Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Measurement - Longwave spectral radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

spectral radiance spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral radiance The rate at which the spectrally resolved radiant energy in the longwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer ASSIST : Atmospheric Sounder Spectrometer for Infrared Spectral

2

ARM - Measurement - Shortwave spectral radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

: Shortwave spectral radiance The rate at which the spectrally resolved radiant energy in the shortwave portion of the spectrum is emitted in a particular direction per unit...

3

Posters Residual Analysis of Surface Spectral Radiances Between...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Posters Residual Analysis of Surface Spectral Radiances Between Instrument Observations and Line-by-Line Calculations S. A. Clough and P. D. Brown Atmospheric and Environmental...

4

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances  

E-Print Network (OSTI)

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances Petr remote-sensing algorithm that utilizes reflected visible and near-infrared radiation to discriminate using multispectral near-infrared and visible radiances, J. Geophys. Res., 112, D24S20, doi:10

Dozier, Jeff

5

Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV  

SciTech Connect

The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtain measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.

Revercomb, Henry E.

1999-12-31T23:59:59.000Z

6

REDSHIFTS, WIDTHS, AND RADIANCES OF SPECTRAL LINES EMITTED BY THE SOLAR TRANSITION REGION  

SciTech Connect

A long-standing problem in understanding the physics of the transition region has been the ubiquitous redshifts of transition region ultraviolet spectral lines relative to chromospheric emission lines, a result known since the Skylab era. Extended spectral scans performed for various regions of the solar disk by the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory contain thousands of line profiles per study and allow a thorough investigation of the redshift phenomenon. In using these data from seven distinct disk areas made in lines spanning the chromosphere to coronal temperature range, we derive a relationship between Doppler wavelength shifts and radiances and a relationship between line widths and radiances. While chromospheric and coronal lines emitted by very bright plasmas may in some cases show pronounced redshifts, transition-region lines predominantly show redshifts everywhere in the quiet Sun and in active regions. In coronal holes, however, they display a reduced shift, which at times altogether disappears. The observations and the findings will be described, and possible explanations will be considered.

Feldman, U. [Artep Inc. 2922 Excelsior Spring Circle, Ellicott City, Columbia, MD 21042 (United States); Dammasch, I. E. [Solar Influences Data Analysis Center, Royal Observatory of Belgium, Circular Avenue 3, 1180 Uccle, Brussels (Belgium); Doschek, G. A. [Space Science Division, Naval Research Laboratory, Washington, DC (United States)

2011-12-20T23:59:59.000Z

7

Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor in the NCAR CAM3 Climate Model with Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and observed fields retrieved from AIRS radiances. Models: OSS: Optimal Spectral Sampling model developed at AER was used to simulate clear sky AIRS radiance spectra in CAM3. RRTMG/McICA: ARM-supported LW and SW radiative transfer model developed at AER for application to GCMs. RRTMG has been fully

8

An Infrared Spectral Library for Atmospheric Environmental Monitoring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy is one of several...

9

Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Remotely Controlled, Continuous Observations of Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement (CSIRO/ARM) Program Mark II infrared (IR) filter radiometer operated continuously at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site for a period of five weeks. Data of high quality were obtained by remote operation and data transfer with no evidence of spurious

10

Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the June  

E-Print Network (OSTI)

Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the June 2012 Venus transit A. Hauchecorne1 , M. Meftah1 , A. Irbah1 , S of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing

Paris-Sud XI, Université de

11

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and Preliminary Assessments of Instrument Deployments in 2006 Dedecker, Ralph University of Wisconsin Demirgian, Jack Argonne National Laboratory Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Instruments One of the key operational instruments at the Atmospheric Radiation Measurement Climate Research Facility (ACRF) is the Atmospheric Emitted Radiance Interferometer (AERI). This instrument provides the ARM program with surface-based observations of infrared spectrally resolved radiance from a vertically directed cone with better than 1% accuracy. The data from

12

A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances  

E-Print Network (OSTI)

A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Abstract. A physical algorithm that of Jin [2000]. Two neighboring pixels over the same land cover have a difference in temperature largely

Jin, Menglin

13

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?¢ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?¢ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?¢ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

14

Building Energy Software Tools Directory: Radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiance Radiance Radiance logo. Advanced lighting simulation and rendering package; calculates spectral radiance values (illuminance & color) and spectral irradiance (illuminance & color) for interior and exterior spaces considering electric lighting, daylight and interreflection. Used by architects and designers to predict illumination, visual quality and appearance of design spaces. Used by researchers to evaluate new lighting and daylighting technologies and study visual comfort and similar quantities related to the visual environment. Keywords lighting, daylighting, rendering Validation/Testing N/A Expertise Required High level of computer literacy required; 4 days training, minimum. Users Over 200. Audience Daylighting, lighting, and architectural designers.

15

Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations  

E-Print Network (OSTI)

This thesis addresses the problem of retrieving the temperature profile of the Earth's atmosphere from overhead infrared and microwave observations of spectral radiance in cloudy conditions. The contributions of the thesis ...

Blackwell, William Joseph, 1971-

2002-01-01T23:59:59.000Z

16

MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS  

SciTech Connect

Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate-mass young stellar objects. The atlas consists of 2.5-11.6 {mu}m low-resolution spectra obtained with the ISOPHOT-S instrument on board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 {mu}m low-resolution spectra obtained with the Infrared Spectrograph instrument on board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rates. In several systems, all exhibiting 10 {mu}m silicate emission, the variability of the 6-8 {mu}m continuum, and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate-emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular, the wavelength-dependent changes, is more ubiquitous than was known before. Interpreting this variability is a new possibility for exploring the structure of the disk and its dynamical processes.

Kospal, A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Abraham, P.; Kun, M.; Moor, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Acosta-Pulido, J. A. [Instituto de Astrofisica de Canarias, Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Dullemond, C. P. [Institut fuer Theoretische Astrophysik, Zentrum fuer Astronomie der Universitaet Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Henning, Th.; Leinert, Ch. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Turner, N. J., E-mail: akospal@rssd.esa.int [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-08-01T23:59:59.000Z

17

Longwave thermal infrared spectral variability in individual rocks  

SciTech Connect

A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

2008-01-01T23:59:59.000Z

18

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods R. O. Knuteson, W. L. Smith, S. A. Ackerman, H. E. Revercomb, H. Woolf, and H. Howell Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison Madison, Wisconsin Introduction Data from the Atmospheric Emitted Radiance Inter- ferometer (AERI) have been analyzed for the Atmospheric Radiation Measurement (ARM) Program's Fourier Transform Data Analysis Tools science team project under the direction of William L. Smith of the University of Wisconsin-Madison. The data consist of observations of the downwelling infrared emission at the surface from gaseous atmospheric constituents and from cloud and particulate aerosols. The observations are at 0.5 cm-1 spectral resolution over the

19

Investigation of the near-infrared spectral character of putative Martian chloride deposits  

E-Print Network (OSTI)

Investigation of the near-infrared spectral character of putative Martian chloride deposits Heidi B in near-infrared ratio spectra. It is hypothesized that the admixture of anhydrous chlorides or unoxidized of these deposits. Citation: Jensen, H. B., and T. D. Glotch (2011), Investigation of the near-infrared spectral

Glotch, Timothy D.

20

Near-infrared spectral mapping of Titan's mountains and channels Jason W. Barnes,1,2  

E-Print Network (OSTI)

Near-infrared spectral mapping of Titan's mountains and channels Jason W. Barnes,1,2 Jani Radebaugh bright spectral units based on our findings. Citation: Barnes, J. W., et al. (2007), Near-infrared ranges on Titan using data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS) obtained during

Perfect, Ed

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radiance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

have been developing Radiance for 30 years and continue to do so in coordination with Optics, WINDOW, and EnergyPlus development. In recent years, new Radiance developments have...

22

GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response  

E-Print Network (OSTI)

GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response R. B Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 Received 27 infrared spectral response of GaAs-based solar cells that incorporate type II GaSb quantum dots QDs formed

Jalali. Bahram

23

Time-Resolved Infrared Spectral Photography Studies of Shock-Induced Chemistry in CS2  

Science Journals Connector (OSTI)

Experiments using time-resolved infrared spectral photography (TRISP) in the 6–8.5 µm range to study explosively driven shocks in liquid CS2 are described. In this range, the temporal resolution of the TRISP syst...

A. M. Renlund; S. A. Sheffield; W. M. Trott

1986-01-01T23:59:59.000Z

24

Full Automation of Infrared Qualitative Analysis of Binary Mixtures by Use of a Spectral Curve Compilation  

Science Journals Connector (OSTI)

A project for the compilation of infrared spectral curves is now in progress at the National Chemical Laboratory for Industry, Japan. On the basis of this compilation, a computer...

Saëki, Shinnosuke; Tanabe, Kazutoshi

1984-01-01T23:59:59.000Z

25

Results from Infrared Spectral Observation of 1991 Total Solar Eclipse Hui Li and Jianqi You  

E-Print Network (OSTI)

Results from Infrared Spectral Observation of 1991 Total Solar Eclipse Hui Li and Jianqi You Purple and analytical results of infrared spectra (10712°A­10972°A) observed in the total solar eclipse of 1991 July 11 in Mexico. The surface brightness curve, derived from the continua of extreme limb photosphere of flash

Li, Hui

26

Results from Infrared Spectral Observation of 1991 Total Solar Eclipse Hui Li and Jianqi You  

E-Print Network (OSTI)

Results from Infrared Spectral Observation of 1991 Total Solar Eclipse Hui Li and Jianqi You Purple and analytical results of infrared spectra (10712 Å¡ A--10972 Å¡ A) observed in the total solar eclipse of 1991 July 11 in Mexico. The surface brightness curve, derived from the continua of extreme limb photosphere

Li, Hui

27

On the Usage of Near-Infrared Spectral Reconstruction  

Science Journals Connector (OSTI)

Since the advent of near-infrared reflectance analysis (NIRA), there have been numerous attempts to give "traditional" spectroscopic explanations for the successful empirical and...

Kemeny, Gabor J; Wetzel, David L

1987-01-01T23:59:59.000Z

28

A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Details Activities (0) Areas (0) Regions (0) Abstract: We propose a simple graphic and statistical method for processing short-wave infrared (SWIR) reflectivity spectra of alteration minerals, which classifies spectra according to their shape and absorption features, thus obtaining groups of spectra equivalent to mineral assemblages. It also permits selection of fewer samples for further mineralogical verification.

29

radiance | OpenEI  

Open Energy Info (EERE)

radiance radiance Dataset Summary Description Freedom Field is a not-for-profit organization formed to facilitate development and commercialization of renewable energy solutions. The organization has installed a variety of renewable energy generating technologies at their facility (located at Rock River Water Reclamation in Rockford, IL), with the intention of serving as a demonstration facility. The facility monitors data (at 5-minute intervals) from a weather station, 12.4 kW of PV panels (56 220-watt panels), a 10kW wind turbine (HAWT), a 1.2 kW wind turbine (VAWT), an absorption cooling system, and biogas burners. Source Freedom Field Date Released July 19th, 2011 (3 years ago) Date Updated Unknown Keywords biogas monitoring data PV radiance solar temperature

30

Time series analysis of AERI radiances for GCM testing and improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Time series analysis of AERI radiances for GCM testing and improvement Time series analysis of AERI radiances for GCM testing and improvement Dykema, John Harvard University Leroy, Stephen Harvard University Anderson, James Harvard University Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Category: Radiation High resolution infrared radiances measured by the Atmospheric Emitted Radiance Interferometer (AERI) contained detailed information about the structure and dynamics of temperature, water vapor, and clouds below 3 km. Infrared radiances also contain the signature of radiative forcing by well-mixed gases that constitutes the greenhouse effect. Direct comparison of these radiance observations to similar radiances calculated from output

31

Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction  

SciTech Connect

Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

D. Jui-Yuan Chiu

2010-10-19T23:59:59.000Z

32

Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence  

SciTech Connect

We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8–2.0 ?m with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 ?m with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.

Parfenov, P. S., E-mail: qrspeter@pochta.ru; Litvin, A. P., E-mail: litvin88@gmail.com; Ushakova, E. V.; Fedorov, A. V.; Baranov, A. V. [National Research University of Informational Technologies, Mechanics and Optics, 197101 49, Kronverkskiy pr., Saint Petersburg (Russian Federation)] [National Research University of Informational Technologies, Mechanics and Optics, 197101 49, Kronverkskiy pr., Saint Petersburg (Russian Federation); Berwick, K. [School of Electronic and Communications Engineering, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)] [School of Electronic and Communications Engineering, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

2013-11-15T23:59:59.000Z

33

ARM - Measurement - Longwave narrowband radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Measurement : Longwave narrowband radiance The rate at which radiant energy in the longwave portion of the spectrum is emitted in narrow wavelength bands in a...

34

Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements  

SciTech Connect

Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

La Lone, B. M. [NSTec; Stevens, G. D. [NSTec; Turley, W. D. [NSTec; Holtkamp, D. B. [LANL; Iverson, A. J. [NSTec; Hixson, R. S. [NSTec; Veeser, L. R. [NSTec

2013-08-01T23:59:59.000Z

35

THE SPECTRAL ENERGY DISTRIBUTION OF THE CARINA NEBULA FROM FAR-INFRARED TO RADIO WAVELENGTHS  

SciTech Connect

Multi-wavelength observations are necessary for understanding the physical properties of astrophysical sources. In this paper, we use observations in the far-infrared to radio range to derive the spectral energy distribution (SED) of the Carina nebula. To do this, we carefully subtract the irregularly varying diffuse emission from the Galactic plane, which can be of the order of 10% of the nebula flux at these wavelengths. We find that the far-infrared SED can be modeled as emission from a dust population with a single temperature T{sub d} = (34.5{sup +2.0}{sub -1.8}) K and with a spectral index of emissivity {alpha} = -1.37{sup +0.09}{sub -0.08}. We also find a total infrared luminosity of the nebula of (7.4{sup +2.5}{sub -1.4}) Multiplication-Sign 10{sup 6} L{sub Sun} and, assuming a single temperature of the dust, a mass of the dust of (9500{sup +4600}{sub -3500}) M{sub Sun }.

Salatino, M.; De Bernardis, P.; Masi, S. [Physics Department, Sapienza Universita di Roma, p.le Aldo Moro 2, I-00185 Roma (Italy); Polenta, G., E-mail: maria.salatino@roma1.infn.it [ASI Science Data Center, ESRIN, via G. Galilei, I-00044, Frascati (Italy)

2012-03-20T23:59:59.000Z

36

A high-spectral-resolution radiative transfer model for simulating multi-layered clouds and aerosols in the infrared spectral region  

Science Journals Connector (OSTI)

A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm?1 with a spectral resolution of 0.1 cm?1 for scattering/absorbing atmospheres. In a single run and at multiple user-...

Chenxi Wang; Ping Yang; Xu Liu

37

Radiance: Synthetic Imaging System | Open Energy Information  

Open Energy Info (EERE)

Radiance: Synthetic Imaging System Radiance: Synthetic Imaging System Jump to: navigation, search Tool Summary Name: RADIANCE Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Desktop Application Website: radsite.lbl.gov/radiance/ Cost: Free References: Radiance[1] Logo: RADIANCE RADIANCE is a highly accurate ray-tracing software system for UNIX computers that is licensed at no cost in source form. Radiance was developed with primary support from the U.S. Department Of Energy and additional support from the Swiss Federal Government. Radiance is a suite of programs for the analysis and visualization of lighting in design. Input files specify the scene geometry, materials, luminaires,time, date

38

ARM - Measurement - Shortwave narrowband radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

narrowband radiance narrowband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer SWS : Shortwave Spectroradiometer

39

Radiance Solar | Open Energy Information  

Open Energy Info (EERE)

Radiance Solar Radiance Solar Jump to: navigation, search Name Radiance Solar Place Atlanta, Georgia Zip 30318 Product Commercial and residential PV installer based in Atlanta. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Time-resolved infrared spectral photography studies of shock-induced chemistry in CS/sub 2/  

SciTech Connect

Experiments using time-resolved infrared spectral photography (TRISP) in the 6 to 8.5 ..mu..m range to study explosively driven shocks in liquid CS/sub 2/ are described. In this range, the temporal resolution of the TRISP system is <1 ns. We have shown that single-shot infrared absorption studies in shocked liquids are feasible with this technique; however, well-controlled planar shocks appear to be necessary for clear interpretation of dynamic spectral changes. 13 refs., 4 figs.

Renlund, A.M.; Sheffield, S.A.; Trott, W.M.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measurements of the spectral energy distribution of the cosmic infrared background  

E-Print Network (OSTI)

The extragalactic background light (EBL) is the relic emission of all processes of structure formation in the Universe. About half of this background, called the Cosmic Infrared Background (CIB) is emitted in the 8-1000 microns range, and peaks around 150 microns. It is due to the dust reemission from star formation processes and AGN emission. The CIB spectral energy distribution (SED) constraints the models of star formation in the Universe. It is also useful to compute the opacity of the Universe to the TeV photons. We present the different types of measurements of the CIB and discuss their strengths and weaknesses. 1. The absolute SED was measured by COBE, and by other experiments. These measurements are limited by the accuracy of the component separation, i.e. the foreground subtraction. 2. Robust lower limits are determined from the extragalactic number counts of infrared galaxies. These lower limits are very stringent up to 100 microns. At larger wavelengths, the rather low angular resolution of the ins...

Béthermin, Matthieu

2011-01-01T23:59:59.000Z

42

COMPLEX RADIO SPECTRAL ENERGY DISTRIBUTIONS IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES  

SciTech Connect

We use the Expanded Very Large Array to image radio continuum emission from local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in 1 GHz windows centered at 4.7, 7.2, 29, and 36 GHz. This allows us to probe the integrated radio spectral energy distribution (SED) of the most energetic galaxies in the local universe. The 4-8 GHz flux densities agree well with previous measurements. They yield spectral indices {alpha} {approx} -0.67 (where F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) with {+-}0.15 (1{sigma}) scatter, typical of nonthermal (synchrotron) emission from star-forming galaxies. The contrast of our 4-8 GHz data with literature 1.5 and 8.4 GHz flux densities gives further evidence for curvature of the radio SED of U/LIRGs. The SED appears flatter near {approx}1 GHz than near {approx}6 GHz, suggesting significant optical depth effects at lower frequencies. The high-frequency (28-37 GHz) flux densities are low compared to extrapolations from the 4-8 GHz data. We confirm and extend to higher frequency a previously observed deficit of high-frequency radio emission for luminous starburst galaxies.

Leroy, Adam K.; Evans, Aaron S.; Condon, James [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Momjian, Emmanuel; Ott, Juergen; Meier, David S. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Murphy, Eric [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Armus, Lee; Haan, Sebastian; Mazzarella, Joseph M.; Surace, Jason [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Privon, George C. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Schinnerer, Eva; Walter, Fabian [Max Planck Institut fuer Astronomie, Koenigstuhl 17, Heidelberg D-69117 (Germany)

2011-09-20T23:59:59.000Z

43

A retrieval of coastal water constituent concentrations by least-squares inversion of a radiance model  

SciTech Connect

A three-component model of water color including phytoplankton pigment, dissolved organic matter (DOM) and suspended sediments has been developed and applied to coastal waters. A feature of the model is the possibility of varying the parameters describing the spectral backscatter of sediment and the spectral absorption of DOM when inverting the water-leaving radiance model. A linear least-squares technique is used to retrieve optical properties from the water-leaving radiance model. The radiance model is inverted to obtain the optical properties for each set of the parameter values. The set providing the minimum standard error of least squares inversion is taken as the final solution. An analysis of sensitivity of the solution to random radiance measurement errors was carried out. The application of the approach to coastal waters subject to tidal resuspension is discussed.

Vasilkov, A.P. [Management Unit of the Mathematical Models of the North Sea and Scheldt Estuary, Brussels (Belgium)

1997-08-01T23:59:59.000Z

44

International Satellite Cloud Climatology Project (ISCCP) Radiance Calibration Report  

E-Print Network (OSTI)

This document describes the radiance calibrations used for all ISCCP Stage B3 data for the period July 1983 through June 1991 (Schiffer and Rossow 1985; Rossow et al. 1987; Brest and Rossow 1992; Desormeaux et al. 1992). Calibration is reported in three stages, called nominal, normalized and absolute. Equations and tables in the following sections define each of these calibrations. 1.1. NOMINAL CALIBRATION The nominal calibration (first set of tables on Stage B3 data tapes) represents the best information available at the start of processing of data from a particular satellite, usually the pre-launch calibration supplied by the satellite operator for the visible (VIS) channel (and other channels at solar wavelengths) and an equation or table used to interpret on-board calibration information for the infrared (IR) channel (and other channels at thermal infrared wavelengths). Specific details are given for each satellite in sections to follow. In this document, VIS radiances are given as "scaled radiances", L

William Rossow; Yves Desormeaux; Christopher L. Brest; Alison Walker

1992-01-01T23:59:59.000Z

45

Electronic transitions of single silicon vacancy centers in the near-infrared spectral region  

E-Print Network (OSTI)

Photoluminescence (PL) spectra of single silicon vacancy (SiV) centers frequently feature very narrow room temperature PL lines in the near-infrared (NIR) spectral region, mostly between 820 nm and 840 nm, in addition to the well known zero-phonon-line (ZPL) at approx. 738 nm [E. Neu et al., Phys. Rev. B 84, 205211 (2011)]. We here exemplarily prove for a single SiV center that this NIR PL is due to an additional purely electronic transition (ZPL). For the NIR line at 822.7 nm, we find a room temperature linewidth of 1.4 nm (2.6 meV). The line saturates at similar excitation power as the ZPL. ZPL and NIR line exhibit identical polarization properties. Cross-correlation measurements between the ZPL and the NIR line reveal anti-correlated emission and prove that the lines originate from a single SiV center, furthermore indicating a fast switching between the transitions (0.7 ns). g(2) auto-correlation measurements exclude that the NIR line is a vibronic sideband or that it arises due to a transition from/to a meta-stable (shelving) state.

Elke Neu; Roland Albrecht; Martin Fischer; Stefan Gsell; Matthias Schreck; Christoph Becher

2012-04-23T23:59:59.000Z

46

CIMEL Measurements of Zenith Radiances at the ARM SGP Site  

NLE Websites -- All DOE Office Websites (Extended Search)

CIMEL Measurements of Zenith Radiances CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania State University University Park, Pennsylvania A. B. Davis Los Alamos National Laboratory Space and Remote Sensing Sciences Los Alamos, New Mexico M. Miller Brookhaven National Laboratory Upton, New York Introduction The objective of our study is to exploit the sharp spectral contrast in vegetated surface reflectance across

47

Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.  

DOE Patents (OSTI)

Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

Alfano, Robert R. (3777 Independence Ave., Bronx, NY 10463); Demos, Stavros G. (3550 Pacific Ave., Apt. 304, Livermore, CA 94550); Zhang, Gang (3 Rieder Rd., Edison, NJ 08817)

2003-12-16T23:59:59.000Z

48

INTERFEROMETRY ON MIRA IN THE MID-INFRARED: CYCLIC VARIABILITY OF THE CONTINUUM DIAMETER AND THE EFFECT OF SPECTRAL LINES ON APPARENT SIZE  

E-Print Network (OSTI)

AND THE EFFECT OF SPECTRAL LINES ON APPARENT SIZE J. Weiner, D. D. S. Hale, and C. H. Townes Space Sciences2O gas. Subject headings: infrared: stars -- stars: AGB and post-AGB -- stars: atmospheres -- stars

California at Berkeley, University of

49

A study of in-cylinder combustion processes by using high speed multi-spectral infrared imaging and a robust statistical analysis method.  

E-Print Network (OSTI)

??Combustion processes in a spark-ignition engine were studied by using a high speed multi-spectral infrared camera system and a new robust statistical analysis method. Among… (more)

VanderVeer, Joseph R.

2008-01-01T23:59:59.000Z

50

The Radiance Process: Water and Chemical Free Cleaning  

E-Print Network (OSTI)

Radiance Services Company manages a new technology called the Radiance Process®, a dry non-toxic technology for surface cleaning. The Radiance Process received the National Pollution Prevention Roundtable's 1997 Most Valuable Pollution Prevention...

Robison, J. H.

51

The Constant Radiance Term Lszl Neumann 1  

E-Print Network (OSTI)

is zero. The self- 1 Email: neumann@hungary.net #12; L. Neumann: The Constant Radiance Term - 2 information, nor the calculation of form factors. A constant radiance is extracted from the solution in every of the residuum problem is zero. The self-emitting term of the residuum problem can either be positive or negative

52

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Posters Preliminary Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H....

53

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

54

Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance  

E-Print Network (OSTI)

in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection light, which often leads to brilliant displays in the wakes of ships, in breaking waves, or even around method (as opposed to active methods such as RADAR or LIDAR) of identifying hostile ships, submarines

Moline, Mark

55

MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES  

SciTech Connect

We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

Treyer, Marie; Martin, Christopher D.; Wyder, Ted [California Institute of Technology, MC 278-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Schiminovich, David; O'Dowd, Matt [Astronomy Department, Columbia University, 550 W. 120 St., New York, NY 10027 (United States); Johnson, Benjamin D. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Charlot, Stephane [Institut d'Astrophysique de Paris, UMR 7095, 98bis Bvd Arago, 75014 Paris (France); Heckman, Timothy [Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Martins, Lucimara [NAT-Universidade Cruzeiro do Sul, Rua Galvao Bueno, 868, Sao Paulo, SP, 01506-000 (Brazil); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van der Hulst, J. M., E-mail: treyer@srl.caltech.ed [Kapteyn Astronomical Institute, University of Groningen (Netherlands)

2010-08-20T23:59:59.000Z

56

Molecular-like Ag clusters sensitized near-infrared down-conversion luminescence in oxyfluoride glasses for broadband spectral modification  

SciTech Connect

Molecular-like Ag clusters sized at 1–4 nm have been stabilized in Pb/Cd-free oxyfluoride glasses, showing broadband excitation/emission characteristics and unique wavelength-dependent luminescent performance with a maximal quantum yield of 26.9%. It was experimentally demonstrated that an energy transfer route of Ag clusters ? Tb{sup 3+} ? Yb{sup 3+} occurs in Ag{sup +}/Tb{sup 3+}/Yb{sup 3+} tri-doped sample, wherein Ag clusters act as sensitizers for near-infrared down-conversion spectral modification. Hopefully, the proposed strategy that noble metal clusters being applied for harvesting solar radiation may potentially solve the sticky problems of the narrow excitation bandwidth and the low excitation efficiency in rare earth ions doped down-conversion materials.

Lin, Hang; Chen, Daqin; Yu, Yunlong; Zhang, Rui; Wang, Yuansheng [State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)] [State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

2013-08-26T23:59:59.000Z

57

A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing  

E-Print Network (OSTI)

A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling which included various single- layer and multilayer cloud conditions. Overall, the CO2-slicing method

Sheridan, Jennifer

58

Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers  

SciTech Connect

We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

2012-09-01T23:59:59.000Z

59

SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA  

SciTech Connect

We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

2012-07-15T23:59:59.000Z

60

Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results H. E. Revercomb, R. O. Knuteson, W. L. Smith, F. A. Best, and R. G. Dedecker University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin Introduction Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds are now being provided to the Atmospheric Radiation Measurement (ARM) data base by the Atmospheric Emitted Radiance Interferometer (AERI) prototype at the Southern Great Plains Cloud and Radiation Testbed (CART) site. Spectra over the range from 520 to 3000 cm -1 (3 to 19 microns) with a resolution of 0.5 cm

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

* The far-infrared (λ > 15 µm) is an important  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

62

SPECTRAL ANALYSIS OF A PHASE LOCKED LASER AT 891 GHz, AN APPLICATION OF JOSEPHSON JUNCTIONS IN THE FAR INFRARED  

E-Print Network (OSTI)

285 SPECTRAL ANALYSIS OF A PHASE LOCKED LASER AT 891 GHz, AN APPLICATION OF JOSEPHSON JUNCTIONS. Abstract. 2014 We have used a Josephson junction to investigate the spectral purity of an HCN laser which take advantage of the unique properties of the Josephson junction as a frequency multiplier and mixer

Paris-Sud XI, Université de

63

Spectral reflectance and responsivity of Ge- and InGaAs-photodiodes in the near-infrared: measurement and model  

SciTech Connect

The spectral reflectance and responsivity of Ge- and InGaAs-photodiodes at (nearly) normal and oblique incidence (45 degree sign ) were investigated. The derived data allow a calculation of the photodiodes responsivities for any incident angle. The measurements were carried out with s-and p-polarized radiation in the wavelength range from 1260 to1640 nm. The spectral reflectance of the photodiodes was modeled by using the matrix approach developed for thin-film optical assemblies. The comparison between the calculated and measured reflectance shows a difference of less than 2% for the Ge-photodiode. For the InGaAs-photodiode, the differences between measured and calculated reflectance are larger, i.e., up to 6% for wavelengths between 1380 and1580 nm. Despite the larger differences between calculated and measured spectral reflectances for the InGaAs-photodiode, the difference between calculated and measured spectral responsivity is even smaller for the InGaAs-photodiode than for the Ge-photodiode, i.e.,?1.2% for the InGaAs-photodiode compared to?2.2% for the Ge-photodiode. This is because the difference in responsivity is strongly correlated to the absolute spectral reflectance level, which is much lower for the InGaAs-photodiode. This observation also shows the importance of having small reflectances, i.e.,appropriate antireflection coatings for the photodiodes. The relative standard uncertainty associated with the modeled spectral responsivity is about 2.2% for the Ge-photodiode and about 1.2% for the InGaAs-photodiode for any incident angle over the whole spectral range measured. The data obtained for the photodiodes allow the calculation of the spectral responsivity of Ge- and InGaAs-trap detectors and the comparison with experimental results.

