National Library of Energy BETA

Sample records for infrastructure highways fueling

  1. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy TestTestingTesting,Department

  2. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  3. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

  4. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles...

  5. Checklist for transition to new highway fuel(s).

    SciTech Connect (OSTI)

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  6. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. Alternative Fuel Infrastructure Associate Location: San Diego

    E-Print Network [OSTI]

    California at Davis, University of

    Alternative Fuel Infrastructure Associate Location: San Diego Basic Functions Center an Alternative Fuel Infrastructure Associate that has a passion for sustainability, the environment, and accelerating the transition to a sustainable world powered by clean energy! The Alternative Fuel Infrastructure

  8. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  10. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Agenda...

  11. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  12. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  13. Off-Highway Transportation-Related Fuel Use

    SciTech Connect (OSTI)

    Davis, S.C.

    2004-05-08

    The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.

  14. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind them. This initiative was chosen not only because of the energy security benefits associated environmental benefits in both transportation and stationary markets. Energy Security America's transportation

  15. Safeguarding Truck-Shipped Wholesale and Retail Fuels Revenues from motor fuel and other highway use

    E-Print Network [OSTI]

    to identify it as a fuel that has not had on-road taxes paid. Only dyed diesel fuel may be removed from bulk highway use taxes provide the primary source of funding for the United States' transportation system, and ensuring all of these taxes are collected, remitted, and credited to the Highway Trust Fund is a priority

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  17. Idling - cruising the fuel inefficiency highway.

    SciTech Connect (OSTI)

    Gaines, L.; Levinson, T.

    2011-06-30

    What is the purpose of idling? The scale of idling can be small, as when parents idle their vehicles while waiting for their children outside of school, or it can be large, as when ocean liners are in port. In many cases, the primary purpose for idling is to control the temperature of a passenger or freight compartment. Large line-haul trucks idle overnight to keep fuel and the engine warm, for the resting driver's comfort, to mask out noises and smells, and for safety. In addition, all classes of trucks idle during the workday at ports and terminals, busy delivery sites, border crossings, and other work sites. They may be idling to enable slow movement in a queue (creep idling) or to provide other services. Bus drivers also idle their vehicles while they wait for passengers and to warm up in the morning. Even locomotive engines are idled so they start, for hotel load, to keep the battery charged, to keep the toilet water from freezing, and for air brakes, or because the operator idles out of habit. Although this document focuses on long-haul trucks, much of the information applies to other vehicles as well. The impacts of idling are substantial, with as much as 6 billion gallons of fuel burned unnecessarily each year in the United States at a cost of over $20 billion. The extra hours of engine operation also cost the owners money for more frequent maintenance and overhauls. In addition, idling vehicles emit particulates (PM{sub 10}), nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and carbon dioxide (CO{sub 2}). These emissions, along with noise from idling vehicles, have led to many local and state restrictions on idling. Two main factors have combined to create a surge of interest in idling reduction (IR): (1) Increasing restrictions on idling for heavy vehicles and (2) The price of diesel fuel. Because stakeholders focus their efforts on improving different factors (air quality, fuel economy, noise level), they do not necessarily agree on the most advantageous technological alternatives to implement. In addition, although many equipment manufacturers have tried to educate customers and government agencies, they often provide conflicting claims about the comparative merits of different devices. This makes it difficult for truck owners to choose the right equipment for their needs. In this study, we present the first comparison of IR technologies with each other and with idling on the basis of both costs and full fuel-cycle emissions, for different locations, fuel prices, and idling patterns. The preferences described are for the technologies that reduce total emissions the most and cost truck owners the least. We also discuss how regulatory issues and legislation affect IR, what financial incentives help to promote IR, and how outreach and education approaches can be adopted to reduce the need to idle. Finally, we offer a prediction of how future research and development (R&D), regulations, and citizen involvement can help to improve fuel economy and clean the air.

  18. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  19. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  20. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  1. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles and InfrastructureinInfrastructure

  2. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  3. Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

  4. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  5. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications HYDROGEN TO THE HIGHWAYS Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Safety Analysis of Type 4 Tanks in CNG Vehicles...

  6. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    November 18: Live Webinar on Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a...

  7. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More DOE Announces Webinars on Hydrogen Fueling...

  8. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June, the Nevada Governor’s Office of Energy and the local utility NV Energy announced the Nevada Electric Highway joint initiative, an effort to facilitate electric vehicle (EV) transportation...

  9. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect (OSTI)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  10. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  11. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (

  12. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  13. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect (OSTI)

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  14. Alternative Fuels Data Center: Rolling Down the Arizona EV Highway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleansRental CarsRolling Down the

  15. Distillate Fuel Oil Sales for Off-Highway Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356

  16. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California

  17. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipmentp Hydrogen Fuel

  18. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  19. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  20. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen Printable

  1. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternativeASTMInfrastructure Development

  2. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to

  3. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump DispensersEmergingMinneapolis

  4. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|Infrastructure (D2SA)

  5. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMedia onInfraredInfrastructure

  6. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  7. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  8. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

  9. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  10. United States Fuel Resiliency: US Fuels Supply Infrastructure | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeetingBSH Home Appliances

  11. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  12. Hydrogen Fuel Infrastructure PON-11-609 Attachment F Local Health Impacts Information

    E-Print Network [OSTI]

    Hydrogen Fuel Infrastructure PON-11-609 Attachment F ­ Local Health Impacts Information Air Quality Percentage of population under 5 years and over 65 years of age #12;Hydrogen Fuel Infrastructure PON-11

  13. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  14. Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure

    E-Print Network [OSTI]

    Struben, Jeroen J.R.,

    2007-04-27

    This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

  15. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VII. Conversion Devices

    E-Print Network [OSTI]

    and fluid dynamics and evaluated fuel/air mixing. (Collaboration with NASA Glenn.) · Formed collaborationHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 603 Section VII. Conversion Devices #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 604 #12

  16. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  17. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  18. Social infrastructure

    E-Print Network [OSTI]

    Kurlbaum, Ryan E. (Ryan Edward)

    2013-01-01

    Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

  19. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  20. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  1. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  2. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  3. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  4. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  5. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE Hydrogen

  6. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someone by E-mail

  7. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  8. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report AAS Atomic Adsorption Spectroscopy

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 619 Acronyms A Amp AES Auger Electron Spectroscopy AFC Alkaline Fuel Cell AFV Alternative Fuel Vehicle Ag Silver AHC Ad/Germanium a-SiC Amorphous Silicon Carbide ASNT The American Society for Nondestructive Testing ATDC After Top

  9. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|

  10. Hydrogen Fueling Infrastructure Research and Station Technology Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel CellFuel for

  11. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethods forNuclearFuel

  12. ,"U.S. On-Highway Diesel Fuel Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYatescloudDataAge Refining AirA1.

  13. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153DanielthroughDeterminingmanagementa new Development and

  14. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153DanielthroughDeterminingmanagementa new Development

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmental ImpactReducingEISA 2007 |Hydrogen |

  17. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning1:Department offor

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning1:Department

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning1:DepartmentHydrogen |

  20. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen LichvarAREVA NOPRDepartmentof4

  1. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting AgendaReadiness Workshop |

  2. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOEPRODUCTIONM MDepartment

  3. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activityfrom

  4. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111, 2015EnergyEnergyTechnologies Program |

  5. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus Global Leader, Sustainable4Issues |

  6. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting Oversight CommitteeandEnergyPub.

  7. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: The FirstInfrastructure

  8. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us »Buildings Resource, and More |EnergyEnergy

  9. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis3 Annual41 Spring2Costs

  10. infrastructure

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feedholiday |hpc2/%2A en

  11. GE, Clean Energy Fuels Partner to Expand Natural Gas Highway | OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co Ltd

  12. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards |

  13. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is the Goal of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos HomePowerH2FIRST

  14. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC -State |

  15. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent396,0138.62(96)The U.S.

  16. The U.S. average retail price for on-highway diesel fuel rose this week

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent396,0138.62(96)The

  17. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil, the Department today announced a 1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations...

  18. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    and government partners will focus on identifying actions to encourage early adopters of fuel cell electric vehicles (FCEVs) by conducting coordinated technical and market...

  19. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology6NREL's|||Releases |

  20. Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof EnergyResearch TriangleThroughclean fuelof

  1. ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    and design of on board hydrogen storage systems. Hydrogen generation and distribution technologies Press) 5. Hydrogen Fuel: Production, Transport, and Storage (R. Gupta, CRC Press) 6. Mobility 2030ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

  2. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss081amar2012o.pdf More Documents & Publications Vehicle...

  3. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Savers [EERE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss081amar2013o.pdf More Documents & Publications Vehicle...

  4. H2FIRST: Hydrogen Fueling Infrastructure Research and Station...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCTO directly in support of H2USA, a public-private partnership co-launched by DOE and industry in 2013. H2FIRST Project Objective The H2FIRST objective is to ensure that fuel...

