National Library of Energy BETA

Sample records for infrared thermography measurements

  1. Infrared thermography

    SciTech Connect (OSTI)

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  2. Infrared Thermography (IRT) Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps3_pvmc_mcwilliams.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado US & Japan TG 4 Activities of QA Forum Online Weld Quality NDE & Control with IR Thermography

  3. Thermography instruments for predictive maintenance

    SciTech Connect (OSTI)

    Palko, E.

    1993-08-12

    Thermography (infrared imaging, or IR scanning) is not only the most versatile predictive maintenance technology available today; it is, in general, the most cost-effective. Plant engineering can apply a virtually unlimited variety of predictive maintenance instruments, but all are restricted regarding the types of existing and incipient problems they can detect. Inplant applications of thermography, however, are truly limited only by the extent of the plant engineer's imagination. Here are ways that thermography can be used to fight downtime in plants, and factors to consider when selecting the best instrument for particular circumstances.

  4. Posters Long-Pathlength Infrared Absorption Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-m Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and...

  5. Synchrotron infrared reflectivity measurements of iron at high pressures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Synchrotron infrared reflectivity measurements of iron at high pressures Citation Details In-Document Search Title: Synchrotron infrared reflectivity measurements of iron at high pressures The infrared reflectance of iron was studied using high-pressure synchrotron radiation methods up to 50 GPa at room temperature in a diamond anvil cell of 1000-8000 cm{sup -1} (1.25-10 {mu}m). The magnitude of the reflectivity shows a weak pressure

  6. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  7. Measurement of directional thermal infrared emissivity of vegetation and soils

    SciTech Connect (OSTI)

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  8. Defining the infrared systems for ITER

    SciTech Connect (OSTI)

    Reichle, R.; Andrew, P.; Drevon, J.-M.; Encheva, A.; Janeschitz, G.; Levesy, B.; Martin, A.; Pitcher, C. S.; Pitts, R.; Thomas, D.; Vayakis, G.; Walsh, M.; Counsell, G.; Johnson, D.; Kusama, Y.

    2010-10-15

    The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

  9. NREL: Measurements and Characterization - Fourier-Transform Infrared and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Spectroscopy Fourier-Transform Infrared and Raman Spectroscopy Image of FTIR map FTIR mapping capabilities are extremely useful for the quick, nondestructive characterization of heterogeneous free carrier properties of transparent conduction oxides. Infrared spectroscopy is a nondestructive, highly sensitive technique that provides information about impurities, chemical environment, and free-carrier properties. Performing both Fourier transform (FT)-Raman and Fourier transform infrared

  10. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  11. Synchrotron infrared reflectivity measurements of iron at high...

    Office of Scientific and Technical Information (OSTI)

    RANGE GIGA PA; REFLECTIVITY; SYNCHROTRON RADIATION; TEMPERATURE DEPENDENCE; TEMPERATURE MEASUREMENT; TEMPERATURE RANGE 0273-0400 K; TEMPERATURE RANGE 1000-4000 K; WAVELENGTHS ...

  12. Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope

    SciTech Connect (OSTI)

    Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2013-12-02

    We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.

  13. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign B. Thurairajah and J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The Cloudiness Inter-Comparison Intensive Operational Period (CIC IOP) occurred at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility site in Lamont, Oklahoma from mid-February to mid-April 2003 (Kassianov et al. 2004).

  14. On-Line Weld NDE with IR Thermography | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Line Weld NDE with IR Thermography On-Line Weld NDE with IR Thermography 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm054_warren_2012_o.pdf More Documents & Publications On-Line Weld NDE with IR Thermography Vehicle Technologies Office Merit Review 2014: On-Line Weld NDE with IR Thermography Online Weld Quality NDE & Control with IR Thermography

  15. Femtosecond measurements of near-infrared pulse induced mid-infrared transmission modulation of quantum cascade lasers

    SciTech Connect (OSTI)

    Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Choa, Fow-Sen; Wang, Xiaojun; Johnson, Anthony M.

    2014-05-26

    We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulation (>60?GHz) could provide a potential way to realize fast QCL based free space optical communication.

  16. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX); Miller, Michael A. (San Antonio, TX)

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  17. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOE Patents [OSTI]

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  18. Online Weld Quality NDE & Control with IR Thermography | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weld Quality NDE & Control with IR Thermography Online Weld Quality NDE & Control with IR Thermography 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm026_feng_2010_o.pdf More Documents & Publications On-Line Weld NDE with IR Thermography Vehicle Technologies Office Merit Review 2014: On-Line Weld NDE with IR Thermography On-Line Weld NDE with IR Thermography

  19. Imaging of molybdenum erosion and thermography at visible wavelengths in

    Office of Scientific and Technical Information (OSTI)

    Alcator C-Mod ICRH and LHCD discharges (Technical Report) | SciTech Connect Technical Report: Imaging of molybdenum erosion and thermography at visible wavelengths in Alcator C-Mod ICRH and LHCD discharges Citation Details In-Document Search Title: Imaging of molybdenum erosion and thermography at visible wavelengths in Alcator C-Mod ICRH and LHCD discharges Authors: James, A N ; Brunner, D ; LaBombard, B ; Lau, C ; Lipschultz, B ; Miller, D ; Reinke, M L ; Terry, J L ; Theiler, C ; Wallace,

  20. Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis

    SciTech Connect (OSTI)

    Domgmo-Momo, Gilles; /Towson U. /SLAC

    2012-09-05

    The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

  1. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperaturemore » and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.« less

  2. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    SciTech Connect (OSTI)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperature and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.

  3. Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Brener, Igal; Passmore, Brandon Scott; Wendt, Joel Robert; Bender, Daniel A.; Ten Eyck, Gregory A.

    2010-03-01

    We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

  4. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sams, R. L.; Johnson, T. J.

    2014-04-25

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in amore » 19.94 cm path length cell at 0.112 cm−1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.« less

  5. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect (OSTI)

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  6. Measurements of the Infrared SpectraLines of Water Vapor at Atmospheri...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensing studies and their dependence upon temperature have also been measured by using lean mixtures of water vapor and air. For the sake of brevity they have not been presented...

  7. Method for measuring thermal properties using a long-wavelength infrared thermal image

    DOE Patents [OSTI]

    Walker, Charles L. (Albuquerque, NM); Costin, Laurence S. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM); Moya, Mary M. (Albuquerque, NM); Mercier, Jeffrey A. (Albuquerque, NM)

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  8. NEW MEASUREMENTS OF THE COSMIC INFRARED BACKGROUND FLUCTUATIONS IN DEEP SPITZER/IRAC SURVEY DATA AND THEIR COSMOLOGICAL IMPLICATIONS

    SciTech Connect (OSTI)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.; Ashby, M. L. N.; Fazio, G. G.

    2012-07-01

    We extend previous measurements of cosmic infrared background (CIB) fluctuations to {approx}< 1 Degree-Sign using new data from the Spitzer Extended Deep Survey. Two fields with depths of {approx_equal} 12 hr pixel{sup -1} over three epochs are analyzed at 3.6 and 4.5 {mu}m. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of mag{sub AB} {approx_equal} 25, as indicated by the level of the remaining shot noise. The maps were then Fourier transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 {mu}m power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to >10 times those of known galaxy populations on angular scales out to {approx}< 1 Degree-Sign . The low shot-noise levels remaining in the diffuse maps indicate that the large-scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model ({Lambda}CDM) at epochs coinciding with the first stars era.

  9. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect (OSTI)

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  10. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; et al

    2015-11-03

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusionmore » currents in nBn photodetectors.« less

  11. Tunable Surface Plasmon Infrared Modulator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industries Infrared Modulator IR Counter Measures Photonic Circuitry Metamaterials Chemical Sensing Variable Attenuation Patents and Patent Applications ID Number...

  12. Local government use of thermography for energy conservation

    SciTech Connect (OSTI)

    Levitt, Dr., I. M.; Bolno, Jim

    1980-01-01

    Information is presented on the capabilities of various thermal infrared sensing technologies and equipment. Examples of their use in inventories of energy loss from both individual buildings and community-wide perspectives are included. Discussions cover both ground and aerial surveys and include procedures for program evaluation. Two case studies of cities that have used these technologies are presented. A tabular comparison of equipment specifications is presented and listings of experts, organizations, and reference sources for further detailed information are given.

  13. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  14. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    SciTech Connect (OSTI)

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-11-14

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  15. Thermoelastic Analysis of a Vibrating TiB/Ti Cantilever Beam Using Differential Thermography

    SciTech Connect (OSTI)

    Byrd, Larry; Wyen, Travis; Byrd, Alex

    2008-02-15

    Differential thermography has been used to detect the fluctuating temperatures due the thermoelastic effect for a number of years. This paper examines functionally graded TiB/Ti cantilever beams excited on an electromechanical shaker in fully reversed bending. Finite difference analysis of specimens was used to look at the effect of heat conduction, convection and the fundamental frequency on the surface temperature distribution and compared to experimental data. The thermoelastic effect was also used to detect cracking and the stress field at the tip of the fixture during fatigue.

  16. Infrared floodlight

    DOE Patents [OSTI]

    Levin, Robert E. (S. Hamilton, MA); English, George J. (Reading, MA)

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  17. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-11-29

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  18. Infrared retina

    DOE Patents [OSTI]

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  19. Vehicle Technologies Office Merit Review 2015: IR Thermography as a Non-Destructive Evaluation (NDE) Tool for Lithium-Ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about IR thermography...

  20. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOE Patents [OSTI]

    Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  1. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because it is extremely difficult to perform spectroscopic measurements on a single monolayer of graphene. Infrared measurements can probe the dynamical properties of...

  2. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  3. Infrared microscope inspection apparatus

    DOE Patents [OSTI]

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  4. Infrared microscope inspection apparatus

    DOE Patents [OSTI]

    Forman, Steven E. (Framingham, MA); Caunt, James W. (Concord, MA)

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  5. Far infrared supplement: Catalog of infrared observations, second edition

    SciTech Connect (OSTI)

    Gezari, D.Y.; Schmitz, M.; Mead, J.M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  6. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, Michael A. (East Windsor, NJ)

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  7. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong; Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrologyall specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNLs Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

  8. Thermographic Inspections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermographic Inspections Thermographic Inspections Thermographic Inspections Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. How Thermographic Inspections Work Thermography measures surface temperatures by using infrared video and still cameras. These tools see light that is in the heat spectrum. Images on the video or film record the temperature variations of the building's skin, ranging from white for warm

  9. Infrared source test

    SciTech Connect (OSTI)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  10. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  11. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  12. Line Focus Receiver Infrared Temperature Survey System

    Energy Science and Technology Software Center (OSTI)

    2010-06-01

    For ongoing maintenance and performance purposes, solar parabolic trough field operators desire to know that the Heat Collection Elements (HCEs) are performing properly. Measuring their temperature is one way of doing this One 30MW field can contain approximately 10,000 HCE's. This software interfaces with a GPS receiver and an infrared camera. It takes global positioning data from the GPS and uses this information to automate the infrared image capture and temperature analysis of individual solarmore » parabolic HCEs in a solar parabolic trough field With this software system an entire 30MW field can be surveyed in 2-3 days.« less

  13. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  14. Infrared curing simulations of liquid composites molding

    SciTech Connect (OSTI)

    Nakouzi, S.; Pancrace, J.; Schmidt, F. M.; Le Maoult, Y.; Berthet, F. [Universite de Toulouse (France); INSA, UPS, Mines Albi, ISAE, ICA - Institut Clement Ader, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Campus Jarlard, F-81013 Albi (France)

    2011-05-04

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  15. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  16. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  17. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  18. Infrared floodlight assembly

    DOE Patents [OSTI]

    Wierzbicki, Julian J. (Peabody, MA); Chakrabarti, Kirti B. (Danvers, MA)

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  19. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    SciTech Connect (OSTI)

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements

  20. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  1. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  2. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  3. Infrared laser system

    DOE Patents [OSTI]

    Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  4. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  5. THE INFRARED COLORS OF THE SUN

    SciTech Connect (OSTI)

    Casagrande, L.; Asplund, M.; Ramirez, I.; Melendez, J.

    2012-12-10

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  6. Synchrotron Infrared Unveils a Mysterious Microbial Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur...

  7. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrared microspectroscopy at the ALS, with a diffraction-limited infrared beam diameter of less than 10 m, can overcome this hurdle. And while previous studies used...

  8. Forward looking infrared | Open Energy Information

    Open Energy Info (EERE)

    looking infrared Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Forward looking infrared Author Wikipedia Published Publisher Not Provided, 2013...

  9. Infrared microcalorimetric spectroscopy using quantum cascade...

    Office of Scientific and Technical Information (OSTI)

    Infrared microcalorimetric spectroscopy using quantum cascade lasers Citation Details In-Document Search Title: Infrared microcalorimetric spectroscopy using quantum cascade lasers...

  10. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

  11. Mid-infrared tunable metamaterials

    DOE Patents [OSTI]

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  12. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  13. Electrically tunable infrared metamaterial devices

    DOE Patents [OSTI]

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  14. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A

    2011-09-01

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less

  15. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  16. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    SciTech Connect (OSTI)

    Reynolds, D.B.; Seib, D.H.; Stetson, S.B.; Herter, T.; Rowlands, N.; Schoenwald, J.

    1989-02-01

    High-performance infrared hybrid focal plane arrays using 10 x 50 element Si:As Blocked-Impurity-Band (BIB) detectors (cut-off wavelength = 28 ..mu..m) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity band conduction technology provides detectors which are nuclear radiation hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in this paper is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increase quantum efficiency (particular at short wavelength infrared), obtained by varying the Blocked-Impurity-Band detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Read noise and dark current for different temperatures have been measured and are also described. The hybrid array performance achieved clearly demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  17. Hard, infrared black coating with very low outgassing

    SciTech Connect (OSTI)

    Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

    2008-06-02

    Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

  18. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  19. Ferroelectric infrared detector and method

    DOE Patents [OSTI]

    Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  20. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  1. Dynamically Responsive Infrared Window Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 2015 Building Technologies Office Peer Review Dr. Kyle J. Alvine, kyle.alvine@pnnl.gov Pacific Northwest National Laboratory 21ºC 50 μm Project Summary Timeline: Start date: 10/1/2013 Planned end date: 6/31/16 Key Milestones 1. (6/30/15) Demonstrate reversible buckling within a temperature window target of 30 C to 90 C over 5-10 cycles (buckle/unbuckle) on a 6" scale - completed February 2015 2. (8/15/15) PPG will complete initial

  2. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, T.J.

    1997-01-21

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  3. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, Thomas J. (Alamo, CA)

    1997-01-01

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  4. Infra-red signature neutron detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn Allen (Oak Ridge, TN) [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  5. Uncooled infrared imaging using bimaterial microcantilever arrays

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Uncooled infrared imaging using bimaterial microcantilever arrays Citation Details In-Document Search Title: Uncooled infrared imaging using bimaterial microcantilever arrays We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication

  6. Infrared trace element detection system

    DOE Patents [OSTI]

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  7. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signature, allowing their evolution into the final product to be precisely monitored with infrared spectroscopy. Although other (non-synchrotron) spectroscopic tools have the...

  8. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is...

  9. A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION

    SciTech Connect (OSTI)

    Casey, C. M.; Budynkiewicz, J.; Berta, S.; Lutz, D.; Magnelli, B.; Bethermin, M.; Le Floc'h, E.; Magdis, G.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; and others

    2012-12-20

    We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 {mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z {approx} 5. We measure more significant disagreement between photometric and spectroscopic redshifts (({Delta}z/(1 + z{sub spec})) = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 {mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q{sub IR}{proportional_to}(1 + z){sup -0.30{+-}0.02} at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 {mu}m extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z >> 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.

  10. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect (OSTI)

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  11. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    SciTech Connect (OSTI)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-11-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists.

  12. Negligible sample heating from synchrotron infrared beam

    SciTech Connect (OSTI)

    Martin, Michael C.; Tsvetkova, Nelly M.; Crowe, John H.; McKinney, Wayne R.

    2000-08-30

    The use of synchrotron sources for infrared (IR) spectromicroscopy provides greatly increased brightness enabling high-quality IR measurements at diffraction-limited spatial resolutions. This permits synchrotron-based IR spectromicroscopy to be applied to biological applications at spatial resolutions of the order of the size of a single mammalian cell. The question then arises, ''Does the intense synchrotron beam harm biological samples?'' Mid-IR photons are too low in energy to break bonds directly, however they could cause damage to biological molecules due to heating. In this work, we present measurements showing negligible sample heating effects from a diffraction-limited synchrotron IR source. The sample used is fully hydrated lipid bilayers composed of dipalmitoylphosphatidylcholine(DPPC), which undergoes a phase transition from a gel into a liquid-crystalline state at about 315 K during heating. Several IR-active vibrational modes clearly shift in frequency when the sample passes through the phase transition. We calibrate and then use these shifting vibrational modes as an in situ temperature sensor.

  13. Detection and measurement of electroreflectance on quantum cascade...

    Office of Scientific and Technical Information (OSTI)

    Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope Citation Details In-Document Search Title: Detection and...

  14. Category:Near Infrared Surveys | Open Energy Information

    Open Energy Info (EERE)

    Infrared Surveys Retrieved from "http:en.openei.orgwindex.php?titleCategory:NearInfraredSurveys&oldid794164" Feedback Contact needs updating Image needs updating...

  15. Category:Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    Infrared Retrieved from "http:en.openei.orgwindex.php?titleCategory:Long-WaveInfrared&oldid794161" Feedback Contact needs updating Image needs updating Reference...

  16. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2003-12-23

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  17. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

    2002-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  18. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

    2001-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  19. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  20. Near-infrared free carrier absorption in heavily doped silicon

    SciTech Connect (OSTI)

    Baker-Finch, Simeon C.; McIntosh, Keith R.; Yan, Di; Fong, Kean Chern; Kho, Teng C.

    2014-08-14

    Free carrier absorption in heavily doped silicon can have a significant impact on devices operating in the infrared. In the near infrared, the free carrier absorption process can compete with band to band absorption processes, thereby reducing the number of available photons to optoelectronic devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate and precise measurement of the free carrier absorptance. We measure and model reflectance and transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities between ∼10{sup 18} and 3 × 10{sup 20} cm{sup −3}. Our measurements indicate that previously published parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other hand, published parameterisations are generally consistent with our measurements and model for boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine device analysis.

