Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

2

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

3

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

4

Laboratory Procedures for using Infrared Thermography to Validate...  

NLE Websites -- All DOE Office Websites (Extended Search)

925 Laboratory Procedures for using Infrared Thermography to Validate Heat Transfer Models Daniel Trler, Brent T. Griffith, and Dariush K. Arasteh Lawrence Berkeley National...

5

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

6

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

7

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

8

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

9

Infrared Thermography Guide (Revision 3)  

Science Conference Proceedings (OSTI)

Costly equipment outages can be reduced by implementing a comprehensive predictive maintenance program. Infrared thermography (IR), a fundamental component of such programs, uses nonintrusive techniques to monitor the operating condition of equipment and components. This revised report provides updated information to assist utilities in implementing an effective IR program.

2002-05-30T23:59:59.000Z

10

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

11

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual Glazing vs. Single Pane Dual Glazing vs. Single Pane On the left is a normal double glazed window. On the right is a single pane window. The single pane window is only slightly warmer than the cold air behind it. The dual pane window is considerably warmer which indicates that less heat is flowing out through the window and that the indoor space will be more comfortable. The two windows here are being cooled on the back side with wind at 0°C (32°F). (The other thermograms in this series are taken with colder conditions on the back side so don't try to cross compare these pictures. Too much frost builds up on the single pane window to allow testing it at the temperatures used for the other images). For more information contact: Howdy Goudey Building Technologies Program

12

Guideline for Developing and Managing an Infrared Thermography (IRT) Program  

Science Conference Proceedings (OSTI)

The Guideline for Developing and Managing an Infrared Thermography Program is an extension of a number of reports addressing the use and benefits of infrared thermography (IRT) as a diagnostic tool. This document expands on more of the technology's intricacies, as well as defining procedures for setting up a comprehensive IRT program.

2001-09-27T23:59:59.000Z

13

Automated Spot Weld Inspection using Infrared Thermography  

Science Conference Proceedings (OSTI)

An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

14

Infrared Thermography (IRT) Anomalies Manual (Revision 1 - 2001)  

Science Conference Proceedings (OSTI)

This manual provides both an overview of the basic concepts of infrared thermography (IRT) technology and an examination of applications of the technology for equipment used to produce and deliver electric power.

2001-12-14T23:59:59.000Z

15

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

16

Evaluation of Using Infrared Thermography for quantifying Heat Losses From Buried Heat Distribution Pipes in chicago Housing Authority's Projects  

Science Conference Proceedings (OSTI)

Evaluation of using infrared thermography for quantifying heat losses from buried heat distribution pipes in Chicago Housing Authority's Projects

Gary Phetteplace

2001-05-29T23:59:59.000Z

17

Quantitative nondestructive testing using Infrared Thermography  

E-Print Network (OSTI)

blades. Technical report, Sandia National Laboratory,Turbine Reliability Workshop. Sandia, 2009. [86] M. Rumsey,Rumsey and Dennis Roach of Sandia National Laboratories for

Manohar, Arun

2012-01-01T23:59:59.000Z

18

IRLab Thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

IRLab Thermography Experiments IRLab Thermography Experiments The human eye can't see the heat that shines off of everyday objects. But with the help of infrared imagers, researchers can "see" and measure this heat which radiates from every surface. This data can produce images called thermograms that are based on the temperature of objects. Researchers Dariush Arasteh, Brent Griffith, Daniel Türler, Paul LaBerge, Howdy Goudey, and Christian Kohler of the Building Technologies Program have developed an Infrared Thermography Laboratory to measure and image the surface temperatures of windows and other insulated systems. This type of thermal testing has the advantage that large amounts of surface temperature data can be collected without disrupting the test situation. The data are collected as an image that allows for a quick understanding of the relative performance of various parts in the system.

19

Using infrared thermography for the study of heat transfer through building envelope components  

Science Conference Proceedings (OSTI)

Heat transfer through building envelope components is typically characterized by one number, the conductance. Such a characterization is best suited for homogeneous samples since it does not quantify or illustrate spatial variations within a sample. However, the growing use of advanced wall and window insulations with existing framing materials has increased the importance of understanding spatial heat transfer effects within building envelope components. An infrared thermography laboratory has been established to provide detailed quantitative and qualitative information on the spatial heat transfer effects of building envelope materials. The use of this facility for more effective product development and more accurate product development and more accurate product characterization is discussed.

Arasteh, D.; Beck, F.; Griffith, B.; Acevedo-Ruiz, M. (Lawrence Berkeley Lab., CA (United States)); Byars, N. (California Polytechnic Univ., San Luis Obispo, CA (United States). Dept. of Engineering Technology)

1991-11-01T23:59:59.000Z

20

Applying infrared thermography as a quality-control tool for the rapid  

NLE Websites -- All DOE Office Websites (Extended Search)

Applying infrared thermography as a quality-control tool for the rapid Applying infrared thermography as a quality-control tool for the rapid detection of polymer-electrolyte-membrane-fuel-cell catalyst-layer-thickness variations Title Applying infrared thermography as a quality-control tool for the rapid detection of polymer-electrolyte-membrane-fuel-cell catalyst-layer-thickness variations Publication Type Journal Article Year of Publication 2012 Authors Aieta, Niccolo V., Prodip K. Das, Andrew Perdue, Guido Bender, Andrew M. Herring, Adam Z. Weber, and Michael J. Ulsh Journal Journal of Power Sources Volume 211 Pagination 4 - 11 Date Published 8/2012 ISSN 03787753 Keywords catalyst layer, corrosion, defects, fuel cell, infrared thermography, manufacturing, pemfc, quality control Abstract As fuel cells become more prominent, new manufacturing and production methods are needed to enable increased volumes with high quality. One necessary component of this industrial growth will be the accurate measurement of the variability of a wide range of material properties during the manufacturing process. In this study, a method to detect defects in fuel cell catalyst layers is investigated through experiment and mathematical simulation. The method uses infrared thermography and direct-current electronic-excitation methods to detect variations in platinum-containing catalyst-layer thickness with high spatial and temporal resolution. Data analysis, operating-condition impacts, and detection limits are explored, showing the measurement of defects on the millimeter length scale. Overall, the experimental and modeling results demonstrate great potential of this technique as a nondestructive method to measure defects that is amenable to use on roll-to-roll manufacturing lines.

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling of the ITER-like wide-angle infrared thermography view of JET  

SciTech Connect

Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

Aumeunier, M.-H. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Chabaud, D.; Humbert, E. [OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

22

Quantitative Thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantitative Thermography Quantitative Thermography Images collected with infrared thermography can be very useful for gaining insight into thermal phenomena such as thermal bridging and natural convection. But as a research tool it is even more valuable to extract numerical data from the images and produce maps of surface temperature. This is called quantitative infrared thermography and can be very challenging. We have developed procedures that allow collecting and processing the infrared data to enable obtaining results that are as accurate as possible. The main difficulties in using infrared to measure temperature are correcting the measurement for reflected radiation and proper referencing of the relative radiometric measurement. Efforts are underway to develop standardized test procedures for using infrared to quantify surface temperatures in the types of thermal test chambers used to test building products. But for now, information on how we perform quantitative thermography is available in some of our technical papers. One of these papers presents temperature results for a series of insulated glazing units. This is an example of our goal to make available a database of surface temperatures results for various types of windows. These data sets are available for download at the link below. The data are for the warm side surface of various types of air-filled insulating glazing units subjected to ASHRAE winter design conditions and are similar to the graph below.

23

Heat Transfer and Fluid Flow of Benard-Cell Convection in Rectangular Container with Free Surface Sensed by Infrared Thermography  

Science Conference Proceedings (OSTI)

The natural convection flow phenomena that occur inside an enclosed space are very interesting examples of complex fluid systems that may yield to analytical, empirical and numerical solutions, and many reports have looked into this basic problem. In ... Keywords: Gas-liquid Interface, Heat Transfer, Infrared Thermography, Natural Convection, Thermal Visualization, Turbulence

T. Inagaki; M. Hatori; T. Suzuki; Y. Shiina

2006-04-01T23:59:59.000Z

24

Thermal Integrity Assessment of Building Envelopes of Experimental Houses Using Infrared Thermography  

Science Conference Proceedings (OSTI)

Zero Energy Building Research Alliance, or ZEBRAlliance, is a joint DOE-ORNL-construction industry initiative to develop and demonstrate new energy efficiency technologies for residential buildings, as well as fine-tune and integrate existing technologies, to lower energy costs. Construction of residential envelopes, the diaphragms that separate the inside from outdoors, can have enormous impact on whole-building energy usage. Consequently, post-construction thermal integrity assessment of the building envelopes in the experimental ZEBRAlliance homes is an integral part of the research and development cycle. Nondestructive infrared (IR) thermography provides a relatively easy and quick means of inspecting the experimental homes for thermal bridging, insulation imperfections, moisture penetration, air leakage, etc. Two experimental homes located in Oak Ridge, TN were inspected using IR thermography. The homes are designed with two different envelope systems: (i) Structural Insulated Panels (SIP home) consisting of an insulating foam core sandwiched between oriented strand boards, and (ii) Optimal Value Framing (OVF home) using innovatively spaced wood studs, which are designed to minimize the amount of wood framing, reduce thermal bridging, and lower material costs. IR thermal imaging was performed from both outside and inside of the homes. In this paper, IR images of roof and wall sections of the homes are presented and discussed with respect to identification of areas of thermal bridging and any insulation deficiencies.

Biswas, Kaushik [ORNL; Kosny, Jan [ORNL; Miller, William A [ORNL

2010-01-01T23:59:59.000Z

25

Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications  

E-Print Network (OSTI)

1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array. 1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations. 1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricate...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

26

Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography  

E-Print Network (OSTI)

A high-speed video and infrared thermography based technique has been used to obtain detailed and fundamental time- and space-resolved information on pool boiling heat transfer. The work is enabled by recent advances in ...

Gerardi, Craig Douglas

2009-01-01T23:59:59.000Z

27

Use of infra-red thermography for automotive climate control analysis  

DOE Green Energy (OSTI)

In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

Burch, S.D.; Hassani, V.; Penney, T.R.

1994-03-01T23:59:59.000Z

28

Thermography for Estimating Near-Surface Soil Moisture under Developing Crop Canopies  

Science Conference Proceedings (OSTI)

Previous investigations of thermal infrared techniques using remote sensors (thermography) for estimating soil water content have been limited primarily to bare soil. Ground-based and aircraft investigations were conducted to evaluate the ...

J. L. Heilman; D. G. Moore

1980-03-01T23:59:59.000Z

29

The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part I: Laboratory Characterization of Blackbody Targets  

Science Conference Proceedings (OSTI)

The second calibration and intercomparison of infrared radiometers (Miami2001) was held at the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS) during MayJune 2001. The participants were from several groups ...

J. P. Rice; J. J. Butler; B. C. Johnson; P. J. Minnett; K. A. Maillet; T. J. Nightingale; S. J. Hook; A. Abtahi; C. J. Donlon; I. J. Barton

2004-02-01T23:59:59.000Z

30

Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures  

E-Print Network (OSTI)

. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) temperature conditions

31

Evaluation of aerial thermography to discriminate loft insulation in residential housing .  

E-Print Network (OSTI)

??This thesis examines the use of aerial thermography data to discriminate loft (attic) insulation levels in residential housing, with ventilated pitched roofs, in the UK. (more)

Allinson, David

2007-01-01T23:59:59.000Z

32

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

33

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

34

5th International ACI Conference, Cancun, Mexico, December 10-13, 2002 Quantitative Infrared Thermography for  

E-Print Network (OSTI)

of that particular type of fabric. All confined cylinders were wrapped using the wet layup tech- nique after

Entekhabi, Dara

35

Diagnostic use of infrared thermography in a patient with chronic pain following electrocution: a case report  

E-Print Network (OSTI)

2009 Jarrell and Spanswick; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

John Jarrell; Chris Spanswick

2009-01-01T23:59:59.000Z

36

Understanding, Modeling and Predicting Hidden Solder Joint Shape Using Active Thermography  

E-Print Network (OSTI)

Characterizing hidden solder joint shapes is essential for electronics reliability. Active thermography is a methodology to identify hidden defects inside an object by means of surface abnormal thermal response after applying a heat flux. This research focused on understanding, modeling, and predicting hidden solder joint shapes. An experimental model based on active thermography was used to understand how the solder joint shapes affect the surface thermal response (grand average cooling rate or GACR) of electronic multi cover PCB assemblies. Next, a numerical model simulated the active thermography technique, investigated technique limitations and extended technique applicability to characterize hidden solder joint shapes. Finally, a prediction model determined the optimum active thermography conditions to achieve an adequate hidden solder joint shape characterization. The experimental model determined that solder joint shape plays a higher role for visible than for hidden solder joints in the GACR; however, a MANOVA analysis proved that hidden solder joint shapes are significantly different when describe by the GACR. An artificial neural networks classifier proved that the distances between experimental solder joint shapes GACR must be larger than 0.12 to achieve 85% of accuracy classifying. The numerical model achieved minimum agreements of 95.27% and 86.64%, with the experimental temperatures and GACRs at the center of the PCB assembly top cover, respectively. The parametric analysis proved that solder joint shape discriminability is directly proportional to heat flux, but inversely proportional to covers number and heating time. In addition, the parametric analysis determined that active thermography is limited to five covers to discriminate among hidden solder joint shapes. A prediction model was developed based on the parametric numerical data to determine the appropriate amount of energy to discriminate among solder joint shapes for up to five covers. The degree of agreement between the prediction model and the experimental model was determined to be within a 90.6% for one and two covers. The prediction model is limited to only three solder joints, but these research principles can be applied to generate more realistic prediction models for large scale electronic assemblies like ball grid array assemblies having as much as 600 solder joints.

Giron Palomares, Jose

2012-05-01T23:59:59.000Z

37

Laboratory Directed Research and Development Program FY 2001  

E-Print Network (OSTI)

Brookhaven National Laboratory to measure the coherent far-infrared emitted from a bend magnet in the Jefferson Lab

Hansen, Todd; Levy, Karin

2002-01-01T23:59:59.000Z

38

Use of thermography in the detection of heat loss from school buildings: a manual for school officials  

SciTech Connect

Approaches to the assessment of thermal efficiency of a building are described. Other topics discussed are: the effectiveness of various systems, the use of thermography, cost-effectiveness considerations, and the use of this technology in the public school setting. (MHR)

Cage, B.N.; Walls, M.; Wolfe, C.

1981-01-01T23:59:59.000Z

39

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

40

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory,...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network (OSTI)

. Internal sources of heat are due to convection from flow of the heat transfer fluid through the pipes. Heat (material, diameter, spacing, and burial depth), (4) system flow rates, (5) heat transfer fluid properties · heat transfer fluid = 42% propylene glycol @ a flow rate of 350 gpm · heat pump model = Water Furnace

42

National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories Los Alamos National Laboratory (the Laboratory) is one of 17 National Laboratories in the United States and is one of the two located in New Mexico. The Laboratory has...

43

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

44

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

45

Laboratory Reagents  

SciTech Connect

Replaced by WMH-310, Section 4.17. This document outlined the basic methodology for preparing laboratory reagents used in the 222-S Standards Laboratory. Included were general guidelines for drying, weighing, transferring, dissolving, and diluting techniques common when preparing laboratory reagents and standards. Appendix A contained some of the reagents prepared by the laboratory.