  5. Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    efficiency · Cons: Impurity removal · Applications: Military and space Solid Oxide Fuel Cell (SOFC) · Pros growth of 59% over the past three years. More than 12,000 new units were shipped in 2007 0 5 10 15 20 25

  6. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  7. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY

    E-Print Network [OSTI]

    -van employ compressed hydrogen gas storage. Although the energy density of compressedhydrogen gasis lower,less costly and more energy efficient, refueling canbe accomplished rapidly, and hydrogen canbe produced from~--- - ~ .. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY Joan

  8. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  9. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01

    A KEY LINK TO A HYDROGEN FUEL CELL VEHICLE INFRASTRUCTURE?"a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?is assessed based on neat hydrogen fuel input rather than

  10. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  11. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  12. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  13. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  14. Hydrogen and Infrastructure Costs

    Broader source: Energy.gov (indexed) [DOE]

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

  15. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  16. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  17. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect (OSTI)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  18. NGV fleet fueling station business plan: A public, private and utility partnership to identify economical business options for implementation of CNG fueling infrastructure

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The City of Long Beach recently incorporated an additional 61 natural gas vehicles (NGV) within its own fleet, bringing the City`s current NGV fleet to 171 NGVs. During January 1992, the City opened its first public access compressed natural gas (CNG) fueling station (86 CFM). This action served as the City`s first step toward developing the required CNG infrastructure to accommodate its growing NGV fleet, as well as those of participating commercial and private fleet owners. The City of Long Beach is committed to promoting NGVs within its own fleet, as well as encouraging NGV use by commercial and private fleet owners and resolving market development barriers. The NGV Business Plan provides recommendations for priority locations, station size and design, capital investment, partnership and pricing options. The NGV Business Plan also includes an econometric model to calculate CNG infrastructure cost recovery options, based on CNG market research within the City of Long Beach and Southern California area. Furthermore, the NGV Business Plan provides the City with a guide regarding CNG infrastructure investment, partnerships and private fueling programs. Although the NGV Business Plan was developed to address the prevailing CNG-related issues affecting the City of Long Beach, the methodology used within the NGV Business Plan and, more significantly, the accompanying econometric model will assist local governments, nation-wide, in the successful implementation of similar CNG infrastructures required for effective market penetration of NGVs.

  19. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01

    the Acceptance of Hydrogen Fuel. International Journal oftechnologies, such as hydrogen fuel cell vehicles (FCVs) andof an exploratory F-Cell hydrogen fuel vehicle fleet study,

  20. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2008-01-01

    the Accep- tance of Hydrogen Fuel. International Journal oftechnolo- gies, such as hydrogen fuel-cell vehicles (FCVs)because of learning. Hydrogen fuel-cell vehicles (FCVs)

  1. Assessing the Role of Operating, Passenger, and Infrastructure Costs in Fleet Planning under Fuel Price Uncertainty

    E-Print Network [OSTI]

    Smirti, Megan; Hansen, Mark

    2009-01-01

    the at summer 2008 fuel prices, regional jets have a higherstage lengths and fuel prices, passenger preferences for jetabsence of a fuel price increase, because smaller jets would

  2. Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85

    E-Print Network [OSTI]

    Corts, Kenneth S.

    2009-01-01

    Department of Energy, 1996, “Alternative Fuel TransportationLim, 2007, “Location of Alternative Fuel Stations Using theto Congress: Effects of the Alternative Motor Fuels Act CAFE

  3. Natural Gas as a Pathway to Alternative Low Carbon Fuels: Infrastructure Issues and Barriers

    E-Print Network [OSTI]

    California at Davis, University of

    2010 2011 2012 2013 2014 2015 CrudeOilProduction(thousandbarrels) NaturalGasProduction(MMcf) U.S $/gigajoule Source: U.S. Energy Information Administration #12;Emissions Advantage? · Natural gas is promoted at current relative prices 3 #12;Refueling infrastructure requirements are costly Natural gas as an emerging

  4. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01

    Driver Preferences for Fuel Cell Taxis. Energy Policy, vol.IN BEHAVIORAL RESPONSE TO A FUEL CELL VEHICLE FLEET ANDIN BEHAVIORAL RESPONSE TO A FUEL CELL VEHICLE FLEET AND

  5. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  6. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someone byatEthanol Use,

  7. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  8. Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics

    E-Print Network [OSTI]

    Guérin, Laurent, S.M. Massachusetts Institute of Technology

    2009-01-01

    The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

  9. Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS)Fuel Duration Analysis Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartmentSecondarySmartCyber

  10. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  11. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial Introduction of Hydrogen-Fueled Vehicles: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn OverviewCoalAnalysisHeatConference

  12. Assessing the Role of Operating, Passenger, and Infrastructure Costs in Fleet Planning under Fuel Price Uncertainty

    E-Print Network [OSTI]

    Smirti, Megan; Hansen, Mark

    2009-01-01

    ATA) Quarterly Cost Index: U.S. Passenger Airlines. http://fuel, termed Jet A, and the cost index in cents per gallon.The cost index, as defined by the Air Transportation

  13. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  14. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  15. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  16. Mount Everest Highway

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2007-08-08

    Broadcast Transcript: If China has a national sport, well, it's got to be Extreme Engineering. The Great Wall. The Grand Canal. The Three Gorges Dam. The railroad at the top of the world. And now the Mt. Everest Highway, a 3.2 mile paved road...

  17. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  18. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  19. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  20. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  1. Highway Crash Cushions 

    E-Print Network [OSTI]

    White, Monroe Carlton

    1971-01-01

    . (August 1971) Monroe Carlton White, B. S. , Texas A&M University Directed by: Dr'. T. J. Hirsch Statistics indi. cate that approximately 20 to 35/ of motor vehicle accident fatalities on highways and freeways were the re- sult of colliding with fixed... roadside structures. A device which would cushion vehicles that collide with these rigid obstacles could thus save the lives of and decrease injuries to occupants, and minimize property damage to colliding vehicles. Four such devices are presently...

  2. Assessing effects of highway bridge deck runoff on near-by recieving waters in coastal margins using remote monitoring techniques 

    E-Print Network [OSTI]

    Nwaneshiudu, Oke

    2005-02-17

    be found in transportaion infrastructure and are used as means of treating highway runoff. The Urban Polution research center at Middlesex University in London, UK recently concluded a study which investigated the environmental sensitivity analysis...

  3. INFRASTRUCTURE FOR ALTERNATIVE FUELS

    E-Print Network [OSTI]

    California at Davis, University of

    'll need. · Make monitoring part of any charger installation · Chargepoint type monitoring · Liberty Hydra

  4. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    Efficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & Advanced

  5. Fact #634: August 2, 2010 Off-highway Transportation-related...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use. Nearly all of...

  6. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  7. Green Infrastructure 

    E-Print Network [OSTI]

    Tildwell, J.

    2011-01-01

    SWM, Green Buildings, Energy Forum, Texas Smartscape) ? Deteriorating Roadways ? ASCE Report Card on Texas Infrastructure for 2008 identified roads as the #1 infrastructure concern ? Congestion ? DFW congestion is growing over 45% faster than...? ? ASCE Sustainability ? Greenroads ? Green Streets ? SmartCode ? New York High Performance Infrastructure Guidelines ? Institute of Transportation Engineers ? American Public Works Association ? ?and many more. Planning ? City and Regional...

  8. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  9. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; James, Brian [Directed Technologies, Inc.; Perez, Julie [Directed Technologies, Inc.; Melendez, Margo [National Renewable Energy Laboratory (NREL); Milbrandt, Anelia [National Renewable Energy Laboratory (NREL); Unnasch, Stefan [Life Cycle Associates; Rutherford, Daniel [TIAX, LLC; Hooks, Matthew [TIAX, LLC

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen res

  10. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Davis, Stacy Cagle

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that is possible on the overall totals, to the current FHWA estimates. Because NONROAD2005 model was designed for emission estimation purposes (i.e., not for measuring fuel consumption), it covers different equipment populations from those the FHWA models were based on. Thus, a direct comparison generally was not possible in most sectors. As a result, NONROAD2005 data were not used in the 2008 update of the FHWA off-highway models. The quality of fuel use estimates directly affect the data quality in many tables published in the Highway Statistics. Although updates have been made to the Off-Highway Gasoline Use Model and the Public Use Gasoline Model, some challenges remain due to aging model equations and discontinuation of data sources.

  11. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St.27AmericanApplying

  12. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportationFUELS

  13. Transportation Infrastructure

    Office of Environmental Management (EM)

    Infrastructure New Technologies * Potential need for dual-use casks * DOE should look toward industry & international communities for innovations * Industry unclear about delivery...

  14. The economic impacts of highway widening projects 

    E-Print Network [OSTI]

    Jackson, Patricia Ann

    1997-01-01

    the after period represented market value on land parcels once construction was completed. A design matrix was developed from data available for two highway types, multilane highway and freeway, on pre-selected sites. Location selection was based on prior...