  1. Synchrotron Infrared Unveils a Mysterious Microbial Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her

  2. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also

  3. Near infrared surfaceplasmonpolariton with hyperbolic metamaterials.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Near infrared surfaceplasmonpolariton with hyperbolic metamaterials. Citation Details In-Document Search Title: Near infrared surfaceplasmonpolariton with hyperbolic metamaterials. Abstract not provided. Authors: Luk, Ting Shan ; Kim, Iltai ; Sinclair, Michael B. ; Howell, Stephen Wayne ; Subramania, Ganapathi Subramanian ; Fan, Shanhui ; Campione, salvatori Publication Date: 2012-10-01 OSTI Identifier: 1140382 Report Number(s): SAND2012-8551C

  4. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  5. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  6. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  7. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  8. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  9. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  10. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  11. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Infrared Mapping Helps Optimize Catalytic Reactions Print Wednesday, 20 August 2014 07:59 A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ

  12. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments [OSTI]

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  13. INFRARED STUDIES OF EPSILON AURIGAE IN ECLIPSE

    SciTech Connect (OSTI)

    Stencel, Robert E.; Kloppenborg, Brian K.; Wall, Randall E.; Hopkins, Jeffrey L.; Howell, Steve B.; Hoard, D. W.; Rayner, John; Bus, Schelte; Tokunaga, Alan; Sitko, Michael L.; Bradford, Suellen; Russell, Ray W.; Lynch, David K.; Hammel, Heidi; Whitney, Barbara; Orton, Glenn; Yanamandra-Fisher, Padma; Hora, Joseph L.; Hinz, Philip; Hoffmann, William; and others

    2011-11-15

    We report here on a series of medium resolution spectro-photometric observations of the enigmatic long period eclipsing binary epsilon Aurigae, during its eclipse interval of 2009-2011, using near-infrared spectra obtained with SpeX on the Infrared Telescope Facility (IRTF), mid-infrared spectra obtained with BASS on AOES and IRTF, MIRSI on IRTF, and MIRAC4 on the MMT, along with mid-infrared photometry using MIRSI on IRTF and MIRAC4 on the MMT, plus 1995-2000 timeframe published photometry and data obtained with Denver's TNTCAM2 at WIRO. The goals of these observations included: (1) comparing eclipse depths with prior eclipse data, (2) confirming the re-appearance of CO absorption bands at and after mid-eclipse, associated with sublimation in the disk, (3) seeking evidence for any mid-infrared solid state spectral features from particles in the disk, and (4) providing evidence that the externally irradiated disk has azimuthal temperature differences. IR eclipse depths appear similar to those observed during the most recent (1983) eclipse, although evidence for post-mid-eclipse disk temperature increase is present, due to F star heated portions of the disk coming into view. Molecular CO absorption returned 57 days after nominal mid-eclipse, but was not detected at mid-eclipse plus 34 days, narrowing the association with differentially heated sub-regions in the disk. Transient He I 10830A absorption was detected at mid-eclipse, persisting for at least 90 days thereafter, providing a diagnostic for the hot central region. The lack of solid-state features in Spitzer Infrared Spectrograph, BASS, and MIRAC spectra to date suggests the dominance of large particles (micron-sized) in the disk. Based on these observations, mid-infrared studies out of eclipse can directly monitor and map the disk thermal changes, and better constrain disk opacity and thermal conductivity.

  14. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED

    Office of Scientific and Technical Information (OSTI)

    GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY (Journal Article) | SciTech Connect PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY Citation Details In-Document Search Title: PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY We

  15. Far-infrared surface emissivity and climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  16. Far-infrared surface emissivity and climate

    SciTech Connect (OSTI)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 ?m, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.82.0 W m? difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2K, 10 W m?, and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  17. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  18. Infrared light sources with semimetal electron injection

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  19. Optical absorption measurement system

    DOE Patents [OSTI]

    Draggoo, Vaughn G. (Livermore, CA); Morton, Richard G. (San Diego, CA); Sawicki, Richard H. (Pleasanton, CA); Bissinger, Horst D. (Livermore, CA)

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  20. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect (OSTI)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ? z ? 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ?}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 ?m, as well as the molecular gas of z ? 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ?} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ? 0.3.

  1. The COBE Diffuse Infrared Background Experiment search for thecosmic infrared background. I. Limits and detections

    SciTech Connect (OSTI)

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; Dwek, E.; Odegard, N.; Weiland, J.L.; Freudenreich, H.T.; Reach, W.T.; Silverberg, R.F.; Moseley, S.H.; Pei, Y.C.; Lubin, P.; Mather, J.C.; Shafer, R.A.; Smoot,G.F.; Weiss, R.; Wilkinson, D.T.; Wright, E.L.

    1998-01-06

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 mu m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 mu m(nu l nu<64 nW m-2 sr-1, 95 percent confidence level) and at 240 mu m (nu l nu < 28 nW m-1 sr-1, 95 percent confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 mum data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 mu m. No plausible solar system or Galactic source of the observed 140 and 240 mu m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of nu l nu = 25 +- 7 and 14 +- 3 nW m-2 sr-1 at 140 and 240 mu m, respectively. The integrated energy from 140 to 240 mu m, 10.3 nW m-2sr-1, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.

  2. CX-006504: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-006504.pdf More Documents & Publications CX-006491: Categorical Exclusion Determination CX-100442 Categorical Exclusion Determination Infrared Thermography (IRT) Working Group...

  3. Far Infrared Spectrometry of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  4. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  5. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...

  6. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect (OSTI)

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15?kJmol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  7. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    SciTech Connect (OSTI)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D. E-mail: michael.cushing@gmail.com

    2009-12-01

    We present a 0.8-5 {mu}m spectral library of 210 cool stars observed at a resolving power of R {identical_to} {lambda}/{delta}{lambda} {approx} 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  8. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  10. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  11. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  12. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  13. Process of preparing metal parts to be heated by means of infrared radiance

    DOE Patents [OSTI]

    Mayer, Howard Robinson (Cincinnati, OH); Blue, Craig A. (Knoxville, TN)

    2009-06-09

    A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

  14. Evaluation of Miniaturized Infrared Sensors for Process Control of the Palladium Membrane Reactor

    SciTech Connect (OSTI)

    Lascola, R. J.; Howard, D. W.

    2005-07-31

    We have tested the suitability of a miniaturized infrared sensor for measurements of CO and H{sub 2}O in the inlet stream to the Palladium Membrane Reactor (PMR). We demonstrated that both analytes can be measured with absolute accuracies of 2-4% at the process inlet conditions of 120-140 C and approximately 1 atm of each gas. This accuracy must be improved to 1-1.5% for effective PMR process control. The use of a reference detector and independent temperature and pressure measurements to correct the raw signals will improve the accuracy to a level that will approach, if not meet, this goal. With appropriate bandpass filters, the infrared sensors may be used for other gas analysis applications.

  15. Smart Infrared Inspection System Field Operational Test Final Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar; Lascurain, Mary Beth

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  16. Resonator-quantum well infrared photodetectors

    SciTech Connect (OSTI)

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  17. PROBING THE UNIVERSE'S TILT WITH THE COSMIC INFRARED BACKGROUND DIPOLE

    SciTech Connect (OSTI)

    Fixsen, D. J.; Kashlinsky, A. E-mail: alexander.kashlinsky@nasa.gov

    2011-06-10

    Conventional interpretation of the observed cosmic microwave background (CMB) dipole is that all of it is produced by local peculiar motions. Alternative explanations requiring part of the dipole to be primordial have received support from measurements of large-scale bulk flows. A test of the two hypotheses is whether other cosmic dipoles produced by collapsed structures later than the last scattering coincide with the CMB dipole. One background is the cosmic infrared background (CIB) whose absolute spectrum was measured to {approx}30% by the COBE satellite. Over the 100-500 {mu}m wavelength range its spectral energy distribution can provide a probe of its alignment with the CMB. This is tested with the COBE FIRAS data set which is available for such a measurement because of its low noise and frequency resolution which are important for Galaxy subtraction. Although the FIRAS instrument noise is in principle low enough to determine the CIB dipole, the Galactic foreground is sufficiently close spectrally to keep the CIB dipole hidden. A similar analysis is performed with DIRBE, which-because of the limited frequency coverage-provides a poorer data set. We discuss strategies for measuring the CIB dipole with future instruments to probe the tilt and apply it to the Planck, Herschel, and the proposed Pixie missions. We demonstrate that a future FIRAS-like instrument with instrument noise a factor of {approx}10 lower than FIRAS would make a statistically significant measurement of the CIB dipole. We find that the Planck and Herschel data sets will not allow a robust CIB dipole measurement. The Pixie instrument promises a determination of the CIB dipole and its alignment with either the CMB dipole or the dipole galaxy acceleration vector.

  18. THE GALACTIC CENTER IN THE FAR-INFRARED

    SciTech Connect (OSTI)

    Etxaluze, M.; Smith, Howard A.; Tolls, V.; Stark, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gonzalez-Alfonso, E., E-mail: metxaluz@cfa.harvard.edu [CfA and Universidad de Alcala, Alcala de Henares 28801 (Spain)

    2011-10-15

    We analyze the far-infrared dust emission from the Galactic center region, including the circumnuclear disk (CND) and other structures, using Herschel PACS and SPIRE photometric observations. These Herschel data are complemented by unpublished observations by the Infrared Space Observatory Long Wavelength Spectrometer (ISO-LWS), which used parallel mode scans to obtain photometric images of the region with a larger beam than Herschel but with a complementary wavelength coverage and more frequent sampling with 10 detectors observing at 10 different wavelengths in the range from 46 {mu}m to 180 {mu}m, where the emission peaks. We also include data from the Midcourse Space Experiment at 21.3 {mu}m for completeness. We model the combined ISO-LWS continuum plus Herschel PACS and SPIRE photometric data toward the central 2 pc in Sagittarius A* (Sgr A*), a region that includes the CND. We find that the far-infrared spectral energy distribution is best represented by a continuum that is the sum of three gray body curves from dust at temperatures of 90, 44.5, and 23 K. We obtain temperature and molecular hydrogen column density maps of the region. We estimate the mass of the inner part of the CND to be {approx}5.0 x 10{sup 4} M{sub sun}, with luminosities: L{sub cavity} {approx} 2.2 x 10{sup 6} L{sub sun} and L{sub CND} {approx} 1.5 x 10{sup 6} L{sub sun} in the central 2 pc radius around Sgr A*. We find from the Herschel and ISO data that the cold component of the dust dominates the total dust mass, with a contribution of {approx}3.2 x 10{sup 4} M{sub sun}; this important cold material had escaped the notice of earlier studies that relied on shorter wavelength observations. The hotter component disagrees with some earlier estimates, but is consistent with measured gas temperatures and with models that imply shock heating or turbulent effects are at work. We find that the dust grain sizes apparently change widely across the region, perhaps in response to the temperature variations, and we map that distribution.

  19. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  20. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  1. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOE Patents [OSTI]

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  2. Long Wavelength Catalytic Infrared Drying System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long Wavelength Catalytic Infrared Drying System Long Wavelength Catalytic Infrared Drying System New Infrared Drying System Removes Moisture More Efficiently Without Heating Surrounding Air Conventional drying systems for wood particulates, typically in the form of sawdust or chips, currently employ a rotary drum dryer that shoots a raw flame through a 20' to 30' rotating drum while tumbling the wood product. Product scorching and air emission problems, particularly with carbon, NOx, and

  3. SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ROTATIONAL

    Office of Scientific and Technical Information (OSTI)

    EMISSION TOWARDS TRANSLUCENT CLOUDS (Journal Article) | SciTech Connect SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ROTATIONAL EMISSION TOWARDS TRANSLUCENT CLOUDS Citation Details In-Document Search Title: SPITZER INFRARED SPECTROGRAPH DETECTION OF MOLECULAR HYDROGEN ROTATIONAL EMISSION TOWARDS TRANSLUCENT CLOUDS Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0-0) transitions

  4. Application Of Airborne Thermal Infrared Imagery To Geothermal...

    Open Energy Info (EERE)

    Infrared Imagery To Geothermal Exploration Abstract Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in...

  5. Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...

    Open Energy Info (EERE)

    Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown...

  6. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE...

    Office of Scientific and Technical Information (OSTI)

    The luminosity of individual PAHmore components, of the continuum, and, with poorer ... correlated to the total infrared (TIR) luminosity, making individual MIR components good ...

  7. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signatures of many-body interactions in graphene and have demonstrated the potential of graphene for novel applications in optoelectronics. Infrared View of Graphene Graphene's...

  8. Nanosecond Time Resolved and Steady State Infrared Studies of...

    Office of Scientific and Technical Information (OSTI)

    Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures Citation Details In-Document Search Title:...

  9. Assessing Cloud Spatial and Vertical Distribution with Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on assessing cloud spatial and vertical distribution with a recently developed infrared (IR) cloud analyzer, named Nephelo. The experiment took place at the ARM's central facility,...

  10. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  11. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    SciTech Connect (OSTI)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  12. Calculation of infrared plasma reflection spectra of inhomogeneously doped P-type gallium arsenide

    SciTech Connect (OSTI)

    CHEN Wei-xi; LI Guo-hua; NIU Jin-zhen; GUO Chang-zhi

    1982-01-01

    The influence of the surface concentration and concentration profile of free carriers, the layer thickness and free carrier concentration of the homogeneous substrate on the infrared plasma reflection spectra of inhomogeneously doped P-type GaAs layers is analyzed by computer solutions of differential equations for the optical admittance. Computed spectra are reported for four different profiles and several substrate concentrations. Methods for evaluation of the measured reflection spectra and the limitation of this technique are discussed.

  13. Photon sorting in the near field using subwavelength cavity arrays in the near-infrared

    SciTech Connect (OSTI)

    Mandel, Isroel M. Lansey, Eli; Gollub, Jonah N.; Sarantos, Chris H.; Akhmechet, Roman; Golovin, Andrii B.; Crouse, David T.

    2013-12-16

    A frequency selective metasurface capable of sorting photons in the near-infrared spectral range is designed, fabricated, and characterized. The metasurface, a periodic array of dielectric cylindrical cavities in a gold film, localizes and transmits light of two spectral frequency bands into spatially separated cavities, resulting in near-field light splitting. The design and fabrication methodologies of the metasurface are discussed. The transmittance and photon sorting properties of the designed structure is simulated numerically and the measured transmission is presented.

  14. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect (OSTI)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  15. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  16. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  17. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  18. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Daz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ? 4 to a broad distribution peaking around J ? 6 to 7 as the IRAS 60-to-100?m color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ? J ? 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO(54), (65), (76), (87) and (109) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of 4.13 (?log?R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  19. Near-infrared spectroscopic tissue imaging for medical applications

    DOE Patents [OSTI]

    Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)

    2006-03-21

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  20. Near-infrared spectroscopic tissue imaging for medical applications

    DOE Patents [OSTI]

    Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  1. Apparatus and method for transient thermal infrared spectrometry

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  2. Multivariate classification of infrared spectra of cell and tissue samples

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Thomas, Edward V. (Albuquerque, NM)

    1997-01-01

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  3. Industrial applications of accelerator-based infrared sources: Analysis using infrared microspectroscopy

    SciTech Connect (OSTI)

    Bantignies, J.L.; Fuchs, G.; Wilhelm, C.; Carr, G.L.; Dumas, P.

    1997-09-01

    Infrared Microspectroscopy, using a globar source, is now widely employed in the industrial environment, for the analysis of various materials. Since synchrotron radiation is a much brighter source, an enhancement of an order of magnitude in lateral resolution can be achieved. Thus, the combination of IR microspectroscopy and synchrotron radiation provides a powerful tool enabling sample regions only few microns size to be studied. This opens up the potential for analyzing small particles. Some examples for hair, bitumen and polymer are presented.

  4. Relative Infrared (IR) and Terahertz (THz) Signatures of Common Explosives

    SciTech Connect (OSTI)

    Sharpe, Steven W.; Johnson, Timothy J.; Sheen, David M.; Atkinson, David A.

    2006-11-13

    Pacific Northwest National Laboratory (PNNL) has recently recorded the infrared (IR) and far-infrared (sometimes called the terahertz, THz) spectral signatures of four common explosives, in the condensed phase. The signatures of RDX, PETN, TNT and Tetryl were recorded both in the infrared and the THz domains, using Fourier transform infrared (FTIR) spectroscopy. Samples consisted of thin films and were made by depositing and subsequent evaporation of an acetone-explosive mixture. The complete spectrum spanned the range from 4,000 to 8 cm-1 at 2.0 cm-1 spectral resolution. Preliminary results in the infrared agree with those of previous workers, while the THz signatures are one order of magnitude weaker than the strongest IR bands.

  5. Infrared non-destructive evaluation method and apparatus

    SciTech Connect (OSTI)

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  6. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect (OSTI)

    Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 3707000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  7. Mid infrared optical properties of Ge/Si quantum dots with different doping level

    SciTech Connect (OSTI)

    Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Shalygin, V. A.; Panevin, V. Yu.; Vinnichenko, M. Ya.; Tonkikh, A. A.; Danilov, S. N.

    2013-12-04

    Optical characterization of the Ge/Si quantum dots using equilibrium and photo-induced absorption spectroscopy in the mid-infrared spectral range was performed in this work. Equilibrium absorption spectra were measured in structures with various doping levels for different light polarizations. Photo-induced absorption spectra measured in undoped structure under interband optical excitation of non-equilibrium charge carriers demonstrate the same features as doped sample in equilibrium conditions. Hole energy spectrum was determined from the analysis of experimental data.

  8. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    SciTech Connect (OSTI)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong; Piper, Jessica R.; Fan, Shanhui; Jia, Yichen; Xia, Fengnian; Ma, Zhenqiang

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other twodimensional materials.

  9. Radiant energy required for infrared neural stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less

  10. Infrared Thermographic Study of Laser Ignition

    SciTech Connect (OSTI)

    Mohler, Jonathan H.; Chow, Charles T. S.

    1986-07-01

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

  11. Infrared thermographic study of laser ignition

    SciTech Connect (OSTI)

    Mohler, J.H.; Chow, C.T.S.

    1986-07-21

    Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet.

  12. Radiant energy required for infrared neural stimulation

    SciTech Connect (OSTI)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 12.2 or 10.3 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  13. Solar spectral measurements and modeling

    SciTech Connect (OSTI)

    Bird, R.E.; Hulstrom, R.L.

    1981-01-01

    A newly developed spectroradiometer for routine measurement of the solar spectra is described. This instrument measures the solar spectrum between 300 and 2500 nm in less than 2.5 min, with 0.7-nm resolution in the visible and 10-nm resolution in the infrared. Many examples of global, direct, and diffuse spectra are illustrated for Bedford, Mass. and Golden, Colo. The effects of air mass, turbidity, and sun tracking on the spectrum are presented, and radiative transfer modeling capabilities and comparisons between models and between models and experiment are discussed.

  14. The {ital COBE} Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections

    SciTech Connect (OSTI)

    Hauser, M.G.; Arendt, R.G.; Kelsall, T.; Dwek, E.; Odegard, N.; Weiland, J.L.; Freudenreich, H.T.; Reach, W.T.; Pei, Y.C.; Lubin, P.; Mather, J.C.; Shafer, R.A.; Smoot, G.F.; Weiss, R.; Wilkinson, D.T.; Wright, E.L.

    1998-11-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer ({ital COBE}) spacecraft was designed primarily to conduct a systematic search for an isotropic cosmic infrared background (CIB) in 10 photometric bands from 1.25 to 240 {mu}m. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 {mu}m ({nu}{ital I}{sub {nu}} {lt} 64 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level) and at 240 {mu}m ({nu}{ital I}{sub {nu}} {lt} 28 nW m{sup {minus}2} sr{sup {minus}1}, 95{percent} confidence level). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 {mu}m data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 {mu}m. No plausible solar system or Galactic source of the observed 140 and 240 {mu}m residuals can be identified, leading to the conclusion that the CIB has been detected at levels of {nu}{ital I}{sub {nu}} = 25 {plus_minus} 7 and 14 {plus_minus} 3 nW m{sup {minus}2} sr{sup {minus}1} at 140 and 240 {mu}m, respectively. The integrated energy from 140 to 240 {mu}m, 10.3 nW m{sup {minus}2} sr{sup {minus}1}, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  15. Apparatus and method for transient thermal infrared emission spectrometry

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  16. Posters Preliminary Analysis of Ground-Based Microwave and Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaw, J. A., J. H. Churnside, and E. R. Westwater. 1991. An Infrared Spectrometer for Ground-Based Profiling of Atmospheric Temperature and Humidity. Proc. SPIE Int'l. Symp. on...

  17. Nanosecond Time Resolved and Steady State Infrared Studies of...

    Office of Scientific and Technical Information (OSTI)

    at elevated pressure (i.e. 8 GPa). Ultrafast time-resolved infrared and steady state Fourier transform IR (FTIR) spectroscopies were used to probe TATB and its products after...