CARLSON, D.D.

1999-10-08T23:59:59.000Z

46

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

47

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

48

The Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM)...

49

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

50

Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system  

SciTech Connect

This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

Riedhauser, S.R.

1995-09-01T23:59:59.000Z

51

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

52

NREL: Solar Radiation Research - Optical Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

53

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

54

Infrared emission from interplanetary dust  

Science Conference Proceedings (OSTI)

Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

1989-02-01T23:59:59.000Z

55

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

56

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini-channel Using Infra-Red thermography  

E-Print Network (OSTI)

Investigation of the Heat Transfer Coefficient of Liquid and Gas Bubble Train Flow in a Square Mini slug and bubbles, liquid and gas superficial velocities which depend on the volume flow ratio of the channel (Bo) for specific liquid and gas phase. At relatively high Bo (Bo>Bocr1.835) systems gravity force

Khandekar, Sameer

57

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

58

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

59

Department of Energy National Laboratories  

Idaho National Laboratory SLAC National Accelerator Laboratory Department of Energy National Laboratories. Laboratory or Facility Website ...

60

Virtual Laboratories  

E-Print Network (OSTI)

At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simulated dialogues between code developers, thus sharing not only the code, but also the motivations behind the code.

Piet Hut

2006-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Surface Temperature of IGUs  

NLE Websites -- All DOE Office Websites (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

62

Laboratory Activities  

Science Conference Proceedings (OSTI)

This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

Brown, Christopher F.; Serne, R. Jeffrey

2008-01-17T23:59:59.000Z

63

Posters Long-Pathlength Infrared Absorption Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 µm, this absorption can be attributed primarily to water vapor. It consists of 1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the υ 2 rovibrational band (at the high-wavenumber boundary of the window); and 2) the

64

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

65

Strategic Laboratory Leadership Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Erik Gottschalk (F); Devin Hodge (A); Jeff Chamberlain (A); Brad Ullrick (A); Bill Rainey (J). Image courtesy of Argonne National Laboratory. Strategic Laboratory Leadership...

66

Solar Infrared Photometer  

Science Conference Proceedings (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

67

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

68

ARGONNE NATIONAL LABORATORY is....  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering June 12-18, 2010 - Argonne National Laboratory June 19-26, 2010 - Oak Ridge National Laboratory Argonne National Laboratory is a U.S. Department of Energy laboratory...

69

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

70

Mid?Infrared Spectral Diagnostics of Luminous Infrared Galaxies  

Science Conference Proceedings (OSTI)

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All?sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on?board Spitzer in the rest?frame wavelength range between 5 and 38 ?m. The GOALS sample enables a direct measurement of the relative contributions of star?formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large

A. Petric; The GOALS collaboration

2010-01-01T23:59:59.000Z

71

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

72

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

73

BROOKHAVEN NATIONAL LABORATORY - Energy  

Laboratory Plan FY 2010-2019 June2,2010 BROOKHAVEN NATIONAL LABORATORY Accelerating Innovation Alane for Hydrogen Storage and Delivery June 2012

74

ARM - Laboratory Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Data Management Facility Data Quality Program Engineering Support External Data Center Laboratory Partners Nine DOE national laboratories share the responsibility of...

75

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

76

EML: Environmental Measurements Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Security and Privacy Notices History of the Environmental Measurements Laboratory The Manhattan ProjectAtomic Energy Commission (1942 1975) Our Laboratory traces its roots...

77

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security. As a...

78

New Brunswick Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports New Brunswick Laboratory Activity Reports 2012 Operational Awareness Oversight of the New Brunswick Laboratory, July 2012 Activity Reports 2011 Orientation Visit to the New...

79

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

80

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oak Ridge National Laboratory - Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seed Money Fund Overview The Seed Money Fund of the ORNL LDRD program supports innovative ideas that have the potential of enhancing the Laboratory's core scientific and technical...

82

About Berkeley Lab: Laboratory Director, Associate Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009, replacing former laboratory Director Steve Chu, who was sworn in as U.S. Energy Secretary. Before becoming interim director, Alivisatos was the deputy director of Berkeley...

83

Sandia National Laboratories: Research: Laboratory Directed Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging creative research to innovate solutions for our nation's greatest challenges. National laboratories have been entrusted with the role of serving as incubators for...

84

Annual Report Alfvn Laboratory  

E-Print Network (OSTI)

is plasma research using small-scale laboratory experiments, where low-density plasmas are generated

Haviland, David

85

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

86

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

87

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

88

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

89

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Forward looking infrared Citation Wikipedia. Forward looking infrared...

90

Department of Energy National Laboratories  

Office of Science laboratory National Nuclear Security Administration laboratory Office of Fossil Energy laboratory Office of Energy Efficiency and ...

91

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

92

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

93

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

94

COMPUTER SYSTEMS LABORATORY STANFORD ELECTRONICS LABORATORIES  

E-Print Network (OSTI)

of Data 2.1 Performance and Utilization Data 2.2 Failure Data 5 5 6 3. Preliminary Analysis 3.1 Load Profiles 3.2 Failure Profiles 7 3.3 Analysis and Discussion of Preliminary Results Some ReliabilityCOMPUTER SYSTEMS LABORATORY I I STANFORD ELECTRONICS LABORATORIES DEPARTMENT OF ElECTRiCAl

Stanford University

95

Leading Testing Laboratories  

Science Conference Proceedings (OSTI)

... Fax: 86-20-6196-8925 E-Mail: york.li@ledtestlab.com Send E-Mail to Laboratory: Leading Testing Laboratories ... [22/S14] EPA Integral LED Lamps v ...

2013-09-06T23:59:59.000Z

96

Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

AOCS provides a Laboratory Proficiency Program (LPP). Formerly the Smalley Check Sample Program LPP is a collaborative proficiency testing service for oil and fat related commodities, oilseeds, oilseed meals, and edible fats. Laboratory Proficiency Testing

97

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

98

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

99

Lisheng Safety Laboratory  

Science Conference Proceedings (OSTI)

Lisheng Safety Laboratory. NVLAP Lab Code: 200882-0. Address and Contact Information: Electronic & Lighting (Xiamen) Co. Ltd. No. ...

2013-09-27T23:59:59.000Z

100

State Laboratory Contacts M  

Science Conference Proceedings (OSTI)

... Maine Department of Agriculture Metrology Laboratory Div. QA&R 28 Station House Road Augusta, ME 04333, 333 Cony Rd. ...

2013-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Price Sound Laboratory  

Science Conference Proceedings (OSTI)

Price Sound Laboratory. NVLAP Lab Code: 200874-0. Address and Contact Information: 638 RALEIGH STREET WINNIPEG ...

2013-10-31T23:59:59.000Z

102

Savannah River National Laboratory  

At a glance Remote Electrical Throw Device Engineers at the Savannah River National Laboratory ... sufficient manufacturing capacity, established dist ...

103

Engineering Laboratory Homepage  

Science Conference Proceedings (OSTI)

... and InfrastructureDisaster-Resilient Buildings, Infrastructure, and ... of the Manufacturing Engineering Laboratory. ... Net-Zero Energy Residential Test ...

2013-08-12T23:59:59.000Z

104

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

105

Laboratory Coordinating Council  

Science Conference Proceedings (OSTI)

The nation's network of DOE Laboratories and Facilities hold an extensive store of research and development expertise and unique equipment developed for their various missions. The Laboratory Coordinating Council (LCC) gives US industry access to a ``virtual'' laboratory that can be tailored to meet the specific requirements of almost any research project. Established in 1995, the LCC responds to the major process industries' R and D needs with the capabilities of 16 DOE Laboratories and Facilities.

Chum, H.

1998-12-21T23:59:59.000Z

106

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

107

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

108

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

109

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

110

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

111

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

112

Foreword for Non-Dispersive Infrared (NDIR) Gas Measurement Today  

Science Conference Proceedings (OSTI)

Infrared spectroscopy provides the analytical laboratory with essential capabilities to identify and to quantify components of gas mixtures in a relatively straightforward manner. Except for symmetric diatomic species, most molecules are 'IR active' that is, they absorb IR light at specific energies associated with that molecule's vibrational and rotation modes. Simple molecules have a few predominant absorption energies and are easy to identify, while more complicated molecules with many bonds have many absorption peaks. To cover the full range of possible absorption energies, laboratory instruments initially employed dispersive elements, typically gratings, to scan over the wavelengths of interest. Today, Fourier-transform infrared (FTIR) spectroscopy has replaced most dispersive IR spectrometry due to improvements in speed and the signal-to-noise ratio but at the expense of instrumental complexity. The impressive analytical power of IR spectroscopy can be distilled into a tiny sensor for a restricted, but nevertheless very useful, set of chemical vapors. Non-dispersive infrared (NDIR) sensors use bandpass filters to select one, or at most a few, energy bands corresponding absorption by carbon dioxide, water, hydrocarbons, etc. Although the concept is simple, the task has proved to be elusive for constructing an NDIR sensor that maintains its calibration in spite of aging and environmental factors. Over the past four decades, Dr. Wong has been on the quest to perfect NDIR sensing, yet in very practical designs. This book reflects his journey, and more recently that of his coauthor, to do just that.

Warmack, Robert J Bruce [ORNL

2012-01-01T23:59:59.000Z

113

Short bunch research at Brookhaven National Laboratory  

SciTech Connect

Research into the production and utilization of short electron bunches at Brookhaven National Laboratory is underway at the Source Development Laboratory (SDL) and Accelerator Test Facility (ATF). Projects planned for the SDL facility include a 210 MeV electron linac with a dipole chicane that is designed to produce 100 {mu}m long bunches and a compact electron storage ring that will use superconducting RF to produce sub-millimeter bunches.The ATF has a 30-70 MeV linac that will serve as the injector for laser accelerators that will bunch the beam into to micron-length bunches. Coherent transition and synchrotron radiation from the short bunches will be used for beam diagnostics and infrared experiments.

Blum, E.B.

1995-12-31T23:59:59.000Z

114

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

115

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

116

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

117

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

118

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

119

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences TECH PROC LN2 Manual Fill...

120

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

reminder to persons whose area will be inspected (i.e. Cognizant Space Managers) Brookhaven National Laboratory Photon Sciences Directorate Subject: ENVIRONMENTAL, SAFETY AND...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

current version by checking the document effective date on the PS Training website. Brookhaven National Laboratory Photon Sciences Directorate Subject: Photon Sciences ELEC PPE -...

122

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

123

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

124

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argo exascale architecture Click on image to enlarge. Designing a new operating system for exascale architectures Full Story Argonne National Laboratory has been awarded a...

125

Sandia National Laboratories - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Sandia National Laboratories Review Reports 2013 Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013 Activity...

126

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

participants to respond to simulated hazardous materials emergencies involving a rail car, a clandestine laboratory, various modes of transportation, industrial piping...

127

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental...

128

Hollings Marine Laboratory Homepage  

Science Conference Proceedings (OSTI)

... The Hollings Marine Laboratory (HML) is a ... the Nation's coastal environmental- and health-related problems ... s National Ocean Service, the National ...

2013-08-19T23:59:59.000Z

129

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory wild@mcs.anl.gov ABSTRACT Code optimization in the high-performance computing realm has traditionally focused on reducing execution time. The problem, in...

130

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

131

Shared Intellect * Shared Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

VOLUME 3, ISSUE 3 NETL-RUA 2013 SPRING MEETING: Growth Through Collaboration National Energy Technology Laboratory - Regional University Alliance (NETL-RUA) members joined...

132

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

133

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

134

Fumonisin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for B1, B2, B3,and total Fumonisin in corn meal samples. Fumonisin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods

135

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

136

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

137

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

138

Material Measurement Laboratory Professional Research ...  

Science Conference Proceedings (OSTI)

... at the NIST, Gaithersburg Laboratories in Gaithersburg ... NIST Hollings Marine Laboratory (HML) in ... sponsoring institution of higher education and be ...

2013-05-26T23:59:59.000Z

139

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

140

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laboratory Protection Division, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

142

Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses  

DOE Green Energy (OSTI)

The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

Epstein, S.; Stolper, E.

1992-01-01T23:59:59.000Z

143

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

144

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

145

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

146

Sonication standard laboratory module  

DOE Patents (OSTI)

A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

1999-01-01T23:59:59.000Z

147

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... Remarks RADIATION THERMOMETRY (20/T06) Infrared Temperature -15 C to 0 C 0.98 C Hart Black Body Measuring ...

2013-08-28T23:59:59.000Z

148

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... RADIATION THERMOMETRY (20/T06) Infrared Temperature Measuring Equipment -15 C to 0 C 0.54 C Fluke Black Body ...

2013-05-14T23:59:59.000Z

149

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... RADIATION THERMOMETRY (20/T06) Infrared Temperature Measuring Equipment -15 C to 0 C 0.99 C Hart Black Body ...

2013-09-17T23:59:59.000Z

150

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

151

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

152

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

153

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

154

Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Savannah River National Laboratory Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance Additive Manufacturing (3D Printing): Selectively Printed Conductive Pathways Researchers at the Savannah River National Laboratory (SRNL) have developed a rapid prototype conductive material that can be used for electrical shielding or circuit fabrication. Background Several rapid prototype technologies currently exist. A few of the technologies produce metallic parts, but the majority produce nonconductive parts made from various grades of plastic. In all of these technologies however, only conductive material or nonconductive material can be used within one part created. There is no known option for 3D printing conductive material for

155

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

remembers former director Harold remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national security science - 2 - brings value to a broad spectrum of breakthroughs. Los Alamos and the nation will be forever in Harold's debt." Agnew died at home on Sunday, Sept. 29, his family announced. He was the third director of Los Alamos National Laboratory, succeeding Robert

156

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

157

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

employees receive Pollution Prevention employees receive Pollution Prevention Awards April 23, 2013 Protecting environment, saving taxpayer dollars LOS ALAMOS, N.M., April 23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. The employees were recognized at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative to improve their own operations," said Pat Gallagher of the Laboratory's Environmental - 2 - Stewardship group. "These are clever, innovative, homegrown and home-owned ideas that save the Laboratory and taxpayers millions of dollars each year while reducing

158

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

159

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

160

Brookhaven National Laboratory, Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2006 the Office of Educational Programs (OEP) at the U.S. Department of Energy's Brookhaven National Laboratory launched the Open Space Stewardship Program as part of its Green...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will...

162

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

to 400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental...

163

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as...

164

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better...