  15. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  16. Title 19 Chapter 11 Protection of Highways | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:,11 Protection of Highways Jump to:

  17. Title 19 Chapter 3 Town Highways | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:,11 Protection of Highways Jump to:3

  18. CDOT State Highway Access Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:Energy IncTool JumpState Highway

  19. Sandia Energy - Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscienceInfrastructure Home

  20. National Infrastructure Protection Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram |(Upstate New York) |Infrastructure Protection

  1. Prescribed Fire is Cool on Florida Highway

    E-Print Network [OSTI]

    Caster, Jeff; McBurney, Willson; Farley, Patricia; Rodriguez, Rose; Green, Lane; McGorty, Kevin

    2007-01-01

    plans for a prescribed fire on US319/SR61, Kate Irelandwww.longleafalliance.org). Prescribed fire is a necessaryresource. Using prescribed fire along this highway is safe

  2. Federal Highway Admininstration - Law Enforcement Escort - Best...

    Open Energy Info (EERE)

    Federal Highway Admininstration - Law Enforcement Escort - Best Practices Guidelines Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  3. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  4. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  5. Energy Infrastructure Events and Expansions Infrastructure Security...

    Broader source: Energy.gov (indexed) [DOE]

    in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of...

  6. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    managers in the development of work plans for fiscal year (FY) 2004. The tables below list the projects & Delivery: FUNDING Project Number Project, Performing Organization Avg. Score Con- tinued Discon- tinued Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v

  7. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    development managers in the development of work plans for fiscal year (FY) 2004. The tables below list & Delivery: FUNDING Project Number Project, Performing Organization Avg. Score Con tinued Discon tinued Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v

  8. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  9. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptional sErvicE in

  10. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptional sErvicE into

  11. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptional sErvicE

  12. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptional

  13. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall of our

  14. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall of ourFor

  15. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall of

  16. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall ofFor

  17. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall ofForFrom

  18. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalall

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalallSandia

  20. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMediaExcEptionalallSandiato

  1. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  2. INFRASTRUCTURE SECURITY & ENERGY

    E-Print Network [OSTI]

    Schrijver, Karel

    INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY DELIVERY & ENERGY RELIABILITY Real Time Monitoring of Energy Infrastructure Status Patrick Willging, PE Office of Electricity Delivery and Energy Reliability #12;INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY

  3. TEPP- Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel.  This exercise manual is one in...

  4. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  5. Utilities building NGV infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Gas utilities across the US are aggressively pursuing the natural gas vehicle market by putting in place the infrastructure needed to ensure the growth of the important market. The first annual P and GJ NGV Marketing Survey has revealed many utilities plant to build and continue building NGV fueling facilities. The NGV industry in the US is confronting a classic chicken-or-egg quandary. Fleet operators and individual drivers are naturally unwilling to commit to a natural gas vehicle fuel until sufficient fueling facilities are in place, yet service station operators are reluctant to add NGV refueling capacity until enough CNG vehicles are on the road to create demand. The future of the NGV market is bright, but continued research and product improvements by suppliers as well as LDCs is needed if the potential is to be fulfilled. Advances in refueling facilities must continue if the market is to develop.

  6. Evaluating the Interstate Highway Transportation System in West Africa: Recommendations for an Integrated Highway Network

    E-Print Network [OSTI]

    Nyang, Lamin Bumi

    2010-12-17

    of travel along West African highways. Research indicates that traveling on West Africa’s highways can be onerous. In 2003, the African Development Bank admitted that what should be a 3-day trip from Bangua, Central African Republic, to Douala, Cameroon...

  7. An investigation into the use of highway traffic signals at highway-railroad grade crossings 

    E-Print Network [OSTI]

    Frieslaar, Andre Henry

    1997-01-01

    Rail-highway grade crossings are amongst the most dangerous of intersections a driver will encounter. One out of every nine accidents at rail-highway crossings produces a fatality. In half of these cases, the crossing is an active crossing, meaning...

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Propane Infrastructure and Fuel Incentives - Boulden Brothers Propane Boulden Brothers Propane provides fueling equipment at no cost to propane vehicle operators on a case-by-case...

  9. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  10. Feebates, Footprints and Highway Safety

    SciTech Connect (OSTI)

    Greene, David L

    2009-01-01

    This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer s choice of vehicle size. A vehicle s size is measured by its footprint , the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size, thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle s footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles.

  11. Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects 

    E-Print Network [OSTI]

    Kim, Yoo Hyun

    2012-07-16

    OF TABLES Page Table 1. Categorized climate region used in California (Caltrans 2007) ................. 6 Table 2. Total lane-mile of Texas highways in 2005 (Mikhail et al. 2006) ............ 15 Table 3. Maintenance categories defined in Maintenance... are as shown in Table 2. Table 2. Total lane-mile of Texas highways in 2005 (Mikhail et al. 2006) Highway type Asphalt Concrete Pavement(ACP) Continuously Reinforced Concrete Pavement (CRCP) Jointed Concrete Pavement(JCP) Total IH 4,745 1,346 244 6...

  12. Interdependence of Electricity System Infrastructure and Natural...

    Office of Environmental Management (EM)

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  13. From marginalized to optimized : re-envisioning urban highway corridors

    E-Print Network [OSTI]

    Spicer, Sarah J

    2011-01-01

    The past century of highway construction has assumed relentless growth of vehicular traffic capacity. Yet today is an era of highway rationalization, aging facilities, strained finances, peak oil concerns, climate change, ...

  14. Resilient Infrastructure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigning Resilient Infrastructure: The Argonne

  15. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel...

  16. Tradeoffs among Free-flow Speed, Capacity, Cost, and Environmental Footprint in Highway Design

    E-Print Network [OSTI]

    Ng, Chen Feng; Small, Kenneth

    2011-01-01

    National Highway Construction Cost Index, Washing D.C. :National Highway Construction Cost Index (FHWA 2010). The

  17. Tradeoffs among Free-flow Speed, Capacity, Cost, and Environmental Footprint in Highway Design

    E-Print Network [OSTI]

    Ng, Chen Feng; Small, Kenneth

    2011-01-01

    Highway Construction Cost Index, Washing D.C. : FederalHighway Construction Cost Index (FHWA 2010). The average

  18. Predicting Highway Construction Impacts on a

    E-Print Network [OSTI]

    Minnesota, University of

    Predicting Highway Construction Impacts on a Community #12;Making the Best Decisions in the Face 212 &TH 52 Construction Challenges TH 212 &TH 52 Construction Challenges Ü TH 212 Unsuitable Matls Construction Access Environmentally Sensitive Areas Payment Curve Illegal dump sites Noise Mitigation ­ Walls

  19. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure

    E-Print Network [OSTI]

    Davis, SJ; Caldeira, K; Matthews, HD

    2010-01-01

    2 from combustion of fossil fuels by existing infrastructureas well as estimates of fossil fuel emissions produced di-the combustion of fossil fuels by existing infrastructure

  20. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  1. SEISMIC DESIGN PROVISIONS -THE CANADIAN HIGHWAY BRIDGE DESIGN CODE

    E-Print Network [OSTI]

    Bruneau, Michel

    in the 1994 American Association of State Highway and Transportation Officials Load and Resistance Factor Code in the 1994 American Association of State Highway and Transportation Officials Load and Resistance Factor CodeSEISMIC DESIGN PROVISIONS - THE CANADIAN HIGHWAY BRIDGE DESIGN CODE Denis MITCHELL Mc

  2. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat LetterPresidentEnergy

  3. Quadrennial Energy Review Public Meeting #13: Energy Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Director of Gas Supply Consolidated Edison Opportunities and Challenges for Natural Gas and Liquid Fuels Transmission, Storage and Distribution Infrastructure Good afternoon....

  4. Deadline Extended for RFI Regarding Hydrogen Infrastructure and...

    Broader source: Energy.gov (indexed) [DOE]

    from interested stakeholders regarding strategies for a robust market introduction of hydrogen supply, infrastructure, and fuel cell electric vehicles (FCEVs). This input will...

  5. Challenge # 2 Logistics and Compatibility with Existing Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    compatible fuels 6. How do we identify low-cost options? Challenge 2. Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain EERE Business...

  6. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Energy Savers [EERE]

    associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle...

  7. Financing infrastructure projects

    E-Print Network [OSTI]

    Eid, Serge Emile

    2008-01-01

    Infrastructure is of great importance to the development and economic growth of communities. Due to the increased demand on sophisticated infrastructure, governments' budgets are not anymore able to satisfy this growing ...

  8. National Environmental Information Infrastructure

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure: Reference Architecture Contributing to the Australian Government National Plan for Environmental Information initiative #12;National Environmental Information Infrastructure: Reference Architecture v1.1 Environmental Information Programme Publication Series

  9. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia, and reactorsystemoverviews. Training in Action: Gulf Nuclear Energy InfrastructureInstitute In2011,SandiateamedwiththeNuclearSecurity energy safety, security,safeguards,andnonproliferation. Training Sandia National Laboratories experts

  10. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  11. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  12. Well-to-Wheel Energy, Emissions, and Cost Analysis of Electricity and Fuel Used in Conventional and Electrified Vehicles, and Their Connection to a Sustainable Energy Infrastructure

    E-Print Network [OSTI]

    Strecker, Bryan Anthony

    2012-12-31

    's ability to perform proper emissions reductions. This chapter additionally demonstrates an improvement in the fuel use emissions profiles of Argonne National Laboratories' Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model...

  13. Infrastructure and Logistics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department ofInfrastructure and Logistics

  14. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  15. AAC R17-3-500 Highway Encroachments and Permits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as aEnergy1 Jump3-500 Highway

  16. Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints

    SciTech Connect (OSTI)

    Das, Sujit; Peterson, Bruce E; Chin, Shih-Miao

    2010-01-01

    This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

  17. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    revolving loan program to encourage the development, implementation, and deployment of cost-effective projects, including those involving CNG vehicles and fueling infrastructure....