  18. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned...

  19. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high...

  20. Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced

    Office of Scientific and Technical Information (OSTI)

    Decomposition of TATB at Ambient and Elevated Pressures (Journal Article) | SciTech Connect Journal Article: Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures Citation Details In-Document Search Title: Nanosecond Time Resolved and Steady State Infrared Studies of Photoinduced Decomposition of TATB at Ambient and Elevated Pressures The timescale and/or products of photo-induced decomposition of

  1. Optical and infrared properties of glancing angle deposited nanostructured

    Office of Scientific and Technical Information (OSTI)

    tungsten films (Journal Article) | SciTech Connect Optical and infrared properties of glancing angle deposited nanostructured tungsten films Citation Details In-Document Search Title: Optical and infrared properties of glancing angle deposited nanostructured tungsten films Authors: Ungaro, Craig [1] ; Shah, Ankit [1] ; Kravchenko, Ivan I [2] ; Hensley, Dale K [2] ; Gray, Stephen K. [3] ; Gupta, Mool C. [1] + Show Author Affiliations University of Virginia, Charlottesville ORNL Argonne

  2. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  3. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  4. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  5. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  6. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  7. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  8. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from

  9. Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future

  10. Dynamically Responsive Infrared Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is used to clean test substrates for window coatings. Image: Pacific Northwest National Laboratory 2 of 5 PNNL scientist Dr. Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National Laboratory 3 of 5 PNNL scientist begins fabrication of a prototype window coating. Image: Pacific Northwest National Laboratory 4 of 5 Solution is

  11. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy

    SciTech Connect (OSTI)

    Riechers, Dominik A.; Pope, Alexandra; Daddi, Emanuele; Elbaz, David; Carilli, Christopher L.; Walter, Fabian; Hodge, Jacqueline; Morrison, Glenn E.; Dickinson, Mark; Dannerbauer, Helmut

    2014-05-01

    We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared Spectrograph on board the Spitzer Space Telescope. This represents the first detection of PAH emission at z > 4. The strength of the PAH emission feature is consistent with a very high star formation rate of ∼1600 M {sub ☉} yr{sup –1}. We find that this intense starburst powers at least ∼1/3 of the faint underlying 6 μm continuum emission, with an additional, significant (and perhaps dominant) contribution due to a power-law-like hot dust source, which we interpret to likely be a faint, dust-obscured active galactic nucleus (AGN). The inferred 6 μm AGN continuum luminosity is consistent with a sensitive upper limit on the hard X-ray emission as measured by the Chandra X-Ray Observatory if the previously undetected AGN is Compton-thick. This is in agreement with the finding at optical/infrared wavelengths that the galaxy and its nucleus are heavily dust-obscured. Despite the strong power-law component enhancing the mid-infrared continuum emission, the intense starburst associated with the photon-dominated regions that give rise to the PAH emission appears to dominate the total energy output in the infrared. GN20 is one of the most luminous starburst galaxies known at any redshift, embedded in a rich protocluster of star-forming galaxies. This investigation provides an improved understanding of the energy sources that power such exceptional systems, which represent the extreme end of massive galaxy formation at early cosmic times.

  12. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect (OSTI)

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800?nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400?nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1??m to 18??m. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  13. Laser Microperforated Biodegradable Microbial Polyhydroxyalkanoate Substrates for Tissue Repair Strategies: An Infrared Microspectroscopy Studey

    SciTech Connect (OSTI)

    G Ellis; P Cano; M Jadraque; M Martin; L Lopez; T Nunez; E de la Pena; C Marco; L Garrido

    2011-12-31

    Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

  14. Multivariate calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    SciTech Connect (OSTI)

    Long, C.L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers. 19 refs., 15 figs., 6 tabs.

  15. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158?m line from a sample of intermediate redshift (0.2 infrared galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ?}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158?m line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) 10{sup 3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ?10times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ? 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  16. Si?-implanted Si-wire waveguide photodetectors for the mid-infrared

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Souhan, Brian; Lu, Ming; Grote, Richard R.; Chen, Christine P.; Huang, Hsu-Cheng; Driscoll, Jeffrey B.; Stein, Aaron; Bakhru, Hassaram; Bergman, Keren; Green, William M. J.; et al

    2014-10-28

    CMOS-compatible Si?-implanted Si-waveguide p-i-n photodetectors operating at room temperature and at mid-infrared wavelengths from 2.2 to 2.3 m are demonstrated. Responsivities of 9.9 2.0 mA/W are measured at a 5 V reverse bias with an estimated internal quantum efficiency of 2.7 4.5%. The dark current is found to vary from a few microamps down to less than a nanoamp after a post-implantation annealing of 350C. The measured photocurrent dependence on input power shows a linear correspondence over more than three decades, and the frequency response of a 250 m-length p-i-n device is measured to be ~1.7 GHz formorea wavelength of ? = 2.2 m, thus potentially opening up new communication bands for photonic integrated circuits.less

  17. Discriminating trpzip2 and trpzip4 peptides folding landscape using the two-dimensional infrared spectroscopy: A simulation study

    SciTech Connect (OSTI)

    Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan; Zhuang, Wei, E-mail: wzhuang@dicp.ac.cn, E-mail: lijiangy@pku.edu.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China); Yang, Lijiang, E-mail: wzhuang@dicp.ac.cn, E-mail: lijiangy@pku.edu.cn [College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871 (China)] [College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871 (China)

    2014-02-07

    We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two ?-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our study further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.

  18. Nova-like cataclysmic variables in the infrared

    SciTech Connect (OSTI)

    Hoard, D. W.; Long, Knox S.; Howell, Steve B.; Wachter, Stefanie; Brinkworth, Carolyn S.; Knigge, Christian; Drew, J. E.; Szkody, Paula; Kafka, S.; Belle, Kunegunda; Ciardi, David R.; Froning, Cynthia S.; Van Belle, Gerard T.; Pretorius, M. L.

    2014-05-01

    Nova-like (NL) cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of 12 NLs obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at ? ? 3-5 ?m over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present in NLs. Our comparison of the relative advantages and disadvantages of either mechanism for explaining the observations suggests that the situation is rather ambiguous, largely circumstantial, and in need of stricter observational constraints.

  19. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    SciTech Connect (OSTI)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Blain, Andrew W.; Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Smith, Daniel J. B.; Bonfield, David; Baes, Maarten; Bridge, Carrie; Buttiglione, Sara; De Zotti, Gianfranco; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  20. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements Measurement Categories Select below to highlight measurements in specified measurement categories. Aerosols The effect of aerosols is measured by instrument systems and lidars that provide data on the size distribution, optical properties, scattering, and extinction of aerosols. microphysical and chemical properties optical and radiative properties Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more

  1. Insidious vapors: infrared determination of NO/sub 2/ generated in a high-voltage electric arc

    SciTech Connect (OSTI)

    Carlson, E.M.; LeFevre, P.G.; Williams, R.C.

    1984-11-01

    A study of the quantities of nitrogen dioxide generated by a high-voltage electric discharge was conducted. The amount of nitrogen dioxide present was measured using infrared spectroscopy. Paraffin was used to protect the KBr sample cell from damage and NO/sub 2/. The relative toxicities of phosgene and NO/sub 2/, both generated by arcing of electrical equipment, are presented. 10 references, 2 figures, 2 tables.

  2. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G. (Danville, CA)

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  3. Noise Reduction Efforts for the ALS Infrared Beamlines

    SciTech Connect (OSTI)

    Scarvie, Tom; Andresen, Nord; Baptiste, Ken; Byrd, John; Chin, Mike; Martin, Michael; McKinney, Wayne; Steier, Christoph

    2004-05-12

    The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting Beamlines 1.4.2, 1.4.3, and 1.4.4 at the Advanced Light Source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzing and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.

  4. Antenna-coupled microcavities for enhanced infrared photo-detection

    SciTech Connect (OSTI)

    Nga Chen, Yuk; Todorov, Yanko Askenazi, Benjamin; Vasanelli, Angela; Sirtori, Carlo; Biasiol, Giorgio; Colombelli, Raffaele

    2014-01-20

    We demonstrate mid-infrared detectors embedded into an array of double-metal nano-antennas. The antennas act as microcavities that squeeze the electric field into thin semiconductor layers, thus enhancing the detector responsivity. Furthermore, thanks to the ability of the antennas to gather photons from an area larger than the device's physical dimensions, the dark current is reduced without hindering the photo-generation rate. In these devices, the background-limited performance is improved with a consequent increase of the operating temperature. Our results illustrate how the antenna-coupled microcavity concept can be applied to enhance the performances of infrared opto-electronic devices.

  5. Near-infrared detection of WD 0806-661 B with the Hubble space telescope

    SciTech Connect (OSTI)

    Luhman, K. L.; Esplin, T. L.; Morley, C. V.; Burgasser, A. J.; Bochanski, J. J.

    2014-10-10

    WD 0806-661 B is one of the coldest known brown dwarfs (T {sub eff} = 300-345 K) based on previous mid-infrared photometry from the Spitzer Space Telescope. In addition, it is a benchmark for testing theoretical models of brown dwarfs because its age and distance are well constrained via its primary star (2 0.5 Gyr, 19.2 0.6 pc). We present the first near-infrared detection of this object, which has been achieved through F110W imaging (?Y + J) with the Wide Field Camera 3 on board the Hubble Space Telescope. We measure a Vega magnitude of m {sub 110} = 25.70 0.08, which implies J ? 25.0. When combined with the Spitzer photometry, our estimate of J helps to better define the empirical sequence of the coldest brown dwarfs in M {sub 4.5} versus J [4.5]. The positions of WD 0806-661 B and other Y dwarfs in that diagram are best matched by the cloudy models of Burrows et al. and the cloudless models of Saumon et al., both of which employ chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage differ only modestly from the data. Spectroscopy would enable a more stringent test of the models, but based on our F110W measurement, such observations are currently possible only with Hubble, and would require at least ?10 orbits to reach a signal-to-noise ratio of ?5.

  6. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  7. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants.

    SciTech Connect (OSTI)

    Steill, Jeffrey D

    2015-01-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  8. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  9. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  10. Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO{sub 3} thin films

    SciTech Connect (OSTI)

    Seo, Dongmin; Yu, Kwangnam; Jun Chang, Young; Choi, E. J.; Sohn, Egon; Hoon Kim, Kee

    2014-01-13

    We have performed optical transmission, reflection, spectroscopic ellipsometry, and Hall effect measurements on the electron-doped La{sub x}Ba{sub 1x}SnO{sub 3} (x?=?0.04) transparent thin films. From the infrared Drude response and plasma frequency analysis we determine the effective mass of the conducting electron m*?=?0.35m{sub 0}. In the visible-UV region the optical band gap shifts to high energy in (La,Ba)SnO{sub 3} by 0.18?eV compared with undoped BaSnO{sub 3} which, in the context of the Burstein-Moss analysis, is consistent with the infrared-m*. m* of BaSnO{sub 3} is compared with other existing transparent conducting oxides (TCO), and implication on search for high-mobility TCO compounds is discussed.

  11. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  12. Plasmonics in graphene at infrared frequencies

    SciTech Connect (OSTI)

    Jablan, Marinko; Buljan, Hrvoje; Soljacic, Marin

    2009-12-23

    We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch ??Oph ?0.2 eV . Large plasmon losses occur in the interband regime (via excitation of electron-hole pairs), which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth of frequencies from ?Oph up to the interband threshold, where a plasmon decay channel via emission of an optical phonon together with an electron-hole pair is nonegligible. The calculation of losses is performed within the framework of a random-phase approximation and number conserving relaxation-time approximation. The measured DC relaxation-time serves as an input parameter characterizing collisions with impurities, whereas the contribution from optical phonons is estimated from the influence of the electron-phonon coupling on the optical conductivity. Optical properties of plasmons in graphene are in many relevant aspects similar to optical properties of surface plasmons propagating on dielectric-metal interface, which have been drawing a lot of interest lately because of their importance for nanophotonics. Therefore, the fact that plasmons in graphene could have low losses for certain frequencies makes them potentially interesting for nanophotonic applications.

  13. Characterization of high proper motion objects from the wide-field infrared survey explorer

    SciTech Connect (OSTI)

    Luhman, K. L.; Sheppard, Scott S.

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ?12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08623558.7, may belong to the thick disk.

  14. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM

    Office of Scientific and Technical Information (OSTI)

    THE 2500 SQUARE-DEGREE SPT-SZ SURVEY (Journal Article) | SciTech Connect MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY Citation Details In-Document Search Title: A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South

  15. DETECTION OF THE COSMIC FAR-INFRARED BACKGROUND IN AKARI DEEP FIELD SOUTH

    SciTech Connect (OSTI)

    Matsuura, S.; Shirahata, M.; Kawada, M.; Matsuhara, H.; Nakagawa, T.; Oyabu, S.; Takagi, T.; Takeuchi, T. T.; Burgarella, D.; Clements, D. L.; Jeong, W.-S.; Hanami, H.; Khan, S. A.; Pearson, C. P.; White, G. J.; Pollo, A.; Serjeant, S.

    2011-08-10

    We report new limits on the absolute brightness and spatial fluctuations of the cosmic infrared background (CIB) via the AKARI satellite. We carried out observations at 65, 90, 140, and 160 {mu}m as a cosmological survey in AKARI Deep Field South, which is one of the lowest cirrus regions with a contiguous area of the sky. After removing bright galaxies and subtracting zodiacal and Galactic foregrounds from the measured sky brightness, we successfully measured the CIB brightness and its fluctuations across a wide range of angular scales, from arcminutes to degrees. The measured CIB brightness is consistent with previous results reported from COBE data, but significantly higher than the lower limits at 70 and 160 {mu}m obtained via Spitzer from the stacking analysis of selected 24 {mu}m sources. The discrepancy with the Spitzer result is possibly due to a new galaxy population at high redshift obscured by hot dust or unknown diffuse emission. From a power spectrum analysis at 90 {mu}m, two components were identified: the CIB fluctuations with shot noise due to individual galaxies in a small angular scale from the beam size up to 10 arcminutes, and Galactic cirrus emission dominating at the largest angular scales of a few degrees. The overall shape of the power spectrum at 90 {mu}m is very similar to that at longer wavelengths, as observed by Spitzer and the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST). Our power spectrum, with an intermediate angular scale of 10-30 arcminutes, gives a firm upper limit for galaxy clustering, which was found by Spitzer and BLAST. Moreover, the color of the CIB fluctuations, which is obtained by combining our data with the previous results, is as red as ultra-luminous infrared galaxies at high redshift. These galaxies are not likely to provide the majority of the CIB emission at 90 {mu}m, but are responsible for the fluctuations. Our results provide new constraints on the evolution and clustering properties of distant infrared galaxies and any diffuse emission from the early universe.

  16. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Measurements Ground-based Instruments Category

  17. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Measurements The SPARTICUS field campaign seeks to collect a substantial series of data sets-profiling cirrus ice crystal size and distribution-during

  18. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  19. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Farrah, D.; Petty, S. M.; Harris, K.; Lebouteiller, V.; Spoon, H. W. W.; Bernard-Salas, J.; Pearson, C.; Rigopoulou, D.; Smith, H. A.; Gonzlez-Alfonso, E.; Clements, D. L.; Efstathiou, A.; Cormier, D.; Afonso, J.; Hurley, P.; Borys, C.; Verma, A.; Cooray, A.; Salvatelli, V.

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 ?m, [N III]57 ?m, [O I]63 ?m, [N II]122 ?m, [O I]145 ?m, and [C II]158 ?m, are mostly single Gaussians with widths <600 km s{sup 1} and luminosities of 10{sup 7}-10{sup 9} L{sub ?}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  20. Non-destructive component separation using infrared radiant energy

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Russell, Steven W. (Knoxville, TN); Holt, Jerrid S. (Knoxville, TN); Brown, John D. (Harriman, TN)

    2011-03-01

    A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

  1. Near-infrared photodetector with reduced dark current

    DOE Patents [OSTI]

    Klem, John F; Kim, Jin K

    2012-10-30

    A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.

  2. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  3. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect (OSTI)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  4. Direct Aerosol Forcing in the Infrared at the SGP Site?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75%

  5. Sensitized near infrared emission from lanthanide-exchanged zeolites

    SciTech Connect (OSTI)

    Monguzzi, A.; Macchi, G.; Meinardi, F.; Tubino, R.; Burger, M.; Calzaferri, G.

    2008-03-24

    In this work, we present an alternative approach to sensitize the near infrared emission of Er{sup 3+} ions (used in telecom applications) by exploiting the geometrical confinement occurring in porous zeolites structures. The sensitization of the Ln ion is obtained by energy transfer between a suitable organic molecule acting as an antenna and the emitting ion arranged in closed proximity, thus, avoiding the limits imposed by the coordination chemistry.

  6. Tailorable infrared sensing device with strain layer superlattice structure

    DOE Patents [OSTI]

    Cheng, Li-Jen (LaCrescenta, CA)

    1987-12-08

    An infrared photodetector is formed of a heavily doped p-type Ge.sub.x Si.sub.1-x /Si superlattice in which x is pre-established during manufacture in the range 0 to 100 percent. A custom tailored photodetector that can differentiate among close wavelengths in the range of 2.7 to 50 microns is fabricated by appropriate selection of the alloy constituency value, x, to establish a specific wavelength at which photodetection cut-off will occur.

  7. Low Cost Near Infrared Selective Plasmonic Smart Windows

    Office of Environmental Management (EM)

    Guillermo Garcia, memo@heliotropetech.com Heliotrope Technologies Low Cost Near Infrared Selective Plasmonic Smart Windows 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 5/15/14 Planned end date: 5/15/16 Key Milestones 1. Met device performance milestones by optimizing material composition, Aug 2014 2. Established fabrication protocol for transition to commercial scaled samples, Oct 2014 3. Validated UV sensitivity, variable temperature operation, and cycle

  8. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect (OSTI)

    Kilerci Eser, E., E-mail: ecekilerci@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Goto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Doi, Y., E-mail: tomo@phys.nthu.edu.tw, E-mail: doi@ea.c.u-tokyo.ac.jp [The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902 (Japan)

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ? 1; their offset from the z ? 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ? 2-3 galaxies. We provide the largest local (0.050

  9. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    SciTech Connect (OSTI)

    Heyman, J. N. Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41?S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f???2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.

  10. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    SciTech Connect (OSTI)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  11. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    DOE R&D Accomplishments [OSTI]

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  12. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    SciTech Connect (OSTI)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E.; Ryan, R. E.; Koekemoer, A. M.; Schneider, G.; Fan, X.; Hathi, N. P.; Keel, W. C.; Roettgering, H.; Schneider, D. P.; Strauss, M. A.; Yan, H. J.