165

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

166

Ferroelectric infrared detector and method  

DOE Patents (OSTI)

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

167

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

168

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

169

MEDICAL LABORATORY SCIENCES The role of the medical laboratory  

E-Print Network (OSTI)

in Medical Laboratory Sciences and are eligible to sit for national certification examinations. Admission website, wichita.edu/chp under Medical Laboratory Sciences. The application requires a completed

170

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

About Nuclear Weapons at Sandia About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on the physics package, Sandia's work is to weaponize the physics package. Sandia must ensure that the other 95% of the weapon's parts work perfectly at every point of contact with the delivery systems. This requires the broadest competencies in engineering, with a deep science foundation. At the core of Sandia's nuclear weapons program is warhead systems

171

Sandia Laboratories energy programs  

DOE Green Energy (OSTI)

As one of the multiprogram laboratories of the Energy Research and Development Administration, Sandia Laboratories applies its resources to a number of nationally important programs. About 75 percent of these resources are applied to research and development for national security programs having to do primarily with nuclear weapons--the principal responsibility of the Laboratories. The remaining 25 percent are applied to energy programs and energy-related activities, particularly those requiring resources that are also used in nuclear weapon and other national security programs. Examples of such energy programs and activities are research into nuclear fusion, protection of nuclear materials from theft or diversion, and the disposal of radioactive waste. A number of technologies and disciplines developed for the weapon program are immediately applicable for the development of various energy sources. Instruments developed to detect, measure, and record the detonation of nuclear devices underground, now being used to support the development of in-situ processing of coal and oil shale, are examples. The purpose of this report is to provide an overview of these and other energy programs being conducted by these laboratories in the development of economical and environmentally acceptable alternative energy sources. Energy programs are undertaken when they require capabilities used at the Laboratories for the weapon program, and when they have no adverse effect upon that primary mission. The parallel operation of weapon and energy activities allows optimum use of facilities and other resources.

Lundergan, C.D.; Mead, P.L.; Gillespie, R.S. (eds.)

1977-03-01T23:59:59.000Z

172

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

173

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab disputes ctizens' lawsuit Lab disputes ctizens' lawsuit Laboratory disputes citizens' lawsuit Lab officials expressed surprise to a lawsuit alleging noncompliance with the federal Clean Water Act filed today by citizens groups. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact James E. Rickman

174

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

175

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

176

IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

177

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

178

Idaho National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Idaho National Laboratory Review Reports 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site, April 2013 Review of the Facility Representative Program at the Idaho Site, March 2013 Activity Reports 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Review Reports 2012 Review of Radiation Protection Program Implementation at the Idaho Site, November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Idaho National Laboratory, July 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review, June 2012

179

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

180

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL LABORATORIES NATIONAL LABORATORIES SF 6432-CS (10-98) SECTION II STANDARD TERMS & CONDITIONS FOR COMMERCIAL SERVICES PROCURED ON A FIRM FIXED PRICE OR FIXED RATE BASIS THE FOLLOWING CLAUSES APPLY TO THIS CONTRACT AS INDICATED UNLESS SPECIFICALLY DELETED, OR EXCEPT TO THE EXTENT THEY ARE SPECIFICALLY SUPPLEMENTED OR AMENDED IN WRITING IN THE SIGNATURE PAGE OR SECTION I. CS10 - DEFINITIONS The following terms shall have the meanings set forth below for all purposes of this contract. (a) GOVERNMENT means the United States of America and includes the U.S. Department of Energy (DOE) or any duly authorized representative thereof. (b) SANDIA means Sandia National Laboratories, operated by Sandia Corporation under Contract No. DE-ACO4-94AL-85000 with the U.S. Department of Energy.

182

Analytical laboratory quality audits  

SciTech Connect

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

183

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

184

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

185

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

186

Historical Photographs: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory 1. Positron emitter detector (circa 1962) used to detect brain tumors at Brookhaven National Laboratory (252Kbytes) 2. Medical activities at...

187

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of ...

188

Leadership Development | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

include work-life balance, stress management and innovative solutions to career and gender issues. Photo Gallery: Strategic Laboratory Leadership Program Strategic Laboratory...

189

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory From: -5132011 Currently at: Stony Brook University Director of Chemical Laboratories Department of Chemistry Stony Brook...

190

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

and John Stevens are with Sandia National Laboratories,of the Technical Staff at Sandia National Labs in the Energybefore taking a job with Sandia National Laboratories and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

191

Lawrence Wos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emeritus Lawrence Wos Larry Wos is an emeritus scientist in the Mathematics and Computer Science Division at Argonne National Laboratory; he joined the laboratory in February 1957....

192

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

193

DOE Laboratory Accreditation Program - Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Library DOE Laboratory Accreditation Program DOELAP Regulatory Basis 10 CFR 835.402, Individual Monitoring, as amended DOELAP Program Administration DOE-STD 1111-98, DOE Laboratory...

194

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tour group Tour Program Meet the scientists who make the research at Brookhaven National Laboratory happen Brookhaven National Laboratory offers the unique opportunity for...

195

National Laboratories - EERE Commercialization Office  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of new energy ...

196

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge...

197

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Report Year of Publication 2010 Authors Lasseter, Robert H., Joseph H. Eto, Ben...

198

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

199

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

200

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

202

Infra-red signature neutron detector  

SciTech Connect

A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generating a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

203

Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven .  

E-Print Network (OSTI)

??A quantitative, model-based understanding of heat exchange in infrared and combined infrared-microwave heating of food inside an oven is developed. The research is divided into (more)

Frangipani Almeida, Marialuci

2004-01-01T23:59:59.000Z

204

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

205

Accelerator Laboratory AGN-201M Nuclear Reactor Laboratory  

E-Print Network (OSTI)

Laboratory Nuclear Power Institute (NPI) Nuclear Science Center (1MW Triga Reactor) (NSC) Nuclear SecurityAccelerator Laboratory AGN-201M Nuclear Reactor Laboratory Center for Large-scale Scientific Simulations (CLASS) Fuel Cycle and Materials Laboratory (FCML) Institute for National Security, Education

206

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

207

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

L e m o n t , I l l i n o i s ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY R e p o r t f o r t h e Y e a r 1954 W r i t t e n by J. Sedlet E x p e r i m e n t a l w...

208

Pacific Northwest National Laboratory  

E-Print Network (OSTI)

Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

209

from Savannah River National Laboratory  

Issue: Depleted uranium present in shallow soils and sediments at Lawrence Livermore National Laboratory Site 300.

210

Safety Environmental Laboratories & Consulting Inc.  

Science Conference Proceedings (OSTI)

Safety Environmental Laboratories & Consulting Inc. NVLAP Lab Code: 200873-0. Address and Contact Information: 989 ...

2013-09-27T23:59:59.000Z

211

Biometrics Identity Management Agency Laboratory  

Science Conference Proceedings (OSTI)

Biometrics Identity Management Agency Laboratory. NVLAP Lab Code: 200933-0. Address and Contact Information: 1000 ...

2013-08-09T23:59:59.000Z

212

NIST: Physical Measurement Laboratory - Research ...  

Science Conference Proceedings (OSTI)

... Fellowships: SURFing the Physical Measurement Laboratory ... Optical, Radiation, and Chemical Physics. ... involves PML's Quantum Physics Division. ...

2010-10-05T23:59:59.000Z

213

Lawrence Livermore National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Review Reports 2013 Independent Oversight Review of the Fire Protection Program at Lawrence Livermore National Laboratory, September 2013 Independent Oversight Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory, July 2013 Activity Reports 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility, February 2013 Activity Reports 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities, October 2012 Review Reports 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011

214

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

215

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

216

Sandia National Laboratories Albuquerque | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories, the laboratories responsible for the development, testing, and production of specialized nonnuclear components. Laboratories: The NNSA Sandia National...

217

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

218

S ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

ARGONNE NATIONAL LABORATORY ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very few contradictions. with experimental facts and requires no major crossing of the levels from those of a square well potential. The magic numbers O, 82, and 126 occur at the' place of the spin-orbit splitting of levels of high angular momen- tum, Table 1 contains in column two in order

219

Safety | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely and responsibly. As a recognized leader in safety, we are committed to making ethical decisions that provide a safe and healthful workplace and a positive presence within the larger Chicagoland community. Argonne's Integrated Safety Management program is the foundation of the laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site personnel, visitors and the public. Related Sites U.S. Department of Energy Lessons Learned Featured Media

220

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical Empirical performance modeling of GPU kernels using active learning 1 Prasanna Balaprakash 2 , Karl Rupp 2 , Azamat Mametjanov 2 , Robert B. Gramacy 3 , Paul D. Hovland 2 , Stefan M. Wild 2 Mathematics and Computer Science Division Preprint ANL/MCS-P4097-0713 July 2013 1 Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA 3 Booth School of Business, University of Chicago Empirical performance modeling of GPU kernels using active learning Prasanna Balaprakash 1 , Karl Rupp 1 , Azamat Mametjanov 1 Robert B. Gramacy 2 , Paul D. Hovland 1 , Stefan M. Wild 1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transportation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

222

National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

223

Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory National Laboratory Standard Procurement Forms An Acrobat Reader is needed to display these documents How to get an Acrobat Reader Date Form (Link to PDF) Title GSA Library of Standard Government Forms ANL Forms Repository PARIS Enrollment/Change Status Forms Argonne Terms & Conditions (headmark list) Suspect/Counterfeit Parts December 9, 2010 Poster PD-154 Appendix A - ARRA Supplement Previous Revisions: August 17,2010 August 7, 2009 Whistleblower Protection Poster Under Recovery Act January 24, 2013 ANL-71-COM Argonne Terms and Conditions for Commercial Items Previous Revisions: May 10, 2012 January 5, 2012 July 11, 2011 April 14, 2011 March 1, 2011 December 7, 2010 August 13, 2010 June 15, 2010 January 18, 2010 December 22, 2009 April 2, 2009

224

Laboratory Shuttle Bus Routes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rear bike rack image Rear bike rack image The Laboratory provides shuttle bus services, contracted through MV Transportation Services. Routes run throughout its 200-acre facility, downtown Berkeley, local off-site facilities, UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are marked with this sign: Bus sign image Shuttles run Monday through Friday, except Laboratory holidays. There is no weekend service. Special service for tours, group travel, etc. is available for a fee. All shuttles are equipped with Nextbus which uses GPS technology to enable riders to obtain real-time information on bus arrivals. Contact Bus Services at busservices@lbl.gov or 510-486-4165 to provide

225

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

May 14, 2013 May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory support, risk assessment and reporting. - 2 - The companies chosen are Terranear PMC, Navarro Research and Engineering, Inc., and Adelante Consulting, Inc. The agreement is for three years with two additional one- year options. Task orders under this agreement will be competitively bid among the

226

Princeton Plasma Physics Laboratory:  

SciTech Connect

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

227

Laboratory Corrosion Tests  

Science Conference Proceedings (OSTI)

Table 2   Laboratory corrosion tests...Salt spray test NaCl solution Ocean climate Acetic acid salt spray test NaCl + CH 3 COOH Salted roads Copper-accelerated acetic acid salt spray test As in acetic acid salt spray test As in acetic acid salt spray test, but more aggressive Immersion tests Artificial sweat test ? Wearing of decorative...

228

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

229

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

230

Smart Grid Integration Laboratory  

Science Conference Proceedings (OSTI)

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

231

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

232

Purdue Hydrogen Systems Laboratory  

DOE Green Energy (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

233

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

234

Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

March/April 2008 March/April 2008 4 Lawrence Livermore National Laboratory Extending the Search for Extending the Search for A new imager will allow astrophysicists to study the atmospheres of distant planets. T HE discovery of other solar systems beyond ours has been the stuff of science fiction for decades. Great excitement greeted the positive identification of the first planet outside our solar system in 1995. Since then, scientists have identified approximately 250 extrasolar planets (exoplanets), but they have had no way to study the majority of these planets or their

235

Laboratory.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Pharmaceutical Industry's Approach Pharmaceutical Industry's Approach to Safe Handling of New Molecular Entities Donna S. Heidel, CIH The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy 2 Pharma IH Process Overview Focus on R&D laboratories * Occupational Health Hazard Characterization - "Default" Health Hazard Band for Discovery labs - Health Hazard Banding for Development labs - Occupational Exposure Limits * Control Selection - Graded approach for engineering controls * Exposure Verification - Applicability to Engineered Nanoparticles 3 Pharma's Philosophy and Rationale for Health Hazard/Control Banding * Possible to group together

236

Microelectronics at Sandia Laboratories  

SciTech Connect

The microelectronics capability at Sandia Laboratories spans the complete range of component activity from initial design to final assembly into subsystems and systems. Highly reliable, radiation-tolerant devices and integrated circuits can be designed, fabricated, and incorporated into printed circuit assemblies or into thick- or thin-film hybrid microcircuits. Sandia has an experienced staff, exceptional facilities and aggressive on-going programs in all these areas. The authors can marshall a broad range of skills and capabilities to attack and solve problems in design, fabrication, assembly, or production. Key facilities, programs, and capabilities in the Sandia microelectronics effort are discussed in more detail in this booklet.

Spencer, W.J.; Gregory, B.L.; Franzak, E.G.; Hood, J.A.

1975-12-31T23:59:59.000Z

237

Sandia Laboratories radiation facilities  

SciTech Connect

This brochure is designed as a basic source of information for prospective users of Sandia Laboratories Radiation Facilities. It contains a brief description of the various major radiation sources, a summary of their output characteristics, and additional information useful to experimenters. Radiation source development and source upgrading is an ongoing program, with new source configurations and modes of operation continually being devised to satisfy the ever-changing radiation requirements of the users. For most cases, the information here should allow a potential user to assess the applicability of a particular radiation facility to a proposed experiment and to permit some preirradiation calculations and planning.

Choate, L.M.; Schmidt, T.R.; Schuch, R.L.

1977-07-01T23:59:59.000Z

238

Fermi National Acceleratory Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Fermi National Acceleratory Laboratory, Former Production Workers Screening Projects...

239

Ames Laboratory, Former Production Workers Screening Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Ames Laboratory, Former Production Workers...

240

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cottonseed Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab proficiency testing for Cottonseed. Determinations include Free Fatty Acids, Foreign Matter, Moisture,Nitrogen,Oil. Cottonseed Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab

242

Aflatoxin Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Aflatoxin. Samples include Peanut Butter, Peanut Paste, Cottonseed Meal, Corn Meal, Milk, Pistachio and Almond, Aflatoxins B1, B2, G1, and G2 Aflatoxin Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP)

243

Cholesterol Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing for Cholesterol. Samples Dried Meats, Dried Egg, and Cheese Powder. Method AOAC 994.10 Cholesterol Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborato

244

Peanut Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Peanuts to determine Free Fatty Acids, Foreign Matter, Moisture, Oil, Nitrogen. Peanut Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

245

Precision Data -Laboratory Proficiency Program  

Science Conference Proceedings (OSTI)

Precision Data Series is a valuable reference tool that can be used for determining the expected variability in the methods used in your lab. Precision Data -Laboratory Proficiency Program Laboratory Services analysis analytical methods aocs certi

246

Soybeans Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for determining Free Fatty Acids, Moisture, Nitrogen, Oil, and Crude Fiber in Soybeans. Soybeans Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab la

247

Laboratory Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratories/highlights/ The Office of Science is laboratories/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {B0DFBA1D-D6A0-4920-8E73-4779F8F5ACEA}http://science.energy.gov/np/highlights/2013/np-2013-12-a/ Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by Argonne's new CARIBU facility provide insight into the creation of the elements in the universe. Thu, 09

248

Mobile Energy Laboratory Procedures  

SciTech Connect

Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

1993-09-01T23:59:59.000Z

249

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics  

E-Print Network (OSTI)

We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA)- a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R \\sim 1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

Stephen Eikenberry; S. Nicholas Raines; Nicolas Gruel; Richard Elston; Rafael Guzman; Jeff Julian; Glenn Boreman; Paul Glenn; Greg Hull-Allen; Jeff Hoffmann; Michael Rodgers; Kevin Thompson; Scott Flint; Lovell Comstock; Bruce Myrick

2006-04-27T23:59:59.000Z

250

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145F (62.78C) and 100F (36.78C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

251

Brookhaven National Laboratory Technology Marketing ...  