Lopez, M.; Hofer, H.; Stock, K. D.; Bermudez, J. C.; Schirmacher, A.; Schneck, F.; Kueck, S

2007-10-10T23:59:59.000Z

64

Observations of the Hubble Deep Field with the Infrared Space Observatory. V. Spectral Energy Distributions, Starburst Models and Star Formation History  

E-Print Network (OSTI)

We have modelled the spectral energy distributions of the 13 HDF galaxies reliably detected by ISO. For 2 galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far infrared luminosity and derive star formation rates for these galaxies of 8-1000 $\\phi M_{\\sun}$ per yr, where $\\phi$ takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the universe. Although uncertainties in the calibration, reliability of source detection, associations, and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least.

The ISO-HDF Consortium; :; Michael Rowan-Robinson

1997-07-02T23:59:59.000Z

65

Features of the electroluminescence spectra of quantum-confined silicon p{sup +}-n heterojunctions in the infrared spectral region  

SciTech Connect

The results of studying the characteristics of optical emission in various regions of quantum-confined silicon p{sup +}-n heterojunctions heavily doped with boron are analyzed. The results obtained allow one to conclude that near-infrared electroluminescence arises near the heterointerface between the nanostructured wide-gap silicon p{sup +}-barrier heavily doped with boron and n-type silicon (100), the formation of which included the active involvement of boron dipole centers.

Bagraev, N. T.; Klyachkin, L. E.; Kuzmin, R. V., E-mail: roman.kuzmin@mail.ioffe.ru; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Mashkov, V. A. [Saint Petersburg State Polytechnical University (Russian Federation)] [Saint Petersburg State Polytechnical University (Russian Federation)

2013-11-15T23:59:59.000Z

66

Acceleration of the matrix multiplication of Radiance three phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration of the matrix multiplication of Radiance three phase Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer Title Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer Publication Type Journal Article LBNL Report Number LBNL-6461E Year of Publication 2013 Authors Zuo, Wangda, Andrew McNeil, Michael Wetter, and Eleanor S. Lee Journal Journal of Building Performance Simulation Keywords daylighting simulation, graphics processing unit, multicore central processing unit, OpenCL, parallel computing Abstract Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.

67

THE PHYSICAL CONDITIONS IN STARBURSTS DERIVED FROM BAYESIAN FITTING OF MID-INFRARED SPECTRAL ENERGY DISTRIBUTION MODELS: 30 DORADUS AS A TEMPLATE  

SciTech Connect

To understand and interpret the observed spectral energy distributions (SEDs) of starbursts, theoretical or semi-empirical SED models are necessary. Yet, while they are well founded in theory, independent verification and calibration of these models, including the exploration of possible degeneracies between their parameters, are rarely made. As a consequence, a robust fitting method that leads to unique and reproducible results has been lacking. Here we introduce a novel approach based on Bayesian analysis to fit the Spitzer-Infrared Spectrometer spectra of starbursts using the SED models proposed by Groves et al.. We demonstrate its capabilities and verify the agreement between the derived best-fit parameters and actual physical conditions by modeling the nearby, well-studied, giant H II region 30 Doradus in the LMC. The derived physical parameters, such as cluster mass, cluster age, interstellar medium pressure, and covering fraction of photodissociation regions, are representative of the 30 Doradus region. The inclusion of the emission lines in the modeling is crucial to break degeneracies. We investigate the limitations and uncertainties by modeling subregions, which are dominated by single components, within 30 Doradus. A remarkable result for 30 Doradus in particular is a considerable contribution to its mid-infrared spectrum from hot ({approx}300 K) dust. The demonstrated success of our approach will allow us to derive the physical conditions in more distant, spatially unresolved starbursts.

MartInez-Galarza, J. R.; Groves, B.; Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 CA Leiden (Netherlands); De Messieres, G. E.; Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA (United States); Dopita, M. A. [Mount Stromlo and Siding Spring Observatories, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

2011-09-10T23:59:59.000Z

68

A Spitzer Space Telescope Far-infrared Spectral Atlas of Compact Sources in the Magellanic Clouds. II. The Small Magellanic Cloud  

Science Journals Connector (OSTI)

We present far-infrared spectra, ? = 52-93 ?m, obtained with the Spitzer Space Telescope in the spectral energy distribution mode of its Multiband Imaging Photometer for Spitzer instrument, of a selection of luminous compact far-infrared sources in the Small Magellanic Cloud (SMC). These comprise nine young stellar objects (YSOs), the compact H II region N 81 and a similar object within N 84, and two red supergiants (RSGs). We use the spectra to constrain the presence and temperature of cool dust and the excitation conditions within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding interstellar medium. We compare these results with those obtained in the Large Magellanic Cloud (LMC). The spectra of the sources in N 81 (of which we also show the Infrared Space Observatory-Long-wavelength Spectrograph spectrum between 50 and 170 ?m) and N 84 both display strong [O I] ?63 ?m and [O III] ?88 ?m fine-structure line emission. We attribute these lines to strong shocks and photo-ionized gas, respectively, in a "champagne flow" scenario. The nitrogen content of these two H II regions is very low, definitely N(N)/N(O) N(N)/N(O) efficiency of the photo-electric effect to heat the gas is found to be indistinguishable to that measured in the same manner in the LMC, ?0.1%-0.3%. This may result from higher cloud-core densities, or smaller grains, in the SMC. The dust associated with the two RSGs in our SMC sample is cool, and we argue that it is swept-up interstellar dust, or formed (or grew) within the bow-shock, rather than dust produced in these metal-poor RSGs themselves. Strong emission from crystalline water-ice is detected in at least one YSO. The spectra constitute a valuable resource for the planning and interpretation of observations with the Herschel Space Observatory and the Stratospheric Observatory For Infrared Astronomy.

Jacco Th. van Loon; Joana M. Oliveira; Karl D. Gordon; G. C. Sloan; C. W. Engelbracht

2010-01-01T23:59:59.000Z

69

Infrared source test  

SciTech Connect

The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

Ott, L.

1994-11-15T23:59:59.000Z

70

Derivatization Technique to Increase the Spectral Selectivity of Two-Dimensional Fourier Transform Infrared Focal Plane Array Imaging: Analysis of Binder Composition in Aged Oil and Tempera Paint  

Science Journals Connector (OSTI)

The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder,...

Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

2014-01-01T23:59:59.000Z

71

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation for  

E-Print Network (OSTI)

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation using spectral imaging. This has been accom- plished with both visible/near-infrared (Vis/NIR) sunlight-path laser absorption measurements [14]­[16], in-situ visible and near-infrared (Vis/NIR) spectral

Lawrence, Rick L.

72

Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)  

SciTech Connect

Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x speedup for 1 GPU and 1455x speedup for all 4 GPUs, both with respect to the original CPU-based single-threaded Fortran code with the -O{sub 2} compiling optimization. The significant 1455x speedup using a computer with four GPUs means that the proposed GPU-based high-performance forward model is able to compute one day's amount of 1,296,000 IASI spectra within nearly 10 min, whereas the original single CPU-based version will impractically take more than 10 days. This model runs over 80% of the theoretical memory bandwidth with asynchronous data transfer. A novel CPU-GPU pipeline implementation of the IASI radiative transfer model is proposed. The GPU-based high-performance IASI radiative transfer model is suitable for the assimilation of the IASI radiance observations into the operational numerical weather forecast model.

Huang Bormin, E-mail: bormin@ssec.wisc.ed [Space Science and Engineering Center, University of Wisconsin, Madison (United States); Mielikainen, Jarno [Department of Computer Science, University of Eastern Finland, Kuopio (Finland); Oh, Hyunjong; Allen Huang, Hung-Lung [Space Science and Engineering Center, University of Wisconsin, Madison (United States)

2011-03-20T23:59:59.000Z

73

Temperature dependent dielectric function in the near-infrared to vacuum-ultraviolet ultraviolet spectral range of alumina and yttria stabilized zirconia thin films  

SciTech Connect

The dielectric function of nano-/polycrystalline alumina and yttria stabilised zirconia thin films has been investigated in a wide spectral range from 1.0?eV to 7.5?eV and temperatures between 10?K and room temperature. In the near band-edge spectral range, we found a broad distribution of optical transitions within the band gap, the so-called Urbach absorption tail which is typical for amorphous or polycrystalline materials due to the lack of long range order in the crystal structure. The coupling properties of the electronic system to the optical phonon bath and thermal lattice vibrations strongly depend on the ratio of the spectral extent of these disorder states to the main phonon energy, which we correlate with the different crystalline structure of our samples. The films have been grown at room temperature and 650?°C by pulsed laser deposition.

Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Lühmann, T.; Böntgen, T.; Franke, H.; Lorenz, M.; Grundmann, M. [Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Universität Leipzig, Linnéstr. 5, D-04103 Leipzig (Germany); Opper, D. [PANalytical GmbH, Nürnberger Straße 113, D-34123 Kassel (Germany)

2013-12-14T23:59:59.000Z

74

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1995--December 31, 1995  

SciTech Connect

Infrared burner is a surface combustor that elevates the temperature of the burner head to a radiant condition. Applications of radiant burners includes boilers, air heaters, deep fat fryers, process heaters, and immersion heaters. On reason for the present interest in this type of burner is its low NO{sub x} emissions, which is attributed to the fact that a large proportion of the combustion heat is given out as radiation from the burner surface, which results in relatively low gas temperature in the combustion zone compared to that of a conventional free-flame burner. As a consequence, such burners produce less NO{sub x}, mainly by the so-called prompt-NO mechanism. A porous radiant burner testing facility was built, consisting of spectral radiance as well as flue gas composition measurements. Measurement capabilities were tested using methane; results were consistent with literature.

Bai, Tiejun; Yeboah, Y.D.; Sampath, R.

1996-01-01T23:59:59.000Z

75

Radiance: Science and Stagecraft Come Together via Alan Alda and Marie  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiance: Science and Stagecraft Come Together via Alan Alda and Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie May 27, 2011 - 1:30pm Addthis Alan Alda | Photo Courtesy of www.alanalda.com Alan Alda | Photo Courtesy of www.alanalda.com Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science They might appear to have little in common. She received two Nobel Prizes. He won six Emmys. She was born in Poland and made her name in Paris. He was born in New York City, and made his fame in Hollywood. Despite their differences, Marie Curie and Alan Alda will be coming together on opening night of the upcoming World Science Festival, through a special reading of his first play, Radiance: The Passion of Marie Curie.

76

Radiance: Science and Stagecraft Come Together via Alan Alda and Marie  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiance: Science and Stagecraft Come Together via Alan Alda and Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie May 27, 2011 - 1:30pm Addthis Alan Alda | Photo Courtesy of www.alanalda.com Alan Alda | Photo Courtesy of www.alanalda.com Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science They might appear to have little in common. She received two Nobel Prizes. He won six Emmys. She was born in Poland and made her name in Paris. He was born in New York City, and made his fame in Hollywood. Despite their differences, Marie Curie and Alan Alda will be coming together on opening night of the upcoming World Science Festival, through a special reading of his first play, Radiance: The Passion of Marie Curie.

77

CIMEL SUN PHOTOMETERS: UPDATES ON NEW DEPLOYMENTS AND CLOUD MODE ZENITH RADIANCE DATA  

E-Print Network (OSTI)

CIMEL SUN PHOTOMETERS: UPDATES ON NEW DEPLOYMENTS AND CLOUD MODE ZENITH RADIANCE DATA Richard of Science ABSTRACT Since March 1998, ARM has deployed Cimel Sun PHOTometers (CSPHOT) at several but not all

78

Herschel Far-Infrared Spectral-mapping of Orion BN/KL Outflows: Spatial distribution of excited CO, H2O, OH, O and C+ in shocked gas  

E-Print Network (OSTI)

We present ~2'x2' spectral-maps of Orion BN/KL outflows taken with Herschel at ~12'' resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions "Peak 1" and "Peak 2" from that of the Hot Core and ambient cloud. We analyze the ~54-310um spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of 12CO (up to J=48-47), H2O, OH, 13CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L(FIR)~5x10^{-3} ratio and a plethora of far-IR H2O emission lines. The high-J CO and OH lines are a factor ~2 brighter toward Peak 1 whereas several excited H2O lines are ~50% brighter toward Peak 2. A simplified non-LTE model allowed us to constrain the dominant gas temperature components. Most of the CO column density arises from Tk~200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H2O/CO~10^{-2} abundance r...

Goicoechea, Javier R; Cernicharo, Jose; Neufeld, David A; Vavrek, Roland; Bergin, Edwin A; Cuadrado, Sara; Encrenaz, Pierre; Etxaluze, Mireya; Melnick, Gary J; Polehampton, Edward

2014-01-01T23:59:59.000Z

79

Can Gender Be Predicted from Near-Infrared Face Images?  

E-Print Network (OSTI)

Can Gender Be Predicted from Near-Infrared Face Images? Arun Ross and Cunjian Chen Lane Department spectrum (VIS). We explore the possibility of predicting gender from face images ac- quired in the near-infrared cross-spectral gender prediction. Keywords: Biometrics, Faces, Gender, Near-Infrared, Cross-Spectral. 1

Ross, Arun Abraham

80

Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent  

E-Print Network (OSTI)

Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins Arie Krumholz1 the application of two spectrally distinct near-infrared fluorescent proteins, iRFP670 and iRFP720, engineered-tissue PAT, probes absorbing in the near-infrared (NIR) spectral range are desirable. In the NIR optical

Verkhusha, Vladislav V.

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Near-infrared light scattering by particles in coastal waters  

E-Print Network (OSTI)

Near-infrared light scattering by particles in coastal waters David Doxaran* , Marcel Babin extend over the near-infrared spectral region to up to 870 nm. The measurements were conducted in three in the near-infrared very closely matched a - spectral dependence, which is expected when the particle size

Babin, Marcel

82

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

83

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL Wangda Zuo, Andrew McNeil, Michael Wetter, Eleanor Lee Building Technologies Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ABSTRACT We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross- platform parallel programming language. Numerical

84

AERI - What, Where, How, and Future Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

(AERI) measures the absolute infrared spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. This poster...

85

ARM - Instrument - sasze  

NLE Websites -- All DOE Office Websites (Extended Search)

(SASZE) measures the zenith sky shortwave radiance over the spectral range from the near infrared to the ultraviolet. The SASZE incorporates two Avantes fiber-coupled...

86

Method to analyze remotely sensed spectral data  

DOE Patents (OSTI)

A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

Stork, Christopher L. (Albuquerque, NM); Van Benthem, Mark H. (Middletown, DE)

2009-02-17T23:59:59.000Z

87

Solar Energy, 2006, 80, 3, 361-367 SIMULATING METEOSAT-7 BROADBAND RADIANCES USING TWO  

E-Print Network (OSTI)

Solar Energy, 2006, 80, 3, 361-367 SIMULATING METEOSAT-7 BROADBAND RADIANCES USING TWO VISIBLE-00361360,version1-13Feb2009 Author manuscript, published in "Solar Energy 80, 3 (2006) 361-367" DOI : 10.1016/j.solener.2005.01.012 #12;Solar Energy, 2006, 80, 3, 361-367 · Imet-7 the maximum irradiance

Paris-Sud XI, Université de

88

Deployment of the Polar Atmospheric Emitted Radiance Interferometer (P-AERI) in Eureka, Canada for SEARCH  

E-Print Network (OSTI)

Deployment of the Polar Atmospheric Emitted Radiance Interferometer (P-AERI) in Eureka, Canada operate in the polar darkness when solar transmission instruments are not useful. The University of Idaho's P-AERI instrument was deployed in Eureka, Canada in March 2006. It has been operating nearly

Walden, Von P.

89

Simultaneous measurements of super-radiance at multiple wavelengths from helium excited states: (I) Experiment  

E-Print Network (OSTI)

In this paper, we report the results of measurements of the intensities and delays of super-radiance decays from excited helium atoms at multiple wavelengths. The experiment was performed using extreme ultraviolet radiation produced by the free electron laser at the SPring-8 Compact SASE Source test accelerator facility as an excitation source. We observed super-radiant transitions on the $1s3p \\to 1s2s$ ($\\lambda=$502 nm), $1s3d \\to 1s2p$ ($\\lambda=$668 nm), and $1s3s \\to 1s2p$ ($\\lambda=$728 nm) transitions. The pulse energy of each transition and its delay time were measured as a function of the target helium gas density. Several interesting features of the data, some of which appear to contradict with the predictions of the simple two-level super-radiance theory, are pointed out.

Nakajima, Kyo; Iwayama, Hiroshi; Kuma, Susumu; Miyamoto, Yuki; Nagasono, Mitsuru; Ohae, Chiaki; Togashi, Tadashi; Yabashi, Makina; Shigemasa, Eiji; Sasao, Noboru

2014-01-01T23:59:59.000Z

90

Spectral Reflectance of Silicon Photodiodes  

E-Print Network (OSTI)

Introduction Silicon photodiodes are among the most popular photodetectors that combine high performance over a wide wavelength range with unparalleled ease of use. High-quality photodiodes, in the form of a trap detector, 1,2 have many significant applications in precision radiometry. Their predictable responsivity in visible and near-infrared ~NIR! wavelengths allows the realization of high-accuracy spectral responsivity scales. 3,4 The spectral responsivity scales can be utilized in, for example, realization of luminous intensity 5,6 and spectral irradiance scales. 7,8 The spectral responsivity of a silicon photodiode is determined by the reflectance of the diode surface r~l! and the internal quantum deficiency d~l!. The values of d~l! and r~l! can be extrapolated 4 by mathematical models. To extrapolate the val

Atte Haapalinna; Petri Kärhä; Erkki Ikonen

91

Determination of Monomethylhydrazine with a High-Throughput, All-Fiber Near-Infrared  

E-Print Network (OSTI)

Determination of Monomethylhydrazine with a High-Throughput, All-Fiber Near-Infrared Spectrometer-throughput near-infrared spectrophotometer has been successfully constructed by synergistic use of this integrated and wide spectral band- width in the near-infrared region from 1500 to 1600 nm. This spectral region

Reid, Scott A.

92

AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES  

SciTech Connect

We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

Lee, Jong Chul; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Ho Seong [CEA Saclay/Service d'Astrophysique, F-91191 Gif-sur-Yvette (France); Kim, Minjin; Lee, Joon Hyeop, E-mail: mglee@astro.snu.ac.kr, E-mail: jclee@kasi.re.kr, E-mail: mkim@kasi.re.kr, E-mail: jhl@kasi.re.kr, E-mail: hhwang@cfa.harvard.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2012-09-01T23:59:59.000Z

93

Technology for Multispectral Infrared Laser Integration on Silicon J. E. Bowers, E. J. Stanton, M. J. Heck, A. Spott,  

E-Print Network (OSTI)

multispectral infrared platform for combining laser power spanning the ultraviolet to the mid-wave infrared from to the unique absorption spectra of many gaseous chemicals in the near-infrared (NIR) and mid- infrared (MIR platform of infrared laser sources and passive spectral combining devices is proposed to demonstrate

Bowers, John

94

Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance  

SciTech Connect

We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

2011-01-21T23:59:59.000Z

95

Infrared Spectrophotometry  

Science Journals Connector (OSTI)

The wavelengths at which radiation is absorbed or emitted by minerals in the IR region can be related to the interatomic vibrations in the molecules or crystals. Infrared measurements, therefore, have definite...

W. M. Tuddenham; J. D. Stephens

1971-01-01T23:59:59.000Z

96

Infrared Audit  

Science Journals Connector (OSTI)

The infrared audit is a technique of investigation that allows ... a surface. Applications of thermography in the energy fields are very widespread, since through such ... . This chapter describes the application...

Giuliano Dall’O’

2013-01-01T23:59:59.000Z

97

Radiometry High Spectral Resolution Fourier  

NLE Websites -- All DOE Office Websites (Extended Search)

High Spectral Resolution Fourier High Spectral Resolution Fourier Transform Infrared Instruments for the Atmospheric Radiation Measurement Program H. E. Revercomb, W. L. Smith, R. O. Knuteson, F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, and J. F. Short University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin D. Murcray and F. Murcray University of Denver Denver, Colorado Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds have been identified as crucial for realizing the overall objectives of the Atmospheric Radiation Measurement (ARM) Program to improve the treatment of radiation and clouds in climate models. The observed

98

Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer  

SciTech Connect

Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.

University of Miami; Zuo, Wangda; McNeil, Andrew; Wetter, Michael; Lee, Eleanor S.

2013-04-30T23:59:59.000Z

99

Fourier Transform Infrared Spectroscopy for Process Monitoring and Control  

E-Print Network (OSTI)

-IR multi-component gas approach offers many advantages compared to single gas analyzers. The relative advantages and disadvantages are compared in Table 2. Analysis or Gas Temoerature Emission (or radiance R(II)) from a hot gas is related to its... temperature and concentration. The expression for R(II) is (2) where Rt,(II,TJ = Planck function at the gas temperature T,. The Planck function describes the spectral power of a perfectly absorbing black-body as a function of temperature. The 1...

Solomon, P. R.; Carangelo, M. D.; Carangelo, R. M.

100

Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-SGP TOA OLR Fluxes from GOES-8 IR ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband shortwave albedo and outgoing longwave radiation (OLR), as accurately as possible. Measurement of OLR over the ARM surface sites has only been possible since the advent of Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al. 1998) in 1998. Prior to

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Stellar Spectral Flux Library, 1150|25000 A A. J. Pickles  

E-Print Network (OSTI)

spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal, mainly later types of solar abundance. Missing spectral coverage in the infrared currently con- sists to permit inclusion of additional digital spectra, particularly of non-solar abundance stars in the infrared

Pickles, Andrew J.

102

Electron storage ring BESSY as a radiometric source of calculable spectral radiant power between 0.5 and 1000 nm  

Science Journals Connector (OSTI)

The spectral radiant power of the electron storage ring BESSY was measured absolutely in the infrared and visible, and its angular distribution in the infrared, visible, and soft-x-ray...

Riehle, F; Wende, B

1985-01-01T23:59:59.000Z

103

A nanoflare model for active region radiance: application of artificial neural networks  

E-Print Network (OSTI)

Context. Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission. Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater than 2, is it considered possible that nanoflares contribute significantly to the energy input. Aims. Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining the power law exponent of the nanoflare energy distribution. Methods. A simple nanoflare model based on three key parameters (the flare rate, the flare duration time, and the power law exponent of the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si iii, observed by SUMER in the corona of an active region as it rotates around the east limb of the Sun. Light curve pattern recognition by an Artificial Neural Network (ANN) scheme is used to determine the values. Results. The power law exponents, alpha 2.8, 2.8, and 2.6 for Fe XIX, Ca XIII, and Si iii respectively. Conclusions. The light curve simulations imply a power law exponent greater than the critical value of 2 for all ion species. This implies that if the energy of flare-like events is extrapolated to low energies, nanoflares could provide a significant contribution to the heating of active region coronae.

M. Bazarghan; H. Safari; D. E. Innes; E. Karami; S. K. Solanki

2008-08-28T23:59:59.000Z

104

Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors  

Science Journals Connector (OSTI)

A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500...

Kim, Seong-Soo; Menegazzo, Nicola; Young, Christina; Chan, James; Carter, Chance; Mizaikoff, Boris

2009-01-01T23:59:59.000Z

105

Infrared floodlight  

DOE Patents (OSTI)

An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

Levin, Robert E. (S. Hamilton, MA); English, George J. (Reading, MA)

1986-08-05T23:59:59.000Z

106

Near-infrared approaches for cell culture monitoring  

E-Print Network (OSTI)

investigated using near-infrared spectroscopy across the 2.0-2.5 mm spectral region. A system was developed using a Fourier Transform Infrared (FT-IR) spectrometer and optical fibers to characterize glucose and lactate absorbance spectra in cell culture media...

Lee, Seung Joon

2012-06-07T23:59:59.000Z

107

Satellite Data Assimilation in Numerical Weather Prediction Models. Part II: Uses of Rain-Affected Radiances from Microwave Observations for Hurricane Vortex Analysis  

Science Journals Connector (OSTI)

A hybrid variational scheme (HVAR) is developed to produce the vortex analysis associated with tropical storms. This scheme allows for direct assimilation of rain-affected radiances from satellite microwave instruments. In the HVAR, the ...

Fuzhong Weng; Tong Zhu; Banghua Yan

2007-11-01T23:59:59.000Z

108

Low Loss Liquid Crystal Photonic Bandgap Fiber in the Near-Infrared Region  

E-Print Network (OSTI)

Low Loss Liquid Crystal Photonic Bandgap Fiber in the Near-Infrared Region Lara SCOLARI1 , Lei WEI1 in the spectral range of 1­2 mm. We achieve in the middle of the near-infrared transmission bandgap the lowest Keywords: photonic bandgap fiber, liquid crystals, absorption loss, all-in-fiber devices, tunability, near-infrared

Wu, Shin-Tson

109

RESEARCH OF RICE-QUALITY BASED ON COMPUTER VISION AND NEAR INFRARED  

E-Print Network (OSTI)

RESEARCH OF RICE-QUALITY BASED ON COMPUTER VISION AND NEAR INFRARED SPECTROSCOPY RuoKui Chang 1 was put forward based on near infrared(NIR) spectral technology. The NIR spectra were acquired from 13 grade of the unknown kinds of rice in the future. Key words: near-infrared spectroscopy; appearance

Boyer, Edmond

110

SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared  

E-Print Network (OSTI)

SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared. In this work, we show that the near-infrared plasmon resonance of gold nanorods (NRs) may be exploited in the near-infrared, a spectral multiplexing density over an order of magnitude greater than attainable

Bhatia, Sangeeta

111

INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.  

SciTech Connect

Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

GRIFFITHS, P.R.; HOMES, C.

2001-05-04T23:59:59.000Z

112

Uncertainty of Radiant Power Calibration based on Synchrotron Radiation caused by Spectral Distribution and Polarization State  

SciTech Connect

We have been attempting to establish an absolute scale of spectral radiance in ultraviolet and vacuum ultraviolet regions by using synchrotron radiation as a primary standard light source and also attempting to transfer the absolute scale to an under-test light source by comparing the under-test source with synchrotron radiation. The calibration apparatus does not function as ideal comparator because some properties of incident radiation, which are spectral distribution and polarization state, are different between synchrotron radiation and the under-test light source, and the signal of the apparatus accordingly depends on not only spectral radiant power but also depends on the properties of the incident radiation. We evaluated how the detector signal ratio was affected by the difference both experimentally and theoretically, and also evaluated the uncertainty of the scale transfer caused by the difference.

Zama, Tatsuya; Saito, Ichiro [National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ) (Japan)

2010-06-23T23:59:59.000Z

113

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

participate in the ARM Mixed-Phase Arctic Cloud Experiment in the Fall of 2004. From the UAV platform, the S-HIS measures the up and downwelling infrared radiance at high spectral...

114

AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG  

SciTech Connect

We performed a near-infrared spectroscopic survey toward an area of {approx}10 deg{sup 2} of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R {approx} 20) spectra in 2-5 {mu}m for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 {mu}m, and 67% of the sources also have photometric data up to 24 {mu}m. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 {mu}m can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared. A large number of near-infrared spectral data provided by the survey possess scientific potential that can be applied to various studies. In this paper, we present the details of the spectroscopic survey and the catalog, and discuss its scientific applications.

Shimonishi, Takashi [Department of Earth and Planetary Sciences, Graduate School of Science, Kobe University, Nada Kobe 657-8501 (Japan); Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ita, Yoshifusa [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kaneda, Hidehiro, E-mail: shimonishi@penguin.kobe-u.ac.jp [Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

2013-02-01T23:59:59.000Z

115

Spectral-Spatial Diffusion of Resonantly Trapped Phonons  

Science Journals Connector (OSTI)

The observation of spectral and spatial diffusion of phonons in an Al2O3 crystal containing both inelastic and resonance-elastic scattering centers (two different species of impurity ions) is reported. Phonons were generated by pulsed far-infrared excitation at a fixed frequency and monitored by time-resolved detection at a different frequency. Analysis of the data leads to the determination of the basic parameters of spectral and spatial diffusion.

U. Happek; T. Holstein; K. F. Renk

1985-05-13T23:59:59.000Z

116

A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties  

Science Journals Connector (OSTI)

Longwave (LW) spectral flux and cloud radiative effect (CRE) are important for understanding the earth’s radiation budget and cloud–radiation interaction. Here, the authors extend their previous algorithms to collocated Atmospheric Infrared ...