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) Fueling Infrastructure Inspection The Oklahoma Department of Labor may access and inspect any equipment, practices, or methods used in association with...

  1. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  2. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  3. Structural and safety characteristics and warrants for highway traffic barriers 

    E-Print Network [OSTI]

    Kohutek, Terry Lee

    1975-01-01

    Ross Highway traffic barriers are highway appurtenances that provide vehicle occupants with a relative degree of protection from roadside hazards and from errant vehicles encroaching across a median. The six basic types of traffic barr1ers are roads... are decision criteria that 1dentify sites along highways that need traff1c barrier installations. Structural and safety character- istics of the barr1ers refer to the impact performance, the structural integrity, and the safety of the vehicle occupants upon...

  4. Hawaii Clean Energy Iniative - Construction Upon a State Highway...

    Open Energy Info (EERE)

    Hawaii Clean Energy Iniative - Construction Upon a State Highway Permit Packet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  5. Federal Highway Administration - Pilot Car Escort - Best Practices...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Federal Highway Administration - Pilot Car Escort - Best Practices...

  6. Idaho - Access Management: Standards and Procedures for Highway...

    Open Energy Info (EERE)

    - Access Management: Standards and Procedures for Highway Right-of-Way Encroachments Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  8. GREEN INFRASTRUCTURE Researchers

    E-Print Network [OSTI]

    Delaware, University of

    SUPPORTING URBAN GREEN INFRASTRUCTURE Researchers: Jenny Caldwell Catherine Cruz-Ortiz Craig Dsouza are supported at the master's and doctoral levels. #12;Supporting Urban Green Infrastructure Researchers: Jenny's Water Resources Agency, for providing information and guidance in the completion of this research. #12

  9. NGV industry infrastructure

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Current natural gas vehicle (NGV) technology faces a number of problems that must be overcome before vehicles powered by compressed natural gas become accepted in the US. Among these impediments are regulatory uncertainties, codes, standards and the NGV industry infrastructure itself. The marketing/supply infrastructure necessary to support the NGV industry is described.

  10. Infrastructure Institutional Change Principle

    Broader source: Energy.gov [DOE]

    Research shows that changes in infrastructure prompt changes in behavior (for better or worse). Federal agencies can modify their infrastructure to promote sustainability-oriented behavior change, ideally in ways that make new behaviors easier and more desirable to follow than existing patterns of behavior.

  11. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Infrastructure Demonstration for Energy reliability and Security) (web link) program to demonstrate: · Cyber-securityEnergy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security

  12. Future Smart Energy -Fuel Cell and Hydrogen Summer School 2014, Aalborg, Denmark

    E-Print Network [OSTI]

    Berning, Torsten

    storage Hydrogen safety Hydrogen distribution Applications Transportation Stationary Portable Concluding Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen storage Hydrogen History Why fuel cells? Fuel cell types Fuel and infrastructure Hydrogen production Hydrogen storage

  13. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  14. Analyzing Drivers' Responses to Portable Changeable Message Signs in Rural Highway Work Zones

    E-Print Network [OSTI]

    Li, Yue

    2011-04-21

    The number of work zones has been increasing in the highway system of the United States because of rising needs in highway construction and maintenance. Highway work zones disrupt normal traffic flow and create safety ...

  15. Performance-Based Decision-Making in Post-Earthquake Highway Bridge Repair

    E-Print Network [OSTI]

    Gordin, Eugene

    2010-01-01

    the Northridge Earthquake. Post Earthquake Highway ResponseLoma Prieta Quake. Post Earthquake Highway Response andand ShakeMap for Lifeline Post-Earthquake Response and

  16. Firm racial segregation and affirmative action in the highway construction industry

    E-Print Network [OSTI]

    Marion, Justin

    2009-01-01

    on self- employment in the construction industry. Nationalaction in the highway construction industry Justin MarionI document that highway construction ?rms in California,

  17. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  18. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  19. IPHE Infrastructure Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fuelin

  20. Information and Communications Infrastructure

    E-Print Network [OSTI]

    Communications Utilization and Performance________________________ 20 5.3 Systems Support Utilization and Performance ____________________________ 21 5.4 Radio Communications Systems Utilization and Performance of the communications infrastructure and information systems used during this time period. It addresses resources

  1. INFRASTRUCTURE BUSINESS AND POLICY

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    COMMUNIQUÉ Australia's Infrastructure Imperative: Getting more value for taxpayer dollars #12;Communiqué. The symposium theme, Getting More Value for Taxpayer Dollars, is one which SMART identified was well overdue

  2. Smarter Physical Infrastructure 

    E-Print Network [OSTI]

    Bartlett, D.

    2013-01-01

    Infrastructure Unleashing Information Technology in the Built Environment David Bartlett, IBM Vice President, Smarter Physical Infrastructure ESL-IC-13-10-57 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec..., Montreal, Quebec, October 8-11, 2013 BMS/metering integration, HVAC sensors/metering point integration, Lighting, Perimeter pre-heat, Chiller optimization, Advanced analytics, Dashboard for energy, carbon, maintenance, space, etc ? 3.3M sq ft , 1950...

  3. MFC Communications Infrastructure Study

    SciTech Connect (OSTI)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  4. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  5. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  6. U.S. diesel fuel prices continue to decrease

    Gasoline and Diesel Fuel Update (EIA)

    diesel fuel prices continue to decrease The U.S. average retail price for on-highway diesel fuel fell to 2.51 a gallon on Monday. That's down 4.7 cents from a week ago, based on...

  7. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  8. Vermont Permit and License Information, Work in a State Highway...

    Open Energy Info (EERE)

    Vermont Permit and License Information, Work in a State Highway Right of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  9. Automatic recognition codes for Intelligent Vehicle-Highway Systems 

    E-Print Network [OSTI]

    Leonardi, Pierre Charles Louis

    1994-01-01

    This thesis describes an automatic recognition code system designed for non-stop toll collection (part of Intelligent Vehicle-Highway Systems). The system uses Bose, Chaudhuri, and Hocquenghem (BCH) codes to encode the information. Each code...

  10. High carbon fly ash finds uses in highway construction

    SciTech Connect (OSTI)

    Wen, H.; Patton, R.

    2008-07-01

    The beneficial use of high carbon fly ash in a highway construction project is discussed. The fly ash also had a relatively high content of mercury and some other heavy metals. 1 fig., 4 photos.

  11. CE 466/ 566 Highway Geometric Design Fall 2010 Course Syllabus

    E-Print Network [OSTI]

    Hickman, Mark

    Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, 5th Edition, 2004. Other materials Student Code of Conduct, in accordance with the Code of Academic Integrity. This code is published at http

  12. HYDROGEN TO THE HIGHWAYS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePower SuppliesofANGELES | Department

  13. Infrastructure & Sustainability | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THEVorticesInformation|Infrastructure

  14. Infrastructure at the Savannah River Site:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR0987P Uncertainty in ComplexPThermal Infrastructure

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  16. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    criteria. Alternative fuels for aviation Kerosene is thefuel for civil aviation, but alternative fuels have beenBox 5.4 Alternative fuels for aviation The applicability of

  17. Infrastructure Assurance Center

    E-Print Network [OSTI]

    Kemner, Ken

    years, the use of natural gas is projected to grow by 50% -- making security of this resourceInfrastructure Assurance Center NGFast: rapid assessment of impacts of natural gas pipeline breaks Assurance Center Our nation relies on natural gas to meet about 22% of its energy needs. Within the next 10

  18. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    include: right Sized reactor, Supercritical Co2 Gas Fast reactor, Compact Sodium Fast reactor, and infrastructure problems. vision all of our reactor designs employ a concurrent engineering approach, and prometheus Space reactor. all of these reactor designs exist only on paper and have been produced as concepts

  19. COLLEGE OF ENGINEERING Infrastructure

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    COLLEGE OF ENGINEERING Infrastructure #12;2 COLLEGE OF ENGINEERING This publication focuses on just a few of the incredible College of Engineering faculty and students who are conducting research related, and students in the Department of Civil and Environmental Engineering are working collaboratively to develop

  20. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2012-1670P Ensuring the Safe Containment

  1. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  2. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Energy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W the computational, physics

  3. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    Energy, Climate, & Infrastructure Security ExCEptIonal SErvICE In thE natIonal IntErESt Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security

  4. Sandia Energy - Gulf Nuclear Energy Infrastructure Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Nuclear Energy Infrastructure Institute Class of 2012 Kicks Off with 20 Students from the Gulf Cooperation Council Home Energy Assurance Infrastructure Security Infrastructure...

  5. Green Infrastructure for Arid Communities

    Broader source: Energy.gov [DOE]

    On March 24, 2015, from 1:00pm – 2:30pm EDT, EPA's Green Infrastructure Program will launch our 2015 Webcast Series with the webinar Green Infrastructure for Arid Communities. This webinar aims to...