Brookhaven National Laboratory Technology Marketing ... a critical reaction in a number of growing energy generation and utilization ... Energy Analys ...

252

Hollings Marine Laboratory Staff Directory  

Science Conference Proceedings (OSTI)

Hollings Marine Laboratory Staff Directory. ... The Search box will accept a name, phone number, organization name, email address, etc. Contact. ...

2013-08-15T23:59:59.000Z

253

RFI Comments - Idaho National Laboratory  

Science Conference Proceedings (OSTI)

... These vulnerabilities are analyzed the common vulnerability reports produced the by National SCADA Test Bed at the Idaho National Laboratory ...

2013-04-12T23:59:59.000Z

254

Brookhaven National Laboratory: Technology Commercialization ...  

Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies.

255

PNNL: About PNNL - Laboratory History  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical imaging, chemistry and geochemistry, materials sciences, advanced computing, nuclear and particle physics, and the Environmental Molecular Sciences Laboratory (EMSL)....

256

Building and Fire Research Laboratory  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 4827 Building and Fire Research Laboratory Publications, 1991 Nora H. Jason N lsr United States Department ...

2004-05-25T23:59:59.000Z

257

Organization Chart | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Download Organization Charts Argonne National Laboratory Computing, Environment, and Life Sciences Energy Engineering and Systems Analysis Physical Science and Engineering...

258

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Electron Microscopy Center (EMC) at Argonne National Laboratory...

259

South Texas Project Dosimetry Laboratory  

Science Conference Proceedings (OSTI)

South Texas Project Dosimetry Laboratory. NVLAP Lab Code: 100519-0. Address and Contact Information: PO Box 289 ...

2013-08-23T23:59:59.000Z

260

Phosphorus in Oil Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Laboratory Proficiency Testing service for Phosphorus in soybean oil Phosphorus in Oil Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils profici

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Laboratory Proficiency Testing Program Award Winners  

Science Conference Proceedings (OSTI)

Proficiency testing labs or laboratories awarded by AOCS. Laboratory Proficiency Testing Program Award Winners Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laboratory methods oils proficiency reference

262

Humidity requirements in WSCF Laboratories  

SciTech Connect

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

263

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

264

Nano-Mechanical Infrared Detectors  

SciTech Connect

Infrared radiation (IR) is electromagnetic radiation with wavelengths between 0.7 m and 100 m. It extends from visible light to THz waves. Because fundamentally different phenomena can be observed within the IR region, four sub-bands are usually distinguished: near-IR (NIR), mid-wave-IR (MWIR), long-wave-IR (LWIR) and very long-wave-IR (VLWIR). Although somewhat different definitions exist in literature, wavelengths from 0.7 m to 2.5 m belong to NIR, from 2.5 m to 8 m belong to MWIR, from 8 m to 14 m belong to LWIR and wavelengths above 14 m belong to VLWIR. The IR photon energies range from 1.77 eV for 0.7 m photons to 0.0124 eV for 100 m photons. The significance and practical applications of IR detectors are related to two distinct phenomena: emission of electromagnetic waves by all objects at T > 0 K and interaction of electromagnetic waves with vibrational modes of molecular bonds. Thermal imaging and molecular spectroscopy are, respectively, the two major fields that critically depend on the ability to detect IR radiation.

Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott [Oak Ridge National Laboratory (ORNL); Hunt, Rodney Dale [ORNL; Datskos, Panos G [ORNL

2011-01-01T23:59:59.000Z

265

Thermographic Inspections | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

being lost. Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. How Thermographic Inspections Work...

266

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

(2013). 2012 Aieta, Niccolo V., Prodip K. Das, Andrew Perdue, Guido Bender, Andrew M. Herring, Adam Z. Weber, and Michael J. Ulsh. "Applying infrared thermography as a...

267

Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors  

DOE Patents (OSTI)

Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

1999-01-01T23:59:59.000Z

268

Science and applications of infrared semiconductor nanocrystals  

E-Print Network (OSTI)

In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

Geyer, Scott Mitchell

2010-01-01T23:59:59.000Z

269

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2001-01-01T23:59:59.000Z

270

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

271

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

272

NIST Infrared laser gonioreflectometer instrument (ILGRI)  

Science Conference Proceedings (OSTI)

... stable CO 2 , near infrared diode, and continuously tunable OPO PPLN lasers) and a ... from 1 nW to 1 W. The addition of other laser wavelengths in ...

2010-10-05T23:59:59.000Z

273

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2002-01-01T23:59:59.000Z

274

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

275

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

276

Session Z: Pb-Salt Infrared Materials  

Science Conference Proceedings (OSTI)

In order to demonstrate the advantages of this light coupling scheme, a two-color C-QWIP covering the two infrared atmospheric windows as well as a relatively...

277

Low-Temperature Calibration of Infrared Thermometers  

Science Conference Proceedings (OSTI)

A method was developed for calibrating infrared thermometers to properly measure target temperatures ranging from ?70 to 0C. Once calibrated for this range, the thermometer can then be used to measure the flux of thermal radiation from the sky. ...

B. A. Kimball; S. T. Mitchell

1984-12-01T23:59:59.000Z

278

ARGONNE NATIONAL LABORATORY May  

NLE Websites -- All DOE Office Websites (Extended Search)

May 9, 1994 Light Source Note: LS{234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave., Argonne, IL 60439-4815 Telephone: (708) 252-6660 FAX: (708) 252-6607 ABSTRACT UGIMAG [1] is manufacturing the NdFeB permanent magnet blocks to be used in undulator A now being assembled by STI Optronics. We would like to be able to compare measurements made at the plant with those made at ANL and potentially with those made at the STI facility. Since there are no permanent magnet standard samples, measurement systems are compared by trading sets of magnets set aside as standards. APS has ten NdFeB permanent magnet blocks supplied by Sumitomo [2] that we use to make these comparisons. These magnet samples have been exten- sively measured on the APS system. The data include the

279

Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ICE SLURRY PHASE-CHANGE COOLANTS FOR ICE SLURRY PHASE-CHANGE COOLANTS FOR INDUSTRIAL AND MEDICAL APPLICATIONS K. Kasza*, Y. Wu, J. Heine, D. Sheradon, and Steve Lake * Argonne National Laboratory, 9700 South Cass Avenue, Argonne Illinois, 60439, USA kasza@anl.gov Abstract Over the last 15 years, interest in using phase-change ice slurry coolants has grown significantly. Because of the high energy content of ice slurry, which is due to the phase change (melting) of the ice particles under a cooling load, the cooling capacity of ice slurry is many times greater than that of single phase fluids. Research is focused on understanding ice slurry behavior and developing highly-loaded, storable, and pumpable ice slurry coolants. Research has shown that the ice slurry must be engineered to have the correct

280

Contract | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Prime Contract is the contract between the U.S. Department of Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return to the main menu. When searching the text of the Argonne Prime Contract, the previous/next hit buttons will take you to the previous/next occurrence of your search term(s) in the current section. Search Table of Contents Advanced Search List of Modifications List of Appendices

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARGONNE NATIONAL LABORATORY  

Office of Legacy Management (LM)

7/ 7/ ARGONNE NATIONAL LABORATORY 9700 Sod CASS AVENUE, A~o~NE, llhois 60439 oh/, lb w- /7 T-E 312/972-3322 e-,/f pa, / =i ' 4 /2 August 21, 1984 MI-. 3' (it+ ipj Aerospace Corporation Suite 4000 955 L'Enfant Plaza S. W. Washington, D.C. 20024 Dear Mr. Wallo: Subject: Aerospace Records Search Reference: 1. Letter, H. J. Rauch to A. Schriesheim, dated July 30, 1984, subject same as above. 2. Letter, J. E. Baublitz to R. M. Moser, dated July 19, 1984, subject same as above. In accordance with the above referenced letters, please find enclosed copies of information from our files relating to the following sites. ~ 1. Revere Copper and Brass Company, Detroit, Michigan. 2. Parker Rust Proof and Meistermatic, formerly McKinney Tool and Manufacturing Company, Cleveland, Ohio.

282

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance modeling for exascale autotuning: An integrated approach ∗ Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division Preprint ANL/MCS-P5000-0813 July 2013 ∗ Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 1 Performance modeling for exascale autotuning: An integrated approach Prasanna Balaprakash ∗ , Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 The usual suspects-shrinking integrated circuit feature sizes, heterogeneous nodes with many- core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns-make exascale

283

Renewable Energy Laboratory  

Open Energy Info (EERE)

success of any solar energy success of any solar energy installation depends largely on the site's solar resource. Therefore, detailed knowledge of an area's solar resource is critical to installation planning and siting. To help with these efforts, the National Renewable Energy Laboratory (NREL) and the National Climatic Data Center (NCDC) have updated the National Solar Radiation Database (NSRDB). Since 1992, the database has provided solar planners and designers, building architects and engineers, renewable energy analysts, and countless others with extensive solar radiation information. The 1991-2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. This update builds on the 1961-1990 NSRDB, which contains

284

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

POST OFFICE 80X 2008 POST OFFICE 80X 2008 OAK RIDGE, TENNESSEE 37831 MANAGED BY MARTIN MARlElTA ENERGY SYSTEMS. INC. FOR THE U.S. DEPARTMENT OF ENERGY July 15, 1992 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per agreement between DOE-HQ and Uniroyal of Painesville, on June 25, 1992, a member, the undersigned, from the Health and Safety Research Division of the Oak Rtdge Nattonal Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. The job encompassed a contractor excavating around a fire hydrant and finding an underground water leak. The leak was in an area where no contamination was detected in an earlier survey.

285

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

announces Express Licensing program announces Express Licensing program August 1, 2013 Streamlined procedure speeds business access to new technology LOS ALAMOS, N.M., August 1, 2013-With the launch of a new "Express Licensing" program, access to innovative technology invented at Los Alamos National Laboratory (LANL) has gotten easier. The new licensing alternative was announced today by David Pesiri, director of LANL's Technology Transfer Division. "The Express License program offers an additional licensing resource for local entrepreneurs as well as national collaborators," Pesiri said. "Our licensing and software teams have worked very hard to offer this specialized model for those wanting to quickly license Los Alamos technology." - 2 - The Express Licensing program at LANL is the first of several new initiatives under

286

Home | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH TRANSFER | CONTACT search LOG IN | RARE EARTH METALS | CRITICAL MATERIALS INSTITUTE | STAFF/ASSOCIATES | VISITORS | BE A PART OF AMES LAB | STUDENTS | EDUCATORS | FUNDING AGENCIES | INDUSTRY | RESEARCHERS | COMMUNITY RARE EARTH METALS Current Market Prices About Rare Earth Metals Materials Preparation STAFF/ASSOCIATES Operations Forms & Documents Find People VISITORS How To Get Here Tours of Ames Laboratory Local Events Calendar BE A PART OF AMES LAB Job News Human Resources Ames Lab At A Glance STUDENTS K-12 Resources Undergraduates Graduates and Others EDUCATORS Science Bowl SULI Program VFP Program FUNDING AGENCIES DOE/Contractor Research Highlights Contract INDUSTRY Technology Transfer Unique Capabilities

287

OAK RIDGE NATIONAL LABORATORY  

Office of Legacy Management (LM)

Results of the Independent Results of the Independent Radiological Verification Survey L O C K W R R D M A R T I N of the Remedial Action Performed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Camer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Rcfer- ence herein to any specific commercial product, process, or service by trade name, trademark,

288

Science | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Argonne Research Library supports the scientific and technical research The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. The Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life throughout the nation and the world. The best and brightest minds come to Argonne.

289

Los Alamos National Laboratory  

SciTech Connect

The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

Dogliani, Harold O [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

290

Laboratory Partnering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Partnering Laboratory Partnering Laboratory Partnering The Department of Energy operates multiple laboratories and facilities that conduct Technology Transfer through partnerships with industry, universities and non-profit organizations. Technology transfer involves deployment of newly generated technology intended for commercial deployment, and making unique resources in the form of collaborations with laboratory staff and unique equipment available for use by third parties. Technology transfer is done through a variety of legal instruments from technical assistance agreements to solve a specific problem, user agreements, licensing of patents and software, exchange of personnel, work for others agreements and cooperative research and development agreements. The most appropriate mechanism will depend on the objective of each

291

Mark Peters | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Core Capabilities Leadership Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Mark Peters, Deputy Lab Director for Programs Mark Peters Deputy Laboratory Director for Programs Dr. Mark Peters is the Deputy Laboratory Director for Programs at Argonne National Laboratory. He is responsible for the management and integration of the Laboratory's science and technology portfolio, strategic planning, Laboratory Directed Research and Development (LDRD) program and technology transfer. Dr. Peters also serves as a senior advisor to the Department of Energy on nuclear energy technologies and research and development programs, and nuclear waste policy.

292

Infrared Issues in Graviton Higgs Theory  

E-Print Network (OSTI)

We investigate the one-loop infrared behaviour of the effective potential in minimally coupled graviton Higgs theory in Minkowski background. The gravitational analogue of one loop Coleman Weinberg effective potential turns out to be complex, the imaginary part indicating an infrared instability. This instability is traced to a tachyonic pole in the graviton propagator for constant Higgs fields. Physical implications of this behaviour are studied. We also discuss physical differences between gauge theories coupled to Higgs fields and graviton Higgs theory.

Srijit Bhattacharjee; Parthasarathi Majumdar

2013-01-30T23:59:59.000Z

293

Comparing Optical and Near Infrared Luminosity Functions  

E-Print Network (OSTI)

The Sloan Digital Sky Survey [SDSS] has measured an optical luminosity function for galaxies in 5 bands, finding 1.5 to 2.1 times more luminosity density than previous work. This note compares the SDSS luminosity density to two recent determinations of the near infrared luminosity function based on 2MASS data, and finds that an extrapolation of the SDSS results gives a 2.3 times greater near infrared luminosity density.