Xianglei Huang; Xiuhong Chen; Gerald L. Potter; Lazaros Oreopoulos; Jason N. S. Cole; Dongmin Lee; Norman G. Loeb

2014-10-01T23:59:59.000Z

117

Examination of ChlorinBacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes  

E-Print Network (OSTI)

Examination of Chlorin­Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (10 ns absorption and efficient emission in the red or near-infrared (NIR) spectral region, (2) sharp absorption

Larson-Prior, Linda

118

Infrared Thermography (IRT) Working Group  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

119

Study of ice cloud properties using infrared spectral data  

E-Print Network (OSTI)

with increasing wavelength. However for larger sized crystals, as in Fig. 3f, difraction dominates and the asymmetry factor is very close to 1 across the spectrum. 15 Fig. 3. Interpolated single-scatering properties as a function of wavelength for 6 ice... crystal habits. Shown are a), b) the extinction eficiency for D max of 10 and 50 ?m respectively, c), d) the single-scatering albedo for D max of 10 and 50 ?m, respectively, and e), f) the asymmetry factor for D max of 10 and 50 ?, respectively...

Garrett, Kevin James

2009-05-15T23:59:59.000Z

120

Spectrally adaptive infrared photodetectors with bias-tunable quantum dots  

E-Print Network (OSTI)

Tyo, and Majeed M. Hayat Department of Electrical and Computer Engineering, University of New Mexico and Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, Albuquerque, New Mexico 87131 Sunil Raghavan and Sanjay Krishna Center for High Technology Materials

Hayat, Majeed M.

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Quantifying Ethanol Content of Beer Using Interpretive Near-Infrared Spectroscopy  

Science Journals Connector (OSTI)

On the basis of absorption measurements in the near-infrared (NIR) spectral range, a new method for the quantification of the ethanol content of beer is presented. Instead of the...

Engelhard, Sonja; Löhmannsröben, Hans-Gerd; Schael, Frank

2004-01-01T23:59:59.000Z

122

Broadly tunable quantum cascade laser in cantilever-enhanced photoacoustic infrared spectroscopy of solids  

Science Journals Connector (OSTI)

An external cavity quantum cascade laser (EC-QCL) is applied in the...?1 (970–1,646 cm?1) in the mid-infrared region, which enables accurate broadband spectroscopy of large molecules. The high spectral power den...

J. Lehtinen; T. Kuusela

2014-06-01T23:59:59.000Z

123

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

124

Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrillment Development Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry L. Harrison Atmospheric: Sciences Research Center State University of New York at Albany Albany, NY 12205 I am developing two related instruments for use in the Atmospheric Radiation Measurement (ARM) p,rogram; both use an automated rotating shadowband technique to make spectrally resolved measurements of the direct-normal, total horizontal, and diffuse horizontal irradiances. These parameters of the sky-radiance function are measured using the same detector (for a given wavelength), eliminating the difficulties inherent in comparing these data when measured by independent detectors. The first of these instruments uses independent interterence-filter/photodiode detectors to measure any seven

125

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect

This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

2014-04-10T23:59:59.000Z

126

Geothermal Exploration with Visible through Long Wave Infrared Imaging  

Open Energy Info (EERE)

with Visible through Long Wave Infrared Imaging with Visible through Long Wave Infrared Imaging Spectrometers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration with Visible through Long Wave Infrared Imaging Spectrometers Abstract Surface minerals of active geothermal systems have been mapped using visible-short wave infrared and mid wave and long wave imaging spectrometers separately. May and June 2008, the Prospectir sensor and SEBASS (Spatially Enhanced Broadband Array Spectrograph System) were located on together on a roll compensated mount viewing through the same camera port in a Twin Otter. These two imaging spectrometers have similar Instantaneous Fields of View (IFOV) and together collect over 600 channels of spectral information from the visible to the long wave infrared.

127

Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model CLARK WEAVER,* ARLINDO DA SILVA, MIAN CHIN,# PAUL GINOUX,@ OLEG DUBOVIK,&,@@  

E-Print Network (OSTI)

is directly inserted into the Goddard Chemistry and Aerosol Radiation Transport model (GOCART), which aerosol radiative forcing in the thermody- namic equation of GCMs, 3) to account for the reduc- tionDirect Insertion of MODIS Radiances in a Global Aerosol Transport Model CLARK WEAVER,* ARLINDO DA

Chin, Mian

128

Analyzing Black Hole super-radiance Emission of Particles/Energy from a Black Hole as a Gedankenexperiment to get bounds on the mass of a Graviton  

E-Print Network (OSTI)

Use of super-radiance in BH physics, so dE/dt alternatives with the possibility of needing a multiverse containment of BH structure, or embracing what Hawkings wrote up recently, namely a re do of the Event Horizon hypothesis as we know it.

Andrew Beckwith

2014-04-15T23:59:59.000Z

129

ARM - Instrument - assist  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsassist govInstrumentsassist Documentation ASSIST : Instrument Mentor Monthly Summary (IMMS) reports ASSIST : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Categories Radiometric The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST), like the AERI, measures infrared spectral zenith radiance at high spectral resolution. Output Datastreams assistch1 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data assistch2 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 2 data

130

Multivariate calibration applied to the quantitative analysis of infrared spectra  

SciTech Connect

Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

Haaland, D.M.

1991-01-01T23:59:59.000Z

131

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

132

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

Forman, Steven E. (Framingham, MA); Caunt, James W. (Concord, MA)

1985-02-26T23:59:59.000Z

133

Spectral research on an AlGaAs epitaxial material for a terahertz quantum-cascade laser  

Science Journals Connector (OSTI)

The spectral properties of a series of AlGaAs epitaxial films were studied by using a Fourier transform infrared spectrometer with an 80-degree grazing incidence reflection unit. The AlAs-like transversal optical...

Zhi-Yong Tan; Jun-Cheng Cao

2012-04-01T23:59:59.000Z

134

Spectral Label Fusion  

E-Print Network (OSTI)

We present a new segmentation approach that combines the strengths of label fusion and spectral clustering. The result is an atlas-based segmentation method guided by contour and texture cues in the test image. This offers ...

Wachinger, Christian

135

A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum rubrum  

E-Print Network (OSTI)

A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid rubrum were studied by near-infrared ultrafast transient absorption spectroscopy. Global analysis), does not exhibit detectable spectral features in the near-infrared region. Introduction The excited

van Stokkum, Ivo

136

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

137

Thermophotovoltaic Spectral Control  

SciTech Connect

Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

2004-06-09T23:59:59.000Z

138

Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging  

E-Print Network (OSTI)

employ Schwarzschild objectives, which are based on two spherical mirrors centered on a common optical spherical mirrors centered on a common optical axis. Schwarzschild objectives are available with finite back Schwarzschild type objective. The hatch area represents the "shadow" below the primary mirror (light blue

Paris-Sud XI, Université de

139

Near infrared detectors for SNAP  

E-Print Network (OSTI)

Near Infrared Detectors for SNAP M. Schubnell a , N. Barron1k × 1k and 2k × 2k) near infrared detectors manufactured byas part of the near infrared R&D e?ort for SNAP (the Super-

2006-01-01T23:59:59.000Z

140

The Spectral Energy Distribution of Fermi bright blazars  

E-Print Network (OSTI)

(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the \\gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $\

Abdo, A A; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Horan, D; Hughes, R E; Itoh, R; Jackson, M S; Johannesson, G; Johnson, A S; Johnson, W N; Kadler, M; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Max-Moerbeck, W; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Infrared systems and components III: Proceedings of the Meeting, Los Angeles, CA, Jan. 16, 17, 1989  

SciTech Connect

Topics presented include infrared signal processing and automatic target recognition, detection of closely spaced objects using radial variance, the U.S. Army FLIR/ATR evolution path, and classifiability of IR target signatures. Also presented are infrared sensors and detectors, spectral agility, Bayesian analysis of signals from closely spaced objects, and enhanced atmospheric models for IR image simulation. Consideration is given to calibration and testing of infrared sensors, electrooptical-detector laser susceptibility testing, the performance of a thermal scene generator, optics and thin films in the infrared, the optical performance of replica beryllium mirrors, a high-speed video data acquisition system, and antireflection coatings for germanium without zinc.

Caswell, R.L.

1989-01-01T23:59:59.000Z

142

Large Spectral Library Problem  

SciTech Connect

Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

Chilton, Lawrence K.; Walsh, Stephen J.

2008-10-03T23:59:59.000Z

143

Evolution of infrared instrumentation  

SciTech Connect

The emergence of consumer-oriented infrared (IR) imaging devices is discussed. The discussion shows that the industry is presently dwindling because it does not fulfill expanding consumer needs. The features of future imaging devices are pointed out - smaller, easier to use, and easier to maintain. The challenge in the 1980s for the infrared manufacturing industry is to develop new technical innovations, smart IR imagining sensors, and consumer-oriented marketing, and produce a business/competitive industry. (MCW)

Sears, R.W.

1980-01-01T23:59:59.000Z

144

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

145

Data Analysis of Multi-Laser Standoff Spectral identification of chemical and biological compounds  

SciTech Connect

With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for develop- ment of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

Farahi, R H [ORNL; Zaharov, Viktor [ORNL; Tetard, Laurene [ORNL; Thundat, Thomas George [ORNL; Passian, Ali [ORNL

2013-01-01T23:59:59.000Z

146

The Infrared Jet in 3C31  

E-Print Network (OSTI)

We report the detection of infrared emission from the jet of the nearby FR I radio galaxy 3C 31. The jet was detected with the IRAC instrument on Spitzer at 4.5 micron, 5.8 micron, and 8.0 micron out to 30" (13 kpc) from the nucleus. We measure radio, infrared, optical, and X-ray fluxes in three regions along the jet determined by the infrared and X-ray morphology. Radio through X-ray spectra in these regions demonstrate that the emission can be interpreted as synchrotron emission from a broken power-law distribution of electron energies. We find significant differences in the high energy spectra with increasing distance from the nucleus. Specifically, the high energy slope increases from 0.86 to 1.72 from 1 kpc to 12 kpc along the jet, and the spectral break likewise increases in frequency along the jet from 10-100's of GHz to ~20 THz. Thus the ratio of IR to X-ray flux in the jet increases by at least an order of magnitude with increasing distance from the nucleus. We argue that these changes cannot simply ...

Lanz, Lauranne; Kraft, Ralph P; Birkinshaw, Mark; Lal, Dharam V; Forman, William R; Jones, Christine; Worrall, Diana M

2015-01-01T23:59:59.000Z

147

Correlated spectral variability in brown dwarfs  

E-Print Network (OSTI)

Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over timescales of hours. Here I report results of infrared (0.95-1.64 micron) spectrophotometric monitoring of four field L and T dwarfs spanning timescales of 0.1-5.5 hrs, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2-10%, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or chisq analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for cor...

Bailer-Jones, C A L

2007-01-01T23:59:59.000Z

148

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

149

Variable waveband infrared imager  

DOE Patents (OSTI)

A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

Hunter, Scott R.

2013-06-11T23:59:59.000Z

150

AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA  

SciTech Connect

At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

Bowler, Brendan P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Waller, William H. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Patten, Brian M. [National Science Foundation, 4201 Wilson Blvd. Arlington, VA 22230 (United States); Tamura, Motohide [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)], E-mail: bpbowler@ifa.hawaii.edu, E-mail: william.waller@tufts.edu, E-mail: megeath@physics.utoledo.edu, E-mail: bpatten@nsf.gov, E-mail: motohide.tamura@nao.ac.jp

2009-03-15T23:59:59.000Z

151

The design and construction of an infrared detector for use with a highway traffic survey system  

E-Print Network (OSTI)

, sn4 celestial bodies. Background radiation causes noise in the infrared system which msy cancel the target signal or cause a false detection. The infrared x'ad1atlon emitted by a target, such ss an automobile or background. must yeas through... to reduce vibration noise snd then sealed with a threaded plate containing a Switchcraft connector. The spectral response for this detector was obtained by using a standard 500 K blsckbody source. A monochromatic source signal was 2 obtained by using...

Mundkowsky, William Fredrick

2012-06-07T23:59:59.000Z

152

Infrared spectroscopy of cataclysmic variables - II. Intermediate polars  

E-Print Network (OSTI)

We present infrared (0.97-2.45 micron) spectra of the intermediate polars PQ Gem (RE0751+14), BG CMi and EX Hya. The spectra show strong Paschen, Brackett and HeI emission lines from the accretion disc/stream. The infrared continua of PQ Gem and BG CMi can be represented by blackbodies of temperatures 4500 K and 5100 K, respectively, or by power-laws of the form f_nu \\propto nu^(0.6,0.9), respectively, and show no evidence of secondary star features. The continuum of EX Hya is doiminated by water bands from the red-dwarf secondary star, which has a spectral type of ~M3. Despite showing circular polarization, PQ Gem and BG CMi show no evidence for cyclotron humps and hence we are unable to measure their magnetic field strengths; any cyclotron emission present must contribute less than ~3 per cent of the infrared continuum flux.

V. S. Dhillon; T. R. Marsh; S. R. Duck; S. R. Rosen

1996-09-06T23:59:59.000Z

153

Mid infrared emission of nearby Herbig Ae/Be stars  

E-Print Network (OSTI)

We present mid IR spectro-photometric imaging of a sample of eight nearby ($D \\leq 240$pc) Herbig Ae/Be stars. The spectra are dominated by photospheric emission (HR6000), featureless infrared excess emission (T~Cha), broad silicate emission feature (HR5999) and the infrared emission bands (HD 97048, HD 97300, TY~CrA, HD 176386). The spectrum of HD179218 shows both silicate emission and infrared emission bands (IEB). All stars of our sample where the spectrum is entirely dominated by IEB have an extended emission on scales of a few thousand AU ($\\sim 10''$). We verify the derived source extension found with ISOCAM by multi--aperture photometry with ISOPHT and compare our ISOCAM spectral photometry with ISOSWS spectra.

R. Siebenmorgen; T. Prusti; A. Natta; Th. Mueller

2000-06-26T23:59:59.000Z

154

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Spectrally enhanced lighting (SEL) is a cost-effective, low-risk design method for achieving significant energy savings. It entails shifting the color of lamps from the warmer to the cooler (whiter) end of the color spectrum, more closely matching daylight. Studies show that, with this color shift, occupants perceive lighting to be brighter and they are able to see more clearly. Since SEL provides the same levels of visual acuity with fewer lumens of output, SEL installations can be designed using fewer lamps or lower wattage lamps than traditional lighting.

155

SPITZER OBSERVATIONS OF BLACK HOLE LOW-MASS X-RAY BINARIES: ASSESSING THE NON-STELLAR INFRARED COMPONENT  

SciTech Connect

We have combined ground-based optical and near-infrared data with Spitzer Space Telescope mid-infrared data for five black hole (BH) soft X-ray transients (SXTs) in order to determine the levels of near- and mid-infrared emission from sources other than the secondary star. Mid-infrared emission from an accretion disk, circumbinary dust, and/or a jet could act as sources of near-infrared contamination, thereby diluting ellipsoidal variations of the secondary star and affecting determined BH mass estimates. Based on optical to mid-infrared spectral energy distribution modeling of the five SXTs along with the prototype, V616 Mon, we detected mid-infrared excesses in half of the systems, and suggest that the excesses detected from these systems arise from non-thermal synchrotron jets rather than circumbinary dust disks.

Gelino, Dawn M. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Gelino, Christopher R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Harrison, Thomas E., E-mail: dawn@ipac.caltech.ed [New Mexico State University, Las Cruces, NM 88003 (United States)

2010-07-20T23:59:59.000Z

156

Solar Infrared Photometer  

Science Journals Connector (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

157

Infrared Thermometer (IRT) Handbook  

SciTech Connect

The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

VR Morris

2006-10-30T23:59:59.000Z

158

Infrared radiation: Herschel revisited  

Science Journals Connector (OSTI)

The year 2000 marks the 200th anniversary of Herschel’s discovery of infrared radiation. Using a car light in place of the Sun and a liquid crystal sheet instead of thermometers the experiment is an effective classroom demonstration of invisible light.

Erin E. Pursell; Richard Kozlowski

2000-01-01T23:59:59.000Z

159

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

160

Correlated spectral variability in brown dwarfs  

E-Print Network (OSTI)

Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over timescales of hours. Here I report results of infrared (0.95-1.64 micron) spectrophotometric monitoring of four field L and T dwarfs spanning timescales of 0.1-5.5 hrs, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2-10%, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or chisq analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and KI, and there is good evidence for intrinsic variability in water and possibly also methan. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra we see many previously identified spectral features of L and T dwarfs, such as KI, NaI, FeH, water and methane. In particular we may have detected methane absorption at 1.3-1.4 micron in the L5 dwarf SDSS 0539-0059.

C. A. L. Bailer-Jones

2007-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Quantitative nondestructive testing using Infrared Thermography  

E-Print Network (OSTI)

turbine blade . . . . . . . . . . FLIR TM A320G InfraredTable 1.1: Specifications of the FLIR TM A320G InfraredInfrared Camera: A FLIR TM A320G Infrared camera was used

Manohar, Arun

2012-01-01T23:59:59.000Z

162

New spectroscopy of water using tunable picosecond pulses in the infrared  

Science Journals Connector (OSTI)

Spectral hole burning is observed for the OH stretching mode of HDO dissolved in D2O at 298 K after intense infrared excitation. Three spectral components are inferred from the transient band shapes and related to an icelike molecular environment and other hydrogen-bonding configurations. A population lifetime of T1=8±2 ps and an anharmonic frequency shift of 270±20 cm-1 are measured.

H. Graener; G. Seifert; A. Laubereau

1991-04-22T23:59:59.000Z

163

Localization of mountain glacier termini in Landsat multi-spectral images  

Science Journals Connector (OSTI)

This paper addresses the quantification of glacier retreat through remote sensing. Specifically, we use multi-spectral Landsat satellite images for the estimation of glacier termini locations. Different frequency bands-including visual, infrared, thermal, ... Keywords: Correlated noise, Glacier terminus location, Inflection point, Landsat multispectral images, Polynomial regression, Satellite imagery

Nezamoddin N. Kachouie; Peter Huybers; Armin Schwartzman

2013-01-01T23:59:59.000Z

164

Arnold Schwarzenegger SPECTRALLY ENHANCED CERAMIC  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor SPECTRALLY ENHANCED CERAMIC INCANDESCENT EMITTER Prepared For ENHANCED CERAMIC INCANDESCENT EMITTER EISG AWARDEE SONSIGHT INC. 17609 Clinton Drive Accokeek, MD 20607

165

SPECTRAL ANALYSIS OF RADIOXENON  

SciTech Connect

Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).

Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.

2008-09-23T23:59:59.000Z

166

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

Berdahl, Paul H. (Oakland, CA)

1998-01-01T23:59:59.000Z

167

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

168

TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING  

SciTech Connect

Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

De Buizer, James M. [Stratospheric Observatory for Infrared Astronomy-USRA, NASA Ames Research Center, MS N232-12, Moffett Field, CA 94035 (United States); Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu [Torun Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Torun (Poland)

2012-08-01T23:59:59.000Z

169

DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS  

SciTech Connect

This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup –1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup –1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ?{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ?1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ?4.9 × 10{sup –10} at atmospheric pressures of ?1 mbar.

Abbas, M. M.; LeClair, A. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Woodard, E.; Young, M.; Stanbro, M. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kunde, V. G., E-mail: Mian.M.Abbas@nasa.gov, E-mail: Andre.C.LeClair@nasa.gov, E-mail: eaw0009@uah.edu, E-mail: mcs0001@uah.edu, E-mail: youngmm@uah.edu, E-mail: f.m.flasar@nasa.gov, E-mail: virgil.g.kunde@gsfc.nasa.gov [University of Maryland, College Park, MD 20742 (United States); Collaboration: and the Cassini/CIRS team

2013-10-20T23:59:59.000Z

170

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution Infrared Observations Revercomb, Henry University of Wisconsin-Madison DeSlover, Daniel University of Wisconsin Holz, Robert University of Wisconsin, CIMMS Knuteson, Robert University Of Wisconsin Li, Jun University of Wisconsin-Madison Moy, Leslie University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Radiation The overall objective of this research is to support the ARM BBHRP measurement-model comparison effort that will couple heating rates based on ARM data more directly into SCM and GCM models. We are making use of high spectral resolution infrared satellite, aircraft, and ground based data for

171

Spectral narrowing via quantum coherence  

Science Journals Connector (OSTI)

We have studied the transmission through an optically thick Rb87 vapor that is illuminated by monochromatic and noise-broadened laser fields in ? configuration. The spectral width of the beat signal between the two fields after transmission through the atomic medium is more than 1000 times narrower than the spectral width of this signal before the medium.

Eugeniy E. Mikhailov; Vladimir A. Sautenkov; Yuri V. Rostovtsev; Aihua Zhang; M. Suhail Zubairy; Marlan O. Scully; George R. Welch

2006-07-20T23:59:59.000Z

172

A near-infrared photoluminescence study of GaAs nanocrystals in SiO2 films formed by sequential ion implantation  

E-Print Network (OSTI)

A near-infrared photoluminescence study of GaAs nanocrystals in SiO2 films formed by sequential ion GaAs nanocrystals are formed in SiO2 films and several PL bands appear in the red and near-infrared spectral region. Defects and impurities in GaAs nanocrystals and SiO2 cause weak luminescence in the near-infrared

Atwater, Harry

173

$\\alpha$ Centauri A in the far infrared  

E-Print Network (OSTI)

Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. The region of the temperature reversal can be directly observed only in the far infrared and submm. We aim at the determination of the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star alpha Cen A. For the nearby binary system alpha Centauri, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate in the grid of GAIA/PHOENIX stellar model atmospheres and compute the corresponding model for the G2 V star alpha Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is co...

Liseau, R; Olofsson, G; Bryden, G; Marshall, J P; Ardila, D; Aran, A Bayo; Danchi, W C; del Burgo, C; Eiroa, C; Ertel, S; Fridlund, M C W; Krivov, A V; Pilbratt, G L; Roberge, A; Thébault, P; Wiegert, J; White, G J

2012-01-01T23:59:59.000Z

174

Estimates of Impact Ionization Coefficients in Superlattice-Based Mid-Wavelength Infrared Avalanche Photodiodes  

E-Print Network (OSTI)

Photodiodes C.H. Grein1 , K. Abu El-Rub1,2 , M.E. Flatté3, and H. Ehrenreich4 1 Microphysics Laboratory ionization in type II superlattice mid- wavelength infrared avalanche photodiodes. The strategy to enhance gain, low noise avalanche photodiodes (APDs) with considerable spectral agility. The ability

Flatte, Michael E.

175

Infrared emission from the substrate of GaAs-based semiconductor lasers Mathias Ziegler,1,a  

E-Print Network (OSTI)

GaP single QW surrounded by AlGaInP waveguide WG and cladding layers, whereas the NIR laser incorporates a GaInfrared emission from the substrate of GaAs-based semiconductor lasers Mathias Ziegler,1,a Robert in GaAs-based broad-area laser diodes. Spectrally and spatially resolved scanning optical microscopy

Peinke, Joachim

176

DeMeo taxonomy : categorization of asteroids in the near-infrared  

E-Print Network (OSTI)

This work presents the DeMeo taxonomy, an asteroid taxonomy with 24 classes based on Principal Component Analysis of spectral data over the visible and near-infrared wavelengths, specifically the 0.45 to 2.45 micron range. ...

DeMeo, Francesca E

2007-01-01T23:59:59.000Z

177

Frequency selective infrared sensors  

DOE Patents (OSTI)

A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

Davids, Paul; Peters, David W

2013-05-28T23:59:59.000Z

178

Frequency selective infrared sensors  

SciTech Connect

A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

Davids, Paul; Peters, David W

2014-11-25T23:59:59.000Z

179

Spectral conditions for positive maps  

E-Print Network (OSTI)

We provide a partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.

Dariusz Chruscinski; Andrzej Kossakowski

2008-09-29T23:59:59.000Z

180

Astronomy: Green Light for Infrared  

Science Journals Connector (OSTI)

... THE new branch of astronomy based on the observation of celestial objects in infrared light has received a significant boost ... boost from the Science Research Council in the form of a grant to the infrared astronomy group at Imperial College. Although the grant of just over £27,000 is modest ...

Our Astronomy Correspondent

1969-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The erosion resistance of infrared transparent materials  

Science Journals Connector (OSTI)

...research-article The erosion resistance of infrared transparent materials E.J. Coad C.S...discussed. erosion resistance|infrared materials|liquid impact...Keywords: erosion resistance; infrared materials; liquid impact...

1998-01-01T23:59:59.000Z

182

Lateral conduction infrared photodetector  

DOE Patents (OSTI)

A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

183

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

184

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

looking infrared Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Forward looking infrared Author Wikipedia Published Publisher Not Provided, 2013 DOI...

185

A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION  

SciTech Connect

We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 {mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z {approx} 5. We measure more significant disagreement between photometric and spectroscopic redshifts (({Delta}z/(1 + z{sub spec})) = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 {mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q{sub IR}{proportional_to}(1 + z){sup -0.30{+-}0.02} at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 {mu}m extrapolations of the LIRG, ULIRG, and total infrared contributions. This work significantly increased the number of spectroscopically confirmed infrared-luminous galaxies at z >> 0 and demonstrates the growing importance of dusty starbursts for galaxy evolution studies and the build-up of stellar mass throughout cosmic time.

Casey, C. M.; Budynkiewicz, J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Berta, S.; Lutz, D.; Magnelli, B. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Bethermin, M.; Le Floc'h, E.; Magdis, G. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universite Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Bock, J.; Bridge, C. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Burgarella, D. [Laboratoire d'Astrophysique de Marseille - LAM, Universite d'Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille Cedex 13 (France); Chapin, E. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Conselice, C. J. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Cooray, A. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Hatziminaoglou, E. [ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

2012-12-20T23:59:59.000Z

186

High-power parametric conversion from near-infrared to short-wave infrared  

E-Print Network (OSTI)

High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

Dalang, Robert C.

187

6, 18411866, 2006 Spectral absorption  

E-Print Network (OSTI)

by combustion processes, like fossil-fuel and biomass burning, directly affects the radiative balance-temperature combustion aerosol, e.g. from biomass burning, is lower and exhibits a much stronger spectral dependence than formed by propane combustion M. Schnaiter 1 , M. Gimmler 1 , I. Llamas 2 , C. Linke 1 , C. J¨ager 2

Paris-Sud XI, Université de

188

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

189

Method for determining and displaying the spacial distribution of a spectral pattern of received light  

DOE Patents (OSTI)

An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

Bennett, C.L.

1996-07-23T23:59:59.000Z

190

Method for determining and displaying the spacial distribution of a spectral pattern of received light  

DOE Patents (OSTI)

An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

Bennett, Charles L. (Livermore, CA)

1996-01-01T23:59:59.000Z

191

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells  

E-Print Network (OSTI)

Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells Karolien Vasseur,, Katharina Broch,§ Alexander L. Ayzner, Barry P. Rand, David Cheyns: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near

Schreiber, Frank

192

Infrared refractive index of diamond  

Science Journals Connector (OSTI)

The refractive index of natural Type IIa diamond is reported for the spectral region 2.5-25 µm. The data have been fitted to a Herzberger-type dispersion formula with a quality of...

Edwards, David F; Ochoa, Ellen

1981-01-01T23:59:59.000Z

193

Spectral Emission of Moving Atom  

E-Print Network (OSTI)

A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

J. X. Zheng-Johansson

2008-03-17T23:59:59.000Z

194

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

195

Mass constraints to Sco X-1 from Bowen flourescence and deep near-infrared spectroscopy  

E-Print Network (OSTI)

More than 50 years after the dawn of X-ray astronomy, the dynamical parameters of the prototypical X-ray binary Sco X-1 are still unknown. We combine a Monte Carlo analysis, which includes all the previously known orbital parameters of the system, along with the K-correction to set dynamical constraints to the masses of the compact object (M1near-infrared spectrum of the source to date. There is no evidence of donor star features on it, but we are able to constrain the veiling factor as a function of the spectral type of the secondary star. The combination of both techniques restricts the spectral type of the donor to be later than K4 and luminosity class IV. It also constrains the contribution of the companion light to the infrared emission of Sco X-1 to be lower than 33 percent. This implies ...

Sánchez, D Mata; Casares, J; Steeghs, D; Almeida, C Ramos; Pulido, J A Acosta

2015-01-01T23:59:59.000Z

196

Spectral Synthesis of SDSS Galaxies  

E-Print Network (OSTI)

We investigate the power of spectral synthesis as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities (here from Bruzual & Charlot 2003), producing as output the star-formation and chemical histories of a galaxy, its extinction and velocity dispersion. We discuss the reliability of this approach and apply it to a volume limited sample of 50362 galaxies from the SDSS Data Release 2, producing a catalog of stellar population properties. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement, despite substantial differences in the method of analysis. The confidence in the method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantities. For instance, we report the existence of strong correlations between stellar and nebular metallicites, stellar and nebular extinctions, mean stellar age and equivalent width of Halpha and 4000 \\AA break, and between stellar mass and velocity dispersion. We also present preliminary results of an analysis of a magnitude-limited sample which clearly reveals that the bimodality of galaxy populations is present in the parameters computed in the synthesis. Our results are also consistent with the "down-sizing" scenario of galaxy formation and evolution. Finally, we point out one of the major problems facing spectral synthesis of early-type systems: the spectral base adopted here is based on solar-scaled evolutionary tracks whose abundance pattern may not be appropriate for this type of galaxy.