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  13. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (BBOP)Measurements Related Links BBOP Home Outreach News & Press Backgrounder (PDF, 2.1MB) Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Airborne Measurements Science Plan (PDF, 2.2MB) BBOP wiki Login Required Data Sets Experiment Planning Proposal Abstract and Related Campaigns BBOP Breakout Session, ASR Science Team Meeting, March 2014 BBOP Breakout Session, ASR Science Team Meeting, March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist

  14. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel Earth Live Blog News

  15. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links TCAP Home Outreach News & Press WCAI Interview with Dr. Berg (YouTube) Frequently Asked Questions Brochure Backgrounder (PDF, 1.5MB) AMF Poster, 2012 Images ARM flickr site ARM Data Discovery Browse Data Deployment Operations Data Sets Baseline Instruments and Data Plots at the Archive Airborne Measurements Airborne Data Sets Science Plan (PDF, 1.6 MB) G-1 Cabin Layout TCAP wiki Login Required Experiment Planning Proposal Abstract and Related Campaigns Poster at

  16. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  17. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  18. Spectral calibration in the mid-infrared: Challenges and solutions

    SciTech Connect (OSTI)

    Sloan, G. C. [Cornell University, Center for Radiophysics and Space Research, Ithaca, NY 14853-6801 (United States); Herter, T. L.; Houck, J. R. [Cornell University, Astronomy Department, Ithaca, NY 14853-6801 (United States); Charmandaris, V. [Department of Physics and ITCP, University of Crete, GR-71003, Heraklion (Greece); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Burgdorf, M., E-mail: sloan@isc.astro.cornell.edu [HE Space Operations, Flughafenallee 24, D-28199 Bremen (Germany)

    2015-01-01

    We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 ?m increases for both later optical spectral classes and redder (BV){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths in the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 ?m.

  19. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM

    SciTech Connect (OSTI)

    Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K.; Amblard, A.; Auld, R.; Eales, S.; Pascale, E.; Baes, M.; Michalowski, M. J.; Clements, D. L.; Dariush, A.; Hopwood, R.; De Zotti, G.; Dunne, L.; Maddox, S.; Hoyos, C.; Ibar, E.; Jarvis, M.; and others

    2013-05-01

    We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.

  20. HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect (OSTI)

    Viero, M. P.; Zemcov, M.; Bock, J.; Cooray, A.; Dowell, C. D.; Wang, L.; Addison, G.; Amblard, A.; Arumugam, V.; Aussel, H.; Bethermin, M.; Casey, C. M.; Clements, D. L.; Conley, A.; Conversi, L.; De Zotti, G.; Farrah, D.; and others

    2013-07-20

    We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations totaling {approx}70 deg{sup 2} made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy {delta}I/I = 14% {+-} 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k{sub {theta}} {approx} 0.10-0.12 arcmin{sup -1} (l {approx} 2160-2380), from 250 to 500 {mu}m. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources-suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z {approx} 1-3, is log(M{sub peak}/M{sub Sun }) {approx} 12.1 {+-} 0.5, and that the minimum halo mass to host infrared galaxies is log(M{sub min}/M{sub Sun }) {approx} 10.1 {+-} 0.6.

  1. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC

    Office of Scientific and Technical Information (OSTI)

    NUCLEUS ACTIVITY IN NORMAL GALAXIES (Journal Article) | SciTech Connect MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES Citation Details In-Document Search Title: MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active

  2. Arrays of SiO(2) Substrate-Free Micromechanical Uncooled THz and Infrared

    Office of Scientific and Technical Information (OSTI)

    Detectors (Journal Article) | SciTech Connect Journal Article: Arrays of SiO(2) Substrate-Free Micromechanical Uncooled THz and Infrared Detectors Citation Details In-Document Search Title: Arrays of SiO(2) Substrate-Free Micromechanical Uncooled THz and Infrared Detectors We describe the design, fabrication, and characterization of arrays of uncooled infrared and terahertz micromechanical detectors that utilize SiO2 as a main structural material. Materials with highly dissimilar

  3. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Sebright, J.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for transitioning of the arc lamp processing to the industrial Participant.

  4. NEAR-INFRARED DETECTION OF A SUPER-THIN DISK IN NGC 891

    SciTech Connect (OSTI)

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2013-08-10

    We probe the disk structure of the nearby, massive, edge-on spiral galaxy NGC 891 with subarcsecond resolution JHK{sub s}-band images covering {approx} {+-}10 kpc in radius and {+-}5 kpc in height. We measure intrinsic surface brightness (SB) profiles using realistic attenuation corrections constrained from near- and mid-infrared (Spitzer) color maps and three-dimensional Monte Carlo radiative-transfer models. In addition to the well-known thin and thick disks, a super-thin disk with 60-80 pc scale-height-comparable to the star-forming disk of the Milky Way-is visibly evident and required to fit the attenuation-corrected light distribution. Asymmetries in the super-thin disk light profile are indicative of young, hot stars producing regions of excess luminosity and bluer (attenuation-corrected) near-infrared color. To fit the inner regions of NGC 891, these disks must be truncated within {approx}3 kpc, with almost all their luminosity redistributed in a bar-like structure 50% thicker than the thin disk. There appears to be no classical bulge but rather a nuclear continuation of the super-thin disk. The super-thin, thin, thick, and bar components contribute roughly 30%, 42%, 13%, and 15% (respectively) to the total K{sub s}-band luminosity. Disk axial ratios (length/height) decrease from 30 to 3 from super-thin to thick components. Both exponential and sech{sup 2} vertical SB profiles fit the data equally well. We find that the super-thin disk is significantly brighter in the K{sub s}-band than typically assumed in integrated spectral energy distribution models of NGC 891: it appears that in these models the excess flux, likely produced by young stars in the super-thin disk, has been mistakenly attributed to the thin disk.

  5. Motion Tracking Of A Handheld Scanner With An Infrared Vision System

    SciTech Connect (OSTI)

    Seppi, Jeremy H.; Hatchell, Brian K.; McMakin, Douglas L.

    2011-08-07

    Handheld scanners are used in a large number of applications to inspect walls, floors, tanks, and other large structures. Measurements are made to characterize physical properties, uncover defects, detect evidence of tampering, quantify surface contamination, and so forth. Handheld scanning suffers from a number of drawbacks. The relationship between the data collected and scanned location is difficult or impossible to track. Humans using handheld scanners can unintentionally scan the same area multiple times or entirely overlook an area of interest. An automated scanner tracking system could improve upon current inspection practices with a handheld scanner in terms of efficiency, accuracy, and quality. The authors have developed a handheld scanner tracking system that will allow users to visualize previously scanned areas, highlight areas where important or unusual data are acquired, and store scanning location with acquired data. The scanned regions are saved in real time and projected back on the scanned area using a projector. The system currently utilizes the Smoothboard software, which has already been designed to interpret the location of a captured infrared source from a Wii Remote controller to create an interactive whiteboard. This software takes advantage of the Wii Remotes ability to track the location of an infrared source, and when proper calibration of the Wii Remote orientation is complete, any surface can become a virtual whiteboard. In addition to recording and projecting scan pathways, the system developed by the authors can be used to make notes on the scanning process and project acquired data on top of the scanned area. This latter capability can be used to guide sample acquisition or demolition activities. This paper discusses development of the system and potential benefits to wall scanning with handheld scanners.

  6. Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range

    SciTech Connect (OSTI)

    Soltani, A. Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C.; Charrier, J.; Mattalah, M.; Barkad, H. A.; Mortet, V.

    2014-04-28

    Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 4501553?nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553?nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films.

  7. Tunable ultrasonic phononic crystal controlled by infrared radiation

    SciTech Connect (OSTI)

    Walker, Ezekiel; Neogi, Arup, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China); University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Reyes, Delfino [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Rojas, Miguel Mayorga [Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Krokhin, Arkadii [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Wang, Zhiming, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-10-06

    A tunable phononic crystal based ultrasonic filter was designed by stimulating the phase of the polymeric material embedded in a periodic structure using infrared radiation. The acoustic filter can be tuned remotely using thermal stimulation induced by the infrared radiation. The filter is composed of steel cylinder scatterers arranged periodically in a background of bulk poly (N-isopropylacrylamide) polymer hydrogel. The lattice structure creates forbidden bands for certain sets of mechanical waves that cause it to behave as an ultrasonic filter. Since the bandstructure is determined by not only the arrangement of the scatterers but also the physical properties of the materials composing the scatterers and background, modulating either the arrangement or physical properties will alter the effect of the crystal on propagating mechanical waves. Here, the physical properties of the filter are varied by inducing changes in the polymer hydrogel using an electromagnetic thermal stimulus. With particular focus on the k{sub 00}-wave, the transmission of ultrasonic wave changes by as much as 20 dBm, and band widths by 22% for select bands.

  8. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  9. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    SciTech Connect (OSTI)

    Mao Yewei; Kong Xu [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Hao, Cai-Na [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Zhou Xu, E-mail: owen81@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-09-20

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in the IRX-UV relation.

  10. Thermal And-Or Near Infrared At Railroad Valley Area (Laney,...

    Open Energy Info (EERE)

    phenomena. The second objective relates to testing satellite thermal infrared (TIR) data for locating thermal anomalies that may be related to blind systems. A third...

  11. Thermal And-Or Near Infrared At Coso Geothermal Area (2007) ...

    Open Energy Info (EERE)

    and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature...

  12. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  13. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  14. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  15. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  16. Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) Exploration Activity Details...

  17. Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz, Et Al., 2009) Exploration...

  18. Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...

    Open Energy Info (EERE)

    And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above...

  19. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River...

  20. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River...

  1. Infrared Cloud Imager Deployment at the North Slope of Alaska...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... imager, Proceedings, Fifth Atmospheric Radiation Measurements (ARM) Science Team Meeting, ... In Proceedings of the Fifth Atmospheric Radiation Measurements (ARM) Science Team Meeting, ...

  2. Abstract Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of the ν µ charged current π + to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam Steven K. Linden 2011 Charged current single pion production (CCπ + ) and charged current quasi-elastic scatter- ing (CCQE ) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these pro- cesses, however, are not well understood in this energy range. This dissertation

  3. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  4. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect (OSTI)

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85?kA/cm{sup 2} and 1.95?kA/cm{sup 2} at 77?K and 300?K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  5. Three-dimensional infrared metamaterial with asymmetric transmission

    SciTech Connect (OSTI)

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90 one-way pure optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.

  6. Three-dimensional infrared metamaterial with asymmetric transmission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less

  7. Strain-compensated infrared photodetector and photodetector array

    DOE Patents [OSTI]

    Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J

    2013-05-28

    A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.

  8. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    SciTech Connect (OSTI)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  9. Infrared singularities of scattering amplitudes in perturbative QCD

    SciTech Connect (OSTI)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  10. Methods and apparatus for mid-infrared sensing

    DOE Patents [OSTI]

    Lin, Pao Tai; Cai, Yan; Agarwal, Anuradha Murthy; Kimerling, Lionel C.

    2015-06-02

    A chip-scale, air-clad semiconductor pedestal waveguide can be used as a mid-infrared (mid-IR) sensor capable of in situ monitoring of organic solvents and other analytes. The sensor uses evanescent coupling from a silicon or germanium waveguide, which is highly transparent in the mid-IR portion of the electromagnetic spectrum, to probe the absorption spectrum of fluid surrounding the waveguide. Launching a mid-IR beam into the waveguide exposed to a particular analyte causes attenuation of the evanescent wave's spectral components due to absorption by carbon, oxygen, hydrogen, and/or nitrogen bonds in the surrounding fluid. Detecting these changes at the waveguide's output provides an indication of the type and concentration of one or more compounds in the surrounding fluid. If desired, the sensor may be integrated onto a silicon substrate with a mid-IR light source and a mid-IR detector to form a chip-based spectrometer.

  11. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  12. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  13. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    SciTech Connect (OSTI)

    Hardegree-Ullman, E. E.; Gudipati, M. S.; Werner, M.; Boogert, A. C. A.; Lignell, H.; Allamandola, L. J.; Stapelfeldt, K. R. E-mail: gudipati@jpl.nasa.gov

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 ?m) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 ?m. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ?50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 ?m spectral region, taking into account the strength of the 3.25 ?m CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 ?m region.

  14. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    SciTech Connect (OSTI)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewi?o, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC) and the Spitzer Survey of the Small Magellanic Cloud (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzers InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 ?m bands, and the Multiband Imaging Photometer for Spitzer 24 ?m band. An error-weighted flux difference between each pair of three epochs (variability index) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ?2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  15. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect (OSTI)

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  16. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect (OSTI)

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  17. Computational and experimental research on infrared trace by human being contact

    SciTech Connect (OSTI)

    Xiong Zonglong; Yang Kuntao; Ding Wenxiu; Zhang Nanyangsheng; Zheng Wenheng

    2010-06-20

    The indoor detection of the human body's thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph's contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

  18. A tapered undulator experiment at the ELBE far infrared hybrid-resonator oscillator free electron laser

    SciTech Connect (OSTI)

    Asgekar, V.; Lehnert, U.; Michel, P.

    2012-01-15

    A tapered undulator experiment was carried out at the ELBE far-infrared free electron laser (FEL). The oscillator FEL makes use of a hybrid optical resonator. The main motivation was to see whether the presence of a dispersive medium in the form of a waveguide in the resonator has any effect on the outcome. The FEL saturated power and the wavelength shifts have been measured as a function of both positive as well as negative undulator field amplitude tapering. In contrast to the typical high-gain FELs where positive tapering proves beneficial for the output power we observed an improvement of performance at negative taper. During the same experiments we studied the characteristics of the detuning curves. The width of the curves indicates a maximum small signal gain for zero taper while the output peak power increases with negative taper. The saturated power output, the detuning curve characteristics, and the wavelength shifts agrees with the theoretical predictions. Details of the experiment are presented.

  19. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  20. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    SciTech Connect (OSTI)

    Mosley, J. D.; Young, J. W.; Duncan, M. A. E-mail: maduncan@uga.edu; Huang, M.; McCoy, A. B. E-mail: maduncan@uga.edu

    2015-03-21

    The carbenium ion with nominal formula [C,H{sub 4},O]{sup +} is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm{sup ?1} using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as the precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H{sub 4},O]{sup +} potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.

  1. Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers

    SciTech Connect (OSTI)

    Lu, Q.; Zhuang, Q.; Hayton, J.; Yin, M.; Krier, A.

    2014-07-21

    There have been relatively few reports of lasing from InSb quantum dots (QDs). In this work, type II InSb/InAs QD laser diodes emitting in the mid-infrared at 3.1??m have been demonstrated and characterized. The gain was determined to be 2.9?cm{sup ?1} per QD layer, and the waveguide loss was ?15?cm{sup ?1} at 4?K. Spontaneous emission measurements below threshold revealed a blue shift of the peak wavelength with increasing current, indicating filling of ground state heavy hole levels in the QDs. The characteristic temperature, T{sub 0}?=?101?K below 50?K, but decreased to 48?K at higher temperatures. The emission wavelength of these lasers showed first a blue shift followed by a red shift with increasing temperature. A hybrid structure was used to fabricate the laser by combining a liquid phase epitaxy grown p-InAs{sub 0.61}Sb{sub 0.13}P{sub 0.26} lower cladding layer and an upper n{sup +} InAs plasmon cladding layer which resulted in a maximum operating temperature (T{sub max}) of 120?K in pulsed mode, which is the highest reported to date.

  2. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    SciTech Connect (OSTI)

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V.; Simmons, Blake A.; Henry, Robert J.

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  3. Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Benjamin Varberg; Haugan, Heather J.; Brown, Gail J.; Kadlec, Emil Andrew; Kim, Jin K.; Shaner, Eric A.

    2016-02-02

    Here, significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice(SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SLstructure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in themore » minority carrier lifetime by reducing Shockley–Read–Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ~30 K, and by Auger recombination at temperatures above ~45 K.« less

  4. A Study of External Galaxies Detected by the {ital COBE} Diffuse Infrared Background Experiment

    SciTech Connect (OSTI)

    Odenwald, S.; Newmark, J.; Smoot, G.

    1998-06-01

    A comparison of the {ital COBE} Diffuse Infrared Background Experiment (DIRBE) all-sky survey with the locations of known galaxies in the {ital IRAS} Catalog of Extragalactic Objects and the Center for Astrophysics Catalog of Galaxies led to the detection of as many as 57 galaxies. In this paper, we present the photometric data for these galaxies and an analysis of the seven galaxies that were detected at {lambda} {gt} 100 {mu}m. Estimates of the ratio of the mass of the cold dust (CD) component detected at {ital T}{sub {ital d}} = 20{endash}30 K to a very cold dust (VCD) component with {ital T}{sub {ital d}} {approx} 10{endash}15 K suggest that between 2{percent}{endash}100{percent} of the cirrus-like CD mass can also exist in many of these galaxies as VCD. In one galaxy, M33, the DIRBE photometry at 240 {mu}m suggests as much as 26 times as much VCD may be present as compared to the cirrus-like component. Further submillimeter measurements of this galaxy are required to verify such a large population of VCD. We also present 10 galaxies that were detected in the sky region not previously surveyed by {ital IRAS} and that can be used to construct a flux-limited all-sky catalog of galaxies brighter than 1000 Jy with a modest completeness limit of about 65{percent}. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  5. A study of external galaxies detected by the COBE Diffuse InfraredBackground Experiment

    SciTech Connect (OSTI)

    Odenwald, S.; Newmark, J.; Smoot, G.

    1995-10-05

    A comparison of the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky survey with the locations of known galaxies in the IRAS Catalog of Extragalactic Objects and the Center for Astrophysics Catalog of Galaxies led to the detection of as many as 57 galaxies. In this paper, we present the photometric data for these galaxies and an analysis of the seven galaxies that were detected at lambda > 100 mum. Estimates of the ratio of the mass of the cold dust (CD) component detected at Td = 20-30 K to a very cold dust (VCD) component with Td approx. = to 10-15 K suggest that between 2 percent-100 percent of the cirrus-like CD mass can also exist in many of these galaxies as VCD. In one galaxy, M33, the DIRBE photometry at 240 mu m suggests as much as 26 times as much VCD may be present as compared to the cirrus-like component. Further submillimeter measurements of this galaxy are required to verify such a large population of VCD. We also present 10 galaxies that were detected in the sky region not previously surveyed by IRAS and that can be used to construct a flux-limited all-sky catalog of galaxies brighter than 1000 Jy with a modest completeness limit of about 65 percent.

  6. High-Density Infrared Surface Treatments of Refractories

    SciTech Connect (OSTI)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  7. Nanosecond Mid-Infrared Detection for Pulse Radiolysis

    SciTech Connect (OSTI)

    Grills,D.C.; Preses, J.M.; Wishart, J.F.; Cook, A.R.

    2009-07-12

    Pulse radiolysis, utilizing electron pulses from accelerators, is the definitive method for adding single positive or negative charges to molecules. It is also among the most effective means for creating free radicals. Such species are particularly important in applications such as redox catalysis relevant to solar energy conversion and advanced nuclear energy systems. Coupled with fast UV-visible detection, pulse radiolysis has become an extremely powerful method for monitoring the kinetics of the subsequent reactions of these species on timescales ranging from picoseconds to seconds. However, in many important contexts the radicals formed are difficult to identify due to their broad and featureless UV-visible absorption spectra. Time-resolved infrared (TRIR) absorption spectroscopy is a powerful structural probe of short-lived intermediates, which allows multiple transient species to be clearly identified and simultaneously monitored in a single process. Unfortunately, due to technical challenges the coupling of fast (sub-millisecond) TRIR with pulse radiolysis has received little attention, being confined to gas-phase studies. Taking advantage of recent developments in mid-IR laser technology, we have recently begun developing nanosecond TRIR detection methodologies for condensed-phase samples at our Laser Electron Accelerator Facility (LEAF). The results of preliminary pulse radiolysis-TRIR investigations on the formation of the one-electron reduced forms of CO{sub 2} reduction catalysts (e.g. see above) and their interactions with CO{sub 2} will be presented.

  8. Infrared Extraction Change for the NSLS-II Storage Ring

    SciTech Connect (OSTI)

    Blednykh,A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-05-04

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are {approx}50mrad horizontal and {approx}25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.