Edward L. Wright

2001-02-02T23:59:59.000Z

294

Los Alamos National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Safety Home Nuclear Sites Map Nuclear Sites List › Argonne National Laboratory › East Tennessee Technology Park › Hanford › Idaho Site › Los Alamos National Laboratory › Lawrence Livermore National Laboratory › Nevada National Security Site › New Brunswick Laboratory › Oak Ridge National Laboratory › Paducah › Pantex › Pacific Northwest National Laboratory › Portsmouth Gaseous Diffusion Plant › Sandia National Laboratories › Savannah River Site › Waste Isolation Pilot Plant › West Valley Demonstration Project › Y-12 National Security Complex HSS Reports - Enforcement - Corporate Safety Analysis Fire Protection DOELAP - Safety and Emergency Management Evaluations Safety Basis Information System Office of Corporate Safety Analysis

295

Argonne National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Documents Enforcement Documents Argonne National Laboratory Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory, March 7, 2006 (EA-2006-02) - University of Chicago/Argonne National Laboratory - Press Release, March 7, 2006 Preliminary Notice of Violation issued to the University of Chicago related to the Uncontrolled Release of Radioactive Material at Argonne National Laboratory-East, August 14, 2001 (EA-2001-05) - Argonne National Laboratory - Press Release, August 17, 2001 Preliminary Notice of Violation issued to the University of Chicago related to Programmatic Management Failures at Argonne National Laboratory-West, February 28, 2001 (EA-2001-01) - Argonne National Laboratory-West - Press Release, March 2, 2001

296

Historical Photographs: Lawrence Berkeley Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley Laboratory Lawrence Berkeley Laboratory [Small Image] 1. A whole body counter (circa 1964) at the Berkeley Donner Laboratory. Such counters were used in human radiation tracer studies and for measuring AEC worker radiation exposure. (294Kbytes) [Small Image] 2. Early treatment for Parkinson's disease at the Berkeley Donner Laboratory (134Kbytes) [Small Image] 3. Donner Laboratory carbon-14 metabolic study apparatus (146Kbytes) [Small Image] 4. Respiration analysis using injected radioactive tracers at Donner Laboratory (circa 1968). (217Kbytes) [Small Image] 5. A patient under a positron camera. The camera was a diagnostic tool developed at Donner Laboratory, Berkeley, to photograph radioactive tracer concentrations. Unlike a whole body scanner, this device photographs a single, specific area of the body. (146Kbytes)

297

The Department of Energy's National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

THE THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National Laboratory (BNL) Achievements History Fermi National Accelerator Laboratory (FNAL) Achievements History Idaho National Laboratory (INL) Achievements History Lawrence Berkeley National Laboratory (LBNL) Achievements History Lawrence Livermore National Laboratory (LLNL) Achievements History Los Alamos National Laboratory (LANL) Achievements History National Energy Technology Laboratory (NETL) Achievements History National Renewable Energy Laboratory (NREL) Achievements History Oak Ridge National Laboratory (ORNL) Achievements History Pacific Northwest National Laboratory (PNNL) Achievements History

298

California's Public Health Laboratories: Inter-organizational cooperation models to bolster laboratory capacity  

E-Print Network (OSTI)

Department of Health Services, Laboratory Field Services,delivering health services, including laboratories. Duringof Health Services, Environmental Laboratory Certification (

Hsieh, Kristina

2011-01-01T23:59:59.000Z

299

CRC handbook of high resolution infrared laboratory spectra of atmospheric interest  

Science Conference Proceedings (OSTI)

The handbook presents spectra to be utilized for the detection and measurement of new constituents in the earth's atmosphere and to obtain data for common minor species with large gas amounts in the absorption cell (such as CH/sub 4/ and N/sub 2/O). These results can be applied in the identification of absorption features in atmospheric spectra determined over long atmospheric paths. The spectra were recorded with Fourier Transform Spectrometers which are more precise than grating spectrometers. Each molecule spectrum was plotted on two scales: a condensed scale covering the range from 75 to 300/cm in one frame, and an expanded view covering 20 or 10/cm per frame. Each plot contains the name of the molecule, chemical formula, the gas pressure, cell length, and estimated resolution of the spectrum.

Murcray, D.G.; Goldman, A.

1981-01-01T23:59:59.000Z

300

California's Public Health Laboratories: Inter-organizational cooperation models to bolster laboratory capacity  

E-Print Network (OSTI)

Laboratory (2009). Laboratory Capacity. Available: http://Public Health Laboratory Capacity. Retrieved August 5, 2009,enhancing laboratory capacity in California. References: (

Hsieh, Kristina

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

302

Five-Laboratory  

National Nuclear Security Administration (NNSA)

Refer to LA-UR-05-3594 Refer to LA-UR-05-3594 Agenda for the Five-Laboratory Conference on Computational Mathematics 19-23 June 2005 Повестка дня конференции пяти лабораторий по вычислительной математике 19-23 июня 2005 г. Agenda for the 5LC 2005 Refer to LA-UR-05-3594 1 Monday 20 June 2005 08:15 J. Kamm, LANL Welcome to the Five-Lab Conference Session 1A Deterministic Transport Chairman: N. Gentile, LLNL 08:30 R. Shagaliev, VNIIEF VNIIEF Methods for Numerical Simulations of Multi- dimensional Problems of Radiation and Particle Transport 09:30 Deterministic Transport: Labs' Perspectives J. Chang H. Scott S. Pautz A. Shestakov LANL LLNL SNL VNIITF 10:30 Break Session 1B Deterministic Transport

303

YetallurgIaal Laboratory.  

Office of Legacy Management (LM)

rhlah rhlah Mahlgan, rhlah expI&s 4mll 10th. be outlined am f f the work~hiab baa beea performulthennay a reaelver hi of ths slug In YetallurgIaal Laboratory. a mpereonlo apparatus rhlab ultraround tbrougb a W slug and dote& and locate flaws between z-a with the proper funatIonIng or this work hvc been * a slu6 In tbe Inepeation II in the rbopr of tbo 6. A lruporaonio mflrotoeoope, whi rntarls~ of Prof*aaor mrmltotle, has been ueed to hov 8 aotdl slug may by dotooted, tbnt slugs out from extxud 00 a lnrga number of flanr wbiab Intorfares 8Ith the 8 that alugr out fma rolled bartranlrait oound rell and hraoe do not-as flaws,. and that the thonasl and mabanfoal himtory of tbo metal does not IntWfer, with the temtlng for flaws. 4. A eupersonlo rofleataosope for uw at tbo Yotdll~r~~l hbamt0~

304

Sandia National Laboratories Overview- small business program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories Overview- small business program Sandia National Laboratories Overview- small business program NMSU, MBA program Sandia National Laboratories Overview-...

305

PIA - Environmental Molecular Sciences Laboratory (EMSL) User...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

306

Sandia National Laboratories Solar Reflection Panels  

Sandia National Laboratories Solar Reflection Panels HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia ...

307

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design status and Gold certification from the U.S. Green Building Council. June 18, 2012 LANL Green Building Radiological Laboratory Utility Office Building Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "RLUOB's LEED certification demonstrates tremendous leadership in green building...serves as a prime example of just how much we can accomplish." High performance sustainable building attains LEED Gold certification From its robust design to its advanced scientific equipment, the Radiological Laboratory Utility Office Building (RLUOB) is essential to the

308

Beyond Laboratories, Beyond Being Green  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beyond Laboratories Beyond Laboratories Beyond Being Green The International Institute for Sustainable Laboratories Laboratories for the 21 st Century (Labs21 ® ) A U.S. Environmental Protection Agency and U.S. Department of Energy Co-Sponsored Program Promoting the Design, Engineering and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPA/DOE partnership program to improve the energy and environmental performance of U.S. laboratories. * Encourages the design, construction, and operation of sustainable, high- performance, high-tech facilities that will: - Minimize overall environmental impacts. - Protect occupant safety. - Optimize whole building efficiency on a lifecycle basis. Purpose of I 2 SL I 2 SL's Role in Labs21

309

Laboratory program helps small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory program helps small businesses Laboratory program helps small businesses Laboratory program helps small businesses The NMSBA allows for-profit small businesses to request technical assistance that capitalizes on the unique expertise and capabilities of Los Alamos and Sandia national laboratories. June 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

310

Thomas Wallner | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

311

Solar Control Thin Films Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sputtering equipment Solar Control Thin Films Laboratory The Solar Control Thin Films lab develops novel thin film coatings, deposition technologies, and device systems for...

312

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... NVLAP-02S (REV. 2011-08-16) SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Idaho National Laboratory - Calibration Services Dept. ...

2013-01-04T23:59:59.000Z

313

Environmental Protection | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity use, water consumption and environmental emissions. Environment and Sustainability Argonne National Laboratory is helping our nation build an economy based on...

314

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

(SRNL) have developed the expertise necessary to be the premier laboratory for tritium processing and its relation to new reservoir design. SRNL is the bridge between the...

315

Procurement .:. Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Doing Business with LBNL Helpful Hints for Vendors Download it HERE (pdf). ...A guide for suppliers The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is a...

316

National Voluntary Laboratory Accreditation Program  

Science Conference Proceedings (OSTI)

... 2011-08-16) SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 Florida Department of Agriculture Metrology Laboratory 3125 Conner Blvd. ...

2013-07-11T23:59:59.000Z

317

Savannah River National Laboratory - Home  

... the Department of Energys applied science laboratory ... New Projects Advance Nation's ... SRNL is the DOE Office of Environmental Management's ...

318

SLAC National Accelerator Laboratory - Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization PHOTO: Aerial view of SLAC Campus SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy's Office of Science. The...

319

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Burr Brookhaven National Laboratory From: Frances 4676- 93005, Ben 10176-32905 Past BNL Research Interests We have developed two recombinant inbred families to facilitate...

320

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Van't Hof Brookhaven National Laboratory From: 1962-1999 Research Interests The cell biology and cytogenetics of higher plants; specifically the development of commercial fiber in...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oak Ridge National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports 2011 Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory, October 2011 Review Reports 2011 Review of Selected Elements of...

322

Idaho National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, May 19,...

323

Mihai Anitescu | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Mathematician Mihai Anitescu has been a computational mathematician in the Mathematics and Computer Science Division at Argonne National Laboratory since 2002 and a...

324

Rajeev Thakur | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Thakur Deputy Division Director Rajeev Thakur is the Deputy Director of the Mathematics and Computer Science Division at Argonne National Laboratory, where he is also a Senior...

325

Salman Habib | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

& Computational Scientist Salman Habib is a member of the High Energy Physics and Mathematics and Computer Science Divisions at Argonne National Laboratory, a Senior Member of...

326

Sunaree Hamilton | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunaree Hamilton Senior Program Leader and Manager of International Programs Section - Nuclear Engineering Sunaree Hamilton has managed international programs at the laboratory...

327

Community Relations, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental, energy, and basic research. Speakers Bureau Contact: Robyn McKay Brookhaven National Laboratory Community Relations Office Bldg. 400C - P.O. Box 5000 Upton, NY...

328

Wildlife at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildlife at Brookhaven Wildlife Protection The Laboratory has precautions in place to protect on-site habitats and natural resources. Activities to eliminate or minimize negative...

329

Ray Bair | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

science, computational and laboratory research Large scale applications of high performance computing and communications Telephone (630) 252-5751 E-mail rbair@anl.gov Website...

330

NIST Boulder's Precision Measurement Laboratory  

Science Conference Proceedings (OSTI)

... Design and construction of the $118.6 million advanced laboratory was funded in part through NIST appropriations, with $84.9 million of that total ...

2012-04-10T23:59:59.000Z

331

Lab Spotlight: Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Pet Scans Show Brain Responses to Light, Electrical Stimulation A study measuring metabolic changes in the brains of sighted people is showing...

332

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL)". The Secretary of Energy sent these words to be conveyed at the formal opening of...

333

Emil Constantinescu | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Emil Constantinescu is an assistant computational mathematician in the Laboratory for Advanced Numerical Simulations (LANS) at Argonne. He obtained his Ph.D. from Virginia Tech and...

334

Sandia National Laboratories: News: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Magazine Search Sandia Publications News Publications Reports authored by Sandia National Laboratories can be obtained through the following sources: Office of Scientific...

335

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

CERTS Microgrid Laboratory Test Bed R. H. Lasseter, Fellow,play functionality. The tests demonstrated stable behaviorin an autonomous manner. All tests performed as expected and

Lasseter, R. H.

2010-01-01T23:59:59.000Z

336

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen PrimeCERTS Microgrid Laboratory Test Bed. (California EnergyFigure 1. CERTS Microgrid Test Bed at American Electric

ETO, J.

2010-01-01T23:59:59.000Z

337

about Savannah River National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Effects on Materials In an effort to ensure the safety of the nation's nuclear weapons stockpile, the Savannah River National Laboratory (SRNL) maintains an active role in...

338

with Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mechanisms for Partnering with Oak Ridge National Laboratory Partnerships-It's our name, but it also represents our driving philosophy and commitment. Oak Ridge National...

339

Oak Ridge National Laboratory - Legal  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

340

Oak Ridge National Laboratory - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Fire Research Laboratory Group  

Science Conference Proceedings (OSTI)

... scale fire experiments is essential to understanding ... there is no research facility in the ... Facilities. National Fire Research Laboratory. staff_directory. ...

2013-05-06T23:59:59.000Z

342

Mamta Naidu - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory - Past Employee Currently at: Department of Pharmacology Basic Science Tower Level 8, Room 140 Stony Brook University Stony Brook, NY 11794-8651 Phone: (631)...

343

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes  

E-Print Network (OSTI)

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes Residential, or PNNL, has purchased two custom, factory-built, double-wide homes to conduct energy research. These "Lab Homes" are a project test-bed for PNNL and its research partners who aim to achieve highly energy

344

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

345

FTIR Laboratory in Support of the PV Program  

DOE Green Energy (OSTI)

The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

2005-01-01T23:59:59.000Z

346

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

347

Infrared light sources with semimetal electron injection  

DOE Patents (OSTI)

An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

348

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

349

Outputs and Outcomes of NIST Laboratory Research  

Science Conference Proceedings (OSTI)

... and fiberoptic power and energy calibration, EEEL ... models, Enable new markets Increase R&D ... Laboratory ITL: Information Technology Laboratory.

2010-10-05T23:59:59.000Z

350

Materials Characterization Laboratory (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Laboratory The Materials Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) research focus is the physical and photoelectrochemical...

351

Lawrence Berkeley National Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Lawrence Berkeley National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection...

352

Lawrence Livermore National Laboratory, Former Production Workers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Lawrence Livermore National Laboratory, Former Production Workers Screening Projects Project Name: Worker Health Protection...

353

Argonne National Laboratory - Office of Technology Transfer  

argonne national laboratory's office of technology transfer offers licensable technologies developed at the Laboratory and oversees other agreements with research ...

354

Argonne Software Shop - Argonne National Laboratory  

... is closer to commercialization than other software at the Laboratory, which is featured throughout the Laboratory's Web site. ...

355

Independent Oversight Review, Los Alamos National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Chemistry and Metallurgy Research Facility - January 2012 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility -...

356

Independent Activity Report, Sandia National Laboratories - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories HIAR...

357

Ames Laboratory Technologies Available for Licensing - Energy ...  

Bookmark Ames Laboratory Technologies Available for Licensing - Energy Innovation Portal on Google; Bookmark Ames Laboratory Technologies Available ...

358

Pacific Northwest National Laboratory Technologies Available ...  

Pacific Northwest National Laboratory Technologies Available for Licensing Pacific Northwest National Laboratory has a long-standing reputation for ...

359

NuGrain Laboratories Case Study  

Science Conference Proceedings (OSTI)

... and Psychology Martha Ames Student Resource ... moved to the farmlands in the regional laboratories. All laboratory locations are near collaborating ...

