure (April 2013) Two major hurricanes, Irene in 2011 and Sandy in 2012, have impacted the Northeastern United States over the past 2 years, devastating coastal communities and causing widespread impacts to the region's energy infrastructure, supply, and markets. Although Sandy was weaker than Irene at landfall, Sandy brought

  13. Consent Order, Parsons Infrastructure & Technology Group, Inc. -

    Energy Savers [EERE]

    NCO-2010-02 | Department of Energy Parsons Infrastructure & Technology Group, Inc. - NCO-2010-02 Consent Order, Parsons Infrastructure & Technology Group, Inc. - NCO-2010-02 April 13, 2010 Issued to Parsons Infrastructure & Technology Group, Inc. related to Nuclear Facility Construction Deficiencies and Subcontractor Oversight at the Salt Waste Processing Facility at the Savannah River Site On April 13, 2010, the U.S. Department of Energy (DOE) Office of Health, Safety and

  14. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure

    Energy Savers [EERE]

    Support Services | Department of Energy Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 17, 2015 - 5:45pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Swift & Staley, Inc. of Kevil, Kentucky, for the performance of infrastructure support services at the

  15. DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastructure

    Energy Savers [EERE]

    Support Services | Department of Energy Portsmouth Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services January 15, 2016 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Portsmouth Mission Alliance, LLC of Idaho Falls, Idaho, for the performance of infrastructure

  16. Alternative Transportation Refueling Infrastructure in the U.S. 2014:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Challenges | Department of Energy Alternative Transportation Refueling Infrastructure in the U.S. 2014: Status and Challenges Alternative Transportation Refueling Infrastructure in the U.S. 2014: Status and Challenges Lack of adequate refueling infrastructure is a major barrier to the success of alternative motor fuels. A transition from fossil petroleum to alternative, low-carbon transportation fuels appears to be necessary to mitigate the adverse impacts of global warming,

  17. U.S. Department of Energy Selects Portsmouth Infrastructure Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor | Department of Energy Portsmouth Infrastructure Services Contractor U.S. Department of Energy Selects Portsmouth Infrastructure Services Contractor March 16, 2005 - 10:48am Addthis $48.8 Million Small Business Contract Runs Through March 2010 WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced its award of a $48.8 million small business contract to Theta Pro2Serve Management Company, LLC (TPMC) for infrastructure services at the Portsmouth Gaseous Diffusion Plant

  18. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen | Department of Energy Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon agenda_3-19-2008.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of

  19. Forecourt and Gas Infrastructure Optimization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Gas Infrastructure Optimization Forecourt and Gas Infrastructure Optimization Presentation by Bruce Kelly of Nexant at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_kelly.pdf More Documents & Publications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Hydrogen Delivery Analysis Models H2A Delivery Components Model and

  20. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon yborra.pdf More Documents & Publications asdfadfasfd The Compelling Case for Natural Gas Vehicles QER - Comment of American Gas

  1. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program | Department of Energy FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program This FY 2003 Progress Report presents a description of the fuel cell and hydrogen research conducted by the Hydrogen, Fuel Cells and Infrastructure Technologies Program in fiscal year 2003 (FY 2003), projects to be implemented in FY 2004, and the research priorities for FY

  2. Controlled Hydrogen Fleet & Infrastructure Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Infrastructure Analysis Controlled Hydrogen Fleet & Infrastructure Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_01_wipke.pdf More Documents & Publications Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National FCEV Learning Demonstration: All Composite Data Products National Hydrogen Learning Demonstration Status

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Presentation given by Todd Ramsden of the National Renewable Energy Laboratory at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_13_ramsden.pdf More Documents & Publications Controlled Hydrogen Fleet & Infrastructure Analysis National FCEV Learning

  4. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications DOE

  5. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Design | Department of Energy Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 5_slezak_caci.pdf More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing

  6. CHARTER INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORK GROUP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHARTER INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORK GROUP Official Designation Indian Country Energy and Infrastructure Working Group ("Working Group") Purpose The purpose of the Working Group is to provide advice and recommendations to the Director of the Office of Indian Energy Policy & Programs (OIE) and the Secretary of Energy with respect to the strategic planning and implementation of OIE's energy resource, energy business and energy infrastructure development policy and