  9. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect (OSTI)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  10. Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z

    Office of Scientific and Technical Information (OSTI)

    > 4 submillimeter galaxy (Journal Article) | SciTech Connect Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy Citation Details In-Document Search Title: Polycyclic aromatic hydrocarbon and mid-infrared continuum emission in a z > 4 submillimeter galaxy We report the detection of 6.2 μm polycyclic aromatic hydrocarbon (PAH) and rest-frame 4-7 μm continuum emission in the z = 4.055 submillimeter galaxy GN20, using the Infrared

  11. A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE

    Office of Scientific and Technical Information (OSTI)

    GALACTIC NUCLEUS ABUNDANCE (Journal Article) | SciTech Connect X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE Citation Details In-Document Search Title: A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON-THICK ACTIVE GALACTIC NUCLEUS ABUNDANCE We estimate the abundance of Compton-thick (CT) active galactic nuclei (AGNs) based on our joint model of X-ray and infrared backgrounds. At L{sub rest2-10{sub keV}} > 10{sup 42} erg s{sup -1}, the CT

  12. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new

    Office of Scientific and Technical Information (OSTI)

    NOAO survey probing the nearby smooth Hubble flow (Journal Article) | SciTech Connect Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow Citation Details In-Document Search Title: Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09

  13. INFRARED VIBRATIONAL PREDISSOCIATION SPECTROSCOPY OF WATER CLUSTERS BY THE CROSSED LASER MOLECULAR BEAM TECHNIQUE

    SciTech Connect (OSTI)

    Vernon, M.F.; Krajnovich, D.J.; Kwok, H.S.; Lisy, J.M.; Shen, Y.R.; Lee, Y.T.

    1981-11-01

    Water clusters formed in a molecular beam are predissociated by tunable, pulsed, infrared radiation in the frequency range 2900~3750 cm{sup -1}. The recoiling fragments are detected off axis from the molecular beam using a rotatable mass spectrometer. Arguments are presented which show that the measured frequency dependent signal at a fixed detector angle is proportional to the absorption spectrum of the clusters. It is found that the spectra of clusters containing three or more water molecules are remarkably similar to the liquid phase spectrum. Dynamical information on the predissociation process is obtained from the velocity distribution of the fragments. An upper limit to the excited vibrational state lifetime of ~1 microsecond is observed for the results reported here. The most probable dissociation process concentrates the available excess energy into the internal motions of the fragment molecules. Both the time scale and translational energy distribution are consistent with the qualitative predictions of current theoretical models for cluster predissociation. From adiabatic dissociation trajectories and Monte Carlo simulations it is seen that the strong coupling present in the water polymers probably invalidates the simpler "diatomic" picture formulations of cluster predissociation. Instead, the energy can be extensively shared among the intermolecular motions in the polymer before dissociation. Comparison between current intermolecular potentials describing liquid water and the observed frequencies is made in the normal mode approximation. The inability of any potential to predict the gross spectral features (the number of bands and their observed frequency shift from the gas phase monomer) suggests that substantial improvement in the potential energy functions are possible, but that more accurate methods of solving the vibrational wave equation are necessary before a proper explanation of the spectral fine structure is possible. The observed differences between the dimer and larger polymers (trimer-hexamer) indicate a dramatic change in the hydrogen bonding, which is best explained as arising from the non-additive effects present when a water molecule is both donating and accepting a hydrogen bond. This difference between dimer and trimer also rationalizes the previous disagreement between potential functions based on condensed phase properties (where the water molecule is interacting with multiple neighbors) and those fit to imperfect gas or dimer properties which sample only the isolated pair potential. The data support an interpretation of the hydrogen bonded O-H stretching fundamental region as arising from a homogeneous broadening (not necessarily a result of the predissociation) whose width is characteristic of the hydrogen bond itself and not the sum of distinct bonding geometries. This is different from some previous theories of the water infrared absorption spectrum which assign each band to water molecules bound to different numbers of neighboring molecules.

  14. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  15. Analysis of several high-resolution infrared bands of spiropentane, C5H8

    SciTech Connect (OSTI)

    Maki, Arthur G.; Price, Joseph E.; Harzan, J.; Nibler, Joseph W.; Weber, Alfons; Masiello, Tony; Blake, Thomas A.

    2015-06-01

    he high-resolution infrared absorption spectrum of spiropentane (C5H8) has been measured from 200 to 4000 cm 1, and a detailed analysis is presented for eight bands in the region from 700 to 2200 cm 1. Two fundamental perpendicular bands were analyzed, m22 and m24 near 1050 and 780 cm 1, respectively, along with two fundamental parallel bands, m14 and m16 near 1540 and 990 cm1, respectively. Two other fundamentals, m17 and m23, are seen as intense overlapping bands near 880 cm*1 and are Coriolis-coupled, producing a complex mixture in which only P-branch transitions could be tentatively assigned for m17. In addition, three binary combination bands were fit at about 1570, 2082, and 2098 cm*1 which are assigned as either 2m24 or m5 + m16 in the first case, m4 + m22 in the second case, and 2m22 in the latter case. The two l-type resonance constants, q+ and q*, were determined for each of the two perpendicular fundamentals m22 and m24. Those two constants were also responsible for splittings observed in the K = 3 levels of m24. For the ground state the order of the split K = 2 B1/B2 levels has been reversed from that reported previously, based on the measurements and assignments for the m24 band. Rovibrational parameters deduced from the analyses are compared with those obtained from density functional Gaussian calculations at the anharmonic level.

  16. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    SciTech Connect (OSTI)

    Wylezalek, Dominika; Vernet, Jol; De Breuck, Carlos; Stern, Daniel; Brodwin, Mark; Galametz, Audrey; Gonzalez, Anthony H.; Jarvis, Matt; Hatch, Nina; Seymour, Nick; Stanford, Spencer A.

    2014-05-01

    We present 4.5 ?m luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that ? = 1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z{sub f} ? 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ? 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNswhich have proven to be preferentially located in massive dark matter halos in the richest environments at high redshiftand they may therefore be older and more evolved systems than the general protocluster population.

  17. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    SciTech Connect (OSTI)

    van der Laan, J. D.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists better than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.

  18. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOE Patents [OSTI]

    Maserjian, Joseph (Goleta, CA)

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  19. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect (OSTI)

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  20. A JOINT MODEL OF X-RAY AND INFRARED BACKGROUNDS. II. COMPTON...

    Office of Scientific and Technical Information (OSTI)

    z 0 up to z 3. CT AGNs with higher luminosity cuts (>10sup 43, 10sup 44, and ... INFRARED RADIATION; KEV RANGE; LUMINOSITY; RED SHIFT; STAR ACCRETION; X RADIATION ...

  1. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; Kemme, S. A.; Dereniak, E. L.

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  2. Thermal And-Or Near Infrared At U.S. West Region (Krohn, Et Al...

    Open Energy Info (EERE)

    Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Over 30 disseminated gold or hot-spring deposits in the western U.S. were sampled for ammonium-bearing minerals...

  3. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    SciTech Connect (OSTI)

    Lacy, M.; Ridgway, S. E.; Gates, E. L.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ? 10{sup 10} L {sub ?} to highly luminous quasars (L {sub bol} ? 10{sup 14} L {sub ?}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 ?m flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ?> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ? 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ?}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infraredemission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  4. Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; Slusar, Tetiana V.; Kong, Tai; Bud'ko, Sergey L.; Kittiwatanakul, Salinporn; Qazilbash, M. M.; McLeod, Alexander; Fei, Zhe; et al

    2015-06-29

    We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for a comprehensive understanding ofmore » complex energy landscapes that may not be readily determined by macroscopic approaches.« less

  5. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect (OSTI)

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  6. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  7. Multi-spectral Infrared Computed Tomography (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Multi-spectral Infrared Computed Tomography Citation Details In-Document Search Title: Multi-spectral Infrared Computed Tomography Authors: Bingham, Philip R [1] ; Morales Rodriguez, Marissa E [1] ; Datskos, Panos G [1] ; Graham, David E [1] + Show Author Affiliations ORNL Publication Date: 2016-01-01 OSTI Identifier: 1240578 DOE Contract Number: AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: Electronic Imaging, San Francisco, CA, USA, 20160214, 20160214

  8. In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high

    Office of Scientific and Technical Information (OSTI)

    pressure (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure Citation Details In-Document Search Title: In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure Authors: Thompson, Elizabeth C. ; Campbell, Andrew J. ; Liu, Zhenxian [1] ; CIW) [2] + Show Author Affiliations (UC) ( Publication Date: 2016-03-08 OSTI Identifier: 1241067 Resource Type: Journal

  9. A two-parameter model for the infrared/submillimeter/radio spectral energy

    Office of Scientific and Technical Information (OSTI)

    distributions of galaxies and active galactic nuclei (Journal Article) | SciTech Connect A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei Citation Details In-Document Search Title: A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei A two-parameter semi-empirical model is presented for the spectral energy distributions of galaxies with

  10. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  11. The phase transition in VO2 probed using x-ray, visible and infrared

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiations Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Journal Covers The phase transition in VO2 probed using x-ray, visible and infrared radiations The phase transition in VO2 probed using x-ray, visible and infrared radiations Print Thursday, 18 February 2016 10:48 The nearly simultaneous Mott (electronic) and Peierls (structural) transitions in vanadium dioxide are of

  12. Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the

  13. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  14. Characterization of Li-ion Batteries using Neutron Diffraction and Infrared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging Techniques | Department of Energy Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm044_wang_2011_p.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User

  15. Self-Assembled ErSb Nanostructures with Optical Applications in Infrared

    Office of Scientific and Technical Information (OSTI)

    and Terahertz (Journal Article) | SciTech Connect Self-Assembled ErSb Nanostructures with Optical Applications in Infrared and Terahertz Citation Details In-Document Search Title: Self-Assembled ErSb Nanostructures with Optical Applications in Infrared and Terahertz Authors: Lu, Hong ; Ouellette, Daniel G. ; Preu, Sascha ; Watts, Justin D. ; Zaks, Benjamin ; Burke, Peter G. ; Sherwin, Mark S. ; Gossard, Arthur C. Publication Date: 2014-03-12 OSTI Identifier: 1160953 DOE Contract Number:

  16. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    SciTech Connect (OSTI)

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-10-12

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm{sup {minus}1} (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated.

  17. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-22

    the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating it. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

  18. MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE

    SciTech Connect (OSTI)

    Bianco, F. B.; Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wood-Vasey, W. M. [PITT PACC, Department of Physics and Astronomy, 3941 O'Hara Street, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Rest, A., E-mail: fb55@nyu.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z ? 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of U BV RI, U BV r{sup ?}i{sup ?}, and u{sup ?} BV r{sup ?}i{sup ?}, and 1919 JHK{sub s} NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  19. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    SciTech Connect (OSTI)

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  20. Excimer laser photolysis of V(CO)/sub 6/: time-resolved infrared studies of gas-phase V(CO)/sub x/ (x = 5-2)

    SciTech Connect (OSTI)

    Ishikawa, Y.; Hackett, P.A.; Rayner, D.M.

    1987-10-28

    The photolysis of gas-phase vanadium hexacarbonyl V(CO)/sub 6/, has been studied at excimer laser wavelengths (351, 308, 248, and 193 nm) by observing the coordinatively unsaturated transient products, V(CO)/sub x/ (x = 5-3 and possibly 2), via time-resolved infrared kinetic absorption spectroscopy. The dependence of the initial fragment distribution on photolysis wavelength is consistent with the model of sequential CO elimination established by similar studies on Fe(CO)/sub 5/, Cr(CO)/sub 6/, and Co(CO)/sub 3/NO. The high reactivity of unsaturated metal carbonyl species with saturated carbonyls to form binuclear complexes is again observed, with rate constants for the reaction of V(CO)/sub 3/ and V(CO)/sub 4/ with V(CO)/sub 6/ found to be of the order 3 x 10/sup -10/ cm/sup 3/ molecule/sup -1/ s/sup -1/. Infrared assignments for V(CO)/sub x/ are supported by kinetic measurements in the presence of added CO. Rate constants for the reaction of CO with V(CO)/sub 3/, V(CO)/sub 4/, and V(CO)/sub 5/ are found as (0.4 +/- 0.1) x 10/sup -10/, (0.5 +/- 0.1) x 10/sup -10/, and (0.5 +/- 0.1) x 10/sup -10/ cm/sup 3/ molecule/sup -1/ s/sup -1/, respectively, leading to the expectation that ground-state V(CO)/sub 3-5/ share the doublet character of V(CO)/sub 6/. The infrared assignments are in disagreement with infrared absorption and some ESR studies of V(CO)/sub x/ fragments in low-temperature matrices.

  1. WISE TF: A MID-INFRARED, 3.4 {mu}m EXTENSION OF THE TULLY-FISHER RELATION USING WISE PHOTOMETRY

    SciTech Connect (OSTI)

    Lagattuta, David J.; Mould, Jeremy R.; Staveley-Smith, Lister; Hong Tao; Springob, Christopher M.; Masters, Karen L.; Koribalski, Baerbel S.; Jones, D. Heath

    2013-07-10

    We present a mid-infrared Tully-Fisher (TF) relation using photometry from the 3.4 {mu}m W1 band of the Wide-field Infrared Survey Explorer (WISE) satellite. The WISE TF relation is formed from 568 galaxies taken from the all-sky 2MASS Tully-Fisher (2MTF) galaxy catalog, spanning a range of environments including field, group, and cluster galaxies. This constitutes the largest mid-infrared TF relation constructed to date. After applying a number of corrections to galaxy magnitudes and line widths, we measure a master TF relation given by M{sub corr} = -22.24 - 10.05[log (W{sub corr}) - 2.5], with an average dispersion of {sigma}{sub WISE} = 0.686 mag. There is some tension between WISE TF and a preliminary 3.6 {mu}m relation, which has a shallower slope and almost no intrinsic dispersion. However, our results agree well with a more recent relation constructed from a large sample of cluster galaxies. We additionally compare WISE TF to the near-infrared 2MTF template relations, finding a good agreement between the TF parameters and total dispersions of WISE TF and the 2MTF K-band template. This fact, coupled with typical galaxy colors of (K - W1) {approx} 0, suggests that these two bands are tracing similar stellar populations, including the older, centrally-located stars in the galactic bulge which can (for galaxies with a prominent bulge) dominate the light profile.

  2. An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance Interferometer (AERI) Data Collected by the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Turner, DD; Revercomb, HE; Knuteson, RO; Dedecker, RG; Feltz, WF

    2004-09-01

    Mercury Cadmium Telluride (MCT) detectors provide excellent sensitivity to infrared radiation and are used in passive infrared remote sensors such as the Atmospheric Emitted Radiance Interferometer (AERI). However, MCT detectors have a nonlinear response and thus this nonlinearity must be characterized and corrected to provide accurate infrared radiance observations. This paper discusses the significance of the nonlinearity correction applied to AERI data and its impacts on the parameters retrieved from the AERI spectra. It also evaluates the accuracy of the scheme used to determine the nonlinearity of the MCT detectors used in the Atmospheric Radiation Measurement (ARM) Programs AERIs.

  3. Sandia InfraRed HEterodyne aNalysis

    Energy Science and Technology Software Center (OSTI)

    2011-04-29

    SIRHEN uses time-frequency analysis to extract velocity histories from Photonic Doppler Velocimetry (PDV) measurements. Time-frequency information, obtained via the Fast Fourier Transform (FFT), is displayed as an image for visualization. Subsequent analysis of the local frequency spectrum, particularly peak fitting, are included to extract specific velocity histories. Frequency (up/down) conversion PDV measurements are explicitly supported. The program can be run within MATLAB or as a standalone executable.

  4. THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS

    SciTech Connect (OSTI)

    Fernandez, Elizabeth R.; Komatsu, Eiichiro; Shapiro, Paul R.; Iliev, Ilian T.

    2010-02-20

    The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information regarding the nature of sources contributing to the cosmic reionization. The angular power spectrum of the IGM, in most cases, is much smaller than the halo angular power spectrum, except when f{sub esc} is close to unity, t{sub SF} is longer, or the minimum redshift at which the star formation is occurring is high. In addition, low levels of the observed mean background intensity tend to rule out high values of f{sub *} {approx}> 0.2.

  5. ARM - Measurement - Snow depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Snow depth Snow depth measured at the surface Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  6. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  7. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2003-07-01

    Polk Power has decided that the Texaco gasification unit will not be sold to a third party. Therefore, including the ownership transfer of the Texaco gasification unit in the agreement is not an issue any more. The cooperative agreement between Texaco and Polk Power has been revised several times in this quarter. Polk power is making comments on the last draft that Texaco sent to them. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  8. DESIGN, FABRICATION AND BENCH TESTNG OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2003-04-01

    The cooperative agreement between Texaco and Polk Power has been revised by Polk Power and ChevronTexaco several times already. Lawyers from both Polk Power and ChevronTexaco are in the process to include the issues related to the ownership transfer of the Texaco gasification unit in the agreement and finalize the draft. The modification fieldwork and testing will start once the cooperative agreement is signed with Polk Power.

  9. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2004-01-01

    ChevronTexaco has shipped the pyrometer system to Tampa, Florida. Polk Power is in the process of installing the mechanical, electrical and instrumentation of the pyrometer system as well as integrating the instrumentation to the test site Distributed Control System. The startup and field testing of the system will begin afterwards.

  10. DESIGN, FABRICATION AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF GASIFIER REACTION CHAMBER TEMPERATURE

    SciTech Connect (OSTI)

    Thomas F. Leininger; Hua-Min Huang

    2003-10-01

    Polk Power and ChevronTexaco have signed the cooperative agreement at the end of reporting period. ChevronTexaco is shipping the pyrometer system to Tampa, Florida. Polk Power will start the modification fieldwork and installation of the system. The testing will start when the next opportunity is available.

  11. Near-infrared spectroscopy of CH{sub 2} by frequency modulated diode laser absorption

    SciTech Connect (OSTI)

    Marr, A.J.; Sears, T.J.; Chang, B.

    1998-09-01

    A diode laser spectrometer incorporating a multi-pass Herriott type cell and frequency modulation detection was used to record a previously unaccessed region of the near-infrared singlet{l_arrow}singlet absorption spectrum of methylene between 10thinsp000 cm{sup {minus}1} and 10thinsp600 cm{sup {minus}1}. With this spectrometer, signal-to-noise ratios close to the quantum noise limit have been attained. Identification of rovibronic transitions to five previously unobserved levels, K=1 {tilde a}(0,9,0), K=2thinsp{tilde b}(0,1,0), K=2thinsp{tilde a}(1,6,0), K=3thinsp{tilde b}(0,1,0) and K=3thinsp{tilde a}(0,10,0), was made. Despite the fact that the present spectra access levels within approximately 1300 cm{sup {minus}1} of the barrier to linearity, the spectrum is dense and perturbed, characteristics in common with spectra recorded in many previous studies at shorter wavelengths. Recent spectroscopic observations of halomethylenes [J. Mol. Spectrosc. {bold 188}, 68 (1998)] had suggested that the CH{sub 2} spectrum might become simpler at longer wavelengths, but this was not evident in the observed spectra. The mixed nature of the singlet states is evidenced by the assignment of rovibronic transitions to levels containing primarily {tilde a}thinsp{sup 1}A{sub 1} state character. The new measurements provide a stringent test for modern theoretical models for CH{sub 2} and will enable refinement of the electronic potential surfaces. {copyright} {ital 1998 American Institute of Physics.}

  12. Method and apparatus for reducing radiation exposure through the use of infrared data transmission

    DOE Patents [OSTI]

    Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

    1989-01-01

    A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

  13. On the Relative Utility of Infrared (IR) versus Terahertz (THz) for Optical Sensors

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Valentine, Nancy B.; Gassman, Paul L.; Atkinson, David A.; Sharpe, Steven W.; Williams, Stephen D.