L. Sodre Jr.; R. Cid Fernandes; A. Mateus; G. Stasinska; J. M. Gomes

2005-06-17T23:59:59.000Z

197

Lattice Simulations and Infrared Conformality  

We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal.

Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

2011-09-01T23:59:59.000Z

198

The Visible and Near Infrared module of EChO  

E-Print Network (OSTI)

The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectromete...

Adriani, A; Gambicorti, L; Focardi, M; Oliva, E; Farina, M; Di Giorgio, A M; Santoli, F; Pace, E; Piccioni, G; Filacchione, G; Pancrazzi, M; Tozzi, A; Micela, G

2014-01-01T23:59:59.000Z

199

Intrinsic near-infrared spectroscopic markers of breast tumors  

E-Print Network (OSTI)

cycle on the red and near-infrared optical properties of thecancer imaging using near-infrared optical measurements andet al. / Intrinsic near-infrared spectroscopic markers of

Kukreti, Shwayta; Cerussi, Albert; Tromberg, Bruce; Gratton, Enrico

2008-01-01T23:59:59.000Z

200

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network (OSTI)

B Near-Infrared Radiative Transfer Model B.15 Near-Infrared Observations of Neptune’s Clouds with the133 6.2 Near-infrared spectroscopy . . . . . .

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chapter 5: Spectral Synthesis 5.1: Requirements of Spectral Synthesis  

E-Print Network (OSTI)

99 Chapter 5: Spectral Synthesis 5.1: Requirements of Spectral Synthesis The emergent spectrum from spectrum (spectral synthesis) requires the (numerical) solution of the radiative transfer equation Synthesis 5.2.1: The LTE Approximation The greatest difficulty in spectral synthesis in the general (ie non

Nieminen, Timo

202

Continuous Mid-Infrared Star Formation Rate Indicators: Diagnostics for 0  

E-Print Network (OSTI)

We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6-70 micron. We use a sample of 58 star forming galaxies (SFGs) in the Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) at z<0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer infrared spectrograph (IRS) of these galaxies, which spans 5-40 micron, is anchored to their photometric counterparts. The spectral region between 40-70 micron is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 micron photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived fr...

Battisti, A J; Johnson, B D; Elbaz, D

2015-01-01T23:59:59.000Z

203

Reanalysis of near-infrared extragalactic background light based on the IRTS observation  

E-Print Network (OSTI)

We reanalyzed the data from the Infrared Telescope in Space (IRTS) based on up-to-date observations of zodiacal light, integrated star light and diffuse Galactic light. We confirmed the existence of residual isotropic emission, which is slightly fainter, but at nearly the same level as previously reported. At wavelengths longer than 2 {\\mu}m, our result is fairly consistent with recent observations with Japanese infrared astronomy satellite, AKARI. We performed all of our analyses using two different models of zodiacal light (Kelsall and Wright models). In both cases, we detect residual isotropic emission that is significantly brighter than the integrated light of galaxies (though slightly fainter in the case of the Wright model). Thus, we confirm the existence of excess near-infrared emission, independent of the zodiacal light model used. The spectral shape of the excess isotropic emission is similar to that of the recently observed spectrum of excess fluctuations, which suggests the excess brightness and fl...

Matsumoto, T; Pyo, J; Tsumura, K

2015-01-01T23:59:59.000Z

204

Computer modeling of infrared head-on emission from missile noses  

SciTech Connect

A computer model that takes into account the effect of aerodynamic and solar heating, sky irradiation, and radiative cooling on infrared emission from missile noses is presented. The heat transfer equation was solved with numerical techniques both in the steady-state (constant sped and altitude flight of cruise missiles) and in the nonstationary regime (quickly variable speed and altitude of short to medium range ballistic missiles) to give the temperature distribution on the skin surface. The corresponding head-on absolute infrared emission in the 3 to 5 {mu}m spectral bands was computed as a function of time of flight and missile altitude. Results show a strong dependence of temperature on the skin material, on the character of the aerodynamic flow (laminar or turbulent boundary layer), and on the physical characteristics of the atmosphere. By varying these parameters into reasonable ranges, infrared emissions spanning over more than an order of magnitude were obtained.

Tofani, A. (Officine Galileo SpA, Via Einstein 35, 50013 Campi Bisenzio, Florence (IT))

1990-02-01T23:59:59.000Z

205

NEAR-INFRARED SPECTROSCOPY OF INFRARED-EXCESS STELLAR OBJECTS IN THE YOUNG SUPERNOVA REMNANT G54.1+0.3  

SciTech Connect

We present the results of broadband near-infrared spectroscopic observations of the recently discovered mysterious stellar objects in the young supernova remnant G54.1+0.3. These objects, which show significant mid-infrared-excess emission, are embedded in a diffuse loop structure of {approx}1' in radius. Their near-infrared spectra reveal characteristics of late O- or early B-type stars with numerous H and He I absorption lines, and we classify their spectral types to be between O9 and B2 based on an empirical relation derived here between the equivalent widths of the H lines and stellar photospheric temperatures. The spectral types, combined with the results of spectral energy distribution fits, constrain the distance to the objects to be 6.0 {+-} 0.4 kpc. The photometric spectral types of the objects are consistent with those from the spectroscopic analyses, and the extinction distributions indicate a local enhancement of matter in the western part of the loop. If these objects originate via triggered formation by the progenitor star of G54.1+0.3, then their formations likely began during the later evolutionary stages of the progenitor, although a rather earlier formation may still be possible. If the objects and the progenitor belong to the same cluster of stars, then our results constrain the progenitor mass of G54.1+0.3 to be between 18 and {approx}35 M{sub Sun} and suggest that G54.1+0.3 was either a Type IIP supernova or, with a relatively lower possibility, Type Ib/c from a binary system.

Kim, Hyun-Jeong; Koo, Bon-Chul [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Moon, Dae-Sik, E-mail: hjkim@astro.snu.ac.kr, E-mail: koo@astro.snu.ac.kr, E-mail: moon@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

2013-09-01T23:59:59.000Z

206

Astronomy: Bright Future for Infrared  

Science Journals Connector (OSTI)

... ALTHOUGH the prediction of what is likely to happen in astronomy in the future is a hazardous undertaking just now, it seems increasingly obvious in ... is a hazardous undertaking just now, it seems increasingly obvious in astronomical circles that infrared astronomy is going to be an important field of investigation during the next few years. ...

Our Astronomy Correspondent

1968-09-21T23:59:59.000Z

207

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

208

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections...

Duch, A. A.

1979-01-01T23:59:59.000Z

209

A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY  

SciTech Connect

We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we find that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.

Kilic, Mukremin [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kowalski, Piotr M. [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Von Hippel, Ted [Physics Department, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)], E-mail: mkilic@cfa.harvard.edu

2009-07-15T23:59:59.000Z

210

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

211

Multiphoton microscopy with near infrared contrast  

E-Print Network (OSTI)

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

212

Category:Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared page? For detailed information on Long-Wave Infrared as exploration techniques, click here. Category:Long-Wave Infrared Add.png Add a new Long-Wave Infrared...

213

Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications  

E-Print Network (OSTI)

Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

O'Sullivan, Francis M. (Francis Martin), 1980-

2004-01-01T23:59:59.000Z

214

Optical properties of CdS-PbS films and the possibility of the photoeffect in the mid-infrared range  

SciTech Connect

The possibility of using the plasma resonance in semiconductors to excite exoelectron photoemission in the mid-infrared spectral range without special cooling is discussed. Optical reflection spectra in the mid-infrared range of vacuum-deposited radiation-resistant films of limited CdS-PbS solid solutions containing a minimum associated with the plasma resonance are presented. The plasma resonance of secondary-electron emission is compared with the secondary-ion photoeffect and a conclusion is made concerning the possibility of the influence of the plasma resonance in the mid-infrared range on the escape of electrons from the semiconductor photocathode at room temperature.

Rokakh, A. G., E-mail: rokakhag@mail.ru; Bilenko, D. I.; Shishkin, M. I.; Skaptsov, A. A.; Venig, S. B.; Matasov, M. D. [Saratov State University (Russian Federation)

2014-12-15T23:59:59.000Z

215

ARM - Measurement - Shortwave broadband radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

0.4 and 4 mu, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above...

216

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

217

Hybrid least squares multivariate spectral analysis methods  

DOE Patents (OSTI)

A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

Haaland, David M. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

218

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

219

Near-infrared spectrometric determination of dipyrone in closed ampoules  

Science Journals Connector (OSTI)

The present paper proposes an analytical method for fast near-infrared (NIR) determination of dipyrone in injectable formulations with a nominal content of 50.0% m v?1 without violation of the ampoule. For this purpose, two multivariate calibration methods are evaluated, namely Partial-Least-Squares (PLS) and Multiple Linear Regression (MLR) with variable selection by the Successive Projections Algorithm (SPA). The resulting models comprised four latent variables (PLS) and five spectral variables (MLR-SPA). Appropriate predictions were obtained in both cases, with RMSEP values of 0.39 (PLS) and 0.35% m v?1 (MLR-SPA) and correlation coefficients of 0.9970 (PLS) and 0.9975 (MLR-SPA) for a calibration range of 40–60% m v?1. No systematic error was observed and no significant differences were found between the predicted and reference values, according to a paired t-test at 95% confidence level.

Fátima Aparecida C. Sanches; Rosimeri B. Abreu; Márcio José Coelho Pontes; Flaviano C. Leite; Daniel Jackson E. Costa; Roberto Kawakami H. Galvão; Mario Cesar U. Araujo

2012-01-01T23:59:59.000Z

220

Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers  

SciTech Connect

The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

1999-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Spectral Variability from the Patchy Atmospheres of T and Y Dwarfs  

E-Print Network (OSTI)

Brown dwarfs of a variety of spectral types have been observed to be photometrically variable. Previous studies have focused on objects at the L/T transition, where the iron and silicate clouds in L dwarfs break up or dissipate. However, objects outside of this transitional effective temperature regime also exhibit variability. Here, we present models for mid-late T dwarfs and Y dwarfs. We present models that include patchy salt and sulfide clouds as well as water clouds for the Y dwarfs. We find that for objects over 375 K, patchy cloud opacity would generate the largest amplitude variability within near-infrared spectral windows. For objects under 375 K, water clouds also become important and generate larger amplitude variability in the mid-infrared. We also present models in which we perturb the temperature structure at different pressure levels of the atmosphere to simulate hot spots. These models show the most variability in the absorption features between spectral windows. The variability is strongest a...

Morley, Caroline V; Fortney, Jonathan J; Lupu, Roxana

2014-01-01T23:59:59.000Z

222

Spectral resolvability of iterated rippled noise  

Science Journals Connector (OSTI)

A forward?masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays number of iterations and stimulus durations. The differences in the forward?masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability and these results were compared to estimates obtained from a gamma?tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak?to?valley ratio. For high number of iterations long delays and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch pitch strength and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

2005-01-01T23:59:59.000Z

223

Spectral Solar Radiation Data Base at NREL  

DOE Data Explorer (OSTI)

*In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

224

RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE  

SciTech Connect

We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stierwalt, S.; Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Condon, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Evans, A. S., E-mail: emurphy@obs.carnegiescience.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)

2013-05-01T23:59:59.000Z

225

Video rate spectral imaging using a coded aperture snapshot spectral imager  

Science Journals Connector (OSTI)

We have previously reported on coded aperture snapshot spectral imagers (CASSI) that can capture a full frame spectral image in a snapshot. Here we describe the use of CASSI for...

Wagadarikar, Ashwin A; Pitsianis, Nikos P; Sun, Xiaobai; Brady, David J

2009-01-01T23:59:59.000Z

226

Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array  

SciTech Connect

A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 ?m). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

Phillips, Mark C.; Ho, Nicolas

2008-02-04T23:59:59.000Z

227

Spectral Clustering of Synchronous Spike Trains 1 Spectral Clustering of Synchronous  

E-Print Network (OSTI)

Spectral Clustering of Synchronous Spike Trains 1 Spectral Clustering of Synchronous Spike Trains, University of Florida #12;Spectral Clustering of Synchronous Spike Trains 2 Outline Introduction Distance between two spike trains Clustering algorithm Results António Paiva, Sudhir Rao, Il Park and José Príncipe

Paiva, António R. C.

228

Spectral asymptotics for coupled Dirac operators  

E-Print Network (OSTI)

In this thesis, we study the problem of asymptotic spectral flow for a family of coupled Dirac operators. We prove that the leading order term in the spectral flow on an n dimensional manifold is of order r n+1/2 followed ...

Savale, Nikhil, Jr. (Nikhil A.)

2012-01-01T23:59:59.000Z

229

Stark broadening of Pb IV spectral lines  

Science Journals Connector (OSTI)

......Article Stark broadening of Pbiv spectral lines Rafik Hamdi 1 Nabil Ben Nessib 2 3 Milan...parameters have been calculated for 114 spectral lines of triply charged lead ion (Pbiv) using...electron density of 10173. The studied lines correspond to transitions between the configurations......

Rafik Hamdi; Nabil Ben Nessib; Milan S. Dimitrijevic; Sylvie Sahal-Bréchot

2013-01-01T23:59:59.000Z

230

Infrared emission spectroscopic study of brucite  

Science Journals Connector (OSTI)

Both infrared absorption and emission spectroscopy have been used to assign the vibrational bands of brucite. IR absorption bands are observed in the hydroxyl stretching region at 3698 and 3248 cm?1. Low frequency bands are observed at 627, 565 and 440 cm?1. Naturally occurring brucites are contaminated with other magnesium minerals which are easily identified by the infrared spectra. Infrared emission bands are observed at 3686, 3571, 3251 and 2940 cm?1. The intensity of these bands decreases upon thermal treatment corresponding to the dehydration and dehydroxylation of the brucite. Low frequency infrared emission bands are observed at 876, 706, 622 and 559 cm?1. Dehydroxylation of the brucite may be followed by the loss of intensity of the hydroxyl vibrations during thermal treatment. Importantly infrared emission spectroscopy enables the study of the dehydroxylation in situ at the elevated temperatures. Infrared emission also confirms the absorption bands assigned to brucite.

Ray L Frost; J.Theo Kloprogge

1999-01-01T23:59:59.000Z

231

Recent variability of the solar spectral irradiance and its impact on climate modelling  

E-Print Network (OSTI)

The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temp...

Ermolli, I; de Wit, T Dudok; Krivova, N A; Tourpali, K; Weber, M; Unruh, Y C; Gray, L; Langematz, U; Pilewskie, P; Rozanov, E; Schmutz, W; Shapiro, A; Solanki, S K; Woods, T N

2013-01-01T23:59:59.000Z

232

RIJKSUNIVERSITEIT GRONINGEN Mid-Infrared Spectroscopy of  

E-Print Network (OSTI)

RIJKSUNIVERSITEIT GRONINGEN Mid-Infrared Spectroscopy of Dusty Galactic Nuclei PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op

Spoon, Henrik

233

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is...

234

Early stage expansion and time-resolved spectral emission of laser-induced  

NLE Websites -- All DOE Office Websites (Extended Search)

Early stage expansion and time-resolved spectral emission of laser-induced Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer Title Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer Publication Type Journal Article Year of Publication 2009 Authors Boueri, Myriam, Matthieu Baudelet, Jin Yu, Xianglei Mao, Samuel S. Mao, and Richard E. Russo Journal Applied Surface Science Volume 255 Issue 24 Pagination 9566-9571 Date Published 09/2009 Keywords Early stage plasma expansion, Laser ablation of polymer, Plasma spectral emission Abstract In the nanosecond laser ablation regime, absorption of laser energy by the plasma during its early stage expansion critically influences the properties of the plasma and thus its interaction with ambient air. These influences can significantly alter spectral emission of the plasma. For organic samples especially, recombination of the plasma with the ambient air leads to interfering emissions with respect to emissions due to native species evaporated from the sample. Distinguishing interfering emissions due to ambient air represents a critical issue for the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of organic materials. In this paper, we report observations of early stage expansion and interaction with ambient air of the plasma induced on a typical organic sample (nylon) using timeresolved shadowgraph. We compare, in the nanosecond ablation regime, plasmas induced by infrared (IR) laser pulses (1064 nanometers) and ultraviolet (UV) laser pulses (266 nanometers). Nanosecond ablation is compared with femtosecond ablation where the post-ablation interaction is absent. Subsequent to the early stage expansion, we observe for each studied ablation regime, spectral emission from CN, a typical radical for organic and biological samples. Time-resolved LIBS allows identifying emissions from native molecular species and those due to recombination with ambient air through their different time evolution behaviors.

235

Augmented Classical Least Squares Multivariate Spectral Analysis  

DOE Patents (OSTI)

A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)

2005-07-26T23:59:59.000Z

236

Augmented Classical Least Squares Multivariate Spectral Analysis  

DOE Patents (OSTI)

A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)

2005-01-11T23:59:59.000Z

237

Apparatus and system for multivariate spectral analysis  

DOE Patents (OSTI)

An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

Keenan, Michael R. (Albuquerque, NM); Kotula, Paul G. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

238

Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells  

E-Print Network (OSTI)

Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells J illuminated with near-infrared NIR radiation at frequency nir and intense far-infrared FIR radiation from and quenching of photoluminescence PL .8,9 The nonlinear interaction of FIR and near-infrared NIR radiation

Kono, Junichiro

239

STh3M.6.pdf CLEO:2014 2014 OSA Silicon Chip Based Near-Infrared and Mid-Infrared Optical  

E-Print Network (OSTI)

STh3M.6.pdf CLEO:2014 © 2014 OSA Silicon Chip Based Near-Infrared and Mid-Infrared Optical near-infrared and mid-infrared with detection limit down to 1ppb. Strip waveguide, slot waveguide and PC-based chip integrated optical absorption spectroscopy devices are compared in near-infrared

Chen, Ray

240

Astronomy: Lowering Sights in the Infrared  

Science Journals Connector (OSTI)

... Imperial College, London, into a fully-equipped instrument has now been passed by the Astronomy Policy and Grants Committee of the Science Research Council. In this way an infrared ... Science Research Council. In this way an infrared telescope that is able to do valuable astronomy from a site with good seeing conditions could be available to British astronomers by next ...

Our Astronomy Correspondent

1970-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A CATALOG OF GALACTIC INFRARED CARBON STARS  

SciTech Connect

We collected almost all of the Galactic infrared carbon stars (IRCSs) from literature published up to the present to organize a catalog of 974 Galactic IRCSs in this paper. Some of their photometric properties in the near-, mid-, and far-infrared are discussed.

Chen, P. S. [National Astronomical Observatories/Yunnan Observatory and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China); Yang, X. H., E-mail: iraspsc@yahoo.com.cn, E-mail: yangxh@cqu.edu.cn [Department of Physics, Chongqing University, Chongqing 400044 (China)

2012-02-15T23:59:59.000Z

242

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

243

FY 2006 Infrared Photonics Final Report  

SciTech Connect

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

2006-12-28T23:59:59.000Z

244

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

245

Infrared spectroscopy of ionic clusters  

SciTech Connect

This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

246

Spatial and Spectral evolution of Turbulence Spectra  

SciTech Connect

We present a general formulation of a theory of spreading of turbulence based on nonlinear mode couplings, which is inherently linked to spectral evolution. We present a derivation from simple two-field perspective based upon a gradien diffusion hypothesis, justified by a two scale direct interaction approximation (TSDIA) for weak turbulence. The complexity and anisotropy of spatial and spectral dynamics, however, limits our analysis to examination of different classes of triad interactions. We demonstrate that radially extended eddys, are the most effective structures in promoting spreading of turbulence. Thus, spectral evolution that tends towards such eddies, facilitate spatial spreading. We also show that, in a two field model, due to their respective spectral tendencies, internal energy spreads faster than kinetic energy.

Guercan, Oe. D.; Diamond, P. H. [Center for Astrophysics and Space Sciences, La Jolla, CA 92093-0424 (United States); Department of Physics University of California at San Diego, La Jolla, CA 92093-0424 (United States); Department of Physics, University of California at San Diego, La Jolla, CA 92093-0319 (United States); Hahm, T. S. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States)

2006-11-30T23:59:59.000Z

247

SPECTRAL THEORY FOR JACOBI OPERATORS A Dissertation  

E-Print Network (OSTI)

of a given semi-bounded back- ground Jacobi operator and the double commutation method which inserts eigen- values into arbitrary spectral gaps. Moreover, we prove unitary equivalence of the commuted operators

Teschl, Gerald

248

Mass Correlation of Engine Emissions with Spectral Instruments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mass Correlation of Engine Emissions with Spectral Instruments Mass Correlation of Engine Emissions with Spectral Instruments 2004 Diesel Engine Emissions Reduction (DEER)...

249

Multilevel spectral clustering : graph partitions and image segmentation  

E-Print Network (OSTI)

While the spectral graph partitioning method gives high quality segmentation, segmenting large graphs by the spectral method is computationally expensive. Numerous multilevel graph partitioning algorithms are proposed to ...

Kong, Tian Fook

2008-01-01T23:59:59.000Z

250

Optical assembly of a visible through thermal infrared multispectral imaging system  

SciTech Connect

The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

1998-06-01T23:59:59.000Z

251

YSO search toward the boundary of the Central Molecular Zone with near-infrared polarimetry  

E-Print Network (OSTI)

We have carried out near-infrared polarimetry toward the boundary of the Central Molecular Zone, in the field of (-1.4 deg $\\lesssim l \\lesssim$ -0.3 deg and 1.0 deg $\\lesssim l \\lesssim$ 2.9 deg, $|b|\\lesssim$ 0.1 deg), using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. We have selected 112 intrinsically polarized sources on the basis of the estimate of interstellar polarization on Stokes $Q/I-U/I$ planes. The selected sources are brighter than $K_S=14.5$ mag and have polarimetric uncertainty $\\delta Penergy distributions of young stellar objects when using the photometry in the archive of the Spitzer Space Telescope mid-infrared data. However, many sources have spectral energy distributions of normal stars suffering heavy interstellar extinction; these might be stars behind dark clouds. Due to the small number of distinctive polarized sources and candidates of young stellar objec...

Yoshikawa, Tatsuhito; Tamura, Motohide; Kwon, Jungmi; Nagata, Tetsuya

2014-01-01T23:59:59.000Z

252

FY 2005 Infrared Photonics Final Report  

SciTech Connect

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

2005-12-01T23:59:59.000Z

253

Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array  

E-Print Network (OSTI)

Graphene plasmonic nanostructures enable subwavelength confinement of electromagnetic energy from the mid-infrared down to the terahertz frequencies. By exploiting the spectrally varying light scattering phase at vicinity of the resonant frequency of the plasmonic nanostructure, it is possible to control the angle of reflection of an incoming light beam. We demonstrate, through full-wave electromagnetic simulations based on Maxwell equations, the electrical control of the angle of reflection of a mid-infrared light beam by using an aperiodic array of graphene nanoribbons, whose widths are engineered to produce a spatially varying reflection phase profile that allows for the construction of a far-field collimated beam towards a predefined direction.

Carrasco, Eduardo; Mosig, Juan R; Low, Tony; Perruisseau-Carrier, Julien

2014-01-01T23:59:59.000Z

254

Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy  

SciTech Connect

Infrared electroluminescence was observed from GeSn/Ge p-n heterojunction diodes with 8% Sn, grown by molecular beam epitaxy. The GeSn layers were boron doped, compressively strained, and pseudomorphic on Ge substrates. Spectral measurements indicated an emission peak at 0.57 eV, about 50 meV wide, increasing in intensity with applied pulsed current, and with reducing device temperatures. The total integrated emitted power from a single edge facet was 54 {mu}W at an applied peak current of 100 mA at 100 K. These results suggest that GeSn-based materials maybe useful for practical light emitting diodes operating in the infrared wavelength range near 2 {mu}m.

Gupta, Jay Prakash; Bhargava, Nupur; Kim, Sangcheol; Kolodzey, James [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)] [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States); Adam, Thomas [Nanofab, University of Albany, SUNY, Albany, New York 12203 (United States)] [Nanofab, University of Albany, SUNY, Albany, New York 12203 (United States)

2013-06-24T23:59:59.000Z

255

Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors.  

E-Print Network (OSTI)

??Thermal infrared detectors based on MEMS bimorph beams have the potential to exceed the performance of current uncooled thermal infrared cameras both in terms of… (more)

Warren, Clinton Gregory

2010-01-01T23:59:59.000Z

256

High Throughput Operando Studies using Fourier Transform Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Throughput Operando Studies using Fourier Transform Infrared Imaging and Raman Spectroscopy. High Throughput Operando Studies using Fourier Transform Infrared Imaging and Raman...

257

NDE of Concrete Structures Strengthened with FRP Using Infrared Thermography  

E-Print Network (OSTI)

NDE of Concrete Structures Strengthened with FRP Using Infrared Thermography Monica A. STARNES that infrared thermography is a promising nondestructive evaluation (NDE) method considering testing speed

Entekhabi, Dara

258

ARM - Instrument - mfrirt  

NLE Websites -- All DOE Office Websites (Extended Search)

: Infrared Thermometer (MFRIRT): upwelling radiance, instantaneous 20-sec at 25-meter height Primary Measurements The following measurements are those considered...

259

Mid infrared optical properties of Ge/Si quantum dots with different doping level  

SciTech Connect

Optical characterization of the Ge/Si quantum dots using equilibrium and photo-induced absorption spectroscopy in the mid-infrared spectral range was performed in this work. Equilibrium absorption spectra were measured in structures with various doping levels for different light polarizations. Photo-induced absorption spectra measured in undoped structure under interband optical excitation of non-equilibrium charge carriers demonstrate the same features as doped sample in equilibrium conditions. Hole energy spectrum was determined from the analysis of experimental data.

Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Shalygin, V. A.; Panevin, V. Yu.; Vinnichenko, M. Ya. [St. Petersburg State Polytechnic University, Polytechnicheskaya str. 29, St. Petersburg (Russian Federation); Tonkikh, A. A. [Max Planck Institute of Microstructure Physics, Weinberg 2 D-06120, Halle (Saale) (Germany); Danilov, S. N. [University of Regensburg, Regensburg (Germany)

2013-12-04T23:59:59.000Z

260

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents (OSTI)

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon  

Science Journals Connector (OSTI)

Using the refractive index modulation in liquid crystals by an externally applied electric field we show that common nematic liquid crystals can be used in a Fabry–Perot étalon to produce an electrically tunable optical filter for use in the infrared region. Using commercial liquid crystals we demonstrate that the wavelength can be tuned over 175 nm using less than 10 V. In our first device the free?spectral range of the étalon is about 75 nm with a passband of about 1–2 nm which is determined by the quality of the mirrors that we have used.

J. S. Patel; M. A. Saifi; D. W. Berreman; Chinlon Lin; N. Andreadakis; S. D. Lee

1990-01-01T23:59:59.000Z

262

Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser  

SciTech Connect

Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of explosives particles by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm-1, spatial resolution of 25 nm, <100 attomolar sensitivity, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.

Craig, Ian M.; Taubman, Matthew S.; Lea, Alan S.; Phillips, Mark C.; Josberger, Erik E.; Raschke, Markus Bernd

2013-12-16T23:59:59.000Z

263

THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY  

SciTech Connect

We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a ? Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/? Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

DeWitt, Curtis [Department of Physics, University of California, Davis, CA 95616 (United States); Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata [Department of Astronomy, University of Florida, 211 Bryant Space Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Sellgren, Kris [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Blum, Robert; Olsen, Knut [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bauer, Franz E., E-mail: curtis.n.dewitt@nasa.gov [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile)

2013-11-01T23:59:59.000Z

264

A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS  

SciTech Connect

We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2013-08-01T23:59:59.000Z

265

Oscillation of Fourier Integrals with a spectral gap  

E-Print Network (OSTI)

May 30, 2003 ... In engineering literature, functions with a spectral gap are called high- .... High-

1910-30-71T23:59:59.000Z

266

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

267

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

268

Information-efficient spectral imaging sensor  

DOE Patents (OSTI)

A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

Sweatt, William C. (Albuquerque, NM); Gentry, Stephen M. (Albuquerque, NM); Boye, Clinton A. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM); Stallard, Brian R. (Albuquerque, NM); Descour, Michael R. (Tucson, AZ)

2003-01-01T23:59:59.000Z

269

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

270

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

271

Synthesis and characterization of infrared quantum dots  

E-Print Network (OSTI)

This thesis focuses on the development of synthetic methods to create application ready quantum dots (QDs) in the infrared for biological imaging and optoelectronic devices. I concentrated primarily on controlling the size ...

Harris, Daniel Kelly

2014-01-01T23:59:59.000Z

272

Applying near-infrared spectroscopy (nirs)  

E-Print Network (OSTI)

investigated. A recently developed optical imaging technique called near-infrared spectroscopy (NIRS) shows promise for being an acceptable alternative to invasive imaging techniques. NIRS measures correlates of neural activity by assessing hemoglobin...

Wruck, Eric Michael

2005-08-29T23:59:59.000Z

273

Quantum graph as a quantum spectral filter  

SciTech Connect

We study the transmission of a quantum particle along a straight input-output line to which a graph {Gamma} is attached at a point. In the point of contact we impose a singularity represented by a certain properly chosen scale-invariant coupling with a coupling parameter {alpha}. We show that the probability of transmission along the line as a function of the particle energy tends to the indicator function of the energy spectrum of {Gamma} as {alpha}{yields}{infinity}. This effect can be used for a spectral analysis of the given graph {Gamma}. Its applications include a control of a transmission along the line and spectral filtering. The result is illustrated with an example where {Gamma} is a loop exposed to a magnetic field. Two more quantum devices are designed using other special scale-invariant vertex couplings. They can serve as a band-stop filter and as a spectral separator, respectively.