  6. Federal Highway Administration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress Jump to:

  7. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  8. Presented by Petascale System Infrastructure

    E-Print Network [OSTI]

    _Infrastructure_SC10 Visualization and data analysis resources Hardware · Everest Powerwall ­ 30 ft by 8 ft 35

  9. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  10. Global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil

    SciTech Connect (OSTI)

    Uria, L.A.B.; Schaeffer, R.

    1997-12-31

    This paper examines the direct and indirect global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil. In order to do that, it quantifies emissions of CO{sub 2}, CO{sub 2} HC and NO{sub x} in terms of CO{sub 2}-equivalent units for time spans of 20, 100 and 500 years. It shows that the consideration of CO{sub 2} HC and NO{sub x} emissions in addition to CO{sub 2} provides an important contribution for better understanding the total warming impact of transportation fuels in Brazil.

  11. INFRASTRUCTURE Engineering and Physical Sciences

    E-Print Network [OSTI]

    Berzins, M.

    the vital research that underpins this development. The UK Government Strategy for National Infrastructure and resilient infrastructure supplying water, energy, communications, transport systems and waste systems. Infrastructure is a broad topic and is relevant to other sectors including Healthcare, Renewable and Clean Energy

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure Tax

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure TaxSecond

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure

  15. Alternative Fuels in Public Transit: A Match Made on the Road

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    Brochure addressing alternative fuel modes of transportation for public transit, challenges, fuels, infrastructure, cast studies, guidance, and resources.

  16. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuelsSchool Bus

  17. PIA - EERE Infrastructure-EERE Reviewer Management System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EERE Infrastructure-EERE Reviewer Management System

  18. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    dreportoutcaci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E...

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  1. Guide to Critical Infrastructure Protection Cyber Vulnerability...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Protection Cyber Vulnerability Assessment More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure Protection...

  2. Addressing Deferred Maintenance, Infrastructure Costs, and Excess...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities at Portsmouth and Paducah Addressing Deferred Maintenance, Infrastructure Costs, and Excess Facilities...

  3. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Africa's Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure...

  4. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy In2008DepartmentIndustrial

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rebates for qualified vehicle conversions and certain fueling infrastructure. The rebate amount for vehicle conversions is 50% of the cost of the equipment, up to 4,500 for...

  6. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect (OSTI)

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  7. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    safety standard as a regulation. 30 1Q, 2004With industry and code officials, develop templates and NFPA to develop first-order continuing education for code officials. 3 Date (FY Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure Grants and

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure Grants

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure GrantsAmerican

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol InfrastructureImprovement and

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol InfrastructureImprovement

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentive -and Infrastructure

  15. HySA Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartment

  16. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings forTitleJulyAmyDepartmentEnergy' %

  17. Fact #698: October 24, 2011 Changes in the Federal Highway Administration Vehicle Travel Data

    Broader source: Energy.gov [DOE]

    With the April release of Table VM-1 from Highway Statistics 2009 came several changes to the availability of data on vehicle miles of travel (VMT). From 1966 to 2008, the Federal Highway...

  18. The Road to Improved Heavy Duty Fuel Economy

    Broader source: Energy.gov [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

  19. Energy Efficient Navigation Management for Hybrid Electric Vehicles on Highways

    E-Print Network [OSTI]

    Wang, Yongge

    Energy Efficient Navigation Management for Hybrid Electric Vehicles on Highways Mohammad Ashiqur the elec- tric power stored in the battery as energy, as an alternative to traditional gasoline Vehicles (PHEVs) are gaining pop- ularity due to their economical efficiency as well as their contribution

  20. Blend Membranes of Highly Phosphonated Polysulfone and Polybenzimidazoles for High Temperature Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Potrekar, Ravindra

    2014-01-01

    Energy, Office of Hydrogen, Fuel Cells and InfrastructureD. Kreuer, and J. Maier, Fuel Cells 5, 335 2. M. A. Hickner,Proton Exchange Membrane Fuel Cells R. A. Potrekar † , K. T.

  1. Development of an optimal impact energy absorber for highway crash cushions 

    E-Print Network [OSTI]

    Michalec, Christopher Ryan

    2005-11-01

    The objective of this research is to develop a new and efficient method of absorbing a vehicle??s kinetic energy for highway safety crash cushions. A vehicle that makes a direct impact with a rigid highway structure traveling at highway speeds can...

  2. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  3. Innovative Financing for Green Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Topic OverviewFinancing green infrastructure is critical to taking projects from planning to implementation and beyond, including sustaining operations and maintenance. This 90-minute webcast will...

  4. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    yr in 2000. For seagoing shipping, fuel usage has previouslyshipping in international emissions trading schemes, fuelshipping technology scenarios Technology scenario 1 (TS1) – ‘Clean scenario’ Low S content fuel (

  5. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    fuels include carbon-containing liquids such as ethanol, methanol, biodiesel, di-methyl esters (DME) andDME Engine Operated at Stoichiometric Mixture. Presented at International Symposia on Alcohol Fuels (

  6. Comments on: Infrastructure Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C

  7. Infrastructure Impacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR

  8. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    energy cycle) Table 5.5: Cost and potential estimated for BRT in Bogota FuelFuel pricing and taxation Area Licensing Scheme (Singapore) Potential energy/and Fuel Cell Powered Vehicles and Their Potential Fleet Impact. Massachusetts Institute of Technology, Laboratory for Energy and

  9. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  10. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scandinavian Hydrogen Highway Partnership (SHHP) includes member countries Norway, Denmark, and Sweden, as well as collaboration with Iceland. Target of 300...

  11. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  12. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High

    Broader source: Energy.gov [DOE]

    According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in...

  13. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  14. Evaluation of the Highway Safety Manual Crash Prediction Model for Rural Two-Lane Highway Segments in Kansas

    E-Print Network [OSTI]

    Lubliner, Howard

    2011-12-31

    While there have been numerous previous studies performed to develop the rural two-lane segment crash prediction models as part of the Highway Safety Manual (HSM), no previous study has been developed to validate the accuracy of the current model...

  15. Energy Star Concepts for Highway Vehicles

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  16. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  17. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  18. Innovation and Coordination at the Callifornia Fuel Cell Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation and Coordination at the Callifornia Fuel Cell Partnership Innovation and Coordination at the Callifornia Fuel Cell Partnership Presented at Refueling Infrastructure for...

  19. Status and Prospects of the Global Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the Global...

  20. NREL SBV Pilot Fuel Cells Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists, engineers, and analysts, as well as world-class facilities in fuel cells; hydrogen production, delivery, and infrastructure technology; hydrogen storage; safety,...

  1. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    to the manufacturer. gasoline blending of up to 20%. Ethanolthat with 10% ethanol-gasoline blending and 20% biodiesel-fuels (ethanol blending by gasoline tax - through imposition

  2. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    clean alternative fuels and energy efficient vehicles, whichEnergy Outlook postulates an ‘Alternative scenario’ to their Reference scenario projection described earlier, in which vehicle

  3. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    fuels include ethanol, biodiesel and methanol, and syntheticEsterification Vegetable oil Biodiesel (esters) Bio oilsuch as ethanol, methanol, biodiesel, di-methyl esters (DME)

  4. CAMD Nanofabrication Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransenBusiness networkingFleetPuget Dr.Home :: Research ::

  5. Sandia Energy - Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergyComputational Science SoftwareCarbon

  6. Sandia Energy - Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergyComputational Science

  7. infrastructure and operations

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feedholiday |hpc2/%2A

  8. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologies |LibraryCenterCenterLinksFacts, Figures »

  9. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence ofMedia

  10. Infrastructure Security Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientificInfluence502P

  11. General Infrastructure Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERALProblemsGeneral Information GeneralOn the

  12. Sandia Energy - Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & DrillingNanomaterialsAssurance Home Analysis

  13. Sandia Energy - Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & DrillingNanomaterialsAssurance Home

  14. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  15. Restoration of aquatic habitat and fish passage degraded by widening of Indian Highway 58 in Garhwal Himalaya

    E-Print Network [OSTI]

    Sharma, Ramesh C.

    2005-01-01

    underground water penetration alongside endangered sections of the highway - Construction of check dams

  16. Infrastructure and Operations Improvement Project Director |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure and Operations Improvement Project Director Supervisor(s): Adam Cohen, COO, Director's Office Staff: ENG 08 Requisition Number: 1500151 The Infrastructure and...

  17. Report: Natural Gas Infrastructure Implications of Increased...

    Energy Savers [EERE]

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric...

  18. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  19. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV...

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  2. CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

    Office of Environmental Management (EM)

    CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure Control Systems Are Under Way, but Challenges Remain CRITICAL INFRASTRUCTURE PROTECTION Multiple Efforts to Secure...

  3. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA...

  4. Africa Infrastructure Country Diagnostic Documents: Interactive...

    Open Energy Info (EERE)

    Africa Infrastructure Country Diagnostic Documents: Interactive MAP in PDF, all Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa Infrastructure Country...

  5. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  6. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2013 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - May 2013 May 2013 Evaluation to determine whether Infrastructure...

  7. Upcoming Webinar December 16: International Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Challenges NOW, DOE, and NEDO December 12, 2013 - 12:00am Addthis The Energy Department will present a live webinar titled "International Hydrogen Infrastructure...