    2007-11-30

    Pacific Northwest National Laboratory (PNNL) has active programs investigating the optical absorption strengths of several types of molecules including toxic industrial chemicals (TICs), microbiological threats such as bacteria, as well as explosives such as RDX, PETN and TNT. While most of our work has centered on the mid-infrared domain (600 to 6,500 cm-1), more recent work has also included work in the far-infrared, also called the terahertz (THz) region (500 to ~8 cm-1). Using Fourier transform infrared spectroscopy, we have been able to compare the relative, and in some cases absolute, IR/THz cross sections of a number of species in the solid and liquid phases. The relative band strengths of a number of species of interest are discussed in terms of both experimental and computational results.

  14. Constraining the Ly? escape fraction with far-infrared observations of Ly? emitters

    SciTech Connect (OSTI)

    Wardlow, Julie L.; Calanog, J.; Cooray, A.; Malhotra, S.; Zheng, Z.; Rhoads, J.; Finkelstein, S.; Bock, J.; Bridge, C.; Ciardullo, R.; Gronwall, C.; Conley, A.; Farrah, D.; Gawiser, E.; Heinis, S.; Ibar, E.; Ivison, R. J.; Marsden, G.; Oliver, S. J.; Riechers, D.; and others

    2014-05-20

    We study the far-infrared properties of 498 Ly? emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500 ?m data from the Herschel Multi-tiered Extragalactic Survey and 870 ?m data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1? depths of ?0.1 to 0.4 mJy. The LAEs are also undetected at ?3? in the stacks, although a 2.5? signal is observed at 870 ?m for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Ly? and UV emission to determine lower limits on the LAEs' Ly? escape fraction (f {sub esc}(Ly?)). For the Sd SED template, the inferred LAEs f {sub esc}(Ly?) are ? 30% (1?) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f {sub esc}(Ly?) at these redshifts. Thus, if the LAEs f {sub esc}(Ly?) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f {sub esc}(Ly?) of ?10%-20% (1?), all of which are slightly higher than the global evolution of f {sub esc}(Ly?), but consistent with it at the 2?-3? level.

  15. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect (OSTI)

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  16. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect (OSTI)

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  17. ON THE VIABILITY OF THE PAH MODEL AS AN EXPLANATION OF THE UNIDENTIFIED INFRARED EMISSION FEATURES

    SciTech Connect (OSTI)

    Zhang, Yong; Kwok, Sun E-mail: sunkwok@hku.hk

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are widely considered the preferred candidate for the carrier of the unidentified infrared emission bands observed in the interstellar medium and circumstellar envelopes. In this paper, we report the results of fitting a variety of non-PAH spectra (silicates, hydrogenated amorphous carbon, coal, and even artificial spectra) using the theoretical infrared spectra of PAHs from the NASA Ames PAH IR Spectroscopic Database. We show that these non-PAH spectra can be well fitted by PAH mixtures. This suggests that a general match between astronomical spectra and those of PAH mixtures does not necessarily provide definitive support for the PAH hypothesis.

  18. Design of the First Infrared Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Pattanasiriwisawa, W.; Songsiriritthigul, P.; Dumas, P.

    2010-06-23

    This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

  19. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  20. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    SciTech Connect (OSTI)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order which are all consistent with a solid-state transformation formation of maskelynite.

  1. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOE Patents [OSTI]

    Haller, Eugene E. (Berkeley, CA); Brundermann, Erik (Berlin, DE)

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  2. A JOINT MODEL OF THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL

    Office of Scientific and Technical Information (OSTI)

    CONSTRUCTION AND FIRST RESULTS (Journal Article) | SciTech Connect THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL CONSTRUCTION AND FIRST RESULTS Citation Details In-Document Search Title: A JOINT MODEL OF THE X-RAY AND INFRARED EXTRAGALACTIC BACKGROUNDS. I. MODEL CONSTRUCTION AND FIRST RESULTS We present an extragalactic population model of the cosmic background light to interpret the rich high-quality survey data in the X-ray and IR bands. The model incorporates star formation

  3. Mid-infrared followup of cold brown dwarfs: diversity in age, mass and metallicity

    SciTech Connect (OSTI)

    Saumon, Didier; Leggett, Sandy K; Burningham, Ben; Marley, Mark S; Waren, S J; Jones, H R A; Pinfield, D J; Smart, R L

    2009-01-01

    We present new Spitzer IRAC [3.6], [4.5], [5.8] and [8.0] photometry of nine very late-type T dwarfs. Combining this with previously published photometry, we investigate trends with type and color that are useful for both the planning and interpretation of infrared surveys designed to discover the coldest T or Y dwarfs. Brown dwarfs with effective temperature (T{sub eff}) below 700 K emit more than half their flux at wavelengths longer than 3 {micro}m, and the ratio of the mid-infrared flux to the near-infrared flux becomes very sensitive to T{sub eff} at these low temperatures. We confirm that the color H (1.6 {micro}m) - [4.5] is a good indicator of T{sub eff} with a relatively weak dependence on metallicity and gravity. Conversely, the colors H - K (2.2 {micro}m) and [4.5] - [5.8] are sensitive to metallicity and gravity. Thus near- and mid-infrared photometry provide useful indicators of the fundamental properties of brown dwarfs, and if temperature and gravity are known, then mass and age can be reliably determined from evolutionary models. There are twelve dwarfs currently known with H - [4.5] > 3.0, and {approx} 500 < T{sub eff} K {approx}< 800, which we examine in detail. The ages of the dwarfs in the sample range from very young (0.1 - 1.0 Gyr) to relatively old (3 - 12 Gyr). The mass range is possibly as low as 5 Jupiter masses to up to 70 Jupiter masses, i.e. near the hydrogen burning limit. The metallicities also span a large range, from [m/H]= -0.3 to [m/H]= +0.2. The small number of T8 - T9 dwarfs found in the UKIRT Infrared Deep Sky Survey to date appear to be predominantly young low-mass dwarfs. Accurate mid-infrared photometry of cold brown dwarfs is essentially impossible from the ground, and extensions to the mid-infrared space missions warm-Spitzer and WISE are desirable in order to obtain the vital mid-infrared data for cold brown dwarfs, and to discover more of these rare objects.

  4. On-Line Weld NDE with IR Thermography

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Imaging of molybdenum erosion and thermography at visible wavelengths...

    Office of Scientific and Technical Information (OSTI)

    ATOMIC AND MOLECULAR PHYSICS; 47 OTHER INSTRUMENTATION; 29 ENERGY PLANNING, POLICY AND ECONOMY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image File...

  6. Imaging of molybdenum erosion and thermography at visible wavelengths...

    Office of Scientific and Technical Information (OSTI)

    MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; 47 OTHER INSTRUMENTATION; 29 ENERGY PLANNING, POLICY AND ECONOMY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like...

  7. HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING

    SciTech Connect (OSTI)

    Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Blain, A.; Bethermin, M.; Conley, A.; Glenn, J.; Conversi, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Griffin, M.; Halpern, M.; Marsden, G.; Jullo, E.; Kneib, J.-P.; Richard, J.; and others

    2013-06-01

    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.

  8. Near-infrared noninvasive spectroscopic determination of pH

    DOE Patents [OSTI]

    Alam, Mary K. (P.O. Box 1083, Cedar Crest, NM 87008); Robinson, Mark R. (1415 Calle del Ranchero NE, Albuquerque, NM 87106)

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  9. Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum...

    Office of Scientific and Technical Information (OSTI)

    Room-temperature mid-infrared "M"-type GaAsSbInGaAs quantum well lasers on InP substrate Citation Details In-Document Search Title: Room-temperature mid-infrared "M"-type GaAsSb...

  10. Measuring Energy Achievements

    Broader source: Energy.gov [DOE]

    This presentation covers types of energy measurements essential to industrial facilities and discusses the benefits of metrics. ArcelorMittal provides examples from their experience measuring energy achievements.

  11. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  12. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  13. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  14. Enhancing mid-infrared spectral response at the LaAlO{sub 3}/SrTiO{sub 3} interface by magnetic field

    SciTech Connect (OSTI)

    Feng, Xin; Zhao, Kun Xi, Jian-Feng; Xiang, Wen-Feng; Lu, Zhi-Qing; Sun, Qi; Wu, Shi-Xiang; Ni, Hao

    2014-12-15

    Many unexpected properties have been found in the LaAlO{sub 3}/SrTiO{sub 3} heterostructure, but the interaction of the many ground states at its interface remains unclear. Here, we demonstrate an optical property of this n-type heterostructure where the mid-infrared spectral responsivity at the interface is enhanced by an external magnetic field. The field intensity ranged from 0.8 to 6 kOe at a low temperature (19?K) as measured with our spectral response measurement system. Two spectral peaks related to the spin-orbit coupling effect were also observed at wavelengths 2400?nm and 3700?nm. The intriguing phenomena relate to changes in the crystallographic structure and subband structure at the interface.

  15. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance

    SciTech Connect (OSTI)

    Liang, Haifeng

    2014-10-15

    Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 ?A was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.

  16. Infra-red detector and method of making and using same

    DOE Patents [OSTI]

    Craig, Richard A. (Richland, WA); Griffin, Jeffrey W. (Kennewick, WA)

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  17. Energy levels and far-infrared spectra of oval-shaped nanorings

    SciTech Connect (OSTI)

    Gutirrez, W.; Garca, L. F.; Mikhailov, I. D.

    2014-05-15

    The evolution of the Aharonov-Bohm oscillation of low-lying states and far infrared spectrum associated to variation of the path curvature for electron motion along nanorings with centerlines in a form of a set of Cassini ovals, whose shape is changed continuously from a single elongated loop to two separated loops is theoretically investigated.

  18. MID-INFRARED HIGH-CONTRAST IMAGING OF HD 114174 B: AN APPARENT AGE DISCREPANCY IN A ''SIRIUS-LIKE'' BINARY SYSTEM

    SciTech Connect (OSTI)

    Matthews, Christopher T.; Crepp, Justin R.; Skemer, Andrew; Hinz, Philip M.; Bailey, Vanessa P.; Defrere, Denis; Leisenring, Jarron; Gianninas, Alexandros; Kilic, Mukremin; Skrutskie, Michael; Esposito, Simone; Puglisi, Alfio

    2014-03-10

    We present new observations of the faint ''Sirius-like'' companion discovered to orbit HD 114174. Previous attempts to image HD 114174 B at mid-infrared wavelengths using NIRC2 at Keck have resulted in a non-detection. Our new L'-band observations taken with the Large Binocular Telescope and L/M-band InfraRed Camera recover the companion (?L = 10.15 0.15mag, ? = 0.''675 0.''016) with a high signal-to-noise ratio (10?). This measurement represents the deepest L' high-contrast imaging detection at subarcsecond separations to date, including extrasolar planets. We confirm that HD 114174 B has near-infrared colors consistent with the interpretation of a cool white dwarf (WD; J L' = 0.76 0.19mag, K L' = 0.64 0.20). New model fits to the object's spectral energy distribution indicate a temperature T {sub eff} = 4260 360K, surface gravity log g = 7.94 0.03, a cooling age t{sub c} ? 7.8Gyr, and mass M = 0.54 0.01 M {sub ?}. We find that the cooling ages given by theoretical atmospheric models do not agree with the age of HD 114174 A derived from both isochronological and gyrochronological analyses. We speculate on possible scenarios to explain the apparent age discrepancy between the primary and secondary. HD114174B is a nearby benchmark WD that will ultimately enable a dynamical mass estimate through continued Doppler and astrometric monitoring. Efforts to characterize its physical properties in detail will test theoretical atmospheric models and improve our understanding of WD evolution, cooling, and progenitor masses.

  19. GROUND-BASED INFRARED DETECTIONS OF CO IN THE CENTAUR-COMET 29P/SCHWASSMANN-WACHMANN 1 AT 6.26 AU FROM THE SUN

    SciTech Connect (OSTI)

    Paganini, Lucas; Mumma, Michael J.; DiSanti, Michael A.; Villanueva, Geronimo L.; Bonev, Boncho P.; Boehnhardt, Hermann; Lippi, Manuela; Kaeufl, Hans U.; Blake, Geoffrey A.

    2013-04-01

    We observed Comet 29P/Schwassmann-Wachmann 1 (hereafter, 29P) in 2012 February and May with CRIRES/VLT and NIRSPEC/Keck-II, when the comet was at 6.26 AU from the Sun and about 5.50 AU from Earth. With CRIRES, we detected five CO emission lines on several nights in each epoch, confirming the ubiquitous content and release of carbon monoxide from the nucleus. This is the first simultaneous detection of multiple lines from any (neutral) gaseous species in comet 29P at infrared wavelengths. It is also the first extraction of a rotational temperature based on the intensities of simultaneously measured spectral lines in 29P, and the retrieved rotational temperature is the lowest obtained in our infrared survey to date. We present the retrieved production rates ({approx}3 Multiplication-Sign 10{sup 28} molecules s{sup -1}) and remarkably low ({approx}5 K) rotational temperatures for CO, and compare them with results from previous observations at radio wavelengths. Along with CO, we pursued detections of other volatiles, namely H{sub 2}O, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, CH{sub 4}, HCN, NH{sub 3}, and CH{sub 3}OH. Although they were not detected, we present sensitive upper limits. These results establish a new record for detections by infrared spectroscopy of parent volatiles in comets at large heliocentric distances. Until now considered to be a somewhat impossible task with IR ground-based facilities, these discoveries demonstrate new opportunities for targeting volatile species in distant comets.

  20. THE HAWAII INFRARED PARALLAX PROGRAM. I. ULTRACOOL BINARIES AND THE L/T TRANSITION

    SciTech Connect (OSTI)

    Dupuy, Trent J.; Liu, Michael C.

    2012-08-01

    We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6-T9) in 49 systems, with a median uncertainty of 1.1 mas (2.3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7 times (5 times). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASS J0518-2828AB and 2MASS J1404-3159AB) and one is spectrally peculiar (SDSS J0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6-T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from Almost-Equal-To L8 to Almost-Equal-To T4.5, flux in the Y and J bands increases by Almost-Equal-To 0.7 mag and Almost-Equal-To 0.5 mag, respectively (the Y- and J-band 'bumps'), while flux in the H, K, and L' bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0-1.3 {mu}m. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color-magnitude diagram just blueward of the late-L/early-T sequence. This 'L/T gap' occurs at (J - H){sub MKO} 0.1-0.3 mag, (J - K){sub MKO} = 0.0-0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.

  1. Young stellar object variability (YSOVAR): Long timescale variations in the mid-infrared

    SciTech Connect (OSTI)

    Rebull, L. M.; Cody, A. M.; Stauffer, J. R.; Morales-Caldern, M.; Carey, S. J.; Covey, K. R.; Gnther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.; Hillenbrand, L. A.; Plavchan, P.; Gutermuth, R.; Song, I.; Barrado, D.; Bayo, A.; James, D.; Vrba, F. J.; Alves de Oliveira, C.; Bouvier, J.; and others

    2014-11-01

    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 ?m) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ?29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the 'standard sample' on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ?40 days. We also define a 'standard sample of members' consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence datathe Stetson index, a ?{sup 2} fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.

  2. Measurements of Photo-induced Changes in Conjugated Polymers

    DOE R&D Accomplishments [OSTI]

    Seager, C. H.; Sinclair, M. B.; Mc Branch, D.; Heeger, A. J.; Baker, G. L.

    1991-01-01

    We have used the highly sensitive technique of Photothermal Deflection Spectroscopy (PDS) to measure changes in the infrared absorption spectra of MEHPPV, P3HT and Polydiacetylene-4BCMU induced by pumping these polymers with light above the {pi} - {pi}* transition energy. In contrast to previous chopped light transmission measurements of these effects, the PDS technique can directly measure the buildup or decay of the absorption coefficient, {alpha}, on the time scale of second to days. In the case of MEHPPV we observe that the time scale of seconds to days. In the case of MEHPPV we observe that above-gap light causes the appearance of a broad infrared peak in {alpha}, which continues to grow-in hours after the pump light is first applied. For this polymer the general shape of the absorption spectra in the unpumped state mimics the photo-induced changes, suggesting that remnant photo-induced states determine the maximum transparency observed under normal experimental conditions. For P3HT and to a lesser extent, MEHPPV, we also observe irreversible photo-induced absorption components which we tentatively identify with photo-induced oxidation of the polymer matrix.

  3. The unexpectedly bright comet C/2012 F6 (Lemmon) unveiled at near-infrared wavelengths

    SciTech Connect (OSTI)

    Paganini, Lucas; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Gibb, Erika L.; Boehnhardt, Hermann

    2014-01-01

    We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R {sub h}) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R {sub h} = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R {sub h} = 0.75 AU with CSHELL (on March 31 and April 1) and R {sub h} = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H{sub 2}O, OH* prompt emission, C{sub 2}H{sub 6}, CH{sub 3}OH, H{sub 2}CO, HCN, CO, CH{sub 4}, NH{sub 3}, and NH{sub 2}), and obtained upper limits for two others (C{sub 2}H{sub 2} and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3?) upper limit for HDO corresponds to D/H < 2.45 10{sup 3} (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R {sub h} = 1.2 AU (CRIRES), the production rate for water was Q(H{sub 2}O) = 1.9 0.1 10{sup 29} s{sup 1} and its rotational temperature was T {sub rot} ? 69 K. At R {sub h} = 0.75 AU (CSHELL), we measured Q(H{sub 2}O) = 4.6 0.6 10{sup 29} s{sup 1} and T {sub rot} = 80 K on March 31, and 6.6 0.9 10{sup 29} s{sup 1} and T {sub rot} = 100 K on April 1. At R {sub h} = 1.74 AU (NIRSPEC), we obtained Q(H{sub 2}O) = 1.1 0.1 10{sup 29} s{sup 1} and T {sub rot} ? 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C{sub 2}H{sub 6} and CH{sub 3}OH, while HCN, CH{sub 4}, and CO displayed abundances close to their median values found among comets. H{sub 2}CO was the only volatile showing a relative enhancement. The relative paucity of C{sub 2}H{sub 6} and CH{sub 3}OH (with respect to H{sub 2}O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH{sub 4} and CO, and the enhancement of H{sub 2}CO, may indicate a possible heterogeneous nucleus of comet C/2012 F6 (Lemmon), possibly as a result of radial mixing within the protoplanetary disk.

  4. MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... also provided secure online access to infrared thermal imaging and analysis, which showed homeowners exactly where their homes were losing heat. Marketing and Outreach: The Mass ...

  5. Infrared spectroscopy of organic free radicals related to combustion processes

    SciTech Connect (OSTI)

    Weisshaar, J.C.

    1993-12-01

    The primary long-term goal of this work is to develop new techniques for measuring vibrational spectra of polyatomic neutral free radicals. The authors explore a variation of resonant two-photon ionization (R2PI) in which tunable {omega}{sub IR} excites the radical vibrationally and {omega}{sub UV} selectively ionizes only the vibrationally excited molecules. Development of the IR + UV R2PI experiment is underway. In the meantime, the authors have used optical R2PI and pulsed field ionization (PFI) detection to obtain new vibrational spectra of species such as the benzyl and phenylsilane cations. In benzyl, a great deal was learned about the vibronic coupling mechanism in the mixed q{sup 2}A{sub 2}-2{sup 2}B{sub 2} system near 450 nm by projecting the mixed states onto the manifold of cation vibrational states. In phenylsilane{sup +}, we find that the sixfold barrier to internal rotation of the silyl group is small (V{sub 6} = +19 cm{sup {minus}1}). We are beginning to understand the mechanisms of coupling of torsional states with vibration, overall rotation, and other electronic states. In addition, we are developing a new model of internal rotation in aromatic compounds based on Prof. Frank Weinhold`s natural resonance theory.