  7. Webinar March 10: 2nd International Hydrogen Infrastructure Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar | Department of Energy March 10: 2nd International Hydrogen Infrastructure Challenges Webinar Webinar March 10: 2nd International Hydrogen Infrastructure Challenges Webinar March 4, 2015 - 12:18pm Addthis The Fuel Cell Technologies Office will present a live webinar entitled "2nd International Hydrogen Infrastructure Challenges Webinar" on Tuesday, March 10, from 8 to 9 a.m. Eastern Daylight Time. This webinar will summarize the 2nd international information exchange on the

  8. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Station Technology (H2FIRST) Project | Department of Energy 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project November 12, 2014 - 7:27pm Addthis The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST)

  9. State Experience in Hydrogen Infrastructure in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Experience in Hydrogen Infrastructure in California State Experience in Hydrogen Infrastructure in California Presentation by Gerhard Achtelik, California Air Resources Board, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. PDF icon wkshp_market_readiness_achtelik.pdf More Documents & Publications Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) FCEVs and Hydrogen in California Fuel Cell Electric

  10. Preliminary Notice of Violation,Parsons Infrastructure & Technology Group,

    Energy Savers [EERE]

    Inc. - WEA-2010-06 | Department of Energy Parsons Infrastructure & Technology Group, Inc. - WEA-2010-06 Preliminary Notice of Violation,Parsons Infrastructure & Technology Group, Inc. - WEA-2010-06 October 7, 2010 Issued to Parsons Infrastructure & Technology Group, Inc., related to the Hand Injury Event that occurred during Crane Lubrication at the Salt Waste Processing Facility at the Savannah River Site On October 7, 2010, the U.S. Department of Energy (DOE) Office of Health,

  11. Energy Infrastructure Modeling and Analysis (EIMA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EIMA) Energy Infrastructure Modeling and Analysis (EIMA) Energy Infrastructure Modeling and Analysis (EIMA) The Energy Infrastructure Modeling and Analysis (EIMA) Division is focused on ensuring the reliability and resiliency of the U.S. electric grid through robust analytical, modeling, and assessment capabilities to address energy issues of national importance. Priorities include: Modeling and Simulation for Emergency Response and Restoration (Energy Resiliency and Risk Analysis) Significant

  12. National Critical Infrastructure Security and Resilience Month: Improving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Security and Resilience of the Nation's Grid | Department of Energy Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid National Critical Infrastructure Security and Resilience Month: Improving the Security and Resilience of the Nation's Grid November 3, 2015 - 2:30pm Addthis Power lines like these make up our nation's power grid -- a critical component of our national critical infrastructure. Power lines like these make up

  13. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Environmental Management (EM)

    Development and Needs | Department of Energy Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for

  14. Improving Risk Assessment to Support State Energy Infrastructure Decision

    Office of Environmental Management (EM)

    Making | Department of Energy Improving Risk Assessment to Support State Energy Infrastructure Decision Making Improving Risk Assessment to Support State Energy Infrastructure Decision Making May 22, 2015 - 3:28pm Addthis Alice Lippert Alice Lippert Senior Technical Advisor to the Deputy Assistant Secretary of Energy Infrastructure Modeling and Analysis The Office of Electricity Delivery and Energy Reliability (OE) is leading a State Energy Risk Assessment Initiative to help States better

  15. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  16. Indian Country Energy and Infrastructure Working Group | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Country Energy and Infrastructure Working Group Indian Country Energy and Infrastructure Working Group The Indian Country Energy and Infrastructure Working Group (ICEIWG) works collaboratively with the U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs to assist in surveys, analysis, and recommendations related to program and policy initiatives that fulfill the DOE statutory authorizations and requirements of Title V of the Energy Policy Act of 2005. About

  17. Challenge # 2 Logistics and Compatibility with Existing Infrastructure

    Office of Environmental Management (EM)

    Throughout Supply Chain | Department of Energy 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain Presentation on Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain on May 9, 2012, at the Pyrolysis Oil Workshop. PDF icon pyrolysis_challenge2.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels

  18. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Environmental Management (EM)

    Project | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_03_veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE

  19. 2nd International Hydrogen Infrastructure Challenges Webinar | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy nd International Hydrogen Infrastructure Challenges Webinar 2nd International Hydrogen Infrastructure Challenges Webinar Below is the text version of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: All attendees on today's webinar are on mute, so please submit your questions via the question

  20. DOE Has Issued Request for Information Regarding Hydrogen Infrastructure

    Office of Environmental Management (EM)

    and FCEVs | Department of Energy Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs DOE Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs December 18, 2013 - 12:00am Addthis The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding strategies for a robust market introduction of hydrogen supply, infrastructure, and fuel cell