2012-10-25T23:59:59.000Z

360

Flickr: Brookhaven National Laboratory's Photostream  

NLE Websites -- All DOE Office Websites (Extended Search)

Mail Mail News Sports Finance Weather Games Groups Answers Screen Flickr Mobile More Celebrity Shine Movies Music TV Health Shopping Travel Autos Homes Flickr logo. If you click it, you'll go home Sign Up Explore Recent Photos The Commons Getty Collection Galleries World Map App Garden Camera Finder Flickr Blog Upload Search Sign In Brookhaven National Laboratory 679 Photos December 2008 Member Since Photostream Sets Favorites Map Galleries Collections Archives Tags Photos of Profile Studying Quantum Dots Studying Quantum Dots Brookhaven National Laboratory [★] 0 High-Speed X-Ray 'Camera' High-Speed X-Ray 'Camera' Brookhaven National Laboratory [★] 0 Björn Schenke Björn Schenke Brookhaven National Laboratory [★] 0 eRHIC Schematic eRHIC Schematic Brookhaven National Laboratory [★] 2 0 Nanoscale Catalysts

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rick Stevens | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Stevens, Associate Laboratory Director, Computing, Environment and Life Sciences Rick Stevens, Associate Laboratory Director, Computing, Environment and Life Sciences Rick Stevens Associate Laboratory Director - Computing, Environment and Life Sciences Rick Stevens is Argonne's Associate Laboratory Director for Computing, Environment and Life Sciences. Stevens has been at Argonne since 1982, and has served as director of the Mathematics and Computer Science Division and also as Acting Associate Laboratory Director for Physical, Biological and Computing Sciences. He is currently leader of Argonne's Petascale Computing Initiative, Professor of Computer Science and Senior Fellow of the Computation Institute at the University of Chicago, and Professor at the University's Physical Sciences Collegiate Division. From 2000-2004, Stevens served as Director of the

362

The FourStar Infrared Camera  

E-Print Network (OSTI)

The FourStar infrared camera is a 1.0-2.5 micron (JHKs) near infrared camera for the Magellan Baade 6.5m telescope at Las Campanas Observatory (Chile). It is being built by Carnegie Observatories and the Instrument Development Group at Johns Hopkins and is scheduled for completion in 2009. The instrument uses four Teledyne HAWAII-2RG arrays that produce a 10.9 x 10.9 arcmin field of view. The outstanding seeing at the Las Campanas site coupled with FourStar's high sensitivity and large field of view will enable many new survey and targeted science programs.

S. E. Persson; Robert Barkhouser; Christoph Birk; Randy Hammond; Albert Harding; E. R. Koch; J. L. Marshall; Patrick J. McCarthy; David Murphy; Joe Orndorff; Gregg Scharfstein; Stephen A. Shectman; Stephen Smee; Alan Uomoto

2008-07-24T23:59:59.000Z

363

Infrared Heating of Hydrogen Layers in Hohlraums  

DOE Green Energy (OSTI)

The authors report results of modeling and experiments on infrared heated deuterium-hydride (HD) layers in hohlraums. A 2 mm diameter, 40 {micro}m thick shell with 100-400 {micro}m thick HD ice inside a NIF scale-1 gold hohlraum with 1-3 {micro}m rms surface roughness is heated by pumping the HD vibrational bands. Models indicate control of the low-mode layer shape by adjusting the infrared distribution along the hohlraum walls. They have experimentally demonstrated control of the layer symmetry perpendicular to the hohlraum axis.

Kozioziemski, B J; McEachern, R L; London, R A; Bitter, D N

2001-08-15T23:59:59.000Z

364

Compositional Analysis Laboratory (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Analysis Laboratory Compositional Analysis Laboratory * Provide customized analytical method development for a wide variety of feedstocks and process intermediates * Derive comprehensive biomass analysis results backed by 20 years of experience supporting the biomass conversion industry * Write publicly available Laboratory Analytical Procedures, several of which have been adapted by ASTM International and used and referenced worldwide * Provide training classes on biomass analysis and method development to help companies and institutions rapidly improve their analytical results * For analyzing solid samples to measure structural carbohydrates (glucose, xylose, galactose, arabinose, and mannose), lignin, extractable materials, protein, and ash * For analyzing liquid samples to measure oligomeric and monomeric

365

Tunable Transmittance of Near-infrared and Visible Light in Reconstructed  

NLE Websites -- All DOE Office Websites (Extended Search)

Tunable Transmittance of Near-infrared and Visible Light in Reconstructed Tunable Transmittance of Near-infrared and Visible Light in Reconstructed Nanocrystal-in-Glass Composite Films Thursday, October 31, 2013 The bonding arrangement in amorphous materials plays a dominant role in determining their electrochemical, optical and transport properties. However, it remains a challenge to manipulate amorphous structures in a controlled manner. Recently, scientists at the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL) developed synthetic protocols for incorporating well-defined nanocrystals into amorphous materials [1,2]. This "nanocrystal-in-glass" approach not only allows combining two functional components in one material, but it could also provide a handle, by virtue of the interfacial covalent bond, for manipulating the glass

366

Cloud Properties Derived from Visible and Near-infrared Reflectance in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Properties Derived from Visible and Near-infrared Reflectance in the Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols Hofmann, Odele University of Colorado at Boulder Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Russell, Phil NASA Ames Research Center Livingston, John SRI International Redemann, Jens BAERI/NASA Ames Research Center Bergstrom, Robert Bay Area Environmental Research Institute Platnick, Steven NASA-GSFC Daniel, John NOAA Aeronomy Laboratory Category: Cloud Properties The New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS-ITCT) experiment conducted in July-August 2004 included objectives on the effects of urban-industrial pollution aerosols on cloud radiative properties, the so-called indirect effect. Measurements

367

An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning  

DOE Green Energy (OSTI)

We report the construction of a database of infrared spectra aimed at detecting the gases emitted by biomass burning (BB). The project uses many of the methods of the Pacific Northwest National Laboratory (PNNL) infrared database, but the selection of the species and special experimental considerations are optimized. Each spectrum is a weighted average derived from 10 or more individual measurements. Each composite has a spectral range from ? 600 cm-1 to ? 6500 cm-1 with an instrumental apodized resolution of 0.11 cm-1. The resolution was chosen to bring out all spectral features, but recognizing that pressure broadening at 760 Torr results in essentially all ro-vibrational lines having these or greater linewidths.

Johnson, Timothy J.; Profeta, Luisa TM; Sams, Robert L.; Griffith, David WT; Yokelson, Robert L.

2010-05-26T23:59:59.000Z

368

The Meteorological Development Laboratorys Aviation Weather Prediction System  

Science Conference Proceedings (OSTI)

The Meteorological Development Laboratory (MDL) has developed and implemented an aviation weather prediction system that runs each hour and produces forecast guidance for each hour into the future out to 25 h covering the major forecast period of ...

Judy E. Ghirardelli; Bob Glahn

2010-08-01T23:59:59.000Z

369

Records management at the DOE national laboratories: Sandia National Laboratories  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is a large multi-program DOE laboratory. The Recorded Information Management Division (RIM) has an expanding mission to meet Sandia's needs for cost-effective management in information from creation to final disposition in accordance with applicable regulations and requirements. An analysis based on the need to meet requirements and to improve business practice was successful in convincing management to allocate increased resources to the RIM Compliance Project.

Pruett, N.J.

1991-01-01T23:59:59.000Z

370

Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniques - The ISOS-3 Inter-Laboratory Collaboration  

DOE Green Energy (OSTI)

The investigation of degradation of seven distinct sets (with a number of individual cells of n {>=} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results -- hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

Rosch, R.; Tanenbaum, D. M.; Jrgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M. T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H. F.; Gevorgyan, S. A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.

2012-04-01T23:59:59.000Z

371

Investigation of the Degradation Mechanisms of a Variety of Organic Photovoltaic Devices by Combination of Imaging Techniquesthe ISOS-3Inter-laboratory Collaboration  

DOE Green Energy (OSTI)

The investigation of degradation of seven distinct sets (with a number of individual cells of n {ge} 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risoe DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results - hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

Germack D.; Rosch, R.; Tanenbaum, D.M.; Jorgensen, M.; Seeland, M.; Barenklau, M.; Hermenau, M.; Voroshazi, E.; Lloyd, M.T.; Galagan, Y.; Zimmermann, B.; Wurfel, U.; Hosel, M.; Dam, H.F.; Gevorgyan, S.A.; Kudret, S.; Maes, W.; Lutsen, L.; Vanderzande, D.; Andriessen, R.; Teran-Escobar, G.; Lira-Cantu, M.; Rivaton, A.; Uzunoglu, G.Y.; Andreasen, B.; Madsen, M.V.; Norrman, K.; Hoppe, H.; Krebs, F.C.

2012-04-01T23:59:59.000Z

372

Infrared Quantum Dots** By Edward H. Sargent*  

E-Print Network (OSTI)

increasingly on mastery of the infrared spectral region. Fiber-optic communications systems rely on the low's progress in visible-light-emitting colloidal-quantum-dot synthesis, physical chemistry, and devices on applications and devices. The applications of interest surveyed include monolithic integration of fiber-optic

373

MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS  

Science Conference Proceedings (OSTI)

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

Xia, X. Y.; Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Gao, Y.; Tan, Q. H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mao, S. [National Astronomical Observatories of China, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Omont, A. [Institut d'Astrophysique de Paris, UMR7095, UPMC and CNRS, 98bis boulevard Arago, F-75014 Paris (France); Flaquer, B. O.; Leon, S. [Instituto de Radioastronomia Milimetrica (IRAM), Avenida Divina Pastora 7, Nucleo Central, 18012 Granada (Spain); Cox, P., E-mail: xyxia@bao.ac.cn [Institut de Radio Astronomie Millimetrique (IRAM), F-38406 St. Martin d'Heres (France)

2012-05-10T23:59:59.000Z

374

SiGeC Near Infrared Photodetectors  

E-Print Network (OSTI)

A near infrared waveguide photodetector in Si-based ternary Si???x??yGexCy alloy was demonstrated for 0.85~1.06 m wavelength fiber-optic interconnection system applications. Two sets of detectors with active absorption ...

Li, Baojun

375

Shortwave Infrared Spectroradiometer for Atmospheric Transmittance Measurements  

Science Conference Proceedings (OSTI)

The use of a shortwave infrared (SWIR) spectroradiometer as a solar radiometer is presented. The radiometer collects 1024 channels of data over the spectral range of 1.12.5 ?m. The system was tested by applying the Langley method to data ...

M. Sicard; K. J. Thome; B. G. Crowther; M. W. Smith

1998-02-01T23:59:59.000Z

376

Lab Spotlight: Sandia National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories Sandia National Laboratories Illustration of integrated circuit Figure 1. An application-specific integrated circuit being developed for advanced artificial retinas. Click on image to enlarge. Microscale Enablers More advanced artificial retinas are relying on miniaturized electronics for processing incoming images and activating the corresponding electrodes to communicate with retinal cells and ultimately the brain. The goal of these devices, being developed through a U.S. Department of Energy (DOE) collaboration, is to continually improve their visual resolution so that implanted individuals eventually will be able to read large print, recognize faces, and move about without aid. Sandia National Laboratories' expertise in the development, fabrication, and production

377

Lab Spotlight: Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Spotlight: Argonne National Laboratory Lab Spotlight: Argonne National Laboratory ultrananocrystalline diamond (UNCD) technology Researchers John Carlisle (left) and Orlando Auciello (right) are developing an ultrathin biocompatible coating for the device. Creating Diamond Coatings for the Retinal Implant Argonne National Laboratory (ANL) plays a critical role in the success of the electrode implants used in the Artificial Retina Project. That's where researchers Orlando Auciello and colleague John Carlisle are using their patented ultrananocrystalline diamond (UNCD) technology to apply a revolutionary new coating to the retinal prosthetic device. The new packaging promises to provide a very thin, ultrasmooth film that will be far more compact and biocompatible than the bulky materials used to encase

378

Solar Radiation Research Laboratory (SRRL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory Renewable Energy Laboratory Solar Radiation Research Laboratory (SRRL) Instrument Calibrations Weather Observations Measurement Research Support Measurements & Instrumentation Team Center for Electric & Hydrogen Technologies & Systems http://www.nrel.gov/srrl NREL * * * * 1617 Cole Boulevard * * * * Golden, Colorado 80401-3393 * * * * (303) 275-3000 Operated for the U.S. Department of Energy by Midwest Research Institute * * * * Battelle * * * * Bechtel Mission Provide a unique outdoor research facility for supporting renewable energy conversion technologies and climate change studies for the U.S. Department of Energy (DoE). Objectives * Provide Improved Methods for Radiometer Calibrations * Develop a Solar Resource Climate Database for Golden, Colorado

379

Optical Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

Not Available

2011-10-01T23:59:59.000Z

380

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals  

Science Conference Proceedings (OSTI)

Comparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch ...

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias M. Schreier; Richard A. Frey

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Noise reduction efforts for the ALS infrared beamlines  

E-Print Network (OSTI)

is being commissioned at the ALS that should help quietalso has links to the main ALS Infrared Website, where PDFsNoise reduction efforts for the ALS infrared beamlines Tom

2003-01-01T23:59:59.000Z

382

Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms  

Science Conference Proceedings (OSTI)

The development of a combined infrared and passive microwave satellite rainfall estimation technique is outlined. Infrared data from geostationary satellites are combined with polar-orbiting passive microwave estimates to provide 30-min rainfall ...

Chris Kidd; Dominic R. Kniveton; Martin C. Todd; Tim J. Bellerby

2003-12-01T23:59:59.000Z

383

Infrared Brightness Temperature of Mars, 1983-2103  

E-Print Network (OSTI)

The predicted infrared brightness temperature of Mars using the 1976 model of Wright is tabulated here for the period 1983 to 2103. This model was developed for far-infrared calibration, and is still being used for JCMT calibration.

E. L. Wright

2007-03-25T23:59:59.000Z

384

A Comparison of Infrared Light Emitting Diodes (IR-LED) versus Infrared  

E-Print Network (OSTI)

B. Characteristics of a typical IR LED analogous to the typeLight Emitting Diodes (IR-LED) versus Infrared Helium-Neon (light emitting diode (IR-LED) to quantitatively measure fuel

Girard, James W.; Bogin, Gregory E; Mack, John Hunter; Chen, J-Y; Dibble, Rober W

2005-01-01T23:59:59.000Z

385

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; ... The gas leak detection devices use an infrared light source to spectroscopically probe the gas and a video camera to ...

386

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary There is a need for improved active infrared optical elements such as modulators. Extraordinary optical transmission (EOT) through subwavelength ...

387

BNL | About Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About Brookhaven National Laboratory About Brookhaven National Laboratory BNL aerial photo Brookhaven National Laboratory is a multipurpose research institution funded primarily by the U.S. Department of Energy's Office of Science. Located on the center of Long Island, New York, Brookhaven Lab brings world-class facilities and expertise to the most exciting and important questions in basic and applied science-from the birth of our universe to the sustainable energy technology of tomorrow. We operate cutting-edge large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and a wide range of advanced technologies. The Laboratory's almost 3,000 scientists, engineers, and support staff are joined each year by more than 4,000 visiting researchers from around the world. Our award-winning history stretches back to 1947,

388

Media Contacts | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Contacts Media Contacts Steve McGregor Argonne National Laboratory Stephen McGregor is manager of media relations for Argonne. Contact him at (630) 252-5580 or media@anl.gov. Joseph Bernstein Argonne National Laboratory Joseph Bernstein is the communications lead for Physical Sciences and Engineering. Contact him at (630) 252-7268 or media@anl.gov. Angela Hardin Argonne National Laboratory Angela Hardin is a media relations specialist who covers transportation, energy research and tech transfer at the lab. Contact her at (630) 252-5501 or media@anl.gov. Jared Sagoff Argonne National Laboratory Jared Sagoff is a media relations specialist who covers national security, environment and life sciences, computing and fundamental sciences research. Contact him at (630) 252-5549 or media@anl.gov.