  8. Contract claims and disputes on Texas highway construction projects 

    E-Print Network [OSTI]

    Lehmann, Michael Peter

    1991-01-01

    : Dr. Dorm E. Hancher This thesis documents the efforts to determine the major causes of the numerous construction contract claims and disputes against the Texas State Department of Highways and Public Transportation. Surveys of departmental... personnel and contractors who do construction for the State were used to locate these problem areas. These surveys, along with a study of 18 claims against the State, found design errors, delays by the State, and additional work to be the main sources...

  9. A safety program design for state highway departments 

    E-Print Network [OSTI]

    Hudlow, Chester Dow

    1973-01-01

    , Accidents, and Organiza- tional Efficiency 2 A Rating Form for Analyzing Management Style [22] 3 The Managerial Grid [23] 4 Highway Department Organizational Chart 5 Occupational Safety and Health Division Organizational Chart 6 Network Diagram... responsibility for accident control [273 . This seems so obvious it is hardly worth mentioning, but too often in the past management has felt their responsibility was over when the safety specialist...

  10. Gas-Crossover and Membrane-Pinhole Effects in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam

    2008-01-01

    Newman, in Advances in Fuel Cells, Vol. 1 , T. S. Zhao, K. -and tortuosity gas phase fuel-cell inlet conditions liquidw water References Hydrogen, fuel cells & infrastructure

  11. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    pp. NHTSA CAFE, 2006: Light truck fuel economy standards. Light Trucks by 2010-2015. DeCicco,of Passenger Car and Light Truck Weight and Size on Fatality

  12. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    in pressurizer surge nozzles in the primary water piping for a commercial boiling water nuclear reactor #12 acentralroleinmanyapplicationssupportingnuclear reactor safety analysis, severe consequence analyses, and nuclear fuel cycle programs including

  13. Gasoline and Diesel Fuel Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6FuelCountiesOn-Highway

  14. Parking Infrastructure and the Environment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Aprad; Madanat, Samer

    2011-01-01

    understand the full cost of parking. ? Nicholas Santero andLY L I T T L E A B O U T how parking infrastructure affectsBecause abundant free parking encourages solo driving and

  15. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  16. infrastructure Report by Forest Research

    E-Print Network [OSTI]

    ................................................................................................................................................ 10 Sustainable urban drainageBenefits of green infrastructure Report by Forest Research Promoting sustainable greenspace #12;Promoting sustainable greenspace #12;Defra research contract number WC0807 October2010 Promoting sustainable

  17. Urban Heat Islands: Cool Roof Infrastructure | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomacCool Roof Infrastructure Urban

  18. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  19. Disruptions in Interdependent Infrastructure Systems: A Network Flows Approach1

    E-Print Network [OSTI]

    Mitchell, John E.

    system affects one or more other infrastructure systems. The approach is to model the salient elements of these systems and provide decision makers with a means to manipulate the set of models, i.e. a decision support (including roads, bridges, water and rail); energy (including electric power, gas and liquid fuels

  20. MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM

    E-Print Network [OSTI]

    MODELING INFRASTRUCTURE FOR A FOSSIL HYDROGEN ENERGY SYSTEM WITH CO2 SEQUESTRATION Joan M. Ogden demand centers and CO2 sequestration sites. MODEL OF A FOSSIL HYDROGEN ENERGY SYSTEM WITH CO2 Production of hydrogen (H2) from fossil fuels with capture and sequestration of CO2 offers a route toward

  1. Performance-Based Decision-Making in Post-Earthquake Highway Bridge Repair

    E-Print Network [OSTI]

    Gordin, Eugene

    2010-01-01

    Reinforced Concrete Bridge Columns by Steel Jacketing. SanDatabase for Concrete Bridge Components and Systems underMotion Level on Highway Bridge Costs. Program of Applied

  2. California 's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative

    E-Print Network [OSTI]

    Sperling, Dan

    2004-01-01

    HIGHWAY: THE CASE FOR A CLEAN ENERGY SCIENCE AND TECHNOLOGYHighway: The Case for a Clean Energy Science and Technologyis to launch a major clean energy science and technology

  3. California's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative

    E-Print Network [OSTI]

    Sperling, Dan

    2004-01-01

    HIGHWAY: THE CASE FOR A CLEAN ENERGY SCIENCE AND TECHNOLOGYHighway: The Case for a Clean Energy Science and Technologyis to launch a major clean energy science and technology

  4. Public information circular for shipments of irradiated reactor fuel

    SciTech Connect (OSTI)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials.

  5. Increased Fuel Mileage Jason Heiser, Brian Philbrick, and

    E-Print Network [OSTI]

    Bowen, James D.

    Increased Fuel Mileage Standards Jason Heiser, Brian Philbrick, and Dereck Mar · Corporate Average Fuel Economy ­ sales weighted average in miles per gallon of a car manufacturer ­ Only the fuel economy by measuring carbon in emissions and is a weighted average of highway and city driving

  6. Natural Gas Ethanol Flex-Fuel

    E-Print Network [OSTI]

    Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

  7. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  8. Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans

    Broader source: Energy.gov [DOE]

    In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight....

  9. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Broader source: Energy.gov [DOE]

    A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the...

  10. Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

  11. First Smart Highway Bridge in Canada S. H. RizkaIla and G. Tadros

    E-Print Network [OSTI]

    First Smart Highway Bridge in Canada by S. H. RizkaIla and G. Tadros The Beddington Trail in the private sector, government and universities: · The City of Calgary (Chris Wade, P.Eng. and Amit Guha fiber composite cables, CFCC, 5/8" FIRST SMART HIGHWAY BRIDGE IN CANADA Ri::Jwlla & Tadros. 1994 PAGE I

  12. ASH: Application-aware SWANS with Highway Khaled Ibrahim and Michele C. Weigle

    E-Print Network [OSTI]

    Weigle, Michele

    ASH: Application-aware SWANS with Highway mobility Khaled Ibrahim and Michele C. Weigle Department simulator. Our SWANS modules, which we collectively call ASH (Application-aware SWANS with Highway mobility), make several contributions. ASH allows for the needed two-way communication between the mobility model

  13. Projections of highway vehicle population, energy demand, and CO{sub 2} emissions in India through 2040.

    SciTech Connect (OSTI)

    Arora, S.; Vyas, A.; Johnson, L.; Energy Systems

    2011-02-22

    This paper presents projections of motor vehicles, oil demand, and carbon dioxide (CO{sub 2}) emissions for India through the year 2040. The populations of highway vehicles and two-wheelers are projected under three different scenarios on the basis of economic growth and average household size in India. The results show that by 2040, the number of highway vehicles in India would be 206-309 million. The oil demand projections for the Indian transportation sector are based on a set of nine scenarios arising out of three vehicle-growth and three fuel-economy scenarios. The combined effects of vehicle-growth and fuel-economy scenarios, together with the change in annual vehicle usage, result in a projected demand in 2040 by the transportation sector in India of 404-719 million metric tons (8.5-15.1 million barrels per day). The corresponding annual CO{sub 2} emissions are projected to be 1.2-2.2 billion metric tons.

  14. NISTIR 7823 Advanced Metering Infrastructure

    E-Print Network [OSTI]

    by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests of management, administrative, technical, and physical standards and guidelines for the cost-effective security Michaela Iorga Computer Security Division Information Technology Laboratory National Institute of Standards

  15. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  16. Participatory infrastructure monitoring : design factors and limitations of accountability technologies

    E-Print Network [OSTI]

    Offenhuber, Dietmar

    2014-01-01

    This dissertation investigates practices of participatory infrastructure monitoring and their implications for the governance of urban infrastructure services. By introducing the concept of infrastructure legibility, the ...

  17. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  18. Wetlands mitigation issues related to reconstruction of U.S. Highway 93 on the Flathead Indian Reservation, Montana

    E-Print Network [OSTI]

    Price, Mary B.

    2003-01-01

    resulting from the Kerr Hydro Power project on Flatheadfor highway construction and hydro power projects. She has a

  19. Florida State University Telecommunications Infrastructure Standard

    E-Print Network [OSTI]

    Document developed by: Information Technology Services Network Infrastructure Division #12;Florida State University ­ ITS Telecommunications Infrastructure Standards 2 INTRODUCTION ........3 REVISION HISTORY Information Technology Services Network & Communications Technology Division 644 W. Call Street Tallahassee

  20. Road Infrastructure and Climate Change in Vietnam

    E-Print Network [OSTI]

    Chinowsky, Paul

    Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam ...

  1. National Environmental Information Infrastructure Reference Architecture

    E-Print Network [OSTI]

    Greenslade, Diana

    National Environmental Information Infrastructure Reference Architecture Consultation Draft Contributing to the Australian Government National Plan for Environmental Information initiative #12;National Environmental Information Infrastructure Reference Architecture: Consultation Draft Environmental Information

  2. The Electricity and Transportation Infrastructure Convergence

    E-Print Network [OSTI]

    The Electricity and Transportation Infrastructure Convergence Using Electrical Vehicles Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Electricity and Transportation Infrastructure Convergence Using Electrical

  3. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

    E-Print Network [OSTI]

    SERIES SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES LNEC/NESDE Main activities · Seismic action characterization studies, seismic hazard and seismic risk · Seismic assessment of structures

  4. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  5. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer...