  6. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the undulators to {+-}0.01 C. This note describes the temperature measurement system under construction.

  7. Luminescence quenching of conductive Si nanocrystals via Linkage emission: Hopping-like propagation of infrared-excited Auger electrons

    SciTech Connect (OSTI)

    Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Knights, Andrew P.; Gwilliam, Russell M.

    2014-08-14

    Phosphorus (P) is an n-type dopant for conductive silicon nanocrystals (Si-nc's), the electrical activation of which may be monitored through a non-radiative Auger recombination process that quenches the Si-nc luminescence. We investigated this quenching mechanism through electrical measurements of Si-nc's. Infrared-excited Auger electron emission as the non-radiative process was directly probed and the dynamics of the process are determined from a frequency response analysis. To explain the dynamics, we propose a model in which Auger electrons with a low kinetic energy establish a local inter-nanocrystal conductance and the repetition of this local conductance results in a constant photocurrent (linkage emission). This emission becomes significant by electron filling in the Si-nc's owing to the electrical activation of P, which is consistent with observed luminescence quenching behavior. We found that the IR photo-excited emission is distinct from the thermally induced hopping conduction and show that confined, rather than trapped, charges are the source of the Auger electrons. Thus, the process consumes both confined charges and the recombination energy for Auger emission, which explains the luminescence quenching mechanism of Si-nc:P.

  8. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect (OSTI)

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ?5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ? 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (?? ? 0.05) and the temperature of the IGM (up to ?10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  9. Thermoelectric infrared microsensors based on a periodically suspended thermopile integrating nanostructured Ge/SiGe quantum dots superlattice

    SciTech Connect (OSTI)

    Ziouche, K. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Bougrioua, Z. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Lejeune, P.; Lasri, T.; Leclercq, D.; Savelli, G.; Hauser, D.; Michon, P.-M.

    2014-07-28

    This paper presents an original integration of polycrystalline SiGe-based quantum dots superlattices (QDSL) into Thermoelectric (TE) planar infrared microsensors (?SIR) fabricated using a CMOS technology. The nanostructuration in QDSL results into a considerably reduced thermal conductivity by a factor up to 10 compared to the one of standard polysilicon layers that are usually used for IR sensor applications. A presentation of several TE layers, QDSL and polysilicon, is given before to describe the fabrication of the thermopile-based sensors. The theoretical values of the sensitivity to irradiance of ?SIR can be predicted thanks to an analytical model. These findings are used to interpret the experimental measurements versus the nature of the TE layer exploited in the devices. The use of nanostructured QDSL as the main material in ?SIR thermopile has brought a sensitivity improvement of about 28% consistent with theoretical predictions. The impact of QDSL low thermal conductivity is damped by the contribution of the thermal conductivity of all the other sub-layers that build up the device.

  10. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  11. Impedance Measurement Box

    SciTech Connect (OSTI)

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  12. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric State, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  13. ARM - Measurement - Lightning stroke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLightning stroke ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lightning stroke Lightning stroke location, type, and intensity Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  14. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNitrogen ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Nitrogen All gaseous compounds of nitrogen including N2, N2O, and NOx. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  15. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  16. ARM - Measurement - Soil characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Soil characteristics Includes available water capacity, bulk density, permeability, porosity, rock fragment classification, rock fragment volume, percent clay,...

  17. Electrolyte measurement device and measurement procedure

    DOE Patents [OSTI]

    Cooper, Kevin R. (Southern Pines, NC); Scribner, Louie L. (Southern Pines, NC)

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  18. Coordinate measuring system

    DOE Patents [OSTI]

    Carlisle, Keith (Discovery Bay, CA)

    2003-04-08

    An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.

  19. Spectral response of localized surface plasmon in resonance with mid-infrared light

    SciTech Connect (OSTI)

    Kusa, Fumiya [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ashihara, Satoshi, E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-10-21

    We study spectral responses of localized surface plasmons (LSPs) in gold nanorods, which resonate at mid-infrared frequencies, by transmission spectroscopy and electromagnetic field analyses. The resonance linewidth is found to be linearly proportional to the resonance frequency, indicating that the dephasing due to Drude relaxation is suppressed and that the overall dephasing is dominated by radiative damping. Owing to the reduced radiative/non-radiative damping and large geometrical length of the nanorod, near-field intensity enhancement exceeds several hundred times. Nonetheless the resonance linewidth is comparable with or larger than the bandwidth of a 100-fs pulse, and therefore the enhanced near-field as short as 100-fs can be created upon pulsed excitation. The large enhancements with appropriate bandwidths make LSPs promising for enhanced nonlinear spectroscopies, coherent controls, and strong-field light-matter interactions in the mid-infrared range.

  20. Near-infrared line identification in type Ia supernovae during the transitional phase

    SciTech Connect (OSTI)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R. [Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks Street, Room 100, Norman, OK 73019 (United States); Parrent, Jerod T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thomas, R. C. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States)

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 ?m, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  1. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect (OSTI)

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600?nm down to 60?nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  2. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers

    SciTech Connect (OSTI)

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Santosh P.

    2014-12-15

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the improvements is validated and found to reproduce the input power well within 10% accuracy. This article answers many fundamental questions relevant to the IRVB and illustrates the care to be exercised while processing the IRVB data.

  3. Tunable Transmittance of Near-infrared and Visible Light in Reconstructed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal-in-Glass Composite Films | Stanford Synchrotron Radiation Lightsource Tunable Transmittance of Near-infrared and Visible Light in Reconstructed Nanocrystal-in-Glass Composite Films Thursday, October 31, 2013 The bonding arrangement in amorphous materials plays a dominant role in determining their electrochemical, optical and transport properties. However, it remains a challenge to manipulate amorphous structures in a controlled manner. Recently, scientists at the Molecular

  4. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    SciTech Connect (OSTI)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  5. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOE Patents [OSTI]

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  6. New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metamaterial Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  7. Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small

  8. Cloud Properties Derived from Visible and Near-infrared Reflectance in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presence of Aerosols Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols Hofmann, Odele University of Colorado at Boulder Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Russell, Phil NASA Ames Research Center Livingston, John SRI International Redemann, Jens BAERI/NASA Ames Research Center Bergstrom, Robert Bay Area Environmental Research Institute Platnick, Steven NASA-GSFC Daniel, John NOAA Aeronomy Laboratory

  9. Multivariate Calibration Models for Sorghum Composition using Near-Infrared (NIR) Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy E. Wolfrum and C. Payne National Renewable Energy Laboratory T. Stefaniak and W. Rooney Texas A&M University N. Dighe Monsanto B. Bean Texas Agrilife Research and Extension J. Dahlberg Kearney Research and Extension Center Technical Report NREL/TP-5100-56838 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the

  10. Current measurement apparatus

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA)

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  11. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect (OSTI)

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  12. THE SPECTRAL ENERGY DISTRIBUTION OF THE CARINA NEBULA FROM FAR-INFRARED TO RADIO WAVELENGTHS

    SciTech Connect (OSTI)

    Salatino, M.; De Bernardis, P.; Masi, S. [Physics Department, Sapienza Universita di Roma, p.le Aldo Moro 2, I-00185 Roma (Italy); Polenta, G., E-mail: maria.salatino@roma1.infn.it [ASI Science Data Center, ESRIN, via G. Galilei, I-00044, Frascati (Italy)

    2012-03-20

    Multi-wavelength observations are necessary for understanding the physical properties of astrophysical sources. In this paper, we use observations in the far-infrared to radio range to derive the spectral energy distribution (SED) of the Carina nebula. To do this, we carefully subtract the irregularly varying diffuse emission from the Galactic plane, which can be of the order of 10% of the nebula flux at these wavelengths. We find that the far-infrared SED can be modeled as emission from a dust population with a single temperature T{sub d} = (34.5{sup +2.0}{sub -1.8}) K and with a spectral index of emissivity {alpha} = -1.37{sup +0.09}{sub -0.08}. We also find a total infrared luminosity of the nebula of (7.4{sup +2.5}{sub -1.4}) Multiplication-Sign 10{sup 6} L{sub Sun} and, assuming a single temperature of the dust, a mass of the dust of (9500{sup +4600}{sub -3500}) M{sub Sun }.

  13. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachet, Edward; Shelton, Christopher T.; Harris, Joshua S.; Gaddy, Benjamin E.; Irving, Douglas L.; Curtarolo, Stefano; Donovan, Brian F.; Hopkins, Patrick E.; Sharma, Peter A.; Sharma, Ana Lima; et al

    2015-02-16

    The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet–visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate ‘defect equilibrium engineering’. In so doing, we create a tunable plasmon host that satisfies the criteria for mid-infrared spectrum plasmonics, and overcomesmore » the losses seen in conventional plasmonic materials. In particular, extrinsic doping pins the CdO Fermi level above the conduction band minimum and it increases the formation energy of native oxygen vacancies, thus reducing their populations by several orders of magnitude. The substitutional lattice strain induced by Dy doping is sufficiently small, allowing mobility values around 500 cm2 V–1 s–1 for carrier densities above 1020 cm–3. As a result, our work shows that CdO:Dy is a model system for intrinsic and extrinsic manipulation of defects affecting electrical, optical and thermal properties, that oxide conductors are ideal candidates for plasmonic devices and that the defect engineering approach for property optimization is generally applicable to other conducting metal oxides.« less

  14. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOE Patents [OSTI]

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  15. DEEP SPITZER OBSERVATIONS OF INFRARED-FAINT RADIO SOURCES: HIGH-REDSHIFT RADIO-LOUD ACTIVE GALACTIC NUCLEI?

    SciTech Connect (OSTI)

    Norris, Ray P.; Mao, Minnie; Afonso, Jose; Cava, Antonio; Farrah, Duncan; Oliver, Seb; Huynh, Minh T.; Mauduit, Jean-Christophe; Surace, Jason; Ivison, R. J.; Jarvis, Matt; Lacy, Mark; Maraston, Claudia; Middelberg, Enno; Seymour, Nick

    2011-07-20

    Infrared-faint radio sources (IFRSs) are a rare class of objects which are relatively bright at radio wavelengths but very faint at infrared and optical wavelengths. Here we present sensitive near-infrared observations of a sample of these sources taken as part of the Spitzer Extragalactic Representative Volume Survey. Nearly all the IFRSs are undetected at a level of {approx}1 {mu}Jy in these new deep observations, and even the detections are consistent with confusion with unrelated galaxies. A stacked image implies that the median flux density is S{sub 3.6{mu}m} {approx} 0.2 {mu}Jy or less, giving extreme values of the radio-infrared flux density ratio. Comparison of these objects with known classes of object suggests that the majority are probably high-redshift radio-loud galaxies, possibly suffering from significant dust extinction.

  16. Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf wise J041022.71+150248.4

    SciTech Connect (OSTI)

    Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Skrutskie, Michael F.; Gould, Andrew

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  17. Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water

    SciTech Connect (OSTI)

    Sperling, Brent A. Hoang, John; Kimes, William A.; Maslar, James E.; Steffens, Kristen L.; Nguyen, Nhan V.

    2014-05-15

    Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120?ms. At 190?C and 240?C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110?C) and with long purge times (30?s)

  18. THE INFRARED SPECTRUM OF URANIUM HOLLOW CATHODE LAMPS FROM 850 nm to 4000 nm: WAVENUMBERS AND LINE IDENTIFICATIONS FROM FOURIER TRANSFORM SPECTRA

    SciTech Connect (OSTI)

    Redman, Stephen L.; Ramsey, Lawrence W.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Nave, Gillian [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2011-08-01

    We provide new measurements of wavenumbers and line identifications of 10, 100 U I and U II near-infrared (NIR) emission lines between 2500 cm{sup -1} and 12, 000 cm{sup -1} (4000-850 nm) using archival Fourier transform spectrometer spectra from the National Solar Observatory. This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9-1.1 {mu}m, 1.2-1.35 {mu}m, 1.5-1.65 {mu}m, 2.0-2.4 {mu}m, and 3.0-4.0 {mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially available uranium hollow cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.

  19. Analysis of the microwave, terahertz, and far infrared spectra of monodeuterated methanol CH{sub 2}DOH up to J = 26, K = 11, and o{sub 1}

    SciTech Connect (OSTI)

    Coudert, L. H.; Zemouli, M.; Motiyenko, R. A.; Marguls, L.; Klee, S.

    2014-02-14

    The first theoretical approach aimed at accounting for the energy levels of a non-rigid molecule displaying asymmetric-top asymmetric-frame internal rotation is developed. It is applied to a line position analysis of the high-resolution spectrum of the non-rigid CH{sub 2}DOH molecule and allows us to carry out a global analysis of a data set consisting of already available data and of microwave and far infrared transitions measured in this work. The analysis is restricted to the three lowest lying torsional levels (e{sub 0}, e{sub 1}, and o{sub 1}), to K ? 11, and to J ? 26. For the 8211 fitted lines, the unitless standard deviation is 2.4 and 103 parameters are determined including kinetic energy, hindering potential, and distortion effects parameters.

  20. Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon

    SciTech Connect (OSTI)

    Kjellman, Jon yvind; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-06-16

    Microselective-area growth of p-i-n InGaAs disks on (111) silicon by metalorganic chemical vapor deposition is a promising technology for III/V-on-Si integration. As a proof-of-concept, room-temperature electroluminescence is reported from ensembles of p-i-n InGaAs-on-Si micro-disks. The observed spectrum shows peak luminescence at 1.78??m with a local maxima at 1.65??m. The disks are also shown to generate a measurable photo current when illuminated by infrared light with less energy than the silicon bandgap energy. This makes these InGaAs-on-Si disks a promising technology for monolithic integration of light sources and detectors with silicon photonics and complementary metal-oxide-semiconductor electronics for optical communication, sensing, and imaging.

  1. Infrared detection of (H2O)20 isomers of exceptional stability: A drop-like and a face-sharing pentagonal prism cluster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pradzynski, Christoph C.; Dierking, Christoph W.; Zurheide, Florian; Forck, Richard M.; Buck, Udo; Zeuch, Thomas; Xantheas, Sotiris S.

    2014-09-01

    Water clusters containing fully coordinated water molecules are model systems that mimic the local environment of the condensed phase. Present knowledge about the water cluster size regime in which the transition from the allsurface to the fully solvated water molecules occurs is mainly based on theoretical predictions in lieu of the absence of precisely size resolved experimental measurements. Here, we report size and isomer selective infrared (IR) spectra of (H2O)20 clusters tagged with a sodium atom by employing IR excitation modulated photoionization spectroscopy. The observed absorption patterns in the OH stretching ”fingerprint” region are consistent with the theoretically predicted spectramore » of two structurally distinct isomers: A drop-like cluster with a fully coordinated (interior) water and an edge-sharing pentagonal prism cluster in which all atoms are on the surface. The observed isomers show exceptional stability and are predicted to be nearly isoenergetic.« less

  2. Measuring and Understanding Memory Bandwidth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring and Understanding Memory Bandwidth Measuring and Understanding Memory Bandwidth Measuring Bandwidth Usage Measuring memory bandwidth is a good way of understanding how...

  3. Evaluation of accountability measurements

    SciTech Connect (OSTI)

    Cacic, C.G.

    1988-01-01

    The New Brunswick Laboratory (NBL) is programmatically responsible to the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) for providing independent review and evaluation of accountability measurement technology in DOE nuclear facilities. This function is addressed in part through the NBL Safegaurds Measurement Evaluation (SME) Program. The SME Program utilizes both on-site review of measurement methods along with material-specific measurement evaluation studies to provide information concerning the adequacy of subject accountability measurements. This paper reviews SME Program activities for the 1986-87 time period, with emphasis on noted improvements in measurement capabilities. Continued evolution of the SME Program to respond to changing safeguards concerns is discussed.

  4. THE NEAR-INFRARED CORONAL LINE SPECTRUM OF 54 NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Rodriguez-Ardila, A.

    2011-12-20

    The relationship between the emission of coronal lines (CLs) and nuclear activity in 36 Type 1 and 18 Type 2 active galactic nuclei (AGNs) is analyzed, for the first time, based on near-infrared (0.8-2.4 {mu}m) spectra. The eight CLs studied, of Si, S, Fe, Al, and Ca elements and corresponding to ionization potentials (IPs) in the range 125-450 eV, are detected (3{sigma}) in 67% (36 AGNs) of the sample. Our analysis shows that the four most frequent CLs [Si VI] 1.963 {mu}m, [S VIII] 0.9913 {mu}m, [S IX] 1.252 {mu}m, and [Si X] 1.430 {mu}m display a narrow range in luminosity, with most lines located in the interval log L 39-40 erg s{sup -1}. We found that the non-detection is largely associated with either loss of spatial resolution or increasing object distance: CLs are essentially nuclear and easily lose contrast in the continuum stellar light for nearby sources or get diluted by the strong AGN continuum as the redshift increases. Yet, there are AGNs where the lack of coronal emission, i.e., lines with IP {>=} 100 eV, may be genuine. The absence of these lines reflects a non-standard AGN ionizing continuum, namely, a very hard spectrum lacking photons below a few Kev. The analysis of the line profiles points out a trend of increasing FWHM with increasing IPs up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IPs. We ascribe this effect to an increasing density environment as we approach the innermost regions of these AGNs, where densities above the critical density of the CLs with IPs larger than 300 eV are reached. This sets a strict range limit for the density in the boundary region between the narrow and the broad region of 10{sup 8}-10{sup 9} cm{sup -3}. A relationship between the luminosity of the CLs and that of the soft and hard X-ray emission and the soft X-ray photon index is observed: the coronal emission becomes stronger with both increasing X-ray emission (soft and hard) and steeper X-ray photon index, i.e., softer X-ray spectra. Thus, photoionization appears as the dominant excitation mechanism. These trends hold when considering Type 1 sources only; they get weaker or vanish when including Type 2 sources, very likely because the X-ray emission measured in the latter is not the intrinsic ionizing continuum.

  5. Current measuring system

    DOE Patents [OSTI]

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  6. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » For Users » Application Performance » Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development

  7. ARM - Measurement - Advective tendency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAdvective tendency ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Advective tendency The large-scale advective tendency of temperature and moisture used to force SCMs and CSRMs, derived from constrained variational analysis. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf)

  8. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such as size and shape. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  9. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  10. ARM - Measurement - Backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for

  11. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  12. ARM - Measurement - Convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsConvection ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Convection Vertical motion within the atmosphere due to thermal instability, with important impacts on the type cloud systems that can develop. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  13. ARM - Measurement - Horizontal wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  14. ARM - Measurement - Hydrometeor Geometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geometry ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Geometry Measurements describing the geometry of hydrometeors, e.g. oblateness, diameters along different axes, volume, etc. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  15. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  16. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  17. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  18. ARM - Measurement - Precipitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  19. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture The moisture of the soil measured near the surface. This includes soil wetness and soil water potential. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  20. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. ARM - CARES Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist CARES Measurements The CARES field campaign seeks to collect a substantial series of both anthropogenic and biogenic

  2. ARM - CLASIC Measurement Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  3. Current measuring system

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID); Appelhans, Anthony D. (Idaho Falls, ID); Olson, John E. (Idaho Falls, ID)

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  4. Aerial Measuring System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish policy for the Department of Energy's (DOE) Aerial Measuring System (AMS) Program. This directive does not cancel another directive. Canceled by DOE O 153.1.

  5. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  6. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P. (McMurray, PA); Becse, Imre (Washington, PA)

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  7. Sandia Motion Measurement Processor

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    SANDIA-MMP is used to estimate the motion of the belly and wing pods of an aircraft given various indirect in-flight measurements.