Turek, Ondrej; Cheon, Taksu [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan)] [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan)

2013-03-15T23:59:59.000Z

274

A Cryogenic Infrared Calibration Target  

E-Print Network (OSTI)

A compact cryogenic calibration target is presented that has a peak diffuse reflectance, $R \\le 0.003$, from $800-4,800\\,{\\rm cm}^{-1}$ $(12-2\\,\\mu$m). Upon expanding the spectral range under consideration to $400-10,000\\,{\\rm cm}^{-1}$ $(25-1\\,\\mu$m) the observed performance gracefully degrades to $R \\le 0.02$ at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to $\\sim4\\,$K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials -- Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder -- are character...

Wollack, Edward J; Rinehart, Stephan A

2014-01-01T23:59:59.000Z

275

THE GALACTIC CENTER IN THE FAR-INFRARED  

SciTech Connect

We analyze the far-infrared dust emission from the Galactic center region, including the circumnuclear disk (CND) and other structures, using Herschel PACS and SPIRE photometric observations. These Herschel data are complemented by unpublished observations by the Infrared Space Observatory Long Wavelength Spectrometer (ISO-LWS), which used parallel mode scans to obtain photometric images of the region with a larger beam than Herschel but with a complementary wavelength coverage and more frequent sampling with 10 detectors observing at 10 different wavelengths in the range from 46 {mu}m to 180 {mu}m, where the emission peaks. We also include data from the Midcourse Space Experiment at 21.3 {mu}m for completeness. We model the combined ISO-LWS continuum plus Herschel PACS and SPIRE photometric data toward the central 2 pc in Sagittarius A* (Sgr A*), a region that includes the CND. We find that the far-infrared spectral energy distribution is best represented by a continuum that is the sum of three gray body curves from dust at temperatures of 90, 44.5, and 23 K. We obtain temperature and molecular hydrogen column density maps of the region. We estimate the mass of the inner part of the CND to be {approx}5.0 x 10{sup 4} M{sub sun}, with luminosities: L{sub cavity} {approx} 2.2 x 10{sup 6} L{sub sun} and L{sub CND} {approx} 1.5 x 10{sup 6} L{sub sun} in the central 2 pc radius around Sgr A*. We find from the Herschel and ISO data that the cold component of the dust dominates the total dust mass, with a contribution of {approx}3.2 x 10{sup 4} M{sub sun}; this important cold material had escaped the notice of earlier studies that relied on shorter wavelength observations. The hotter component disagrees with some earlier estimates, but is consistent with measured gas temperatures and with models that imply shock heating or turbulent effects are at work. We find that the dust grain sizes apparently change widely across the region, perhaps in response to the temperature variations, and we map that distribution.

Etxaluze, M.; Smith, Howard A.; Tolls, V.; Stark, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gonzalez-Alfonso, E., E-mail: metxaluz@cfa.harvard.edu [CfA and Universidad de Alcala, Alcala de Henares 28801 (Spain)

2011-10-15T23:59:59.000Z

276

Spectral properties of higher order anharmonic oscillators  

E-Print Network (OSTI)

We discuss spectral properties of the self-adjoint operator \\[ -d^2/dt^2 + (t^{k+1}/(k+1)-\\alpha)^2 \\] in $L^2(\\mathbb{R})$ for odd integers $k$. We prove that the minimum over $\\alpha$ of the ground state energy of this operator is attained at a unique point which tends to zero as $k$ tends to infinity. Moreover, we show that the minimum is non-degenerate. These questions arise naturally in the spectral analysis of Schr\\"{o}dinger operators with magnetic field. This extends or clarifies previous results by Pan-Kwek, Helffer-Morame, Aramaki, Helffer-Kordyukov and Helffer.

Helffer, Bernard

2009-01-01T23:59:59.000Z

277

Evidence that the spectral dependence of light absorption by aerosols is  

NLE Websites -- All DOE Office Websites (Extended Search)

Evidence that the spectral dependence of light absorption by aerosols is Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Title Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Publication Type Journal Article LBNL Report Number LBNL-55056 Year of Publication 2004 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research: Atmospheres Volume 109 Issue D21 Keywords aerosol light absorption, biomass burning, organic carbon Abstract The wavelength dependence of light absorption by aerosols collected on filters is investigated throughout the near-ultraviolet to near-infrared spectral region. Measurements were made using an optical transmission method. Aerosols produced by biomass combustion, including wood and savanna burning, and by motor vehicles, including diesel trucks, are included in the analysis. These aerosol types were distinguished by different wavelength (λ) dependences in light absorption. Light absorption by the motor vehicle aerosols exhibited relatively weak wavelength dependence; absorption varied approximately as λ-1, indicating that black carbon (BC) was the dominant absorbing aerosol component. By contrast, the biomass smoke aerosols had much stronger wavelength dependence, approximately λ-2. The stronger spectral dependence was the result of enhanced light absorption at wavelengths shorter than 600 nm and was largely reduced when much of the sample organic carbon (OC) was extracted by dissolution in acetone. This indicates that OC in addition to BC in the biomass smoke aerosols contributed significantly to measured light absorption in the ultraviolet and visible spectral regions and that OC in biomass burning aerosols may appreciably absorb solar radiation. Estimated absorption efficiencies and imaginary refractive indices are presented for the OC extracted from biomass burning samples and the BC in motor vehicle-dominated aerosol samples. The uncertainty of these constants is discussed. Overall, results of this investigation show that low-temperature, incomplete combustion processes, including biomass burning, can produce light-absorbing aerosols that exhibit much stronger spectral dependence than high-temperature combustion processes, such as diesel combustion.

278

Characteristic evaluation of a near-infrared Fabry-Perot filter for the InfraRed Imaging Magnetograph (IRIM)  

E-Print Network (OSTI)

Characteristic evaluation of a near-infrared Fabry-P´erot filter for the InfraRed Imaging solar two-dimensional narrow-band spectro-polarimeter working in the near infrared from 1.0 µm to 1.7 µm, this paper outlines a set of methods to evaluate the near infrared Fabry-P´erot etalon. Two

279

On Spectral Clustering: Analysis and an algorithm  

E-Print Network (OSTI)

be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm the top eigenvectors of a matrix derived from the distance between points. Such algorithms have been at a time. One line of analysis makes the link to spectral graph partitioning, in which the sec- #12; ond

Weiss, Yair

280

Spectral multidimensional scaling Yonathan Aflaloa,1  

E-Print Network (OSTI)

images as feature points that we map to a plane. flat embedding | distance maps | big data | diffusionSpectral multidimensional scaling Yonathan Aflaloa,1 and Ron Kimmelb Departments of a Electrical reduc- tion. There are various approaches for large data simplification by scaling its dimensions down

Kimmel, Ron

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low-Cost Spectral Sensor Development Description.  

SciTech Connect

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

Armijo, Kenneth Miguel; Yellowhair, Julius

2014-11-01T23:59:59.000Z

282

Staring 2-D hadamard transform spectral imager  

DOE Patents (OSTI)

A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)

2006-02-07T23:59:59.000Z

283

BOUNDS FOR SPECTRAL CLUSTERS HART F. SMITH  

E-Print Network (OSTI)

Lq BOUNDS FOR SPECTRAL CLUSTERS HART F. SMITH Abstract. In these notes, we review recent results] establish the same estimates under the assumption that the metric is C1,1. It is known by examples of Smith to the wave equation. The author was supported in part by NSF grant DMS-0140499. 1 #12;2 HART F. SMITH

Smith, Hart F.

284

Spectral Landscape Theory Peter F. Stadler  

E-Print Network (OSTI)

Spectral Landscape Theory Peter F. Stadler Institut f Ë? ur Theoretische Chemie, Universit Ë? at Wien, NM87501 The notion of an adaptive landscape has proved to be a valuable con­ cept in theoretical. Landscape theory has emerged as an attempt to devise suitable mathematical structures for describing

Stadler, Peter F.

285

Spectral Theory for Nonconservative Transmission Line Networks  

E-Print Network (OSTI)

Spectral Theory for Nonconservative Transmission Line Networks Robert Carlson Department The global theory of transmission line networks with nonconserva- tive junction conditions is developed from is determined. Specialized results are developed for rational graphs. 1 #12;1 Introduction The transmission line

Carlson, Bob

286

The Far-Infrared Surveyor (FIS) for AKARI  

E-Print Network (OSTI)

The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, it can simultaneously make a spectral map. This paper summarizes the in-flight technical and operational performance of the FIS.

Mitsunobu Kawada; Hajime Baba; Peter D. Barthel; David Clements; Martin Cohen; Yasuo Doi; Elysandra Figueredo; Mikio Fujiwara; Tomotsugu Goto; Sunao Hasegawa; Yasunori Hibi; Takanori Hirao; Norihisa Hiromoto; Woong-Seob Jeong; Hidehiro Kaneda; Toshihide Kawai; Akiko Kawamura; Do Kester; Tsuneo Kii; Hisato Kobayashi; Suk Minn Kwon; Hyung Mok Lee; Sin'itirou Makiuti; Hiroshi Matsuo; Shuji Matsuura; Thomas G. Müller; Noriko Murakami; Hirohisa Nagata; Takao Nakagawa; Masanao Narita; Manabu Noda; Sang Hoon Oh; Yoko Okada; Haruyuki Okuda; Sebastian Oliver; Takafumi Ootsubo; Soojong Pak; Yong-Sun Park; Chris P. Pearson; Michael Rowan-Robinson; Toshinobu Saito; Alberto Salama; Shinji Sato; Richard S. Savage; Stephen Serjeant; Hiroshi Shibai; Mai Shirahata; Jungjoo Sohn; Toyoaki Suzuki; Toshinobu Takagi; Hidenori Takahashi; Matthew Thomson; Fumihiko Usui; Eva Verdugo; Toyoki Watabe; Glenn J. White; Lingyu Wang; Issei Yamamura; Chisato Yamamuchi; Akiko Yasuda

2007-08-22T23:59:59.000Z

287

The spectral irradiance traceability chain at PTB  

SciTech Connect

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

288

Follow-Up Near-infrared Spectroscopy of Ultraluminous Infrared Galaxies observed by ISO  

E-Print Network (OSTI)

We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qualitatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.

H. Dannerbauer; D. Rigopoulou; D. Lutz; R. Genzel; E. Sturm; A. F. M. Moorwood

2005-08-17T23:59:59.000Z

289

MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII  

SciTech Connect

Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.

L. BALICK; A. GILLESPIE; ET AL

2001-03-01T23:59:59.000Z

290

Radio--Far infrared correlation in "blue cloud" galaxies with 0  

E-Print Network (OSTI)

We study the radio--far infrared (FIR) correlation in "blue cloud" galaxies chosen from the PRism MUltiobject Survey (PRIMUS) up to redshift ($z$) of 1.2 in the XMM-LSS field. We use rest-frame emission at 1.4 GHz in the radio and both monochromatic (at 70$\\mu$m) and bolometric (between $8-1000~\\mu$m) emission in the FIR. To probe the nature of the correlation up to $z\\sim1.2$, where direct detection of blue star-forming galaxies is impossible with current technology, we employ the technique of image stacking at 0.325 and 1.4 GHz in the radio and in six infrared bands, viz. 24, 70, 160, 250, 350 and $500~\\mu$m. For comparison, we also study the correlation for more luminous galaxies that are directly detected. The stacking analysis allows us to probe the radio--FIR correlation for galaxies that are up to 2 orders of magnitude fainter than the ones detected directly. The $k-$correction in the infrared wavebands is obtained by fitting the observed spectral energy distribution (SED) with a composite mid-IR power...

Basu, Aritra; Beelen, Alexandre; Singh, Veeresh; Archana, K N; Sirothia, Sandeep; Ishwara-Chandra, C H

2015-01-01T23:59:59.000Z

291

Characterization of material degradation in ceramic matrix composites using infrared reflectance spectroscopy  

SciTech Connect

Ceramic matrix composite materials for thermal protection systems are required to maintain operational performance in extreme thermal and mechanical environments. In-service inspection of materials capable of assessing the degree and extent of damage and degradation will be required to ensure the safety and readiness of future air vehicles. Infrared reflectance spectroscopy is an established material characterization technique capable of extracting information regarding the chemical composition of substances. The viability of this technique as a potentially powerful nondestructive evaluation method capable of monitoring degradation in thermal protection system materials subjected to extreme mechanical and thermal environments is analyzed. Several oxide-based and non-oxide-based ceramic matrix composite materials were stressed to failure in a high temperature environment and subsequently measured using infrared reflectance spectroscopy. Spectral signatures at locations along the length of the samples were compared resulting in distinct and monotonic reflectance peak changes while approaching the fracture point. The chemical significance of the observed signatures and the feasibility of infrared reflectance nondestructive evaluation techniques are discussed.

Cooney, Adam T.; Flattum-Riemers, Richard Y. [Air Force Research Laboratory, Materials and Manufacturing Directorate, NonDestructive Evaluation Branch, Wright-Patterson AFB, OH (United States); Scott, Benjamin J. [Universal Technology Corporation, Dayton, OH (United States)

2011-06-23T23:59:59.000Z

292

HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU  

SciTech Connect

We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A'ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

2013-08-01T23:59:59.000Z

293

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

294

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

295

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

296

Radiometric characterization of a high temperature blackbody in the visible and near infrared  

SciTech Connect

At the Physikalisch-Technische Bundesanstalt the radiance temperature in the range from 962 °C to 3000 °C is disseminated by applying a high temperature blackbody (HTBB) with a directly heated pyrolytic graphite cavity. The thermodynamic radiance temperature of the HTBB was measured in the temperature range from 1000 °C to 3000 °C by applying almost simultaneously absolutely calibrated silicon photodiode based filter radiometers with centre wavelengths at 476 nm, 676 nm, 800 nm, 900 nm and 1000 nm and InGaAs photodiode based filter radiometers with centre wavelengths at 1300 nm, 1550 nm and 1595 nm. The results demonstrate that, expressed in terms of irradiance, within an uncertainty of 0.1 % (k=1) in a broad wavelength range the thermodynamic radiance temperature of the HTBB is wavelength independent in the investigated temperature interval.

Taubert, R. D.; Hollandt, J. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin (Germany)

2013-09-11T23:59:59.000Z

297

High efficiency quasi-monochromatic infrared emitter  

SciTech Connect

Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

2014-02-24T23:59:59.000Z

298

A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability  

E-Print Network (OSTI)

[abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot...

Burgasser, Adam J; Faherty, Jacqueline K; Radigan, Jacqueline; J., Amaury H M; Plavchan, Peter; Street, Rachel; Jehin, E; Delrez, L; Opitom, C

2014-01-01T23:59:59.000Z

299

Wave spectral energy variability in the northeast Peter D. Bromirski  

E-Print Network (OSTI)

Wave spectral energy variability in the northeast Pacific Peter D. Bromirski Integrative January 2005; published 8 March 2005. [1] The dominant characteristics of wave energy variability] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses

Bromirski, Peter D.

300

Bubble Stabilization of Spectral Methods: The Multidimensional Case  

Science Journals Connector (OSTI)

A spectral Legendre method for the advection-diffusion equation is stabilized with the addition of locally supported bubble functions. It is shown that the spectral ... accuracy of the scheme is preserved and its...

Gabriella Puppo

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Journals Connector (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

302

ARM - Measurement - Shortwave spectral diffuse downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments RSS : Rotating Shadowband Spectroradiometer

303

Laser stabilization using spectral hole burning  

E-Print Network (OSTI)

We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

L. Rippe; B. Julsgaard; A. Walther; S. Kröll

2006-11-05T23:59:59.000Z

304

On Spectral Clustering: Analysis and an algorithm  

E-Print Network (OSTI)

Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.

Andrew Y. Ng; Michael I. Jordan; Yair Weiss

2001-01-01T23:59:59.000Z

305

SPECTRAL AND INTERMITTENCY PROPERTIES OF RELATIVISTIC TURBULENCE  

SciTech Connect

High-resolution numerical simulations are utilized to examine isotropic turbulence in a compressible fluid when long-wavelength velocity fluctuations approach light speed. Spectral analysis reveals an inertial sub-range of relativistic motions with a broadly 5/3 index. The use of generalized Lorentz covariant structure functions based on the four-velocity is proposed. These structure functions extend the She-Leveque model for intermittency into the relativistic regime.

Zrake, Jonathan; MacFadyen, Andrew I. [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-01-20T23:59:59.000Z

306

On the Product of Real Spectral Triples  

E-Print Network (OSTI)

The product of two real spectral triples {A1,H1,D1,J1,gamma1} and {A2,H2,D2,J2(,gamma2)}, the first of which is necessarily even, was defined by A.Connes as {A,H,D,J(,gamma)} given by A=A1 x A2,H=H1 x H2, D=D1 x I2 + gamma1 x D2, J=J1 x J2 and by, in the even-even case, gamma=gamma1 x gamma2. Generically it is assumed that the real structure J obeys the relations J^2=epsilon Id, JD=epsilon' DJ, Jgamma = epsilon'' gammaJ, where the epsilon-sign table depends on the dimension n, modulo 8, of the spectral triple. If both spectral triples obey Connes' epsilon-sign table, it is seen that their product, defined in the straightforward way above, does not necessarily obey this epsilon-sign table. In this note, we propose an alternative definition of the product real structure such that the epsilon-sign table is also satisfied by the product.

F. J. Vanhecke

1999-02-24T23:59:59.000Z

307

Bioluminescence in a complex coastal environment: 2. Prediction of bioluminescent source depth from spectral  

E-Print Network (OSTI)

water-leaving radiance signals are detectable, even in extremely turbid and dynamic coastal waters. Here.1029/2007JC004136. 1. Introduction [2] Bioluminescence in the marine environment is caused by a wide array appears to serve a wide variety of ecological functions in the marine environment, from pred- ator

Moline, Mark

308

Hyperspectral Data Classification Using Spectral-Spatial Approaches  

E-Print Network (OSTI)

Hyperspectral Data Classification Using Spectral-Spatial Approaches Yuliya Tarabalka1 , Jón Atli classification problem AVIRIS image Spatial resolution: 20m/pix Spectral resolution: 200 bands Ground-truth data.tarabalka@nasa.gov) Spectral-Spatial Classification of Hyperspectral Data 6 #12;Introduction Classification using segmentation

Dobigeon, Nicolas

309

Spectral dependence of third-order nonlinear optical properties in InN  

SciTech Connect

We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10{sup ?10} cm{sup 2}/W indicates InN as a potential material for all-optical switching and related applications.

Ahn, H., E-mail: hyahn@mail.nctu.edu.tw; Lee, M.-T.; Chang, Y.-M. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

2014-05-19T23:59:59.000Z

310

A Spitzer White Dwarf Infrared Survey  

E-Print Network (OSTI)

We present mid-infrared photometry of 124 white dwarf stars with Spitzer Space Telescope. Objects were observed simultaneously at 4.5 and 8.0um with sensitivities better than 1 mJy. This data can be used to test models of white dwarf atmospheres in a new wavelength regime, as well as to search for planetary companions and debris disks.

F. Mullally; Mukremin Kilic; William T. Reach; Marc J. Kuchner; Ted von Hippel; Adam Burrows; D. E. Winget

2006-11-17T23:59:59.000Z

311

A brief history of infrared astronomy  

Science Journals Connector (OSTI)

......Observatory For Infrared Astronomy) is a project funded by NASA and the German Space Agency DLR, to put a 2.5 m telescope into a Boeing 747-SP. SOFIA will have a set of observatory instruments for all astronomers to use, and is due to start flights in 2002......

Helen J Walker

2000-10-01T23:59:59.000Z

312

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

are neutralized and then discharged as wastewater. The high salinity of the wastewater from the peeling process, producing less wastewater and preserving product quality. Infrared drypeeling is expected to reduce: rkapoor@energy.state.ca.us Dr. Zhongli Pan University of California, Davis Phone: (510) 5595861

313

SiGeC Near Infrared Photodetectors  

E-Print Network (OSTI)

A near infrared waveguide photodetector in Si-based ternary Si?â??xâ??yGexCy alloy was demonstrated for 0.85~1.06 µm wavelength fiber-optic interconnection system applications. Two sets of detectors with active absorption ...

Li, Baojun

314

Near-Infrared Spectroscopic Investigation of Water in Supercritical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Spectroscopic Investigation of Water in Supercritical CO2 and the Effect of CaCl2. Near-Infrared Spectroscopic Investigation of Water in Supercritical CO2 and the Effect...

315

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network (OSTI)

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

316

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer...

317

Matching of Infrared Emitters with Textiles For Improved Energy Utilization  

E-Print Network (OSTI)

the infrared absorptivity of fabrics over the wavelength spectrum of 0.7 to 25 microns (the range of operation of commercial infrared emitters). Since the operating ranges for several system components (detectors, beam splitters and sources) are much narrower...

Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

318

Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.  

SciTech Connect

Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

2009-09-01T23:59:59.000Z

319

THE WFC3 INFRARED SPECTROSCOPIC PARALLEL (WISP) SURVEY  

SciTech Connect

We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of {approx}90 independent, high-latitude fields by observing in the pure-parallel mode with the Wide Field Camera Three on the Hubble Space Telescope for a total of {approx}250 orbits. Spectra are obtained with the G{sub 102} ({lambda} = 0.8-1.17 {mu}m, R {approx}210) and G{sub 141} grisms ({lambda} = 1.11-1.67 {mu}m, R {approx}130), together with direct imaging in the J and H bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 arcmin{sup 2}. For typical exposure times ({approx}6400 s in G{sub 102} and {approx}2700 s in G{sub 141}), we reach 5{sigma} detection limits for emission lines of f {approx} 5 x 10{sup -17} erg s{sup -1} cm{sup -2} for compact objects. Typical direct imaging 5{sigma} limits are 26.3 and 26.1 mag. (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with the highest confidence, we present a list of 328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The single-line emitters are likely to be a mix of H{alpha} and [O III]5007,4959 A, with H{alpha} predominating. The overall surface density of high-confidence emission-line objects in our sample is approximately 4 per arcmin{sup 2}. These first fields show high equivalent width sources, active galactic nucleus, and post-starburst galaxies. The median observed star formation rate (SFR) of our H{alpha}-selected sample is 4 M{sub sun} yr{sup -1}. At intermediate redshifts, we detect emission lines in galaxies as faint as H{sub 140} {approx} 25, or M{sub R} < -19, and are sensitive to SFRs down to less than 1 M{sub sun} yr{sup -1}. The slitless grisms on WFC3 provide a unique opportunity to study the spectral properties of galaxies much fainter than L* at the peak of the galaxy assembly epoch.

Atek, H.; Scarlata, C.; Colbert, J. W.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 (United States); McCarthy, P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. I. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, OX13RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching (Germany)

2010-11-01T23:59:59.000Z

320

Micropolarizing device for long wavelength infrared polarization imaging.  

SciTech Connect

The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15 {micro}m by 15 {micro}m that exceed by 7 times previously reported devices. The fabricated birefringent diffractive waveplates had a total variation of phase delay rms of 9.41 degrees with an average delay of 80.6 degrees across the MWIR spectral region. We found that diffraction effects change the requirement for separation between focal plane arrays (FPA) micropolarizer arrays and birefringent waveplates arrays, originally in the order of hundreds of microns (which are the typical substrate thickness) to a few microns or less. This new requirement leads us to propose new approaches to fabricate these devices.

Wendt, Joel Robert; Carter, Tony Ray; Samora, Sally; Cruz-Cabrera, Alvaro Augusto; Vawter, Gregory Allen; Kemme, Shanalyn A.; Alford, Charles Fred; Boye, Robert R.; Smith, Jody Lynn

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Infrared Properties of Close Pairs of Galaxies  

E-Print Network (OSTI)

We discuss spectroscopy and infrared photometry for a complete sample of ~ 800 galaxies in close pairs objectively selected from the CfA2 redshift survey. We use 2MASS to compare near infrared color-color diagrams for our sample with the Nearby Field Galaxy Sample and with a set of IRAS flux-limited pairs from Surace et al. We construct a basic statistical model to explore the physical sources of the substantial differences among these samples. The model explains the spread of near infrared colors and is consistent with a picture where central star formation is triggered by the galaxy-galaxy interaction before a merger occurs. For 160 galaxies we report new, deep JHK photometry within our spectroscopic aperture and we use the combined spectroscopic and photometric data to explore the physical conditions in the central bursts. We find a set of objects with H-K >= 0.45 and with a large F(FIR)/F(H). We interpret the very red H-K colors as evidence for 600-1000 K dust within compact star-forming regions, perhaps similar to super-star clusters identified in individual well-studied interacting galaxies. The galaxies in our sample are candidate ``hidden'' bursts or, possibly, ``hidden'' AGN. Over the entire pair sample, both spectroscopic and photometric data show that the specific star formation rate decreases with the projected separation of the pair. The data suggest that the near infrared color-color diagram is also a function of the projected separation; all of the objects with central near infrared colors indicative of bursts of star formation lie at small projected separation.

Margaret J. Geller; Scott J. Kenyon; Elizabeth J. Barton; Thomas H. Jarrett; Lisa J. Kewley

2006-08-02T23:59:59.000Z

322

Efficient Synthesis and Properties of Novel Near-Infrared Electrochromic  

E-Print Network (OSTI)

Efficient Synthesis and Properties of Novel Near-Infrared Electrochromic Anthraquinone Imides@pku.edu.cn Received December 13, 2007 ABSTRACT An efficient synthesis of novel near-infrared electrochromic 6 are electrochromic and absorb intensely in the near-infrared range of 700-1600 nm upon electrochemical reduction

Wan, Xin-hua

323

Near-infrared spectroscopy of HD the barrier to linearity  

E-Print Network (OSTI)

Near-infrared spectroscopy of HD 3 above the barrier to linearity BY JENNIFER L. GOTTFRIED, transitions of HC 3 above the barrier to linearity have been observed. A highly sensitive near-infrared-adiabatic and radiative corrections is revealed. Keywords: HD 3 ; near-infrared spectroscopy; barrier to linearity 1

Oka, Takeshi

324

Plant Growth Measurement Techniques Using Near-Infrared  

E-Print Network (OSTI)

Plant Growth Measurement Techniques Using Near-Infrared Imagery Amr Aboelela John Barron Dept, for measuring plant growth for corn seedlings and Caster Oil Bean leaves. A near-infrared camera, which allows to hypothesize where growth might be taking place. Keywords: Near-Infrared Imagery, Corn Seedling stem

Barron, John

325

COMMUNICATIONS Near-infrared femtosecond photoionization/dissociation of cyclic  

E-Print Network (OSTI)

COMMUNICATIONS Near-infrared femtosecond photoionization/dissociation of cyclic aromatic, phenanthrene, and anthracene. The near-infrared ionization process leads to the production of intact molecular of femtoseconds in simple cluster systems.12­15 Here we report the near-infrared 780 nm photoioniza- tion

Levis, Robert J.

326

Illumination Invariant Face Recognition Using Near-Infrared Images  

E-Print Network (OSTI)

Illumination Invariant Face Recognition Using Near-Infrared Images Stan Z. Li, Senior Member, IEEE-user applications. First, we present an active near infrared (NIR) imaging system that is able to produce face groups. Index Terms--Biometrics, face recognition, near infrared (NIR), illumination invariant, local

Fan, Guoliang

327

innovative techniques Near-infrared spiroximetry: noninvasive measurements  

E-Print Network (OSTI)

innovative techniques Near-infrared spiroximetry: noninvasive measurements of venous saturationO2 ) in tissues using near-infrared spectroscopy (NIRS). This method is based on the respiration-induced oscillations of the near-infrared ab- sorption in tissues, and we call it spiroximetry (the prefix spiro means

328

Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)  

SciTech Connect

The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

2013-03-01T23:59:59.000Z

329

OPTICAL CONSTANTS OF NH{sub 3} AND NH{sub 3}:N{sub 2} AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS  

SciTech Connect

Ammonia ice has been detected on different astrophysical media ranging from interstellar medium (ISM) particles to the surface of various icy bodies of our solar system, where nitrogen is also present. We have carried out a detailed study of amorphous NH{sub 3} ice and NH{sub 3}:N{sub 2} ice mixtures, based on infrared (IR) spectra in the mid-IR (MIR) and near-IR (NIR) regions, supported by theoretical quantum chemical calculations. Spectra of varying ice thicknesses were obtained and optical constants were calculated for amorphous NH{sub 3} at 15 K and 30 K and for a NH{sub 3}:N{sub 2} mixture at 15 K over a 500-7000 cm{sup –1} spectral range. These spectra have improved accuracy over previous data, where available. Moreover, we also obtained absolute values for the band strengths of the more prominent IR features in both spectral regions. Our results indicate that the estimated NH{sub 3} concentration in ISM ices should be scaled upward by ?30%.