389

Process Development and Integration Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

* 1617 Cole Boulevard, Golden, Colorado 80401-3305 * 303-275-3000 * www.nrel.gov * 1617 Cole Boulevard, Golden, Colorado 80401-3305 * 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/FS-5200-48351 * June 2011 Process Development and Integration Laboratory Scope. The Process Development and Integration Laboratory (PDIL) within the National Renewable Energy Laboratory (NREL) is operated by the National Center for Photovoltaics (NCPV). The PDIL is a unique collaborative facility where industry and universities can work closely with NREL scientists on integrated equipment to answer pressing questions related to photovoltaics (PV) development. We work with a wide range of PV materials-from crystalline silicon to thin films (amorphous, nano- and

390

PNNL: About PNNL - Laboratory Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Leadership Laboratory Leadership PNNL science and technology inspires and enables the world to live prosperously, safely, and securely. Our leaders turn this vision into action, guiding all of PNNL's efforts. They ensure that our multidisciplinary research teams perform safely, securely and sustainably while advancing science and technology to solve the nation's most pressing problems in energy, the environment and national security. Leaders Mike Kluse Photo Mike Kluse PNNL Laboratory Director Mike Kluse establishes the vision and strategic direction of the Laboratory which combines excellence in science and technology, management and operations, and community stewardship. Steve Ashby Photo Steve Ashby Deputy Director of Science & Technology Steve Ashby leads PNNL's strategic planning agenda and stewards efforts to

391

LANL: Ion Beam Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

392

Laboratory Dynamos Professor Cary Forest  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamos Professor Cary Forest University of Wisconsin - Madison Wednesday, June 5, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a...

393

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory From: 1599- 61400 Past BNL Research Interests I am the biology beamline scientist at x-ray beamline X25 at the National Synchrotron Light Source and...

394

Biology Department - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Stoner-Ma Brookhaven National Laboratory Bldg. 463 - P.O. Box 5000 Upton, NY 11973-5000 Phone: (631) 344-6388 Lab Phone: (631) 344-5726 Fax: (631) 344-2741 email:...

395

about Savannah River National Laboratory  

S R N The Savannah River Site and the Savannah River National Laboratory are owned by the U.S. Department of Energy, and are managed and operated by Savannah River ...

396

Equipment Inventory | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Inventory Equipment Resources Title Equipment Type Facility Laboratory Building Room Accumet Basic AB15 pH meter pH Meter SSRL BioChemMat Prep Lab 2 131 209 Agate...

397

Commissioning a materials research laboratory  

DOE Green Energy (OSTI)

This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

SAVAGE,GERALD A.

2000-03-28T23:59:59.000Z

398

Community Relations - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

on 84 Facts on 'Shirley' Memoir and 'Atomic States' Film * Please note: All visitors age 16 and older must present photo identification for admission to the Laboratory. One of...

399

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Diagram of CERTS Microgrid Test Bed Figure 3. Tecogen Prime2009 CERTS Microgrid Laboratory Test Bed J. ETO, Lawrenceof the CERTS Microgrid Test Bed project was to enhance the

Eto, Joe

2009-01-01T23:59:59.000Z

400

Los Alamos National Laboratory begins  

NLE Websites -- All DOE Office Websites (Extended Search)

will select a final remedy after input from the public. The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. At that...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

from Savannah River National Laboratory  

Operated by Savannah River Nuclear Solutions for the U.S. Department of Energy near Aiken, S.C. E from Savannah River National Laboratory PAGE 2 OF 2 ...

402

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenRoy, N. Lewis. 2008. CERTS Microgrid Laboratory Test Bed. (Energy Resources: The MicroGrid Concept. (Lawrence Berkeley

ETO, J.

2010-01-01T23:59:59.000Z

403

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

Line Diagram of CERTS Microgrid Test Bed Figure 3. TecogenCALGARY 2009 CERTS Microgrid Laboratory Test Bed J. ETO,The objective of the CERTS Microgrid Test Bed project was to

Eto, Joe

2009-01-01T23:59:59.000Z

404

CERTS Microgrid Laboratory Test Bed  

E-Print Network (OSTI)

on Power Delivery CERTS Microgrid Laboratory Test Bed R. H.and J. Roy Abstract--. CERTS Microgrid concept captures theas a subsystem or a microgrid. The sources can operate in

Lasseter, R. H.

2010-01-01T23:59:59.000Z

405

Laboratories | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Laboratories Laboratories Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Ames Laboratory Ames Laboratory Argonne Argonne National Laboratory BNL NSLS II Brookhaven National Laboratory Fermilab Wilson Hall Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory

406

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

407

A multimedia museum guide system with instant infrared communication  

Science Conference Proceedings (OSTI)

In this paper, we describe a prototype of an multimedia guide system that use instant infrared communication to get the multimedia contents and play the contents based on the operation of the users. The portable guide device is conposed of an infrared ... Keywords: guide system, infrared, uubiquitous computing, wireless communication

Dawei Cai

2008-03-01T23:59:59.000Z

408

Issued by Sandia National Laboratories,  

NLE Websites -- All DOE Office Websites (Extended Search)

Issued by Sandia National Laboratories, operated for the United States Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability

409

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

410

Application of Computed Tomography to Microgravity Combustion  

Science Conference Proceedings (OSTI)

This paper describes applications of computed tomography (CT) to combustion phenomena under microgravity conditions. Infrared Thermography (IT) has been considered as a promising method for two-dimensional measurement of flames. We have applied IT to ... Keywords: computed tomography, diffusion flame, infrared thermography, microgravity combustion, spectroscopy

H. Sato; K. Itoh; M. Shimizu; S. Hayashi; Y. Fujimori; K. Maeno

1999-12-01T23:59:59.000Z

411

Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report  

DOE Green Energy (OSTI)

The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

Epstein, S.; Stolper, E.

1992-03-01T23:59:59.000Z

412

Visible/Near-Infrared Hyperspectral Sensing of Solids under Controlled Environmental Conditions  

SciTech Connect

We describe the use of a wind tunnel for conducting controlled passive hyperspectral imaging experiments. Passive techniques are potentially useful for detecting explosives, solid-phase chemicals and other materials of interest from a distance so as to provide operator safety. The Pacific Northwest National Laboratory operates a wind tunnel facility that can generate and circulate artificial atmospheres to control lighting, humidity, temperature, aerosol burdens, and obscurants. We will present recent results describing optimized sensing of solids over tens of meters distance using both visible and near-infrared cameras, as well as the effects of certain environmental parameters on data retrieval.

Bernacki, Bruce E.; Anheier, Norman C.; Mendoza, Albert; Fritz, Brad G.; Johnson, Timothy J.

2011-06-01T23:59:59.000Z

413

Photobiology Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Photobiology Research Photobiology Research Laboratory Understanding fundamental biological processes for the production of fuels and chemicals, and understanding electron transport for hybrid generation of solar fuels NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The photobiology group's research is in four main areas: * Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms * Characterization and engineering of redox enzymes and proteins for fuel production * Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels * Studies of nanosystems using biological and non-

414

Heat Transfer Laboratory of the Savannah River Laboratory  

SciTech Connect

The Heat Transfer Laboratory, recently- constructed adjacent to the main Savannah River Laboratory building, was designed to mock up nuclear heating and cooling of reactor components under a variety- of conditions. Nuclear heating is simulated by electrical resistance heating of test sections with a 3 MW directcurrent power supply. Cooling is provided by water. Three test stations (A, B, and C) are available for testing full-size fuel assemblies, measuring flow instabilities, and for measuring burnout heat fluxes. Safeguards provided in the design of the facility and conservative operating procedures minimize or elimnate potential hazards. (auth)

Knoebel, D.H.; Harris, S.D.

1973-10-01T23:59:59.000Z

415

High-Density Infrared Surface Treatments of Refractories  

SciTech Connect

Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

Tiegs, T.N.

2005-03-31T23:59:59.000Z

416

LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY  

NLE Websites -- All DOE Office Websites (Extended Search)

LOS ALAMOS NATIONAL LABORATORY LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY SEPTEMBER 2013 LOS ALAMOS NATIONAL LABORATORY-COMMUNITY LEADERS STUDY SEPTEMBER 2013 PAGE 2 RESEARCH & POLLING, INC. TABLE OF CONTENTS I. INTRODUCTION ....................................................................................................................................................................................................................................................... 3 METHODOLOGY ................................................................................................................................................................................................................................................................ 4 EXECUTIVE SUMMARY ........................................................................................................................................................................................................................................................ 5

417

DAG in Oil Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for DAG in Oil to determine Total DAG.Samples include canola oil and soybean oil. DAG in Oil Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laborato

418

Analysis of the SIAM Infrared Acquisition System  

SciTech Connect

This report describes and presents the results of an analysis of the performance of the infrared acquisition system for a Self-Initiated Antiaircraft Missile (SIAM). A description of the optical system is included, and models of target radiant intensity, atmospheric transmission, and background radiance are given. Acquisition probabilities are expressed in terms of the system signal-to-noise ratio. System performance against aircraft and helicopter targets is analyzed, and background discrimination techniques are discussed. 17 refs., 22 figs., 6 tabs.

Varnado, S.G.

1974-02-01T23:59:59.000Z

419

THE INFRARED COLORS OF THE SUN  

Science Conference Proceedings (OSTI)

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

2012-12-10T23:59:59.000Z

420

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Infrared Sky Brightness Monitors for Antarctica  

E-Print Network (OSTI)

. Two sky brightness monitorsone for the near-infrared and one for the mid-infraredhave been developed for site survey work in Antarctica. The instruments, which we refer to as the NISM (Near-Infrared Sky Monitor) and the MISM (Mid-Infrared Sky Monitor), are part of a suite of instruments being deployed in the Automated Astrophysical Site-Testing Observatory (AASTO). The chief design constraints include reliable, autonomous operation, low power consumption, and of course the ability to operate under conditions of extreme cold. The instruments are currently operational at the Amundsen-Scott South Pole Station, prior to deployment at remote, unattended sites on the high antarctic plateau. 1. INTRODUCTION The antarctic plateau is recognized as having the potential to provide some of the best astronomical observing conditions on earth (see, e.g., Burton et al. 1994). Almost all the site testing to date has been carried out at the South Pole, where it has already been demonstrated t...

Storey Ashley Boccas; J. W. V. Storey; M. C. B. Ashley; M. Boccas; M. A. Phillips; A. E. T. Schinckel

1999-01-01T23:59:59.000Z

422

Betsy Sutherland - Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Betsy M. Sutherland (Deceased) Brookhaven National Laboratory From: 07/01/1977 - 10/7/2009 Passed Areas of Interest Betsy Sutherland heads the Biology Department's User Support Team for the NASA Space Radiation Laboratory (NSRL) at BNL. The NSRL project, carried out jointly with BNL's Collider-Accelerator and Medical Departments, provides the only source in the US of high energy heavy charged particles, used in assessing the effects of space radiation on biological systems, materials and instruments. The Biology Department NSRL support team consists of eight scientific, professional and administrative staffers. They provide scientific and facilities support to over 200 User groups from all over the world, and collaborate in development and maintenance of the NSRL. Betsy Sutherland also chairs the BNL Scientific Advisory Committee for Radiation Research, advisory to NASA and to the BNL Associate Laboratory Director for Nuclear and Particle Physics on research at the NSRL.

423

Charlie Catlett | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Charlie Catlett Charlie Catlett Senior Computer Scientist Charlie Catlett is a Senior Computer Scientist at Argonne National Laboratory, a U.S. Department of Energy scientific research laboratory. Catlett is also a Senior Fellow at the Computation Institute of the University of Chicago and Argonne National Laboratory, and a Visiting Artist at the School of the Art Institute of Chicago. He served as Argonne's Chief Information Officer from 2007-2011. From 2004 through 2007, he was director of the TeraGrid Initiative, a national-scale facility supported by the National Science Foundation. In 1999, Catlett co-founded the Global Grid Forum, (now Open Grid Forum), serving as its founding chair from October 1999 through September 2004. Concurrently, he directed the State of Illinois funded I-WIRE optical network project,

424

Lawrence Berkeley National Laboratory Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley National Laboratory Berkeley National Laboratory Overview Ashok Gadgil Division Director Environmental Energy Technologies Division May 2011 | LBNL Overview | 2 Berkeley Lab Mission Managed by the University of California for the United States Department of Energy * Solve the most pressing and profound scientific problems facing humankind - Basic science for a secure energy future - Understand living systems to improve the environment and energy supply - Understand matter and energy in the universe * Build and safely operate world-class scientific facilities * Train the next generation of scientists and engineers | LBNL Overview | 3 Founded on the Berkeley campus in 1931, moved to the current site in 1940 | LBNL Overview | 4 Lawrence Introduces Big Team Science LBNL: The First DOE National Laboratory

425

Argonne Tribology Laboratory Photo Tour  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Photo Tour Laboratory Photo Tour Engineers use Argonne's Tribology Laboratory to conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels and fuel/lubricant additives) for use in aggressive environments. The Lab's "toolbox" includes the following: Nanoindenter Nanoindenter This Hysitron brand surface characterization tool is used to obtain accurate elastic modulus and hardness measurements of thin-film and bulk materials on the nanometer and micrometer level. In this method a diamond stylus is pressed against the sample surface and the force and distance is measured. The modulus is related to the slope of the force/distance unloading curve, and the hardness is related to the projected angle of contact and applied load. In addition, the tool can be used to obtain high-resolution topographic images of the sample surface. Download high resolution image.

426

Savannah River National Laboratory - Home  

NLE Websites -- All DOE Office Websites

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

427

EMSL: Capabilities: Instrument Development Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrument Development Laboratory Instrument Development Laboratory The mission of the Instrument Development Laboratory (IDL) is to design, develop, and deploy advanced state-of-the-art instrument systems and custom application software in support of the ongoing experimental research efforts within EMSL. IDL staff design and develop much of the custom hardware and software used at EMSL, and provide the critical support necessary to rapidly modify or adapt a user's system to help the user achieve the world-class results they expect at EMSL. Additional Information IDL Home Meet the IDL Experts IDL Innovations IDL Brochure IDL staff provide electrical engineering expertise in high-voltage, radiofrequency, and high-speed analog and digital systems; digital signaling processing and FPGA technology; and rapid prototyping. In

428

Los Alamos National Laboratory top  

NLE Websites -- All DOE Office Websites (Extended Search)

top top science news of 2012 December 20, 2012 Scientific advances that caught the world's interest LOS ALAMOS, NEW MEXICO, December 20, 2012-In 2012 Los Alamos National Laboratory made its scientific mark in a wide variety of areas, and the stories that caught the public's attention and that of the science community reflect those broad capabilities. Top science stories for the year traveled from the canyons of Mars to the high desert forests of New Mexico, from cosmic particles to the structure of proteins and enzymes. Computer models of wildfires, and nuclear magnetic resonance signatures of plutonium, it all was fascinating for those following Los Alamos' science news. - 2 - Mars Science Laboratory Curiosity rover and ChemCam 2:12 ChemCam rock laser for the Mars Science Laboratory

429

Ames Laboratory | Open Energy Information  

Open Energy Info (EERE)

Ames Laboratory Ames Laboratory Jump to: navigation, search Name Ames Laboratory Place Ames, Iowa Zip 50011-3020 Product Research facility focused on solutions to energy-related problems. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Lawrence Livermore National Laboratory: Phonebook  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Phonebook Address and Phone Numbers Lawrence Livermore National Laboratory 7000 East Ave., Livermore, CA 94550-9234( For deliveries, enter off of Greenville Road) P.O. Box 808, Livermore, CA 94551-0808 (Mail) Main Operator (925) 422-1100 Fax (925) 422-1370, Fax verification (925) 422-1100 Employment Verification Hot Line (925) 422-9348 Public Affairs (925) 422-4599 Search for individuals by last name or full name. Use * for a wildcard. Phonebook: Warning: This Electronic Phonebook is provided solely for official use by the Lawrence Livermore National Laboratory community. Using information obtained from this Phonebook to contact individuals for purposes other than official Laboratory business is forbidden. If you have any questions, please contact Public Affairs at (925) 422-4599.