  6. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P. [Los Alamos National Laboratory

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  7. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  8. Towards Collaborative Robots for Infrastructure Security Applications

    E-Print Network [OSTI]

    Guo, Yi

    , infrastructure security and monitoring of sensitive national security sites (e.g. nuclear facilities, powerTowards Collaborative Robots for Infrastructure Security Applications Yi Guo School of Electrical.madhavan@nist.gov Abstract-- We discuss techniques towards using collaborative robots for infrastructure security

  9. NREL: News - NREL, Sandia Team to Improve Hydrogen Fueling Infrastruct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    714 NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia...

  10. Fuel Cell System Cost for Transportation-2008 Cost Estimate (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-05-01

    Independent review prepared for the U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager.

  11. National Parks Clean Up with Alternative Fuels | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel vehicles and infrastructure (including biodiesel, compressed natural gas, E85-ethanol, and propane). As a result of industry partnerships, Toyota donated 23 Prius...

  12. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy First Gas Infrastructure

  13. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy First Gas Infrastructure12-13,

  14. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy First Gas Infrastructure12-13,

  15. Natural Gas Infrastructure R&D and Methane Mitigation Woekshop Nov. 12-13, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy First Gas Infrastructure12-13,

  16. QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, DC: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure Resiliency and...

  17. Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducation Data JamDepartment2 A P R

  18. MOBILE4. 1: Highway-vehicle mobile-source emission-factor model (Apple MacIntosh version) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.

  19. Creating sustainable air rights development over highway corridors : lessons from the Massachusetts Turnpike in Boston

    E-Print Network [OSTI]

    Campbell, Bonnie E., 1977-

    2004-01-01

    Research and practice have shown that air rights development over highway corridors in America's cities is not only feasible, but desirable. As planners, policy makers and consumers attempt to curb the sprawling development ...

  20. Estimation of economic impact of freight distribution due to highway closure

    E-Print Network [OSTI]

    Hu, Shiyin

    2008-01-01

    The main aim of this study is to provide a theoretical framework and methodology to estimate and analyze the economic impact of freight disruption due to highway closure. The costs in this study will be classified into ...

  1. Evaluation of sight distance as a criterion for prioritizing rail-highway intersections in Texas 

    E-Print Network [OSTI]

    Pecheux, Kelley Klaver

    1993-01-01

    been effective over the years in identifying particularly hazardous rail-highway intersections based on high vehicle volumes, train volumes, and accident histories, and these crossings have been treated or improved. Many of the remaining crossings...

  2. Identification of potential strategies, methods, and tools for improving cost estimating practices for highway projects 

    E-Print Network [OSTI]

    Donnell, Kelly Elaine

    2005-08-29

    Project cost escalation is a major problem for State Highway Agencies (SHA). This problem is evident in cost estimating procedures that may not promote consistency and accuracy of costs over the project development process. ...

  3. A hotel economic feasibility study : Monsignor O'Brien Highway, Cambridge, Massachusetts

    E-Print Network [OSTI]

    Rogers, Mark P. (Mark Paul)

    2007-01-01

    A hotel economic feasibility study was carried out for an assemblage of four (4) parcels located on Monsignor O'Brien Highway in Cambridge, Massachusetts. The primary objective of this economic feasibility study was to ...

  4. Seismic reflection investigations of sinkholes beneath Interstate Highway 70 in Kansas

    E-Print Network [OSTI]

    Steeples, Don W.; Knapp, Ralph W.; McElwee, Carl D.

    1986-02-01

    Seismic reflection studies were performed across actively developing sinkholes located astride Interstate Highway 70 in Russell County, Kansas. Results indicate that high?resolution seismic reflection surveys are useful in the subsurface...

  5. Newfound land : urban highway removal and planning the land it uncovers

    E-Print Network [OSTI]

    Masenten, David J. (David Joel), 1974-

    2004-01-01

    When the interstate highway system was routed through urban centers during the 1950's and 1960's, few thought these elevated expressways would have a serious detrimental impact on the cities they served. These interstates ...

  6. Evaluation of a wildlife underpass on Vermont State Highway 289 in Essex, Vermont

    E-Print Network [OSTI]

    Austin, John M.; Garland, Larry

    2001-01-01

    Scharf, technicians for the Vermont Department of Fish andEVALUATION OF A WILDLIFE UNDERPASS ON VERMONT STATE HIGHWAY289 IN ESSEX, VERMONT John M. Austin and Larry Garland,

  7. O.A.R. 734-051 - Highway Approaches, Access Control, Spacing...

    Open Energy Info (EERE)

    Standards and Medians (2011). Retrieved from "http:en.openei.orgwindex.php?titleO.A.R.734-051-HighwayApproaches,AccessControl,SpacingStandardsandMedians&oldid78995...

  8. An investigation of driver behavior at highway-railroad grade crossings 

    E-Print Network [OSTI]

    Shull, Lee Anne

    1996-01-01

    Highway-railroad grade crossings are classified as either "active" or "passive" depending on the ability of the warning system to indicate the presence of an approaching train. Active crossings are characterized by warning systems such as flashing...

  9. 19 V.S.A. § 1111 Highway Right-of-Way Permit Application (Form...

    Open Energy Info (EERE)

    9 V.S.A. 1111 Highway Right-of-Way Permit Application (Form TA 210) Example Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  10. California Hydrogen Highway Network October 3, 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel

  11. Geographically-Based Infrastructure Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashersGenSysContractorsGeographically

  12. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    · Technoeconomic Analysis ­ Hydrogen from biomass via gasification and pyrolysis: 1994, 1997, 2000, 2004 ­ Hydrogen ­ Life cycle assessment of wind/electrolysis: 2001, 2004 ­ Life cycle assessment of biomass gasification assessment (now in Biomass Program) ­ Keith Wipke: ADVISOR (now leading tech validation project) · Current

  13. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    innovation and help the industry bring these technologies into the marketplace at lower cost. "As part of an all-of-the-above strategy to deploy every available source of...

  14. Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure

    E-Print Network [OSTI]

    the natural environment by NREL researchers, are able to perform the WGS reaction at ambient temperatures operation at 5-L scale Operate bioreactor at P=10 atm; Measure shift kinetics of Rx. gelatinosus Evaluate

  15. Title 19 Chapter 1 State Highway Law | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinox Jump to:,

  16. Idaho - Access Management: Standards and Procedures for Highway

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro

  17. Federal Highway Admininstration - Law Enforcement Escort - Best Practices

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal Power

  18. Public Private Partnership in National Highways: Indian Perspective | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to:SpatialResolutionWidthPrue,

  19. Hawaii Department of Transportation Highways Division | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy ResourcesHasselbach

  20. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  1. Financing Tribal Energy Infrastructure & Energy Optimization Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9,UNIVERSITYDepartmentPitfallsDepartment of4

  2. Cyber Threats to Nuclear Infrastructures

    SciTech Connect (OSTI)

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  3. Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

  4. Microsoft Word - Critical Infrastructure Security and Resilience...

    Broader source: Energy.gov (indexed) [DOE]

    White House Office of the Press Secretary For Immediate Release October 31, 2013 Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013 CRITICAL...

  5. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  6. Natural Gas and Hydrogen Infrastructure Opportunities: Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities: Markets and Barriers to Growth Natural Gas and Hydrogen Infrastructure Opportunities: Markets and Barriers to Growth Presentation by Matt Most, Encana Natural Gas,...

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  8. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C...

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Acceptance Group A Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report Breakout session...

  10. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  11. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "2nd International Hydrogen Infrastructure Challenges Webinar," originally presented on March 10, 2015.

  12. Voluntary Protection Program Onsite Review, Infrastructure Support...

    Office of Environmental Management (EM)

    2012 Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant - March 2012 March 2012 Evaluation to determine whether the...

  13. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    Alternative Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of...

  14. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, Options and Trade-offs, Transition and Long-term Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term Presentation on Hydrogen...

  15. The President's Hydrogen Fuel Initiative Workshop on

    E-Print Network [OSTI]

    : Gasification of biomass Reforming of renewable liquids Photoelectrochemical Photobiological Thermochemical criteria and greenhouse gas emissions. Coal Only with carbon capture & sequestration Gasification process Biomass *Transition only #12;Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated

  16. Alternative Fuel News, Vol. 7, No. 3

    SciTech Connect (OSTI)

    Not Available

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  17. Volumetric Excise Tax Credit for Alternative Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On August 10, 2005, President Bush signed into law the Safe, Accountable, Flexible, and Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)]. The act includes authorization for a multitude of transportation infrastructure projects, establishes highway safety provisions, provides for research and development, and includes a large number of miscellaneous provisions related to transportation, most of which are not included in Annual Energy Outlook 2006 because their energy impacts are vague or undefined.