  8. Guidelines for Performance Measurement

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-06-30

    Federal agencies, states, businesses, and foreign governments are increasingly relying on performance measurement information to help chart progress in increasingly frugal times. No cancellations.

  9. ARM - Measurement - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOzone ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Ozone measurements are given in Dobson units and are integers with 3 significant figures. A Dobson Unit represents the physical thickness of the ozone layer if it were brought to the Earth's surface. A value of 300 Dobson units equals three millimeters. Categories Atmospheric State Instruments The above measurement is considered

  10. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  11. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  12. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an incident beam by the process of cloud absorption andor scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  13. ARM - Measurement - Hydrometeor types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into such microphysical classes as rain, snow, graupel, and hail. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  16. ARM - Measurement - Hydrometeor image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  17. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon the size, shape, aspect, and dielectric properties of that target. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  18. Performance Measures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Measures Performance Measures Contract FY2013 End of Year Report

  19. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  20. Viscosity measuring using microcantilevers

    DOE Patents [OSTI]

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  1. Expanding shell and star formation in the infrared dust bubble N6

    SciTech Connect (OSTI)

    Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Wu, Yuefang E-mail: ywu@pku.edu.cn

    2014-12-10

    We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to higher than 5000 M {sub ?}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.

  2. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  3. ARM - Measurement - Precipitable water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPrecipitable water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount of water vapor in a vertical column of air, often expressed as the depth of the layer of water that would be formed if all the water vapor were condensed to liquid water. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following

  4. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  5. ARM - Measurement - Visibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVisibility ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Visibility The greatest horizontal distance in a given direction at which it is just possible to see and identify with the unaided eye (a) in the daytime, a prominent dark object against the sky at the horizon, and (b) at night, a moderately intense light source. Categories Atmospheric State Instruments The above measurement is

  6. Cooperative effect of ultraviolet and near-infrared beams in laser-induced condensation

    SciTech Connect (OSTI)

    Matthews, M.; Henin, S.; Pomel, F.; Kasparian, J.; Wolf, J.-P.; Thberge, F.; Daigle, J.-F.; Lassonde, P.; Kieffer, J.-C.

    2013-12-23

    We demonstrate the cooperative effect of near infrared (NIR) and ultraviolet (UV) beams on laser-induced condensation. Launching a UV laser after a NIR pulse yields up to a 5-fold increase in the production of nanoparticles (25300 nm) as compared to a single NIR beam. This cooperative effect exceeds the sum of those from the individual beams and occurs for delays up to 1 ?s. We attribute it to the UV photolysis of ozone created by the NIR pulses. The resulting OH radicals oxidize NO{sub 2} and volatile organic compounds, producing condensable species.

  7. Thermoelastic investigation of a quartz tuning fork used in infrared spectroscopy

    SciTech Connect (OSTI)

    Spajer, M. Cavallier, B.; Euphrasie, S.; Matten, G.; Vacheret, X.; Vairac, P.; Vernier, D.; Jalocha, A.

    2013-11-11

    The performances of quartz tuning forks (QTF) used in infrared spectroscopy for pollutant detection are investigated. The transduction between light and QTF vibration is elucidated, thanks to QTF encapsulation under vacuum. From the sensitivity enhancement which is obtained, we conclude that their interaction is photo-thermoelastic rather than photo-thermoacoustic. A mapping of the local sensitivity of the QTF is obtained by scanning its faces with the excitation probe beam. The comparison between the signal mapping and the theoretical strain mapping indicates that the most efficient areas of the QTF correspond to the areas where the strain or stress is the highest.

  8. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect (OSTI)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  9. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect (OSTI)

    RF Kristensen; JF Beausang; DM DePoy

    2004-06-28

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  10. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect (OSTI)

    Ryan T. Kristensen; John F. Beausang; David M. DePoy

    2003-12-01

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  11. Enhancement of near-infrared absorption in graphene with metal gratings

    SciTech Connect (OSTI)

    Zhao, B.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Zhao, J. M. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2014-07-21

    Graphene has been demonstrated as a good candidate for ultrafast optoelectronic devices. However, graphene is essentially transparent in the visible and near infrared with an absorptivity of 2.3%, which has largely limited its application in photon detection. This Letter demonstrates that the absorptance in a monatomic graphene layer can be greatly enhanced to nearly 70%, thanks to the localized strong electric field resulting from magnetic resonances in deep metal gratings. Furthermore, the resonance frequency is essentially not affected by the additional graphene layer. The method presented here may benefit the design of next-generation graphene-based optical and optoelectronic devices.

  12. A relativistic quark model with infrared confinement and the tetraquark state

    SciTech Connect (OSTI)

    Dubnicka, S.; Dubnickova, A. Z.; Ivanov, M. A.; Koerner, J. G.; Saidullaeva, G. G.

    2011-05-23

    We explore the consequences of treating the X(3872) meson as a tetraquark bound state. As dynamical framework we employ a relativistic constituent quark model which includes infrared confinement in an effective way. We calculate the decay widths of the observed channels X{yields}J/{psi}+2{pi}(3{pi}) and X{yields}D-bar{sup 0}+D{sup 0}+{pi}{sup 0} via the intermediate off-shell states X{yields}J/{psi}+{rho}({omega}) and X{yields}D-bar+D*. For reasonable values of the size parameter {Lambda}{sub X} of the X(3872) we find consistency with the available experimental data.

  13. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  14. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect (OSTI)

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  15. Development of an L-Band RF Electron Gun for SASE in the Infrared Region

    SciTech Connect (OSTI)

    Kashiwagi, Shigeru; Kato, Ryukou; Isoyama, Goro; Hayano, Hitoshi; Urakawa, Junji

    2010-02-03

    We conduct research on Self-Amplified Spontaneous Emission (SASE) in the infrared region using the 40 MeV, 1.3 GHz L-band linac of Osaka University. The linac equipped with a thermionic electron gun can accelerate a high-intensity single-bunch beam though its normalized emittance is high. In order to advance the research on SASE, we have begun development of an RF gun for the L-band linac in collaboration with KEK. We will report conceptual design of the RF gun and present the status of development of another RF gun for STF at KEK.

  16. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA)

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  17. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    SciTech Connect (OSTI)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking gelatin phantoms. Conclusions: Accurate characterization of scattering is necessary for quantification of hemoglobin. Based on this study, a system design is described to optimally combine breast tomosynthesis with NIRST.

  18. Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    SciTech Connect (OSTI)

    Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming

    2013-10-01

    The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO33H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.

  19. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    SciTech Connect (OSTI)

    Busquet, Gemma; Zhang, Qizhou; Ho, Paul T. P.; Palau, Aina; Girart, Josep M.; Liu, Hauyu Baobab; Sanchez-Monge, Alvaro; Estalella, Robert; De Gregorio-Monsalvo, Itziar; Pillai, Thushara; Wyrowski, Friedrich; Santos, Fabio P.; Franco, Gabriel A. P.

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  20. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching

    Office of Scientific and Technical Information (OSTI)

    for prompt explosions in the early universe (Journal Article) | SciTech Connect Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe Citation Details In-Document Search Title: Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space

  1. In situ measurement system

    DOE Patents [OSTI]

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  2. Capacitance measuring device

    DOE Patents [OSTI]

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  3. ARM - Measurement - Aerosol absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The...

  4. Measuring Neutrino Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the MiniBooNE detector. Pion production has been measured at 8 GeV with the HARP experiment 6. The kinematic acceptance of the HARP apparatus for charged pions...

  5. Measuring Strong Nanostructures

    ScienceCinema (OSTI)

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  6. Device for calorimetric measurement

    DOE Patents [OSTI]

    King, William P; Lee, Jungchul

    2015-01-13

    In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.

  7. Measurement of the absolute \

    SciTech Connect (OSTI)

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  8. Ultrasonic differential measurement

    DOE Patents [OSTI]

    Rhodes, George W. (Albuquerque, NM); Migliori, Albert (Santa Fe, NM)

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  9. Performance Measurement Analysis System

    Energy Science and Technology Software Center (OSTI)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  10. ARM - Measurement - Aerosol extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol extinction The removal of radiant energy from an incident beam by the process of aerosol absorption and/or scattering. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  11. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  12. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  13. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following

  14. ARM - Measurement - Lidar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLidar polarization ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Lidar polarization The temporal and geometric behavior of the electric field vector of an electromagnetic wave transmitted or received by a lidar system, e.g. elliptical polarization, differential reflectivity, phase shift, co-polar correlation coefficient, linear depolarization ratio. Categories Cloud Properties

  15. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doppler ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radar Doppler The power spectrum and moments of the radar signal expressed as a function of Doppler frequency or Doppler velocity. It may be thought of as the reflectivity weighted radial velocity distribution of the scatterers in a distributed target. Categories Cloud Properties Instruments The above measurement is considered scientifically

  16. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  17. Application of External-Cavity Quantum Cascade Infrared Lasers to Nanosecond Time-Resolved Infrared Spectroscopy of Condensed-Phase Samples Following Pulse Radiolysis

    SciTech Connect (OSTI)

    Grills, D.C.; Cook, A.R.; Fujita, E.; George, M.W.; Miller, J.R.; Preses, J.M.; Wishart, J.F.

    2010-06-01

    Pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is a powerful method for rapidly generating reduced or oxidized species and other free radicals in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. However, it is often difficult to identify the transient intermediates definitively due to a lack of structural information in the spectral bands. Time-resolved vibrational spectroscopy offers the structural specificity necessary for mechanistic investigations but has received only limited application in pulse radiolysis experiments. For example, time-resolved infrared (TRIR) spectroscopy has only been applied to a handful of gas-phase studies, limited mainly by several technical challenges. We have exploited recent developments in commercial external-cavity quantum cascade laser (EC-QCL) technology to construct a nanosecond TRIR apparatus that has allowed, for the first time, TRIR spectra to be recorded following pulse radiolysis of condensed-phase samples. Near single-shot sensitivity of DeltaOD <1 x 10(-3) has been achieved, with a response time of <20 ns. Using two continuous-wave EC-QCLs, the current apparatus covers a probe region from 1890-2084 cm(-1), and TRIR spectra are acquired on a point-by-point basis by recording transient absorption decay traces at specific IR wavelengths and combining these to generate spectral time slices. The utility of the apparatus has been demonstrated by monitoring the formation and decay of the one-electron reduced form of the CO(2) reduction catalyst, [Re(I)(bpy)(CO)(3)(CH(3)CN)](+), in acetonitrile with nanosecond time resolution following pulse radiolysis. Characteristic red-shifting of the nu(CO) IR bands confirmed that one-electron reduction of the complex took place. The availability of TRIR detection with high sensitivity opens up a wide range of mechanistic pulse radiolysis investigations that were previously difficult or impossible to perform with transient UV/visible detection.

  18. A comparison of the morphological properties between local and z ? 1 infrared luminous galaxies: Are local and high-z (U)LIRGs different?

    SciTech Connect (OSTI)

    Hung, Chao-Ling; Sanders, D. B.; Larson, Kirsten L.; Lee, Nicholas; Li, Yanxia; Lockhart, Kelly; Shih, Hsin-Yi; Barnes, Joshua E.; Casey, Caitlin M.; Koss, Michael; Kartaltepe, Jeyhan S.; Smith, Howard A.

    2014-08-10

    Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M{sub 20} classification scheme, we find that the fraction of interacting systems decreases by ?8% from local to z ? 1, and it is consistent with the reduction between local and redshifted data sets (6{sub ?6}{sup +14}%). Based on visual classifications, the merger fraction of local ULIRGs is found to be ?20% lower compared to published results, and the reduction due to redshifting is 15{sub ?8}{sup +10}%. Consequently, the differences of merger fractions between local and z ? 1 (U)LIRGs is only ?17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ? 1. At z > 1, the morphology types of ?30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.

  19. Optical characterization of free electron concentration in heteroepitaxial InN layers using Fourier transform infrared spectroscopy and a 2 Multiplication-Sign 2 transfer-matrix algebra

    SciTech Connect (OSTI)

    Katsidis, C. C.; Ajagunna, A. O.; Georgakilas, A.

    2013-02-21

    Fourier Transform Infrared (FTIR) reflectance spectroscopy has been implemented as a non-destructive, non-invasive, tool for the optical characterization of a set of c-plane InN single heteroepitaxial layers spanning a wide range of thicknesses (30-2000 nm). The c-plane (0001) InN epilayers were grown by plasma-assisted molecular beam epitaxy (PAMBE) on GaN(0001) buffer layers which had been grown on Al{sub 2}O{sub 3}(0001) substrates. It is shown that for arbitrary multilayers with homogeneous anisotropic layers having their principal axes coincident with the laboratory coordinates, a 2 Multiplication-Sign 2 matrix algebra based on a general transfer-matrix method (GTMM) is adequate to interpret their optical response. Analysis of optical reflectance in the far and mid infrared spectral range has been found capable to discriminate between the bulk, the surface and interface contributions of free carriers in the InN epilayers revealing the existence of electron accumulation layers with carrier concentrations in mid 10{sup 19} cm{sup -3} at both the InN surface and the InN/GaN interface. The spectra could be fitted with a three-layer model, determining the different electron concentration and mobility values of the bulk and of the surface and the interface electron accumulation layers in the InN films. The variation of these values with increasing InN thickness could be also sensitively detected by the optical measurements. The comparison between the optically determined drift mobility and the Hall mobility of the thickest sample reveals a value of r{sub H} = 1.49 for the Hall factor of InN at a carrier concentration of 1.11 Multiplication-Sign 10{sup 19} cm{sup -3} at 300 Degree-Sign {Kappa}.

  20. The ? infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification

    SciTech Connect (OSTI)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the ? infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review 'Dysonian SETI', the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the 'monocultural fallacy'. We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<10{sup 9} yr), and that many 'sustainability' counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  1. Near infrared spectral imaging of explosives using a tunable laser source

    SciTech Connect (OSTI)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  2. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    SciTech Connect (OSTI)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  3. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect (OSTI)

    Lasnier, C. J. Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G.; Crabtree, K.; Van Zeeland, M. A.

    2014-11-15

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  4. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect (OSTI)

    Tang, Qing-Wen; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Thomas Tam, Pak-Hin, E-mail: xywang@nju.edu.cn, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ?5.5? detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  5. Long wave infrared cavity-enhanced sensors using quantum cascade lasers

    SciTech Connect (OSTI)

    Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Cannon, Bret D.

    2005-12-30

    Quantum cascade lasers (QCLs) are becoming well known as convenient and stable semiconductor laser sources operating in the mid- to long-wave infrared, and are able to be fabricated to operate virtually anywhere in the 3.5 to 25 micron region. This makes them an ideal choice for infrared chemical sensing, a topic of great interest at present, spanning at least three critical areas: national security, environmental monitoring and protection, and the early diagnosis of disease through breath analysis. There are many different laser-based spectroscopic chemical sensor architectures in use today, from simple direct detection through to more complex and highly sensitive systems. Many current sensor needs can be met by combining QCLs and appropriate sensor architectures, those needs ranging from UAV-mounted surveillance systems, through to larger ultra-sensitive systems for airport security. In this paper we provide an overview of various laser-based spectroscopic sensing techniques, pointing out advantages and disadvantages of each. As part of this process, we include our own results and observations for techniques under development at PNNL. We also present the latest performance of our ultra-quiet QCL control electronics now being commercialized, and explore how using optimized supporting electronics enables increased sensor performance and decreased sensor footprint for given applications.

  6. NEAR-INFRARED CIRCULAR POLARIZATION SURVEY IN STAR-FORMING REGIONS: CORRELATIONS AND TRENDS

    SciTech Connect (OSTI)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.; Lucas, Phil W.; Kusakabe, Nobuhiko; Kandori, Ryo; Nagata, Tetsuya; Nakajima, Yasushi; Nagayama, Takahiro

    2014-11-01

    We have conducted a systematic near-infrared circular polarization (CP) survey in star-forming regions, covering high-mass, intermediate-mass, and low-mass young stellar objects. All the observations were made using the SIRPOL imaging polarimeter on the Infrared Survey Facility 1.4m telescope at the South African Astronomical Observatory. We present the polarization properties of 10 sub-regions in 6 star-forming regions. The polarization patterns, extents, and maximum degrees of linear and circular polarizations are used to determine the prevalence and origin of CP in the star-forming regions. Our results show that the CP pattern is quadrupolar in general, the CP regions are extensive, up to 0.65pc, the CP degrees are high, up to 20%, and the CP degrees decrease systematically from high- to low-mass young stellar objects. The results are consistent with dichroic extinction mechanisms generating the high degrees of CP in star-forming regions.

  7. Spitzer IRAC mid-infrared photometry of 500-750 brown dwarf

    SciTech Connect (OSTI)

    Saumon, Didier; Leggett, Sandy K; Albert, Loic; Artigau, Etienne; Burningham, Ben; Delfosse, Xavier; Delorme, Philippe; Forveille, Thierry; Lucas, Philip W; Marley, Mark S; Pinfield, David J; Reyle, Celine; Smart, Richard L; Warren, Stephen J

    2010-10-26

    Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T{sub eff}) drops from 800K to 400K, the fraction of flux emitted beyond 3 {mu}m increases rapidly, from about 40% to > 75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon and Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T{sub eff} {approx} 500K to 750K.

  8. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect (OSTI)

    Galametz, Audrey; Stern, Daniel; De Breuck, Carlos; Vernet, Joeel; Hatch, Nina; Mayo, Jack; Miley, George; Rettura, Alessandro; Seymour, Nick; Adam Stanford, S.

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  9. NGC 4102: HIGH-RESOLUTION INFRARED OBSERVATIONS OF A NUCLEAR STARBURST RING

    SciTech Connect (OSTI)

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.

    2010-10-20

    The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 {mu}m line of [Ne II], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1.''5 spatial, and 25 km s{sup -1} spectral, resolution. Combining near-infrared, radio, and the [Ne II] data shows that the extinction to the starburst is substantial, more than 2 mag at the K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4.''3 ({approx}300 pc) diameter, inside the inner Lindblad resonance. This region is an intense concentration of mass, with a dynamical mass {approx}3 x 10{sup 9} M{sub sun}, and of star formation. The young stars in the ring produce the [Ne II] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [Ne II]; it is not a normal active galactic nucleus outflow.

  10. Near-infrared spectra of high-albedo outer main-belt asteroids

    SciTech Connect (OSTI)

    Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko; Kuroda, Daisuke; Ootsubo, Takafumi; Okamura, Natsuko; Hasegawa, Sunao

    2015-02-01

    Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.12.5 ?m) spectra of four outer main-belt asteroids with albedos ? 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.52.1 ?m). The feature can be reproduced by either Mg-rich amorphous pyroxene (with 50%60% and 80%95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 ?m) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.

  11. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The secondmore » PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.« less

  12. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.

  13. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  14. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  15. Measurement uncertainty relations

    SciTech Connect (OSTI)

    Busch, Paul; Lahti, Pekka; Werner, Reinhard F.

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order ? rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  16. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  17. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales are important and provide additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  18. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  19. ARM - Measurement - Actinic flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsActinic flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Actinic flux The quantity of light in the atmosphere available to molecules at a particular point and which, on absorption, initiates photochemical processes in the atmosphere (spectral spheradiance) actinic flux units: (quanta or photons) / ( m2 nm s ), sometimes specific to a particular reaction, e.g. j(NO2). Categories

  20. ARM - Measurement - Surface albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface albedo The fraction of incoming solar radiation at a surface (i.e. land, cloud top) that is effectively reflected by that surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of