Zanchet, Alexandre; Rodríguez-Lazcano, Yamilet; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael; Maté, Belén, E-mail: belen.mate@csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain)

2013-11-01T23:59:59.000Z

330

Stark broadening of Kr UV spectral lines  

Science Journals Connector (OSTI)

This work reports new data for the Stark parameters of doubly ionized krypton spectral lines. Stark widths and shifts of Kr iii lines belonging to the UV region (245–300 nm) have been measured. A low-pressure pulsed arc, containing a mixture of 8% krypton and 92% helium, was used as a plasma source. Measured electron densities and electron temperatures were in the range (0.7–2.0)×1023 m-3 and 16 000–20 000 K, respectively. Experimentally obtained data were compared to theoretical results calculated using simplified modified semiempirical formulas.

M. ?irišan; R. J. Peláez; S. Djurovi?; J. A. Aparicio; S. Mar

2011-01-24T23:59:59.000Z

331

Predicting Spectral Properties of DLA Galaxies  

E-Print Network (OSTI)

Comparison of our chemically consistent models for spiral galaxies with observed DLA abundances shows that at high redshift DLA galaxies may well be the progenitors of normal spiral disks of all types from Sa through Sd. Towards lower redshifts z spectral, chemical, and cosmological evolution models to predict expected luminosities in different bands for DLA galaxies at various redshifts and compare to the few optical identifications available.

U. Fritze-v. Alvensleben; U. Lindner; C. S. Möller

1998-12-18T23:59:59.000Z

332

Gamma ray bursts and spectral features  

Science Journals Connector (OSTI)

The situation concerning the presence of features in gamma ray burst (GRB) spectra is analyzed taking into account recent results obtained especially with the PHOBOS probes and GINGA satellite. If the existence of cyclotron features seems now to be generally accepted the situation for the other features reported around 400?500 keV is not completely clarified. The presence of such features is discussed. Moreover some aspects of the high and low energy variations in the GRB and on the characteristics of their total spectrum are also reviewed. Finally future missions which might have a great impact in the GRB spectral analysis will be shortly considered.

E. Jourdain

1991-01-01T23:59:59.000Z

333

Complexified cones. Spectral gaps and variational principles  

E-Print Network (OSTI)

We consider contractions of complexified real cones, as recently introduced by Rugh in [Rugh10]. Dubois [Dub09] gave optimal conditions to determine if a matrix contracts a canonical complex cone. First we generalize his results to the case of complex operators on a Banach space and give precise conditions for the contraction and an improved estimate of the size of the associated spectral gap. We then prove a variational formula for the leading eigenvalue similar to the Collatz-Wielandt formula for a real cone contraction. Morally, both cases boil down to the study of suitable collections of 2 by 2 matrices and their contraction properties on the Riemann sphere.

Dubois, Loïc

2010-01-01T23:59:59.000Z

334

A multi-spectral spatial convolution approach of rainfall forecasting using weather satellite imagery  

Science Journals Connector (OSTI)

Flood forecasting has long been a major topic of hydrologic research. Recent events and studies indicate that the success of flood forecasting in Taiwan depends heavily on the accuracy of real-time rainfall forecasting. In this study, we demonstrate a multi-spectral spatial convolution approach for real-time rainfall forecasting using geostationary weather satellite images. The approach incorporates cloud-top temperatures of three infrared channels in a spatial convolution context. It not only characterizes the input–output relationship between cloud-top temperature and rainfall at the ground level, but also is more consistent with physical and remote sensing principles than single-pixel matches. Point rainfall measurements at raingauge sites are up-scaled to pixel-average-rainfall by block kriging, then related to multi-spectral cloud-top temperatures derived from Geostationary Meteorological Satellite images by spatial convolution. The kernel function of the multispectral spatial convolution equation is solved by the least squares method. Through a cross-validation procedure, we demonstrate that the proposed approach is capable of achieving high accuracy for 1- to 3-h-lead pixel-average-rainfall forecasting.

Chiang Wei; Wei-Chun Hung; Ke-Sheng Cheng

2006-01-01T23:59:59.000Z

335

Long Wave Infrared Detection of Chemical Weapons Simulants  

SciTech Connect

The purpose of Task 3.b under PL02-OP211I-PD07 (CBW simulant detection) was to demonstrate the applicability of the sensor work developed under this project for chemical and biological weapons detection. To this end, the specific goal was to demonstrate the feasibility of detection of chemical agents via that of simulants (Freons) with similar spectroscopic features. This has been achieved using Freon-125 as a simulant, a tunable external cavity quantum cascade laser (ECQCL), and a Herriott cell-based sensor developed at Pacific Northwest National Laboratory (PNNL) specifically for this task. The experimentally obtained spectrum of this simulant matches that found in the Northwest Infrared (NWIR) spectral library extremely well, demonstrating the ability of this technique to detect the exact shape of this feature, which in turn indicates the ability to recognize the simulant even in the presence of significant interference. It has also been demonstrated that the detected features of a typical interferent, namely water, are so different in shape and width to the simulant, that they are easily recognized and separated from such a measurement. Judging from the signal-to-noise ratio (SNR) of the experimental data obtained, the noise equivalent absorption sensitivity is estimated to be 0.5 x 10-7 to 1 x 10-6 cm-1. For the particular feature of the simulant examined in this work, this corresponds to a relative concentration of 50 to 25 parts-per-billion by volume (ppbv). The corresponding relative concentrations of other chemical targets would differ depending on the particular transition strengths, and would thus have to be scaled accordingly.

Phillips, Mark C.; Taubman, Matthew S.; Scott, David C.; Myers, Tanya L.; Munley, John T.; Cannon, Bret D.

2007-04-27T23:59:59.000Z

336

Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region  

E-Print Network (OSTI)

B. Woz´niak 4 1 Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute for Coastal Research, Remote Sensing, Geesthacht, Germany 2 Mediterranean Institute of Oceanography, Marseille

337

Posters Long-Pathlength Infrared Absorption Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 µm, this absorption can be attributed primarily to water vapor. It consists of 1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the υ 2 rovibrational band (at the high-wavenumber boundary of the window); and 2) the

338

Quantum-cascade lasers enable infrared sensors  

SciTech Connect

Quantum-cascade lasers (QCLs) are semiconductor-injection lasers based on intersubband transitions in a multiple-quantum-well heterostructure. They are designed using band-structure engineering and grown by molecular beam epitaxy. The emission wavelength of a QCL is primarily a function of quantum-well thickness--thinner quantum wells lead to shorter wavelengths--and is essentially independent of the material bandgap. Quantum-cascade lasers can be designed to operate at any wavelength from 3.5 m (infrared) to 67 m (terahertz region) and are continuously tunable through ranges of a few inverse centimeters.1, 2, 3 This capability makes them well suited for spectroscopy in the infrared (see Laser Focus World, August 1999, p. 40).

Schultz, John F. (BATTELLE (PACIFIC NW LAB))

2003-05-01T23:59:59.000Z

339

Visualizing infrared phenomena with a webcam  

Science Journals Connector (OSTI)

The concept of light (electromagnetic radiation) outside of the visible spectrum is an abstract concept for students in an introductory science class. When students are presented with demonstrations or experiments meant to explore this portion of the spectrum the equipment involved often hides the phenomena. A simple modification to a standard inexpensive web camera (webcam) can take advantage of the sensitivity of the charged-coupled-device (CCD) to the infrared (IR) portion of the spectrum allowing students to visualize many IR phenomena. This note reports how such a modified webcam can be used in lecture demonstrations and laboratory activities to study infrared phenomena including an IR light emitting diode(LED) the IR component of different light sources IR spectroscopy and blackbody radiation. As a final example the modified camera can be employed to view the charcoal under-drawing of a “painting” created for this paper and used in our classroom demonstrations.

N. A. Gross; M. Hersek; A. Bansil

2005-01-01T23:59:59.000Z

340

Carbon nanotubes as near infrared laser susceptors  

E-Print Network (OSTI)

.1. Near Infrared radiation and its interaction with materials ................................... 7 2.1.1. Atomic response to photon absorption .............................................................. 10 2.1.2. Electronic absorption processes... absorption, this extinction of the incident light by atoms is called Raleigh scattering. 10 2.1.1. Atomic response to photon absorption The simple first order explanation of the interaction of atoms with photons was made by Einstein. No explicit quantum...

Bahrami, Amir

2011-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Far-infrared attenuation in glasses  

Science Journals Connector (OSTI)

The influence of quasilocal vibrations on the far-infrared spectra of glasses is investigated under the supposition that the quasilocal vibrations are directly inactive in the attenuation. It is shown that taking into account phonon-quasilocal-vibration coupling and both medium- and short-range structure of the inhomogeneities of a photon-phonon coupling parameter can give rise to an attenuation curve similar to one observed for a-SiO2 and related materials.

Lev I. Deich

1994-01-01T23:59:59.000Z

342

THE INFRARED COLORS OF THE SUN  

SciTech Connect

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

2012-12-10T23:59:59.000Z

343

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

344

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

345

Temperature dependence of the collisional interference in the pure rotational far-infrared spectrum of HD  

Science Journals Connector (OSTI)

The far-infrared pure rotational absorption spectrum of HD and HD-X mixtures was measured at 77 and 195 K. Specifically, the rotational lines R(0)–R(2) were observed for HD-HD, HD-He, HD-Ne, and HD-H2 at 77 K and R(0)–R(3) for HD-HD, HD-He, and HD-Ar at 195 K. Refined values of the permanent dipole moment of HD are deduced. Collisional interference in the spectrum is characterized by a parameter proportional to the ratio of the average-induced dipole moment to the permanent dipole moment. Its variation with temperature, particularly a change in sign, is not explainable by current theory. The spectral line-shape parameters of width, frequency shift, and asymmetry are determined and their density and temperature behavior discussed with reference to the impact theory of line broadening.

Lorenzo Ulivi; Z. Lu; G. C. Tabisz

1989-07-15T23:59:59.000Z

346

Low-Noise-Far-Infrared (FIR) Receiver tasks: FIR laser development. Final report  

SciTech Connect

The objectives of the Low-Noise Far-Infrared (FIR) Receiver program for FIR laser development were established with the particular goal of improving magnetic fusion diagnostics in tokamak fusion reactors. Development of both FIR sources and receivers can greatly benefit such programs studying controlled nuclear fusion by providing vital data on particle velocity (temperature) and density through scattering measurements. The Department of Energy (DOE), through the University of California at Los Angeles (UCLA), has funded The Aerospace Corporation to design and implement state-of-the-art techniques in the FIR/near-millimeter-wave spectral region. Specific areas of interest to DOE are portable FIR lasers, near-millimeter-wave mixers, solid-state sources, and the integration of these areas into advanced diagnostic tools for plasma studies. This report documents the work accomplished in those areas of interest.

Foote, F.B.; Danielewicz, E.J.; Galantowicz, T.A.

1984-12-31T23:59:59.000Z

347

Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic circuit  

E-Print Network (OSTI)

Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton contribution and techniques for visibility compensation, towards scalable high-bitrate quantum information processing and communications.

Xinan Xu; Zhenda Xie; Jiangjun Zheng; Junlin Liang; Tian Zhong; Mingbin Yu; Serdar Kocaman; Guo-Qiang Lo; Dim-Lee Kwong; Dirk R. Englund; Franco N. C. Wong; Chee Wei Wong

2012-12-03T23:59:59.000Z

348

Spectral and photochromic study of spiropyran  

SciTech Connect

A new class of benzospiropyran has been synthesized by the condensation of the precursor, Fisher basespiropyran with substituted salicyaldehydes in 1:1 mole ratios. This photochromic compound, spiro [2H-1-benzopyran-2, 2’-(8’-hydroxy-1’, 3’, 3’-trimethylindoline)] was able to undergo convertion into its merocyanine form (colored) after being induced by irradiation of UV light. Both open and closed form of benzospiropyran were characterized and distinguished based on Infrared vibracional spectroscopy in Attenuated Total Reflexion mode (ATR) and UV-vis spectroscopy. In addition, association of ten different metal ions to ethanol solution of SP (A) leads to metal-ion binding by the MC isomer. The coupled reaction of all metal ions, MC-M{sup 2+} underwent a hypsochromic and bathochromic shift in the absorption bands.

Nordin, Rumaisa; Lazim, Azwani Mat; Hasbullah, Siti Aishah [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

349

Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors  

SciTech Connect

The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for the MWIR and LWIR bands. PNNL's research activities include identification of signature chemicals and quantification of their spectroscopy, exploration of novel sensing techniques, and experimental sensor system construction and testing. In FY02, experimental QC laser systems developed with DARPA funding were used to explore continuous-wave (cw) CES in various forms culminating in the NICE-OHMS technique [1-3] discussed below. In FY02 PNNL also built an SWIR sensor to validate utility of the SWIR spectral region for chemical sensing, and explore the science and engineering of CES in field environments. The remainder of this report is devoted to PNNL's LWIR CES research. During FY02 PNNL explored the performance and limitations of several detection tech-niques in the LWIR including direct cavity-enhanced absorption, cavity-dithered phase-sensitive detection and resonant sideband cavity-enhanced detection. This latter tech-nique is also known as NICE-OHMS, which stands for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy. This technique, pioneered in the near infra-red (NIR) by Dr J. Hall and coworkers at the University of Colorado, is one of the most sensitive spectroscopic techniques currently known. In this report, the first demonstra-tion of this technique in the LWIR is presented.

Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

2003-02-20T23:59:59.000Z

350

Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)  

Science Journals Connector (OSTI)

Abstract With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often exhibits a poor data management, which leads to ultimate isolation of data on disk storages. Spectral data without precise description of the target, methods, environment, and sampling geometry cannot be used by other researchers. Moreover, existing spectral data (in case it accompanied with good documentation) become virtually invisible or unreachable for researchers. Providing documentation and a data-sharing framework for spectral data, in which researchers are able to search for or share spectral data and documentation, would definitely improve the data lifetime. Relational Database Management Systems (RDBMS) are main candidates for spectral data management and their efficiency is proven by many studies and applications to date. In this study, a new approach to spectral data administration is presented based on spatial identity of spectral samples. This method benefits from scalability and performance of RDBMS for storage of spectral data, but uses GIS servers to provide users with interactive maps as an interface to the system. The spectral files, photographs and descriptive data are considered as belongings of a geospatial object. A spectral processing unit is responsible for evaluation of metadata quality and performing routine spectral processing tasks for newly-added data. As a result, by using internet browser software the users would be able to visually examine availability of data and/or search for data based on descriptive attributes associated to it. The proposed system is scalable and besides giving the users good sense of what data are available in the database, it facilitates participation of spectral reference data in producing geoinformation.

Mojtaba Karami; Kazem Rangzan; Azim Saberi

2013-01-01T23:59:59.000Z

351

Shortwave Spectral Radiative Forcing of Cumulus Clouds from Surface Observations  

SciTech Connect

The spectral changes of the total cloud radiative forcing (CRF) and its diffuse and direct components are examined by using spectrally resolved (visible spectral range) all-sky surface irradiances measured by Multi-Filter Rotating Shadowband Radiometer. We demonstrate: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and can be applied for estimation of the shortwave total CRF.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Long, Charles N.; Flynn, Connor J.

2011-04-02T23:59:59.000Z

352

The Spitzer Infrared Spectrograph Debris Disk Catalog. I. Continuum Analysis of Unresolved Targets  

Science Journals Connector (OSTI)

During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 ?m observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (~66%) were better described using a two-temperature model with warm (T gr ~ 100-500 K) and cold (T gr ~ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ~1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

Christine H. Chen; Tushar Mittal; Marc Kuchner; William J. Forrest; Carey M. Lisse; P. Manoj; Benjamin A. Sargent; Dan M. Watson

2014-01-01T23:59:59.000Z

353

Shear viscosity and spectral function of the quark matter  

E-Print Network (OSTI)

We discuss the shear viscosity of the quark matter by using the Kubo-Mori formula. It is found that the shear viscosity is expressed in terms of the quark spectral function. If the spectral function is approximated by a modified Bright-Wigner type, the viscosity decreases as the width of the spectral function increases. We also discuss dependence of the shear viscosity on the temperature and the density.

Masaharu Iwasaki; Hiromasa Ohnishi; Takahiko Fukutome

2006-06-19T23:59:59.000Z

354

Refinement of synchroton spectral tip calculations  

Science Journals Connector (OSTI)

Refinements in the computing techniques were performed in the calculation of transition rates to the ground and first excited states in magnetic bremsstrahlung via the use of exact matrix elements. The above calculations were carried out to double precision on a UNIVAC 1108 computer as was the calculation of transition rates to the second excited state. Empirical formulas are given for the transition rates from arbitrary upper states to the ground state, first excited state, and the second excited state for arbitrary magnetic field strengths. In addition the relative probabilities of transitions from level three to the remaining three lower levels is investigated in detail in the vicinity of the quantum-mechanical critical field, and the spectral tip structure for an electron in state n?1 is viewed in this high-field regime.

D. White

1978-09-15T23:59:59.000Z

355

Model for spectral and chromatographic data  

DOE Patents (OSTI)

A method and apparatus using a spectral analysis technique are disclosed. In one form of the invention, probabilities are selected to characterize the presence (and in another form, also a quantification of a characteristic) of peaks in an indexed data set for samples that match a reference species, and other probabilities are selected for samples that do not match the reference species. An indexed data set is acquired for a sample, and a determination is made according to techniques exemplified herein as to whether the sample matches or does not match the reference species. When quantification of peak characteristics is undertaken, the model is appropriately expanded, and the analysis accounts for the characteristic model and data. Further techniques are provided to apply the methods and apparatuses to process control, cluster analysis, hypothesis testing, analysis of variance, and other procedures involving multiple comparisons of indexed data.

Jarman, Kristin [Richland, WA; Willse, Alan [Richland, WA; Wahl, Karen [Richland, WA; Wahl, Jon [Richland, WA

2002-11-26T23:59:59.000Z

356

Molecular absorption in transition region spectral lines  

E-Print Network (OSTI)

Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah

2014-01-01T23:59:59.000Z

357

Spectral line broadening in magnetized black holes  

E-Print Network (OSTI)

We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach $6M$ radius. The sharp spectral line Fe K$\\alpha$, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

Valeri P. Frolov; Andrey A. Shoom; Christos Tzounis

2014-05-02T23:59:59.000Z

358

Hyperbolic monopoles, JNR data and spectral curves  

E-Print Network (OSTI)

A large class of explicit hyperbolic monopole solutions can be obtained from JNR instanton data, if the curvature of hyperbolic space is suitably tuned. Here we provide explicit formulae for both the monopole spectral curve and its rational map in terms of JNR data. Examples with platonic symmetry are presented, together with some one-parameter families with cyclic and dihedral symmetries. These families include hyperbolic analogues of geodesics that describe symmetric monopole scatterings in Euclidean space and we illustrate the results with energy density isosurfaces. There is a metric on the moduli space of hyperbolic monopoles, defined using the abelian connection on the boundary of hyperbolic space, and we provide a simple integral formula for this metric on the space of JNR data.

Stefano Bolognesi; Alex Cockburn; Paul Sutcliffe

2014-04-07T23:59:59.000Z

359

Abstract: Spectral stability of stationary solutions of a Boussinesq ...  

E-Print Network (OSTI)

We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussinesq systems. These systems model three-dimensional water ...

360

Löwner's Operator and Spectral Functions in Euclidean Jordan ...  

E-Print Network (OSTI)

Dec 24, 2004 ... spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in ...

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers  

Science Journals Connector (OSTI)

We report the observation of abnormal spectral evolution in regenerated fiber Bragg gratings in hydrogenated B–Ge-codoped and standard telecom fiber with UV overexposure. The...

Liu, Y; Williams, J A R; Zhang, L; Bennion, I

2002-01-01T23:59:59.000Z

362

Spectral characterization of a photonic bandgap fiber for sensing applications  

Science Journals Connector (OSTI)

We study the measurand-induced spectral shift of the photonic bandgap edge of a hollow-core photonic crystal fiber. The physical measurands considered are strain, temperature,...

Aref, S Hashem; Amezcua-Correac, Rodrigo; Carvalho, Joel P; Frazão, Orlando; Santos, José L; Araújo, Francisco M; Latifi, Hamid; Farahi, Faramarz; Ferreira, Luis A; Knight, Jonathan C

2010-01-01T23:59:59.000Z

363

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy...  

Open Energy Info (EERE)

affects the distribution of solar power or photon energy for each wavelength of light. Variations in solar spectral power distributions impact performance of photovoltaic...

364

Spectral differences in real-space electronic structure calculations  

Science Journals Connector (OSTI)

Real-space grids for electronic structure calculations are efficient because the potential is diagonal while the second derivative in the kinetic energy may be sparsely evaluated with finite differences or finite elements. In applications to vibrational problems in chemical physics a family of methods known as spectral differences has improved finite differences by several orders of magnitude. In this paper the use of spectral differences for electronic structure is studied. Spectral differences are implemented in two electronic structure programs PARSEC and HARES which currently employ finite differences. Applications to silicon clusters and lattices indicate that spectral differences achieve the same accuracy as finite differences with less computational work.

D. K. Jordan; D. A. Mazziotti

2004-01-01T23:59:59.000Z

365

Spectral output of Z-machine implosions.  

SciTech Connect

Sandia National Laboratories Z-machine has developed into a reproducible, high power (>200 TW), high temperature (>200 eV) driver for radiation physics experiments. Imploding cylindrical wire arrays on the Z-machine produce a radiation source with a bolometric temperature of about 200 eV. By surrounding the z-pinch implosion with a vacuum hohlraum a nearly Planckian source of about 140 eV temperature is created with peak radiation powers of about 200 terawatts and integrated energy of 2 megajoules or more. In this energy rich environment we can field a dozen experiments all being driven by an identical source. In addition to 'standard' vacuum hohlraums we also use dynamic hohlraums consisting of two nested wire arrays converging onto an axially centered foam cylinder. Radiation flowing from the ends on the cylinder indicates a Planckian source temperature well over 200 eV. Only two experiments can be fielded on a dynamic hohlraum (one on each end) but the higher source temperature justifies the added complexity of the set-up. We routinely use arrays of filtered silicon photodiodes (SiD) and filtered photocathode x-ray diodes (XRD) to determine the temperature of the source. Three different techniques for unfolding spectra from the XRD and SiD detector data are being used. They are: (1) Treat each detector independently and find the Planckian temperature for a given source size and solid angle that would give the measured detector signal, (2) Use all detector signals and detector spectral responses simultaneously and find a spectrum that best fits the observed data, (3) Use all detector signals and averaged detector spectral responses and find a histogram spectrum that best fits the observed data. When used as complementary set of analysis tools these techniques generate remarkably consistent results showing nearly Planckian behavior on our vacuum hohlraum experiments.

Idzorek, G. C. (George C.); Chrien, Robert E.; Peterson, D. L. (Darrell L.); Watt, R. G. (Robert G.); Chandler, G. A. (Gordon A.); Fehl, D. L. (David L.); Sanford, T. W. L.

2001-01-01T23:59:59.000Z

366

Through Skull Fluorescence Imaging of the Brain in a New Near-Infrared Window  

E-Print Network (OSTI)

To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400-900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1-2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3-1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly...

Hong, Guosong; Chang, Junlei; Antaris, Alexander L; Chen, Changxin; Zhang, Bo; Zhao, Su; Atochin, Dmitriy N; Huang, Paul L; Andreasson, Katrin I; Kuo, Calvin J; Dai, Hongjie

2014-01-01T23:59:59.000Z

367

Effects of Grain Morphology and Impurities on the Infrared Spectra of Silicon Carbide Particles  

E-Print Network (OSTI)

In this paper we demonstrate that distinguishing between the polytypes of silicon carbide by means of infrared features in small-grain spectra is impossible. Therefore, the infrared spectra of carbon stars, unfortunately, do not provide a means for drawing comparisons between the crystal structures of grains condensed in these environments and found in meteorites. This is proven first by comparing theoretical band profiles calculated for ellipsoidal particles, which show clearly a strong dependence on the axis ratio of the ellipsoids but negligible differences for the two most common polytypes. Second, spectra measured on submicron particle samples in the laboratory do not show any obvious correlation of band position or shape to the polytype. However, we demonstrate by measurements on SiC whiskers that grain shape is able to determine the spectrum completely. A further strong systematic influence on the band profile can be exerted by plasmon-phonon coupling due to conductivity of the SiC material. The latter fact probably is responsible for the confusion in the astronomical literature about spectral properties of SiC grains. We show that, although the conductivity seems to be a common property of many SiC laboratory samples, it is, however, independent of the polytype.

H. Mutschke; Th. Henning; D. Clément; A. C. Andersen

2001-11-15T23:59:59.000Z

368

Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups  

Science Journals Connector (OSTI)

Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and fairfieldite subgroups of formula Ca2B(AsO4)2·2H2O (where B may be Co, Fe2+, Mg, Mn, Ni and Zn). The Raman arsenate (AsO4)2? stretching region shows strong differences between the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (AsO4)2? antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm?1 are assigned to ?4 bending modes. Multiple bands in the 300–350 cm?1 region assigned to ?2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for roselite are found at 3450, 3208 and 3042 cm?1 and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.75 and 2.67 Å are estimated. Vibrational spectra enable the molecular structure of the roselite minerals to be determined and whilst similarities exist in the spectral patterns, sufficient differences exist to be able to determine the identification of the minerals.

Ray L. Frost

2009-01-01T23:59:59.000Z

369

INFRARED LUMINOSITIES AND AROMATIC FEATURES IN THE 24 {mu}m FLUX-LIMITED SAMPLE OF 5MUSES  

SciTech Connect

We study a 24 {mu}m selected sample of 330 galaxies observed with the infrared spectrograph for the 5 mJy Unbiased Spitzer Extragalactic Survey. We estimate accurate total infrared luminosities by combining mid-IR spectroscopy and mid-to-far infrared photometry, and by utilizing new empirical spectral templates from Spitzer data. The infrared luminosities of this sample range mostly from 10{sup 9} L{sub sun} to 10{sup 13.5} L{sub sun}, with 83% in the range 10{sup 10} L{sub sun} < L{sub IR} < 10{sup 12} L{sub sun}. The redshifts range from 0.008 to 4.27, with a median of 0.144. The equivalent widths of the 6.2 {mu}m aromatic feature have a bimodal distribution, probably related to selection effects. We use the 6.2 {mu}m polycyclic aromatic hydrocarbon equivalent width (PAH EW) to classify our objects as starburst (SB)-dominated (44%), SB-AGN composite (22%), and active galactic nucleus (AGN)-dominated (34%). The high EW objects (SB-dominated) tend to have steeper mid-IR to far-IR spectral slopes and lower L{sub IR} and redshifts. The low EW objects (AGN-dominated) tend to have less steep spectral slopes and higher L{sub IR} and redshifts. This dichotomy leads to a gross correlation between EW and slope, which does not hold within either group. AGN-dominated sources tend to have lower log(L{sub PAH7.7{sub {mu}m}}/L{sub PAH11.3{sub {mu}m}}) ratios than star-forming galaxies, possibly due to preferential destruction of the smaller aromatics by the AGN. The log(L{sub PAH7.7{sub {mu}m}}/L{sub PAH11.3{sub {mu}m}}) ratios for star-forming galaxies are lower in our sample than the ratios measured from the nuclear spectra of nearby normal galaxies, most probably indicating a difference in the ionization state or grain size distribution between the nuclear regions and the entire galaxy. Finally, we provide a calibration relating the monochromatic continuum or aromatic feature luminosity to L{sub IR} for different types of objects.

Wu Yanling; Helou, George; Shi Yong, E-mail: yanling@ipac.caltech.ed, E-mail: gxh@ipac.caltech.ed, E-mail: yong@ipac.caltech.ed [Infrared Processing and Analysis Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

2010-11-01T23:59:59.000Z

370

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Program Research Improves Longwave Radiative Transfer Models ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, R.G. Ellingson, E.J. Mlawer, R.O. Knuteson, H.E. Revercomb, T.R. Shippert, and W.L. Smith. 2004. Journal of Atmospheric Science, 61, 2657-2675. Top panels: Examples of downwelling infrared radiance observed by the AERI for two different clear sky cases with different amounts of water vapor. Bottom panels: Differences between the AERI observations and calculations

371

DISCOVERY OF THREE DISTANT, COLD BROWN DWARFS IN THE WFC3 INFRARED SPECTROSCOPIC PARALLELS SURVEY  

SciTech Connect

We present the discovery of three late-type ({>=}T4.5) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of {approx}400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM{proportional_to}M{sup -{alpha}} with {alpha} = 0.0-0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral-type relation than previously reported or an upturn in the number of very-late-type brown dwarfs in the observed volume.

Masters, D.; Siana, B. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Burgasser, A. J. [Center for Astrophysics and Space Science, University of California, San Diego, La Jolla, CA 92093 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Scarlata, C. [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States); Henry, A. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Colbert, J.; Atek, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Rafelski, M.; Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Bunker, A. [Department of Physics, University of Oxford, Oxford (United Kingdom)

2012-06-10T23:59:59.000Z

372

Zenith Radiance Retrieval of Cloud Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

retrievals of cloud properties retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud fraction * Cloud effective drop size, r eff * Cloud optical depth τ - the great unknown * Radiative cloud fraction * Cloud effective drop size, r eff τ = 3 2 LWP r eff r eff in μm, LWP in g/m 2 The 2-ch narrow-field-of-view radiometer (2NFOV) The 2-ch narrow-field-of-view radiometer

373

Modelling TOVS radiances of synoptic systems  

E-Print Network (OSTI)

results. Experiment compared brightness ~tures of standard soundings run through the RII4 to the same soundings run through the RII4 after the lowest two layers (65 and 66) were artificially set to zero . . . . . . . . . . . . . . . . . . . . . 27 5 5... RII4 "no moisture" experiment results. Experiment cxxnpared brightness ~tures of a sounding run ~ the RIM to the same ~sxling run through the RII4 after all relative humi- dity values had been set to 0. 1 percent ~ , . . . . . ~ ~ . . . . . . 28 6...