  18. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do

    Office of Energy Efficiency and Renewable Energy (EERE)

    Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

  19. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  20. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizonaAugust 16,Security 40EnergyClean Energy andRush

  1. Hydrogen Production Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOE HydrogenProduction Hydrogen

  2. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportationVideos Home

  3. Vermont Agency of Transportation Highway Permit Application Information |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas: EnergyVentnor City,Act 250OpenPollutionOpenOpen

  4. Hawaii Clean Energy Iniative - Construction Upon a State Highway Permit

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio: EnergyMinnesota:Havre deBioEnergy LLC Jump

  5. Federal Highway Administration - Pilot Car Escort - Best Practices

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | Open Energy Information

  6. Application for Permit to Construct Access Driveway Facilities on Highway

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperionCommissionEnergyROW | Open Energy

  7. Application for State Highway Approach | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperionCommissionEnergyROW | Open

  8. CDOT - State Highway Access Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:Energy IncTool Jump to:PermitState

  9. Colorado - State Highway Access Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open Energy Information Colorado - C.R.S.Colo.Energy-

  10. Alternative Fuels Data Center: Pollutants and Health

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles and Infrastructurein

  11. Securing the information infrastructure for EV charging

    E-Print Network [OSTI]

    Poll, Erik

    Securing the information infrastructure for EV charging Fabian van den Broek1 , Erik Poll1 , and B for the information exchanges in the infrastructure for EV charging being tri- alled in the Netherlands, which. Key words: EV charging, congestion management, end-to-end security, smart grids 1 Introduction

  12. Scanning the Technology Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    -free electricity; banking and finance depends on the robustness of electric power, cable, and wireless infrastructures and increased demand for high-quality and reliable electricity for our digital economy is becoming, and algorithmic develop- ments. Keywords--Critical infrastructure protection, electric power grid, emergency

  13. PEV Infrastructure Needs UC Davis Policy Institute

    E-Print Network [OSTI]

    California at Davis, University of

    ,000 sales in 2012, ramp up to 20,000/yr in 2013 2012 Honda Fit EV 2012 Tesla Model S Infrastructure needs vary PEVs Available in 2012 Increasing Battery size, PHEV - BEV #12;5 PEV Charging Infrastructure · Tesla · Toyota Regional Government · CAPCOA, Sonoma · BAAQMD · SCAQMD Utilities · LADWP · PG&E · SCE

  14. Site Support Program Plan Infrastructure Program

    SciTech Connect (OSTI)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  15. infrastructure | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| PrincetondefaultBuildingsFacilities

  16. Sandia Energy » Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of Minnesota's Virtual Wind

  17. Sandia Energy » Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of Minnesota's Virtual WindNuclear

  18. Infrastructure &amp; Sustainability

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia NationalSecurityNuclearH-canyon |I 1 2.9/%2A5/%2A en

  19. CHP Enabling Resilient Energy Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86) (AllProvision for0 350.1 9-30-96October

  20. infrastructure | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistory OverUnconventional Resources Backgroundand|

  1. In This Issue Electricity Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218 58ImprovingIn

  2. Sandia Energy - Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal EnergyRenewable Energy Integration HomeResilient Electric

  3. Incorporating Vehicle Emission Models into the Highway Design Process 

    E-Print Network [OSTI]

    Ko, Myung-Hoon

    2012-02-14

    ?. ........................................................................................... 80 xii Page Figure 5.6 EMFs of fuel consumption and emissions by design categories ........... 83 Figure 5.7 Fuel consumption and emissions by K on vertical curves .................... 87 Figure 5.8 Fuel consumption... Figure 7.1 US 101 route evaluated with real geometric data ................................. 111 Figure 7.2 EMFs from actual vertical grades selected relative to the hypothetical condition of the good design...

  4. No. 2 Diesel Sales for On-Highway Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year JanperGas

  5. Road to the hydrogen highway | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012)

  6. Imperfect graphene renders 'electrical highways' > Archived News Stories >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE- SPECIFIC SAVINGSImpact ofThe Energy

  7. Retail Prices for Diesel (On-Highway) - All Types

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1)May-15421

  8. ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System for Microsoft's Cloud Infrastructure Online Services Security and Compliance Executive summary This paper describes the Microsoft Cloud Infrastructure and Operations (MCIO) Information Security Management System (ISMS) program

  9. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding

  10. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  11. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  12. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION and Civil Engineering Institute, Ljubljana, Slovenia #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES · Numerical Simulations #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Project

  13. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Environmental Management (EM)

    of the National Infrastructure Protection Plan (NIPP) Base Plan, a comprehensive risk management framework that defines critical infrastructure protection (CIP) roles and...

  14. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...

  15. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

  16. Improving Risk Assessment to Support State Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Risk Assessment to Support State Energy Infrastructure Decision Making Improving Risk Assessment to Support State Energy Infrastructure Decision Making May 22, 2015 -...

  17. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

  18. Evalutation of Natural Gas Pipeline Materials and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

  19. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  20. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment...

    Energy Savers [EERE]

    NNSA, Infrastructure and Environment (NA-50) 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50) The ongoing and projected Environmental Assessments and...

  1. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    E-Print Network [OSTI]

    Ogden, J; Yang, Christopher

    2005-01-01

    to International Journal of Hydrogen Energy (November 2005).05—28 Implementing a Hydrogen Energy Infrastructure: StorageImplementing a Hydrogen Energy Infrastructure: Storage

  2. Year-in-Review: 2012 Energy Infrastructure Events and Expansions...

    Energy Savers [EERE]

    2 Energy Infrastructure Events and Expansions (July 2013) Year-in-Review: 2012 Energy Infrastructure Events and Expansions (July 2013) The Year-in-Review (YIR): 2012 Energy...

  3. NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014

    E-Print Network [OSTI]

    NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014 1. Introduction This companion Roadmap to the Framework for Improving Critical Infrastructure Cybersecurity ("the

  4. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure...

    Office of Environmental Management (EM)

    Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 17, 2015 - 5:45pm...

  5. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  6. Webinar March 10: 2nd International Hydrogen Infrastructure Challenges...

    Energy Savers [EERE]

    Webinar March 10: 2nd International Hydrogen Infrastructure Challenges Webinar Webinar March 10: 2nd International Hydrogen Infrastructure Challenges Webinar March 4, 2015 -...

  7. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  8. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  9. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  10. reliable, efficient, ultra-clean Fuel Cell Power Plant Experience

    E-Print Network [OSTI]

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department Shore Capacity - Low Profile, Easy Siting Connects to existing electricity and fuel infrastructure Cell Stack and operated with high sulfur naval logistic fuel (JP-5 jet fuel) · Over 1000 Hours of Fuel

  11. Enhancements to passive warning devices for use at railroad-highway grade crossings 

    E-Print Network [OSTI]

    Mynier, Charles Leroy

    1992-01-01

    ENHANCEMENTS TO PASSIVE WARNING DEVICES FOR USE AT RAILROAD-HIGHWAY GRADE CROSSINGS A Thesis by CHARLES LEROY MYNIER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1992 Major Subject: Civil Engineering ENHANCEMENTS TO PASSIVE WARNING DEVICES FOR USE AT RAILROAD-HIGHWAY GRADE CROSSINGS A Thesis by C~S LEROY MYNIER Approved as to style and content by: Neilon wan (Chair of ommittee...

  12. Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerhu.pdf More Documents & Publications LNT + SCR...

  13. Modeling Gas-Phase Transport in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, A.Z.; Newman, J.

    2006-01-01

    Energy, Office of Hydrogen, Fuel Cell, and InfrastructureIN POLYMER-ELECTROLYTE FUEL CELLS A. Z. Weber and J. Newmandiffusion of gases in a fuel-cell gas-diffusion layer are

  14. PROJECT INFORMATION FORM Project Title Deployment of Sustainable Fueling/Charging Systems at California

    E-Print Network [OSTI]

    California at Davis, University of

    fueling stations for fuel cell vehicles and fast charging stations for electric infrastructure investment. Present hydrogen fueling stations, fast EV charging stations, renewable power sources, and energy storages are usually located at different sites

  15. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2009-10-01

    This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

  16. Highway Geology Symposium Santa Fe, 2008 HGS Session 5 -Paper 5.2 Page 1 of 21

    E-Print Network [OSTI]

    Haneberg, William C.

    59th Highway Geology Symposium Santa Fe, 2008 HGS Session 5 - Paper 5.2 Page 1 of 21 59 TH HIGHWAY GEOLOGY SYMPOSIUM 2008 Santa Fe, New Mexico SESSION 5 PAPER #5.2 REVISITING AN OLD PROJECT WITH NEW TECHNOLOGY-- DIGITAL TERRAIN MODELING AND MULTI-LAYERED VIRTUAL GEOLOGIC HAZARD MAPPING ALONG A PROPOSED

  17. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  18. Modeling Risks in Infrastructure Asset Management 

    E-Print Network [OSTI]

    Seyedolshohadaie, Seyed Reza

    2012-10-19

    The goal of this dissertation research is to model risk in delivery, operation and maintenance phases of infrastructure asset management. More specifically, the two main objectives of this research are to quantify and measure financial risk...

  19. Opportunistic infrastructure : the Trans-Manhattan Expressway

    E-Print Network [OSTI]

    O'Koren, Jason F

    2010-01-01

    Urban Infrastructure: bridges, expressways, and on and off ramps often create barriers and uninhabitable spaces within the urban context. This phenomenon is evident in northern Manhattan where the Trans-Manhattan Expressway ...

  20. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure & Technology Group, Inc., related to a Form Wood Timber Fire at the Salt Waste Processing Facility at the Savannah River Site On July 13, 2009, the U.S....