431

Los Alamos National Laboratory A National Science Laboratory  

SciTech Connect

Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

Chadwick, Mark B. [Los Alamos National Laboratory

2012-07-20T23:59:59.000Z

432

Materials Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Materials Characterization Laboratory at the Energy Systems Integration Facility. The Materials Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) research focus is the physical and photoelectrochemical characterization of novel materials. In this laboratory unknown samples are characterized by identifying and quantifying molecular species present through the implementation of a suite of analytical instrumentation and techniques. This leads to the ability to deconvolute decomposition routes and elucidate reaction mechanisms of materials through thermal and evolved gas analysis. This aids in the synthesis of next generation materials that are tailored to optimize stability and performance. These techniques and next generation materials will have many applications. One particular focus is the stable and conductive tetherable cations for use as membrane materials in anion exchange membrane fuel cells. Another is to understand the leachant contaminants derived from balance of plant materials used in proton exchange membrane fuel cell vehicles. Once identified and quantified, these organic and ionic species are dosed as contaminants into ex/in-situ fuel cell tests, to determine the effect on durability and performance. This laboratory also acts in support of fuel cell catalysis, manufacturing, and other related projects. The Materials Characterization Laboratory will cover multiple analytical operations, with the overall goal of troubleshooting synthetic materials or process streams to improve performance. Having novel evolved gas analysis and other analytical capabilities; this laboratory provides a viable location to analyze small batch samples, whereas setting up these types of capabilities and expertise would be cost and time prohibitive for most institutions. Experiments that can be performed include: (1) Evolved gas analysis; (2) Heterogeneous catalysis; (3) Trace level contaminants analysis; (4) Catalyst characterization; (5) Kinetics and stability; (6) Hyphenated techniques; and (7) Isotopic analysis for elucidating reaction mechanisms and decoupling chemical reactions.

Not Available

2011-10-01T23:59:59.000Z

433

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

434

Argonne National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory | October 21, 2008 Aerial View Argonne National Laboratory | October 21, 2008 Aerial View Argonne is a multidisciplinary science and engineering research center, where "dream teams" of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security. Enforcement March 7, 2006 Preliminary Notice of Violation,University of Chicago - EA-2006-02 Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory August 14, 2001 Preliminary Notice of Violation, Argonne National Laboratory-East -

435

Argonne National Laboratory Launches Bioenergy Assessment Tools...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Launches Bioenergy Assessment Tools Argonne National Laboratory Launches Bioenergy Assessment Tools September 30, 2013 - 4:00pm Addthis A researcher...

436

Manufacturing Laboratory (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

303-275-4311 Manufacturing Laboratory The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will...

437

The Sandia Cooler - Sandia National Laboratories: Exceptional ...  

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,

438

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

439

Reclassification of the Tritium Research Laboratory  

SciTech Connect

This document is a collection of the required actions that were taken to reclassify Building 968, the Tritium Research Laboratory, at Sandia National Laboratories/California.

Johnson, A.J.

1997-01-01T23:59:59.000Z

440

Brookhaven National Laboratory Technologies Available for ...  

Brookhaven National Laboratory Technologies Available for Licensing Brookhaven National Laboratory (BNL), located sixty miles east of New York City, is home to seven ...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Smart Lawrence Berkeley National Laboratory Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

From Berkeley Lab to the Marketplace Smart Lawrence Berkeley National Laboratory Technology Transfer with Partner Lawrence Berkeley National Laboratory Technology Transfer at...

442

Idaho National Laboratory - Hydropower Program: Hydrofacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies of the Effects of Pressure on Turbine-Passed Fish - Test Protocol Submitted By Pacific Northwest National Laboratory, Richland, Washington Background Changes in...

443

NREL: Solar Radiation Research - Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Metrology Laboratory Photo of Solar Radiation Research Laboratory researchers inspecting radiometers mounted to calibration tables at the outside test site. Researchers at the...

444

Sandia National Laboratories: About Sandia: Sandia's Government...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the Laboratories and in accomplishing major missions of national importance at the Laboratories." -Secretary of Energy Advisory Board's Report to the Secretary, July 1992...

445

NREL: Process Development and Integration Laboratory - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Process Development and Integration Laboratory The Process Development and Integration Laboratory (PDIL) is located within the Science and Technology Facility at the...

446

Independent Activity Report, Los Alamos National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory - November 2010 November 2010 Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Orientation Visit The U. S. Department...

447

SLAC National Accelerator Laboratory - SLAC Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC Overview An aerial image of SLAC's facilities SLAC National Accelerator Laboratory is one of 10 Department of Energy (DOE) Office of Science laboratories and is operated by...

448

SLAC National Accelerator Laboratory - Panofsky Prize Honors...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Lawrence Berkeley National Laboratory, and Cabrera, of Stanford University and SLAC National Accelerator Laboratory, have sought the same answers in deep shafts largely...

449

Argonne National Laboratory's Accelerator Experimental Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Experimental Infrastructure Argonne National Laboratory is somewhat unique among the Office of Science National Laboratories in that it possesses active accelerator...

450

Submitting Organization Hongyou Fan Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

&24; 2007 R&D 100 Award Entry Form &24; Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM...

451

Independent Oversight Inspection, Sandia National Laboratories...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories, Volume 1 - May 2005 Independent Oversight Inspection, Sandia National Laboratories, Volume 1 - May 2005 May 2005 Inspection of Environment, Safety,...

452

Independent Oversight Inspection, Sandia National Laboratories...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Independent Oversight Inspection, Sandia National Laboratories - May 2009 May 2009 Inspection of Emergency Management at the Sandia Site Office and Sandia National Laboratories...

453

Independent Activity Report, Sandia National Laboratories - January...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2012 Independent Activity Report, Sandia National Laboratories - January 2012 January 2012 Sandia National Laboratories Orientation Visit HIAR-SNL-2012-01-04 The U.S....

454

Inspection, Sandia National Laboratories - April 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Sandia National Laboratories - April 2008 Inspection, Sandia National Laboratories - April 2008 April 2008 Inspection of Environment, Safety and Health Programs at the...

455

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics...

456

Engineer, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Clifford Ho Engineer, Sandia National Laboratories Clifford Ho Clifford Ho Role: Engineer, Sandia National Laboratories Award: Asian American Engineer of the Year Profile: Clifford...

457

Brookhaven National Laboratory Federal Facility Agreement, February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

458

Independent Oversight Assessment , Idaho National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment , Idaho National Laboratory Site - May 2010 Independent Oversight Assessment , Idaho National Laboratory Site - May 2010 May 2010 Environmental Monitoring at the Idaho...

459

Independent Oversight Inspection, Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2005 Independent Oversight Inspection, Idaho National Laboratory - June 2005 June 2005 Inspection of Environment, Safety, and Health Programs at the Idaho National Laboratory...

460

Idaho National Laboratory Advanced Test Reactor Probabilistic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Independent Oversight Inspection, Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Idaho National Laboratory - August 2007 Independent Oversight Inspection, Idaho National Laboratory - August 2007 August 2007 Inspection of Environment, Safety, and...

462

Independent Oversight Review, Los Alamos National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2012 Independent Oversight Review, Los Alamos National Laboratory - March 2012 March 2012 Review of the Los Alamos National Laboratory Nuclear Facility Configuration...

463

Oak Ridge National Laboratory - Global Security Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

United States. The partnership of Oak Ridge National Laboratory, the Y-12 National Security Complex and the Savannah River National Laboratory are all tightly linked to the...

464

National Laboratories - Home - Energy Innovation Portal  

National Laboratories. The U.S. Department of Energy's (DOE) national laboratories play an important role in the development and commercialization of new energy ...

465

Andrew R. Cook, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ph.D. 1994 Massachusetts Institute of Technology Chemistry Department, Brookhaven National Laboratory 1998 - Present Associate Chemist Argonne National Laboratory, Argonne,...

466

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope...

467

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February...

468

ORISE: Argonne National Laboratory Electonic Medical Records...  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully design electronic medical records system for Argonne National Laboratory Health worker accessing electronic medical records Argonne National Laboratory (ANL) provides...

469

Oak Ridge National Laboratory - Global Security Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory's top research priorities. The Laboratory provides federal, state and local government agencies and departments with technology and expertise to...

470

Slide 1 of 29 - Argonne National Laboratory  

Title: Argonne National Laboratorys Froth Flotation Process for Recovering Usable Plastics from Mixed Plastics Waste Created Date: 6/3/2002 12:13:13 ...

471

Independent Activity Report, Lawrence Livermore National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332...

472

Sandia National Laboratories | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Allison Davis Sandia National Laboratories Allison Davis Allison Davis Role: Sandia National Laboratories Award: NNSA Defense Programs Award of Excellence Profile: Two individuals...

473

Sandia National Laboratories: About Sandia: Leadership: President...  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael Vahle Bruce Walker About President's Message Paul Hommert Welcome to Sandia National Laboratories. Throughout its history, our laboratory has been guided by the core...

474

Sandia National Laboratories Albuquerque | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Sandia National Laboratories Albuquerque Sandia National Laboratories Albuquerque http:...

475

Sandia National Laboratories | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kevin Eklund Sandia National Laboratories Kevin Eklund Kevin Eklund Role: Sandia National Laboratories Profile: Two individuals and nine teams received the NNSA Defense Programs...

476

Improving Clinical Laboratory Testing through Harmonization ...  

Science Conference Proceedings (OSTI)

... involvement in harmonizing this category of clinical laboratory testing procedures. ... patients at risk from non-standardized laboratory test results and ...

2013-05-21T23:59:59.000Z

477

Sandia National Laboratories Acoustic Cell Lysing for ...  

field work. The cell lysis unit can also be ... Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, ...

478

Sandia National Laboratories TOPHAT for the Alignment ...  

Cameras can work during the day or at night ... Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly

479

Independent Oversight Inspection, Argonne National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Argonne National Laboratory - East, Summary Report - May 2002 Independent Oversight Inspection, Argonne National Laboratory - East, Summary Report - May 2002 May 2002...

480

Independent Oversight Inspection, Argonne National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection, Argonne National Laboratory, Volume 1 - May 2005 Independent Oversight Inspection, Argonne National Laboratory, Volume 1 - May 2005 May 2005 Inspection of Environment,...

Note: This page contains sample records for the topic "infrared thermography laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

National Renewable Energy Laboratory Technologies Available for ...  

National Renewable Energy Laboratory Technologies Available for Licensing The National Renewable Energy Laboratory (NREL) has a multitude of energy efficiency and ...

482

Independent Oversight Review, Pacific Northwest National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory - October 2012 October 2012 Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical...

483

Laboratory Coordinating Council: Partnerships with Industry (Revised)  

Science Conference Proceedings (OSTI)

The Laboratory Coordinating Council, working through OIT, coordinates partnerships between industry, academia, and the 16 U.S. national laboratories and facilities.

Wogsland, J.

2001-01-25T23:59:59.000Z

484

Argonne National Laboratory 1985 publications  

Science Conference Proceedings (OSTI)

This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

Kopta, J.A. (ED.); Hale, M.R. (comp.)

1987-08-01T23:59:59.000Z

485

The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management  

SciTech Connect

State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.

Smidt, Ena [BOKU - University of Natural Resources and Applied Life Sciences, Institute of Waste Management, Department of Water, Atmosphere and Environment, Muthgasse 107, 1190 Vienna (Austria)]. E-mail: ena.smidt@boku.ac.at; Meissl, Katharina [BOKU - University of Natural Resources and Applied Life Sciences, Institute of Waste Management, Department of Water, Atmosphere and Environment, Muthgasse 107, 1190 Vienna (Austria)

2007-07-01T23:59:59.000Z

486

Federal laboratories for the 21st century  

Science Conference Proceedings (OSTI)

Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)

1998-04-01T23:59:59.000Z

487

LABORATORY IV CONSERVATION OF ENERGY  

E-Print Network (OSTI)

Lab IV - 1 LABORATORY IV CONSERVATION OF ENERGY In this lab you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force concepts alone. You will explore how conservation of energy is applied to real interactions. Keep

Minnesota, University of

488

Electrical Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrical Characterization Laboratory at the Energy Systems Integration Facility. Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using standard and advanced fuels such as hydrogen. Equipment that interconnected to the electric power grid is required to meet specific surge withstand capabilities. This type of application tests the ability of electrical equipment to survive a lightning strike on the main grid. These are often specified in IEEE standards such as IEEE Std. 1547. In addition, this lab provides a space for testing new, unproven, or potentially hazardous equipment for robust safety assessment prior to use in other labs at ESIF. The Electric Characterization Laboratory is in a location where new, possibly sensitive or secret equipment can be evaluated behind closed doors.

Not Available

2011-10-01T23:59:59.000Z

489

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

490

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

Minnesota, University of

491

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Electrochemical Impedance Spectroscopy. Related Patents: 7088115

492

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Welding Apparatus and Methods for Using Ultrasonic Sensing

493

Argonne TDC: Useful Links - Argonne National Laboratory  

Hoovers web; Idaho National Engineerin. & Environmental Laboratory. Illinois Department of Commerce and Economic Opportunity (DECO)

494

Small Business Manager Oak Ridge National Laboratory  

E-Print Network (OSTI)

arms control and nonproliferation programs 7 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

495

Sandia National Laboratory (NM) Former Workers, Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers, Construction Worker Screening Projects Sandia National Laboratory (NM) Former Workers, Construction Worker Screening Projects...

496

Missouri Department of Transportation, Chemical Laboratory  

Science Conference Proceedings (OSTI)

Missouri Department of Transportation, Chemical Laboratory. NVLAP Lab Code: 200544-0. Address and Contact Information: ...

2014-01-03T23:59:59.000Z

497

Biomass Surface Characterization Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

Not Available

2012-04-01T23:59:59.000Z

498

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Realtime Acoustic Imaging Microscope. Related Patents: 7123364; 6836336

499

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Spray Rolling Metal. Related Patents: 6074194; 5718863

500

Argonne National Laboratory, Former Production Workers Screening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Production Workers Screening Projects Argonne National Laboratory, Former Production Workers...