Coe, Thomas Eddy

2012-06-07T23:59:59.000Z

374

Resonator-quantum well infrared photodetectors  

SciTech Connect

We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

Choi, K. K., E-mail: kwong.k.choi.civ@mail.mil; Sun, J.; Olver, K. [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)] [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A. [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2013-11-11T23:59:59.000Z

375

An infrared invisibility cloak composed of glass  

Science Journals Connector (OSTI)

We propose to implement a nonmetallic low-loss cloak for the infrared range from identical chalcogenide glassresonators. Based on transformation optics for cylindrical objects our approach does not require metamaterial response to be homogeneous and accounts for the discrete nature of elementary responses governed by resonator shape illumination angle and inter-resonator coupling. Air fractions are employed to obtain the desired distribution of the cloak effective parameters. The effect of cloaking is verified by full-wave simulations of the true multiresonator structure. The feasibility of cloak fabrication is demonstrated by prototyping glass grating structures with the dimensions characteristic for the cloak resonators.

Elena Semouchkina; Douglas H. Werner; George B. Semouchkin; Carlo Pantano

2010-01-01T23:59:59.000Z

376

Infrared Images of Shock-Heated Tin  

SciTech Connect

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

377

Far-Infrared Absorptivity of Metals  

Science Journals Connector (OSTI)

A simple calculation of the far-infrared absorptivity of a strong-coupling metal in the normal state is presented which is valid in the anomalous-skin-effect (ASE) region. The form of the results is compared with that derived by an alternate procedure in a recent letter by the author. A discussion of electron-phonon renormalization effects in the ASE limit is then considered and, in particular, at frequencies below threshold (???D), an effective mass mP** is introduced which incorporates these effects.

H. Scher

1971-05-15T23:59:59.000Z

378

Application of Infrared Thermography in Building Energy Efficiency  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-3 Application of Infrared Thermography in Building Energy Efficiency Yongzheng Shi Hongbing Chen Qi Xu Deying Li Zhonghua Wang Xiumu Fang...]. Infrared Technology,2002,01:34-37.(In Chinese) [6] Yangyang Wang. Research on surface temperature of building envelope measured by thermal infrared imager [J]. Hv & Ac, 2006, 02:84-88.(In Chinese) ...

Shi, Y.; Chen, H.; Xu, Q.; I, D.; Wang, Z.; Fang, X.

2006-01-01T23:59:59.000Z

379

Doped carbon nanostructure field emitter arrays for infrared imaging  

DOE Patents (OSTI)

An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

Korsah, Kofi (Knoxville, TN) [Knoxville, TN; Baylor, Larry R (Farragut, TN) [Farragut, TN; Caughman, John B (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger A (Knoxville, TN) [Knoxville, TN; Rack, Philip D (Knoxville, TN) [Knoxville, TN; Ivanov, Ilia N (Knoxville, TN) [Knoxville, TN

2009-10-27T23:59:59.000Z

380

Microsoft Word - knuteson-ro.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Years of AERI Data from the DOE ARM 10 Years of AERI Data from the DOE ARM Southern Great Plains Site R. O. Knuteson, F. A. Best, R. G. Dedecker, W. F. Feltz, H. E. Revercomb, and D. C. Tobin University of Wisconsin-Madison Space Science and Engineering Center Madison, Wisconsin Introduction As of January 2004, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) data archive contained a 10 year record of downwelling infrared (IR) spectral emission measurements at the surface from the atmospheric emitted radiance interferometer (AERI) instrument. The authors have generated a monthly "climatology" of AERI spectral radiances for the 120 months from January 1994 through December 2003 for the DOE ARM Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) central facility (CF) in North Central Oklahoma. This AERI climatology

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hawat-T  

NLE Websites -- All DOE Office Websites (Extended Search)

ASTI-SORTI Comparison ASTI-SORTI Comparison T. M. Hawat, T. M. Stephen, and F. J. Murcray Physics and Astronomy University of Denver Denver, Colorado Abstract The Absolute Solar Transmittance Interferometer (ASTI) determines the absolutely calibrated solar spectral radiance from 1 micron to 5 microns (10000 to 2000 cm -1 ) with a 1 cm -1 spectral resolution. Recently, the Solar Radiance Transmission Interferometer (SORTI) was configured to operate in the near infrared, providing spectra from 750 nm to 2400 nm (13000 to 4000 cm -1 ) with 0.035 cm -1 resolu- tion. Simultaneous ASTI and SORTI observations at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) program site are compared in the overlap region and ASTI spectra from SGP and other sites are compared to atmospheric model calculations.

382

Principal component analysis and radiative transfer modelling of Spitzer Infrared Spectrograph spectra of ultraluminous infrared galaxies  

Science Journals Connector (OSTI)

......St, Engomi, 1516 Nicosia, Cyprus The mid-infrared spectra of...ULIRGs is a result of dust and gas reprocessing the optical and...densities (n HS) and assuming a gas-to-dust ratio of 150. The...information in IRS spectra, it is natural to use the PCs as a classification......

P. D. Hurley; S. Oliver; D. Farrah; L. Wang; A. Efstathiou

2012-08-11T23:59:59.000Z

383

Quantitative Determination of Dielectric Thin-Film Properties Using Infrared Emission Spectroscopy  

SciTech Connect

We have completed an experimental study to investigate the use of infrared emission spectroscopy (IRES) for the quantitative analysis of borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Experimental parameters investigated included temperatures within the range used in the microelectronics industry to produce these films; hence the potential for using the IRES technique for real-time monitoring of the film deposition process has been evaluated. The film properties that were investigated included boron content, phosphorus content, film thickness, and film temperature. The studies were conducted over two temperature ranges, 125 to 225 *C and 300 to 400 *C. The later temperature range includes realistic processing temperatures for the chemical vapor deposition (CVD) of the BPSG films. Partial least squares (PLS) multivariate calibration methods were applied to spectral and film property calibration data. The cross-validated standard errors of prediction (CVSEP) fi-om the PLS analysis of the IRES spectraof21 calibration samples each measured at 6 temperatures in the 300 to 400 "C range were found to be 0.09 wt. `?40 for B, 0.08 wt. `%0 for P, 3.6 ~m for film thickness, and 1.9 *C for temperature. By lowering the spectral resolution fi-om 4 to 32 cm-l and decreasing the number of spectral scans fi-om 128 to 1, we were able to determine that all the film properties could be measured in less than one second to the precision required for the manufacture and quality control of integrated circuits. Thus, real-time in-situ monitoring of BPSG thin films formed by CVD deposition on Si monitor wafers is possible with the methods reported here.

Franke, J.E.; Haaland, D.M.; Niemczyk, T.M.; Zhang, S.

1998-10-14T23:59:59.000Z

384

Spectrally Efficient Modulation and Turbo Coding for Communication Systems  

E-Print Network (OSTI)

Spectrally Efficient Modulation and Turbo Coding for Communication Systems Amer H. Alhabsi. · Modulation. · Turbo coding. · Spectral efficient modulation with TC. · Parity Assisted Decoding. · Summary encoder · It expands the data by adding redundancy. · Redundancy is added in a systematic fashion

Akl, Robert

385

Stark parameter measurement of Ar II UV spectral lines  

Science Journals Connector (OSTI)

......parameter measurement of Ar-ii UV spectral lines S. Djurovic 1 M. T. Belmonte 2 R. J...of Stark parameters of Ar-ii spectral lines. We report 126 half-width and 111 shift...16-000 to 26-000-K. atomic data|line: profiles|plasmas| 1 INTRODUCTION Stark......

S. Djurovic; M. T. Belmonte; R. J. Peláez; J. A. Aparicio; S. Mar

2013-01-01T23:59:59.000Z

386

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1  

E-Print Network (OSTI)

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1 , Olivier Rosec1 , Thierry.chonavel@telecom-bretagne.eu Abstract This paper explores the benefits of transforming spectral peaks in voice conversion. First, in examining classic GMM- based transformation with cepstral coefficients, we show that the lack of transformed

Paris-Sud XI, Université de

387

Custom Spectral Shaping for EMI Reduction in Electronic Ballasts  

E-Print Network (OSTI)

modulating waveforms, for custom spectral shaping of the fundamental harmonic of electronic ballastsCustom Spectral Shaping for EMI Reduction in Electronic Ballasts Sandra Johnson, Yan Yin, Regan Zane Colorado Power Electronics Center University of Colorado at Boulder Boulder, Colorado 80309

388

High-sensitivity, and cost-effective system for infrared imaging of concealed objects in dynamic mode.  

SciTech Connect

Novel, cost-efficient, and highly-sensitive IR imaging systems play an important role in homeland security functions. Technical limitations in the areas of sensitivity, contrast ratio, bandwidth and cost continue to constrain imaging capabilities. We have designed and prototyped a compact computer-piloted high sensitivity infrared imaging system. The device consists of infrared optics, cryostat, low-noise pre-amplifier, Analog-to-Digital hardware, feedback electronics, and unique image processing software. Important advantages of the developed system are: (i) Eight electronic channels are available for simultaneous registration of IR and visible images in multiple spectral ranges, (ii) Capability of real-time analysis such as comparing the 'sensed' image with 'reference' images from a database, (iii) High accuracy temperature measurement of multiple points on the image by referencing the radiation intensity from the object to a black body model, (iv) Image generation by real-time integration of images from multiple sensors operating from the visible to the terahertz range. The device was tested with a liquid-nitrogen-cooled, single-pixel HgCdTe detector for imaging in 8-12 microns range. The demonstrated examples of infrared imaging of concealed objects in static and dynamic modes include a hammer (metal head and wooden handle), plastic imitator of handguns hidden under clothes, powder in an envelope, and revealing complex wall structures under decorative plaster.

Gordiyenko, E.; Yefremenko, V.; Pearson, J.; Bader, S.; Novosad, V.; Materials Science Division

2005-08-05T23:59:59.000Z

389

Infrared optical properties of amorphous and nanocrystalline Ta{sub 2}O{sub 5} thin films  

SciTech Connect

The optical constants of tantalum pentoxide (Ta{sub 2}O{sub 5}) are determined in a broad spectral region from the visible to the far infrared. Ta{sub 2}O{sub 5} films of various thicknesses from approximately 170 to 1600 nm are deposited using reactive magnetron sputtering on Si substrates. X-ray diffraction shows that the as-deposited films are amorphous, and annealing in air at 800 °C results in the formation of nanocrystalline Ta{sub 2}O{sub 5}. Ellipsometry is used to obtain the dispersion in the visible and near-infrared. Two Fourier-transform infrared spectrometers are used to measure the transmittance and reflectance at wavelengths from 1 to 1000 ?m. The surface topography and microstructure of the samples are examined using atomic force microscopy, confocal microscopy, and scanning electron microscopy. Classical Lorentz oscillators are employed to model the absorption bands due to phonons and impurities. A simple model is introduced to account for light scattering in the annealed films, which contain micro-cracks. For the unannealed samples, an effective-medium approximation is used to take into account the adsorbed moisture in the film and a Drude free-electron term is also added to model the broad background absorption.

Bright, T. J.; Watjen, J. I.; Zhang, Z. M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Muratore, C. [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States) [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States); Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469 (United States); Voevodin, A. A. [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States)] [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States); Koukis, D. I.; Tanner, D. B. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Arenas, D. J. [Department of Physics, University of North Florida, Jacksonville, Florida 32254 (United States)] [Department of Physics, University of North Florida, Jacksonville, Florida 32254 (United States)

2013-08-28T23:59:59.000Z

390

NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER  

SciTech Connect

We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. Spectral types are available for five of the companions, which consist of M2V, M8.5V, L5, T8, and T8. Based on their photometry, the unclassified companions are probably two mid-M dwarfs and one late-M/early-L dwarf. One of the T8 companions, WISE J142320.84+011638.0, has already been reported by Pinfield and coworkers. The other T8 companion, ULAS J095047.28+011734.3, was discovered by Burningham and coworkers through the United Kingdom Infrared Telescope Infrared Deep Sky Survey, but its companionship has not been previously recognized in the literature. The L5 companion, 2MASS J17430860+8526594, is a new member of a class of L dwarfs that exhibit unusually blue near-IR colors. Among the possible mechanisms that have been previously proposed for the peculiar colors of these L dwarfs, low metallicity does not appear to be a viable explanation for 2MASS J17430860+8526594 since our spectrum of the primary suggests that its metallicity is not significantly subsolar.

Luhman, Kevin L.; Loutrel, Nicholas P.; McCurdy, Nicholas S.; Melso, Nicole D.; Star, Kimberly M.; Terrien, Ryan C. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Mace, Gregory N.; McLean, Ian S. [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095 (United States); Young, Michael D.; Rhode, Katherine L. [Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405 (United States); Davy Kirkpatrick, J., E-mail: kluhman@astro.psu.edu [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States)

2012-12-01T23:59:59.000Z

391

Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies: I. M33  

E-Print Network (OSTI)

Near-infrared images obtained with the Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) are used to investigate the stellar content within 18 arcsec of the center of the Local Group spiral galaxy M33. AGB stars with near-infrared spectral-energy distributions similar to those of giants in the solar neighborhood and Baade's Window are detected over most of the field. The bolometric luminosity function (LF) of these stars has a discontinuity near M_{bol} = -5.25, and comparisons with evolutionary tracks suggest that most of the AGB stars formed in a burst of star formation 1 - 3 Gyr in the past. The images are also used to investigate the integrated near-infrared photometric properties of the nucleus and the central light concentration. The nucleus is bluer than the central light concentration, in agreement with previous studies at visible wavelengths. The CO index of the central light concentration 0.5 arcsec from the galaxy center is 0.05, which corresponds to [Fe/H] = -1.2 for simple stellar systems. Hence, the central light concentration could not have formed from the chemically-enriched material that dominates the present-day inner disk of M33.

T. J. Davidge

1999-10-18T23:59:59.000Z

392

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

393

Hollow-core infrared fiber incorporating metal-wire metamaterial  

Science Journals Connector (OSTI)

Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR...

Yan, Min; Mortensen, Niels Asger

2009-01-01T23:59:59.000Z

394

IR SNOM - Infrared Near-field Nanoimaging | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Utilizing a broadly-tunable external cavity quantum cascade laser for...

395

Infrared Absorption Spectra of ? and ?-Calcium Sulphate Hemihydrates  

Science Journals Connector (OSTI)

... E. G., Trans. Brit. Ceram. Soc., 66, 485 (1967).ASTM E 168–64T General Techniques of Infrared Quantitative Analysis, section 5e.

D. A. BARTRAM

1969-08-02T23:59:59.000Z

396

Use Remote Sensing Data (selected visible and infrared spectrums...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill...

397

Near infrared laser dyes for the detection of latent fingermarks .  

E-Print Network (OSTI)

??The near infrared region (700 nm – 2000 nm) of the electromagnetic spectrum provides significant potential for fingermark detection. Many ubiquitous commercial surfaces give luminescent… (more)

Chadwick, Scott Richard John

2013-01-01T23:59:59.000Z

398

Infrared near-field spectroscopy of trace explosives using an...  

NLE Websites -- All DOE Office Websites (Extended Search)

spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum...

399

Infrared Spectroscopy and Optical Constants of Porous Amorphous...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Infrared Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Abstract: Reflection-absorption...

400

Detection of Low Volatility Organic Analytes on Soils Using Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Low Volatility Organic Analytes on Soils Using Infrared Reflection Spectroscopy. Abstract: Previous work on detection of low-volatility liquid organic (and...

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New and Underutilized Technology: Spectrally Enhanced Lighting | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spectrally Enhanced Lighting Spectrally Enhanced Lighting New and Underutilized Technology: Spectrally Enhanced Lighting October 4, 2013 - 4:50pm Addthis The following information outlines key deployment considerations for spectrally enhanced lighting within the Federal sector. Benefits U.S. Department of Energy (DOE) research studies show that simply shifting the color of fluorescent lamps from the warmer yellow to the cooler blue end of the color spectrum allows people to see things more clearly and for spaces to appear brighter. By changing the light color to be more like daylight, lighting levels can be reduced to save energy while still achieving the same visual acuity. Conventional practices use lamps with correlated color temperature (CCT) of 3,000K to 4,100K. Spectrally enhanced lighting uses lamps with a CCT of

402

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS  

Open Energy Info (EERE)

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Agency/Company /Organization: National Renewable Energy Laboratory, Centro de Energías Renovables (CER), United States Department of Energy Sector: Energy Focus Area: Solar Resource Type: Software/modeling tools, Webinar, Training materials References: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model[1] Logo: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Webinar Video SMARTSwebinar.JPG Announcement " Monday, December 6, 2010 11-12 a.m. Golden, CO 1-2 p.m., Washington, D.C. 3-4 p.m., Santiago, Chile

403

Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers  

SciTech Connect

Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

Myers, D. R.

2011-01-01T23:59:59.000Z

404

Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint  

SciTech Connect

Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

Myers, D. R.

2011-04-01T23:59:59.000Z

405

Spectral gap and logarithmic Sobolev constant for continuous spin systems  

E-Print Network (OSTI)

The aim of this paper is to study the spectral gap and the logarithmic Sobolev constant for continuous spin systems. A simple but general result for estimating the spectral gap of finite dimensional systems is given by Theorem 1.1, in terms of the spectral gap for one-dimensional marginals. The study of the topic provides us a chance, and it is indeed another aim of the paper, to justify the power of the results obtained previously. The exact order in dimension one (Proposition 1.4), and then the precise leading order and the explicit positive regions of the spectral gap and the logarithmic Sobolev constant for two typical infinite-dimensional models are presented (Theorems 6.2 and 6.3). Since we are interested in explicit estimates, the computations become quite involved. A long section (Section 4) is devoted to the study of the spectral gap in dimension one.

Mu-Fa Chen

2010-04-26T23:59:59.000Z

406

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

407

Spectral hole burning for stopping light  

SciTech Connect

We propose a protocol for storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid-state systems at low temperature, such as rare-earth ion-doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy are carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground-state Raman coherence by using brief {pi} pulses. The protocol exhibits some resemblance with the well-known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters, and theoretically examine the recovery efficiency.

Lauro, R.; Chaneliere, T.; Le Goueet, J.-L. [Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, 91405 Orsay (France)

2009-05-15T23:59:59.000Z

408

Cell-Permeable Near-Infrared Fluorogenic Substrates for Imaging -Lactamase Activity  

E-Print Network (OSTI)

Cell-Permeable Near-Infrared Fluorogenic Substrates for Imaging -Lactamase Activity Bengang Xing,11 Several fluorogenic substrates for Bla have been reported,4,12 but none work for infrared or near-infrared fluorescence imaging. Infrared/near-infrared light is preferred in molecular imaging studies of living subjects

Xing, Bengang

409

Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)  

Science Journals Connector (OSTI)

With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often ... Keywords: Metadata, Remote sensing, Spectral database, Web-GIS

Mojtaba Karami; Kazem Rangzan; Azim Saberi

2013-10-01T23:59:59.000Z

410

Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity  

SciTech Connect

While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of 2 W/cm2/ cm–1 (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of 1000 carbonyl groups at 1700 cm–1 in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of 100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

Xu, Xiaoji G.; Rang, Matthias; Craig, Ian M.; Rashcke, Markus B.

2012-06-18T23:59:59.000Z

411

Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy.  

E-Print Network (OSTI)

19. Wetzel DL: Near-infrared reflectance analysis - sleepertreatments of raw near-infrared signal in the measurement ofusing transmittance near-infrared spectroscopy. J Agric Food

2011-01-01T23:59:59.000Z

412

Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy  

E-Print Network (OSTI)

19. Wetzel DL: Near-infrared reflectance analysis - sleepertreatments of raw near-infrared signal in the measurement ofusing transmittance near-infrared spectroscopy. J Agric Food

2011-01-01T23:59:59.000Z

413

THE LAS CAMPANAS INFRARED SURVEY. III. THE H-BAND IMAGING SURVEY AND THE NEAR-INFRARED AND OPTICAL PHOTOMETRIC CATALOGS  

E-Print Network (OSTI)

THE LAS CAMPANAS INFRARED SURVEY. III. THE H-BAND IMAGING SURVEY AND THE NEAR-INFRARED AND OPTICAL on broadband optical and near-infrared photometry, is designed to robustly identify a statistically significant-reduction techniques, and object identification procedures. We present sam- ple near-infrared and optical photometric

Goddard III, William A.

414

Instrumentation for Far-infrared Spectroscopy Peter R. Griffiths1  

E-Print Network (OSTI)

at one end with an infrared transparent window (A) through which radiation reaches a thin absorbing film- and Far-Infrared Spectroscopy Window Incident radiation A B Absorbing film Pneumatic chamber Ballasting passes through the window onto a blackened film, causing the pressure of the gas in the pneumatic chamber

Homes, Christopher C.

415

Detection Improvised Explosive Device (IED) Emplacement Using Infrared Image  

Science Journals Connector (OSTI)

This paper presents a method to detect an improvised explosive device (IED) by using infrared thermography (IRT) technology. The detection of IED will be done automatically and accurately even the IED detection expert is not present. Combining the advantage ... Keywords: infrared imaging, improvised explosive device, image segmentation

Kamarul Hawari Ghazali, Mohd Shawal Jadin

2014-03-01T23:59:59.000Z

416

Free-standing inductive grid filter for infrared radiation rejection  

Science Journals Connector (OSTI)

We developed a fabrication method for free-standing metal structures with high aspect ratios to manufacture inductive grid filters for infrared rejection. Deep grooves in thermally evaporated SiO"2 layer, fabricated by electron beam lithography and etching, ... Keywords: Inductive grid filter, Infrared rejection, Metallic nanostructures

Konstantins Jefimovs; Janne Laukkanen; Tuomas Vallius; Tero Pilvi; Mikko Ritala; Tomi Meilahti; Matti Kaipiainen; Marcos Bavdaz; Markku Leskelä; Jari Turunen

2006-04-01T23:59:59.000Z

417

Multivariate classification of infrared spectra of cell and tissue samples  

DOE Patents (OSTI)

Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

Haaland, David M. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Thomas, Edward V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

418

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)

2006-12-12T23:59:59.000Z

419

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)

2006-03-21T23:59:59.000Z

420

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION  

E-Print Network (OSTI)

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION Yingying Li , Wei Computational and Applied Mathematics, Rice University ABSTRACT Early detection of oil spill events is the key in detecting the early onset of a small-scale oil spill event. Based on an infrared oil-water contrast model

Yin, Wotao

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spectral energetics of the lower thermosphere  

SciTech Connect

A spectral energetics analysis of the lower thermosphere is carried out using simulated data from the NCAR Thermosphere-Ionosphere General Circulation Model (TIGCM). The results clarify the physical processes through which upwardly propagating semidiurnal tides dissipate and release their energy into the lower thermosphere. Energy residing within the study region is partitioned into reservoirs of available potential energy, irrotational kinetic energy, and nondivergent kinetic energy at four vertical levels. A definition of available potential energy is used that is appropriate for regions of variable mean molecular weight. The reservoirs are further subdivided by vector spherical harmonic wave numbers, and an energy budget is computed for each mode. The source, sink, and transformation terms are obtained using a post-processor that reproduces the contribution of each term in the momentum and thermodynamic equations. The loss terms for the zonal wave number two modes represent the dissipating forces for the semidiurnal tides. Viscosity, heat conduction, and ion drag represent the primary dissipative forces. Numerical smoothing within the TIGCM, representing the subgrid-scale diffusion, is found to have a non-negligible contribution to the tidal dissipation. A small terdiurnal tide that is excited by ion drag is also observed in the model. A sensitivity analysis is carried out to ascertain the effects of the seasonal cycle, solar cycle, UT, and geomagnetic activity. At solar maximum, solar heating at the trough of the tide is an important dissipative force; the altitude of tidal dissipation is correspondingly lower. At high values of geomagnetic forcing, the propagating semidiurnal tide is completely dissipated within the study region.

Raskin, R.G.

1992-01-01T23:59:59.000Z

422

TAMING THE INVISIBLE MONSTER: SYSTEM PARAMETER CONSTRAINTS FOR {epsilon} AURIGAE FROM THE FAR-ULTRAVIOLET TO THE MID-INFRARED  

SciTech Connect

We have assembled new Spitzer Space Telescope IRAC observations of the mysterious binary star {epsilon} Aurigae, along with archival far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy distribution (SED) spanning 3 orders of magnitude in wavelength from 0.1 {mu}m to 100 {mu}m. The observed SED can be reproduced using a three-component model consisting of a 2.2{sup +0.9}{sub -0.8} M{sub sun} F-type post-asymptotic giant branch star, and a 5.9 {+-} 0.8 M{sub sun} B5{+-}1 type main-sequence star that is surrounded by a geometrically thick, but partially transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance of 625 pc, the model normalization yields a radius of 135 {+-} 5 R{sub sun} for the F star, consistent with published interferometric observations. The dusty disk is constrained to be viewed at an inclination of i {approx_gt} 87{sup 0}, and has an effective temperature of 550 {+-} 50 K with an outer radius of 3.8 AU and a thickness of 0.95 AU. The dust content of the disk must be largely confined to grains larger than {approx}10 {mu}m in order to produce the observed gray optical-infrared eclipses and the lack of broad dust emission features in the archival Spitzer mid-infrared spectra. The total mass of the disk, even considering a potential gaseous contribution in addition to the dust that produces the observed infrared excess, is <<1 M{sub sun}. We discuss evolutionary scenarios for this system that could lead to the current status of the stellar components and suggest possibilities for its future evolution, as well as potential observational tests of our model.

Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Howell, S. B. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Stencel, R. E. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States)

2010-05-01T23:59:59.000Z

423

INFRARED ABSORPTION SPECTROSCOPY AND CHEMICAL KINETICS OF FREE RADICALS  

NLE Websites -- All DOE Office Websites (Extended Search)

mNAL PERFORMANCE REPORT mNAL PERFORMANCE REPORT for INFRARED ABSORPTION SPECTROSCOPY AND CHEMICAL KINETICS OF FREE RADICALS DE-FG05-85ER13439 1-AUG-1985 to 31-JUL-1994 Robert F. Curl and Graham P. Glass Principal Investigators Introduction This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then

424

High-pressure Infrared Spectra of Tal and Lawsonite  

SciTech Connect

We present high-pressure infrared spectra of two geologically important hydrous minerals: talc, Mg3Si4O10(OH)2 and lawsonite, CaAl2Si2O7(OH)2{center_dot}H2O,{center_dot}at room temperature. For lawsonite, our data span the far infrared region from 150 to 550 cm-1 and extend to 25 GPa. We combine our new spectroscopic data with previously published high-pressure mid-infrared and Raman data to constrain the Gr{umlt u}neisen parameter and vibrational density of states under pressure. In the case of talc, we present high-pressure infrared data that span both the mid and far infrared from 150 to 3800 cm-1 covering lattice, silicate, and hydroxyl stretching vibrations to a maximum pressure of 30 GPa. Both phases show remarkable metastability well beyond their nominal maximum thermodynamic stability at simultaneous high-pressure and high-temperature conditions.

Scott,H.; Liu, Z.; Hemley, R.; Williams, Q.

2007-01-01T23:59:59.000Z

425

Infrared non-destructive evaluation method and apparatus  

DOE Patents (OSTI)

A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

2014-10-21T23:59:59.000Z

426

Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared  

Open Energy Info (EERE)

Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): K. Watson Published: Proceedings of the ninth international symposium on remote sensing of environment, April 15-19, p. 1919-1932., 1974 Document Number: Unavailable DOI: Unavailable Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Reconnaissance_From_Quantitative_Analysis_Of_Thermal_Infrared_Imagery&oldid=387504" Category:

427

Precision spectral manipulation: a demonstration using a coherent optical memory  

E-Print Network (OSTI)

The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include bandwidth and frequency manipulation, spectral filtering of separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. These operations have potential uses in quantum information applications.

Sparkes, B M; Hosseini, M; Higginbottom, D; Campbell, G; Lam, P K; Buchler, B C

2012-01-01T23:59:59.000Z

428

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

SciTech Connect

We evaluate the climate produced by the Community Earth System Model, version 1, running with the new spectral-element atmospheric dynamical core option. The spectral-element method is congured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere, increased parallel scalability and removing the need for polar filters. It uses a fourth order accurate spatial discretization which locally conserves mass and moist total energy. Using the Atmosphere Model Intercomparison Project protocol, we compare the results from the spectral-element dy- namical core with those produced by the default nite-volume dynamical core and with observations.

Evans, Katherine J [ORNL; Lauritzen, Peter [National Center for Atmospheric Research (NCAR); Mishra, Saroj [National Center for Atmospheric Research (NCAR); Neale, Rich [National Center for Atmospheric Research (NCAR); Taylor, Mark [Sandia National Laboratories (SNL); Tribbia, Joe [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

429

Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement  

SciTech Connect

This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-05-01T23:59:59.000Z

430

Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy  

E-Print Network (OSTI)

Questioning the questions that have been asked about the infant brain using near-infrared, University of Rochester, Rochester, NY, USA Near-infrared spectroscopy (NIRS) is a noninvasive diffuse; Near-infrared spectroscopy. "Sheddinglight"onascientificquestiontookonnew meaning when

Aslin, Richard N.

431

Nanoantennas for visible and infrared radiation  

E-Print Network (OSTI)

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of inves...

Biagioni, Paolo; Hecht, Bert

2011-01-01T23:59:59.000Z

432

Development of the Ultrashort Pulse Nonlinear Optical Microscopy Spectral Imaging System  

E-Print Network (OSTI)

by broadband sub-10-fs pulses. This dissertation will discuss the development of two spectral imaging systems using the principles of nonlinear optical microscopy for pixel-by-pixel spectral segmentation of multiple fluorescent spectra. The first spectral...

Lee, Anthony Chien-der

2012-10-19T23:59:59.000Z

433

NEAR-INFRARED BAND STRENGTHS OF MOLECULES DILUTED IN N{sub 2} AND H{sub 2}O ICE MIXTURES RELEVANT TO INTERSTELLAR AND PLANETARY ICES  

SciTech Connect

The relative abundances of ices in astrophysical environments rely on accurate laboratory measurements of physical parameters, such as band strengths (or absorption intensities), determined for the molecules of interest in relevant mixtures. In an extension of our previous study on pure-ice samples, here we focus on the near-infrared absorption features of molecules in mixtures with the dominant components of interstellar and planetary ices, H{sub 2}O and N{sub 2}. We present experimentally measured near-infrared spectral information (peak positions, widths, and band strengths) for both H{sub 2}O- and N{sub 2}-dominated mixtures of CO (carbon monoxide), CO{sub 2} (carbon dioxide), CH{sub 4} (methane), and NH{sub 3} (ammonia). Band strengths were determined during sample deposition by correlating the growth of near-infrared features (10,000-4000 cm{sup -1}, 1-2.5 {mu}m) with better-known mid-infrared features (4000-400 cm{sup -1}, 2.5-25 {mu}m) at longer wavelengths.

Richey, C. R.; Gerakines, P. A., E-mail: christina.r.richey@nasa.gov, E-mail: gerak@uab.edu [Astro- and Solar-System Physics Program, Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294-1170 (United States)

2012-11-01T23:59:59.000Z

434

A Panoramic Mid-infrared Survey of Two Distant Clusters  

E-Print Network (OSTI)

(abridged) We present panoramic Spitzer MIPS 24um observations covering 9x9Mpc (25'x25') fields around two massive clusters, Cl0024+16 and MS0451-03, at z=0.39 and z=0.55. Our observations cover a very wide range of environments within these clusters, from high-density regions around the cores out to the turn-around radius. Cross-correlating the mid-infrared catalogs with deep optical and near-infrared imaging of these fields, we investigate the optical/near-infrared colors of the mid-infrared sources. We find excesses of mid-infrared sources with optical/near-infrared colors expected of cluster members in the two clusters and test this selection using spectroscopically confirmed 24um members. The much more significant excess is associated with Cl0024+16, whereas MS0451-03 has comparatively few mid-infrared sources. The mid-infrared galaxy population in Cl0024+16 appears to be associated with dusty star-forming galaxies (typically redder than the general cluster population by up to A_V~1-2 mags) rather than emission from dusty tori around active galactic nuclei (AGN) in early-type hosts. The inferred total-infrared star-formation rates in Cl0024+16 are typically >5x greater than those found from a similar Halpha survey, indicating significant obscured activity in the cluster population. We find evidence for strong evolution of the level of dust-obscured star-formation in dense environments out to z=0.5, analogous to the rise in fraction of optically-selected star-forming galaxies seen in clusters and the field out to similar redshifts. However, there are clearly significant cluster-to-cluster variations in the populations of mid-infrared sources, probably reflecting differences in the intracluster media and recent dynamical evolution of these systems.

J. E. Geach; Ian Smail; R. S. Ellis; S. M. Moran; G. P. Smith; T. Treu; J. -P. Kneib; A. C. Edge; T. Kodama

2006-06-06T23:59:59.000Z

435

Infrared and Raman spectroscopic characterization of the arsenate mineral ceruleite Cu2Al7(AsO4)4(OH)13?11.5(H2O)  

Science Journals Connector (OSTI)

Abstract The molecular structure of the arsenate mineral ceruleite has been assessed using a combination of Raman and infrared spectroscopy. The most intense band observed at 903 cm?1 is assigned to the (AsO4)3? symmetric stretching vibrational mode. The infrared spectrum shows intense bands at 787, 827 and 886 cm?1, ascribed to the triply degenerate ?3 antisymmetric stretching vibration. Raman bands observed at 373, 400, 417 and 430 cm?1 are attributed to the ?2 vibrational mode. Three broad bands for ceruleite found at 3056, 3198 and 3384 cm?1 are assigned to water OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are calculated. Vibrational spectra enable the molecular structure of the ceruleite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.

Ray L. Frost; Andrés Lópes; Ricardo Scholz; Yunfei Xi

2013-01-01T23:59:59.000Z

436

E-Print Network 3.0 - akari far-infrared observations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

also have a capability for imaging... instruments, the Far-Infrared Surveyor (FIS; Kawada et al. 2007) and the Infrared Camera (IRC; Onaka et al... them highly suitable...

437

E-Print Network 3.0 - active infrared systems Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Renewable Energy ; Materials Science 71 A DEDICATED INFRARED SYNCHROTRON RADIATION SOURCE AT W. Barry, A. Biocca, J. M. Byrd Summary: on the Infrared Beamline",...

438

E-Print Network 3.0 - aerial color infrared Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: electronic sensors and aerial color-infrared films both record visible and near-infrared wavelengths... of the Earth in other than natural colors. The result is...

439

Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscop...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity. Pushing The Sample-Size Limit Of Infrared Vibrational...

440

EPMA, EPR, electronic and vibrational spectral studies on natural aurichalcite  

Science Journals Connector (OSTI)

The electron probe micro analysis (EPMA), electron paramagnetic resonance (EPR), electronic and vibrational spectral studies on a natural mineral, aurichalcite were studied at room temperature. The EPMA...D ...

S Vedanand; B Madhu Sudhana; B J Reddy; P Sambasiva Rao

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Direct Experimental Determination of Spectral Densities of Molecular Complexes  

E-Print Network (OSTI)

Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

Pachon, Leonardo A

2014-01-01T23:59:59.000Z

442

Spectral broadening in femtosecond laser written waveguides in chalcogenide glass  

Science Journals Connector (OSTI)

Nonlinear spectral broadening to 200 nm, from an initial width of 50 nm, has been demonstrated in gallium lanthanum sulphide glass waveguides from 1540 nm, 200 fs pulses at 30...

Hughes, Mark A; Yang, Weijia; Hewak, Daniel W

2009-01-01T23:59:59.000Z

443

Segmentation of 3D Meshes through Spectral Clustering  

E-Print Network (OSTI)

2 , 2/ , ji eji D W - = 2/12/1 -- = WLLO L : diagonal matrix of W 's row sums Normalization PG '04Segmentation of 3D Meshes through Spectral Clustering Rong Liu, Hao Zhang GrUVi Lab, Simon Fraser

Zhang, Richard "Hao"

444

The spectral distribution of solar ultraviolet radiation at the ground  

SciTech Connect

Measurements of spectral UV irradiance were made at Sutton Bonington and other sites in Saudi Arabia using a spectroradiometric system developed in this study. On clear days a linear relation between the logarithm of global irradiance I[sub [lambda

Albar, O.F.

1992-01-01T23:59:59.000Z

445

Propane spectral resolution enhancement by the maximum entropy method  

Science Journals Connector (OSTI)

The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard fast...

Bonavito, N L; Yeh, K C; Stewart, K P; Inguva, R; Hurley, E J

1990-01-01T23:59:59.000Z

446

Method and apparatus for measuring film spectral properties  

DOE Patents (OSTI)

Film spectral properties are measured by projecting chopped monochromatic light onto a luminescent film sample deposited on a substrate, and coupling through use of immersion oil the reflection of light therefrom to a light detector.

Forrest, Stephen R. (Princeton, NJ); Burrows, Paul E. (Princeton, NJ); Garbuzov, Dmitri Z. (Princeton, NJ); Bulovic, Vladimir (Metuchen, NJ)

1999-12-21T23:59:59.000Z

447

Spectral Method Using Hermite Functions for Semilinear Wave ...  

E-Print Network (OSTI)

7(2001) 719-735. [6] B. Y. Guo, Spectral Methods and Their Applications. World Sci. 1998. [7] H. P. Ma and W. W. Sun, Optimal error estimates of the Legendre-.

Yu Huang, Chenglong Xu and Yingwei Wang

2009-08-28T23:59:59.000Z

448

Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy  

Science Journals Connector (OSTI)

A spectrally and temporally programmable light engine can create any spectral profile for hyperspectral, fluorescence, or principal-component imaging or with medical photonics devices...

MacKinnon, Nicholas; Stange, Ulrich; Lane, Pierre; MacAulay, Calum; Quatrevalet, Mathieu

2005-01-01T23:59:59.000Z

449

E-Print Network 3.0 - argon spectral lines Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

spectral lines Search Powered by Explorit Topic List Advanced Search Sample search results for: argon spectral lines Page: << < 1 2 3 4 5 > >> 1 Characterization of argon arc...

450

Grain-boundary-induced magneto-far-infrared resonances in superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films  

SciTech Connect

Spectral features induced by 45{degree} in-plane misoriented grains have been observed in the far-infrared magnetotransmission of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films. Two strong dispersive features are found at 80 and 160 cm{sup {minus}1} and a weaker one at 116 cm{sup {minus}1}. The data can be well represented by Lorentzian oscillator contributions to the conductivity. Several possible interpretations are discussed. We conclude that the resonances are due to vortex core excitations. {copyright} {ital 1996 The American Physical Society.}

Lihn, H.S.; Choi, E.; Kaplan, S.; Drew, H.D. [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)] [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Li, Q.; Fenner, D.B. [Advanced Fuel Research, East Hartford, Connecticut 06138 (United States)] [Advanced Fuel Research, East Hartford, Connecticut 06138 (United States)

1996-01-01T23:59:59.000Z

451

Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range  

SciTech Connect

Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 450–1553?nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553?nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films.

Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr; Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C. [Institut d'Électronique, Microélectronique et Nanotechnologie, UMR-CNRS 8520, PRES Université Lille Nord de France, Cité Scientifique, Avenue Poincaré, CS 60069, 59652 Villeneuve d'Ascq Cedex (France); Charrier, J. [Fonctions Optiques pour les Technologies de l'informatiON, UMR-CNRS 6082, ENSSAT 6, rue de Kerampont, CS 80518, 22305 Lannion Cedex (France); Mattalah, M. [Laboratoire de Microélectronique, Université Djilali Liabes, 22000 Sidi Bel Abbes (Algeria); Barkad, H. A. [Institut Universitaire Technologique Industriel, Université de Djibouti, Avenue Georges Clémenceau, BP 1904 Djibouti (Djibouti); Mortet, V. [Institute of Physics of Academy of Sciences of Czech Republic, Fyzikální ústav AV CR, v.v.i., Na Slovance 1999/2 (Czech Republic); BenMoussa, A. [Solar Terrestrial Center of Excellence, Royal Observatory of Belgium, Circular 3, B-1180 Brussels (Belgium)

2014-04-28T23:59:59.000Z

452

A versatile real-time spectral analysis system  

E-Print Network (OSTI)

. CONCLUSIONS AND RECOMMENDATIONS REFERENCES APPENDIX A. MINDOWING APPENDIX B. CCD TRANSVERSAL FILTERS VITA Page 65 71 73 81 92 93 105 105 106 106 108 112 114 134 170 LIST OF FIGURES Figure 1. Filterbank Technique for Spectral Analysis 2... 1. Filter Bank Technique 2. Sliding Filter Technique 3. Dispersive Filter Technique 4. Discrete Fourier Transform Techniques B. Applications Requiring Spectral Analysis . . 1. Real-Time Radar Scatterometer Data Processing 2. Chirp FN Radar Data...

Hancock, Mark Steven

2012-06-07T23:59:59.000Z

453

Methods for spectral image analysis by exploiting spatial simplicity  

DOE Patents (OSTI)

Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

Keenan, Michael R. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

454

The Spectral Index Distribution of EGRET Blazars: Prospects for GLAST  

SciTech Connect

The intrinsic distribution of spectral indices in GeV energies of gamma-ray-loud blazars is a critical input in determining the spectral shape of the unresolved blazar contribution to the diffuse extragalactic gamma-ray background, as well as an important test of blazar emission theories. We present a maximum-likelihood method of determining the intrinsic spectral index distribution (ISID) of a population of {gamma}-ray emitters which accounts for error in measurement of individual spectral indices, and we apply it to EGRET blazars. We find that the most likely Gaussian ISID for EGRET blazars has a mean of 2.27 and a standard deviation of 0.20. We additionally find some indication that FSRQs and BL Lacs may have different ISIDs (with BL Lacs being harder). We also test for spectral index hardening associated with blazar variability for which we find no evidence. Finally, we produce simulated GLAST spectral index datasets and perform the same analyses. With improved statistics due to the much larger number of resolvable blazars, GLAST data will help us determine the ISIDs with much improved accuracy. Should any difference exist between the ISIDs of BL Lacs and FSRQs or between the ISIDs of blazars in the quiescent and flaring states, GLAST data will be adequate to separate these ISIDs at a significance better than 3{sigma}.

Venters, Tonia M.; Pavlidou, Vasiliki; /SLAC

2011-11-29T23:59:59.000Z

455

Spectral Evolution of The Parsec-Scale Jet in The Quasar 3C345  

E-Print Network (OSTI)

The long-term evolution of the synchrotron emission from the parsec-scale jet in the quasar 3C345 is analysed, on the basis of multi-frequency monitoring with very long baseline interferometry (VLBI) and covering the period 1979-1994. We combine the model fits from 44 VLBI observations of 3C345 made at 8 different frequencies between 2.3 and 100GHz. We calculate the turnover frequency, turnover flux density, integrated 4-25GHz flux and 4-25GHz luminosity of the core and the moving features. The core has an estimated mean luminosity of 7.1+/-3.5 * 10^42 erg/s; the estimated total luminosity of 3C345 on parsec scales is ~3*10^43 erg/s (about 1% of the observed luminosity of the source between the radio to infrared regimes). The spectral changes in the core can be reconciled with a shock or dense plasma condensation traveling through the region where the jet becomes optically thin. We are able to describe the evolution of the core spectrum by a sequence of 5 flare-like events characterized by an exponential rise and decay of the particle number density of the material injected into the jet. The same model is also capable of predicting the changes in the flux density observed in the core. The flares occur approximately every 3.5-4 years, roughly correlating with appearances of new moving features in the jet.

A. P. Lobanov; J. A. Zensus

1999-03-22T23:59:59.000Z

456

The Nuclear Spectral Energy Distribution of NGC 4395, The Least Luminous Type 1 Seyfert Galaxy  

E-Print Network (OSTI)

We present X-ray (ROSAT), infrared, and radio observations of NGC 4395, which harbors the optically least luminous type 1 Seyfert nucleus discovered thus far. In combination with published optical and ultraviolet spectra, we have used these data to assemble the broadband spectral energy distribution (SED) of the galaxy's nucleus. Interestingly, the SED of NGC 4395 differs markedly from the SEDs of both quasars and typical low-luminosity active galactic nuclei, which may be a manifestation of the different physical conditions (i.e., black hole masses, accretion rates, and/or accretion modes) that exist in these objects. The nuclear X-ray source in NGC 4395 is variable and has an observed luminosity of just ~ 10^38 ergs/s. Although this emission could plausibly be associated with either a weak active nucleus or a bright stellar-mass binary system, the optical and ultraviolet emission-line properties of the nucleus strongly suggest that the X-rays arise from a classical AGN.

E. C. Moran; A. V. Filippenko; L. C. Ho; J. C. Shields; T. Belloni; A. Comastri; S. L. Snowden; R. A. Sramek

1999-04-28T23:59:59.000Z

457

Infrared imaging: A versatile NDT method for manufacturing  

SciTech Connect

The non-contact, non-invasive, highly adaptable nature of infrared technology offers many advantages over traditional non-destructive testing methods such as x-ray and ultrasound. Recent performance improvements accompanied by cost reductions are enabling broader implementation across a wide variety of industries. Most promising for future growth are application specific configurations packaged as integrated modules. Among the many industries that benefit from infrared technology, manufacturing has experienced the greatest gain. Environments including both continuous and batch manufacturing involve many critical thermal processes. Through the use of infrared imaging equipment, these processes can be easily monitored and optimized to ensure product quality and process efficiency.

West, L.M. [FLIR Systems, Inc., Portland, OR (United States)

1995-12-31T23:59:59.000Z

458

NEAR-INFRARED DETECTION OF A SUPER-THIN DISK IN NGC 891  

SciTech Connect

We probe the disk structure of the nearby, massive, edge-on spiral galaxy NGC 891 with subarcsecond resolution JHK{sub s}-band images covering {approx} {+-}10 kpc in radius and {+-}5 kpc in height. We measure intrinsic surface brightness (SB) profiles using realistic attenuation corrections constrained from near- and mid-infrared (Spitzer) color maps and three-dimensional Monte Carlo radiative-transfer models. In addition to the well-known thin and thick disks, a super-thin disk with 60-80 pc scale-height-comparable to the star-forming disk of the Milky Way-is visibly evident and required to fit the attenuation-corrected light distribution. Asymmetries in the super-thin disk light profile are indicative of young, hot stars producing regions of excess luminosity and bluer (attenuation-corrected) near-infrared color. To fit the inner regions of NGC 891, these disks must be truncated within {approx}3 kpc, with almost all their luminosity redistributed in a bar-like structure 50% thicker than the thin disk. There appears to be no classical bulge but rather a nuclear continuation of the super-thin disk. The super-thin, thin, thick, and bar components contribute roughly 30%, 42%, 13%, and 15% (respectively) to the total K{sub s}-band luminosity. Disk axial ratios (length/height) decrease from 30 to 3 from super-thin to thick components. Both exponential and sech{sup 2} vertical SB profiles fit the data equally well. We find that the super-thin disk is significantly brighter in the K{sub s}-band than typically assumed in integrated spectral energy distribution models of NGC 891: it appears that in these models the excess flux, likely produced by young stars in the super-thin disk, has been mistakenly attributed to the thin disk.

Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States)

2013-08-10T23:59:59.000Z

459

Quantitative infrared analysis of hydrogen fluoride  

SciTech Connect

This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF{sub 6}. This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm{sup -1} as a function of pressure for 100% HF. (2) Absorbance at 3877 cm{sup -1} as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm{sup -1} for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm{sup -1} can be quantitatively analyzed via infrared methods.

Manuta, D.M.

1997-04-01T23:59:59.000Z

460

Infrared Imaging for Inquiry-Based Learning  

Science Journals Connector (OSTI)

Based on detecting long-wavelength infrared (IR) radiation emitted by the subject IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words an IR camera has great potential in teaching heat transfer which is otherwise invisible. The idea of using IR imaging in teaching was first discussed by Vollmer et al. in 2001.1–3 IR cameras were then too expensive for most schools. Thanks to the growing need of home energy inspection using IR thermography the price of IR cameras has plummeted and they have become easy to use. As of 2011 the price of an entry-level handheld IR camera such as the FLIR I3 has fallen below $900 for educators. A slightly better version FLIR I5 was used to take the IR images in this paper. As easy to use as a digital camera the I5 camera automatically generates IR images of satisfactory quality with a temperature sensitivity of 0.1°C. The purpose of this paper is to demonstrate how these affordable IR cameras can be used as a visualization inquiry and discovery tool. As the prices of IR cameras continue to drop it is time to give teachers an update about the educational power of this fascinating tool especially in supporting inquiry-based learning.

Charles Xie; Edmund Hazzard

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of...

462

E-Print Network 3.0 - aura tropospheric emission Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Collection: Geosciences 12 Satellite measurements of the clear-sky greenhouse effect from Summary: of infrared radiance from the Tropospheric Emission Spectrometer9...

463

ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Description Goals of assist were to intercompare radiance spectra and profile retrievals from a new AERI-like instrument, called "ASSIST" with the SGP site AERI(s) and calculations from Radiosondes measurements. * To bring the ASSIST instrument to the SGP ACRF and perform simultaneous measurements of the sky radiation with those from the AERI. * On relatively cloud-free days, release a special radiosonde at the

464

Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach  

SciTech Connect

We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (?0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

2014-10-25T23:59:59.000Z

465

Capture of hot holes by shallow acceptors in p-type GaAs studied by picosecond infrared spectroscopy  

Science Journals Connector (OSTI)

Picosecond recombination of free holes with shallow acceptors in p-doped GaAs is directly monitored via spectrally and temporally resolved infrared studies. Neutral Zn impurities are photoionized by picosecond excitation in the wavelength range around 5 ?m. The recombination dynamics of the free carriers with ionized acceptors is measured via transient changes of the acceptor deionization band at photon energies close to the band gap. Hole capture is observed on a time scale of up to 100 ps following nonexponential kinetics. The data are analyzed with the help of model calculations considering single-step as well as multiple-step trapping mechanisms. Emission of single longitudinal-optical phonons is found to be the main mechanism of picosecond recombination.

M. Woerner; A. Lohner; T. Elsaesser; W. Kaiser

1993-05-15T23:59:59.000Z

466

Study of valence-band intersublevel transitions in InAs/GaAs quantum dots-in-well infrared photodetectors  

SciTech Connect

The n-type quantum dot (QD) and dots-in-well (DWELL) infrared photodetectors, in general, display bias-dependent multiple-band response as a result of optical transitions between different quantum levels. Here, we present a unique characteristic of the p-type hole response, a well-preserved spectral profile, due to the much reduced tunneling probability of holes compared to electrons. This feature remains in a DWELL detector, with the dominant transition contributing to the response occurring between the QD ground state and the quantum-well states. The bias-independent response will benefit applications where single-color detection is desired and also allows achieving optimum performance by optimizing the bias.

Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G., E-mail: uperera@gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Zhang, Y. H.; Wang, T. M. [Key Laboratory of Artificial Structures and Quantum Control, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

2014-04-28T23:59:59.000Z

467

A study of Sn addition on bonding arrangement of Se-Te alloys using far infrared transmission spectroscopy  

SciTech Connect

Far infrared transmission spectra of Se{sub 92}Te{sub 8-x}Sn{sub x} (x = 0, 1, 2, 3, 4, 5) glassy alloys are obtained in the spectral range 50-600 cm{sup -1} at room temperature. The results are interpreted in terms of the vibrations of the isolated molecular units in such a way so as to preserve fourfold and twofold coordination for Sn and chalcogen atoms (Se,Te), respectively. With the addition of Sn, Far-IR spectra shift toward high frequency side and some new bands start appearing. Sn atoms appear to substitute for the selenium atoms in the outrigger sites due to large bond formation probability. Theoretical calculations of bond energy, relative probability of bond formation, force constant, and wave number were also made to justify the result.

Kumar, Rajneesh; Rangra, V. S. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, H.P. - 171005 (India); Sharma, Parikshit [Department of Physics, Sri Sai University, Palampur, HP (India); Katyal, S. C. [Department of Physics, Jaypee Institute of Information Technology, Noida, U.P. (India); Sharma, Pankaj [Department of Physics, Jaypee University of Information Technology, Waknghat, Solan, H.P. 173215 (India)

2011-07-01T23:59:59.000Z

468

Geothermal Exploration in Eastern California Using Aster Thermal Infrared  

Open Energy Info (EERE)

in Eastern California Using Aster Thermal Infrared in Eastern California Using Aster Thermal Infrared Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration in Eastern California Using Aster Thermal Infrared Data Abstract Remote sensing is a cost-effective tool that can be used to cover large areas for the purpose of geothermal exploration. A particular application is the use of satellite thermal infrared (TIR) imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard an orbiting satellite. It can be used to search remotely for elevated surface temperatures, which may be associated with geothermal resources. The study region is in the central part of eastern California, with emphasis on the Coso geothermal field. Nighttime scenes are most

469

Gas imaging by infrared gas-correlation spectrometry  

Science Journals Connector (OSTI)

We describe a new method for visualization of gas flows based on infrared absorption and gas-correlation techniques. This result is a gray-scale or false color-coded image showing the...

Sandsten, Jonas; Edner, Hans; Svanberg, Sune

1996-01-01T23:59:59.000Z

470

CHEMICAL IMAGING OF LIVING CELLS BY SYNCHROTRON INFRARED MICROSPECTROMETRY  

SciTech Connect

Chemical mapping of proteins and lipids inside a single living cell and at a resolution of a few microns, has been performed using synchroton infrared microspectrometry. Modifications of the chemical distributions upon mitosis and necrosis has been investigated.

JAMIN,N.; DUMAS,P.; MONCUIT,J.; FRIDMAN,W.H.; TEILLAUD,J.L.; CARR,G.L.; WILLIAMS,G.P.

1997-07-29T23:59:59.000Z

471

Infrared absorption spectra, radiative efficiencies, and global warming potentials  

E-Print Network (OSTI)

. Nutt,3 Keith P. Shine,4 Kevin Smith,5 and Timothy J. Wallington2 Received 17 July 2010; revised 21. Wallington (2010), Infrared absorption spectra, radiative efficiencies, and global warming potentials

Wirosoetisno, Djoko

472

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned...

473

Infrared-Based Screening System Oak Ridge National Laboratory  

E-Print Network (OSTI)

) sensors or cameras, video images, and vehicle position sensors, and are generically known as infrared in enforcement was confirmed. Background -- Since 2007, ORNL has been involved in data collection efforts

474

Cryogenic far-infrared Fabry–Perot étalon  

Science Journals Connector (OSTI)

A small cryogenic Fabry–Perot étalon was fabricated for the far-infrared region. This design used freestanding metal meshes for the reflecting elements. Using a combination of...

Peterson, D B; Pickett, H M

1991-01-01T23:59:59.000Z

475

Characterization of mid-infrared quantum cascade lasers  

E-Print Network (OSTI)

Quantum cascade lasers provide some of the highest output powers available for light in the mid-infrared range (from 3 to 8 m). As many of their applications require portability, designs that have a high wall-plug efficiency ...

Burghoff, David Patrick

2009-01-01T23:59:59.000Z

476

Wednesday, January 30, 2013 Infrared Trapping the "Greenhouse Effect"  

E-Print Network (OSTI)

Wednesday, January 30, 2013 Infrared Trapping ­ the "Greenhouse Effect" Goals ­ to look is the same as a 1.8 degree F change. #12;Last time - Greenhouse effect demo Selective absorption. Greenhouse

Toohey, Darin W.

477

Near-infrared wavefront sensing for the VLT interferometer  

E-Print Network (OSTI)

The very large telescope (VLT) interferometer (VLTI) in its current operating state is equipped with high-order adaptive optics (MACAO) working in the visible spectrum. A low-order near-infrared wavefront sensor (IRIS) is available to measure non-common path tilt aberrations downstream the high-order deformable mirror. For the next generation of VLTI instrumentation, in particular for the designated GRAVITY instrument, we have examined various designs of a four channel high-order near-infrared wavefront sensor. Particular objectives of our study were the specification of the near-infrared detector in combination with a standard wavefront sensing system. In this paper we present the preliminary design of a Shack-Hartmann wavefront sensor operating in the near-infrared wavelength range, which is capable of measuring the wavefronts of four telescopes simultaneously. We further present results of our design study, which aimed at providing a first instrumental concept for GRAVITY.

Stefan Hippler; Wolfgang Brandner; Yann Clénet; Felix Hormuth; Eric Gendron; Thomas Henning; Ralf Klein; Rainer Lenzen; Daniel Meschke; Vianak Naranjo; Udo Neumann; José Ricardo Ramos; Ralf-Rainer Rohloff; Frank Eisenhauer

2008-08-12T23:59:59.000Z

478

Near infrared frequency dependence of high-order sideband generation  

SciTech Connect

The near infrared frequency dependence of high order sideband generation in InGaAs quantum wells is discussed. The NIR frequency dependence of the sidebands indicates that the HSG phenomenon is excitonic in nature.

Zaks, Benjamin; Banks, Hunter; Sherwin, Mark [Physics Department and the Institute for Terahertz Science and Technology, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States); Liu, Ren-Bao [Physics Department and Centre of Optical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

2013-12-04T23:59:59.000Z

479

Thermal unfolding dynamics of proteins probed by nonlinear infrared spectroscopy  

E-Print Network (OSTI)

This thesis presents spectroscopic approaches to study the thermal unfolding dynamics of proteins. The spectroscopic tool is nonlinear infrared (IR) spectroscopy of the protein amide I band. Among various nonlinear IR ...

Chung, Hoi Sung

2007-01-01T23:59:59.000Z

480

Sequential optical pumping of a far-infrared ammonia laser  

SciTech Connect

We present a novel technique for resonantly pumping a continuous-wave far-infrared NH{sub 3} laser with a line-tunable mid-infrared NH{sub 3} laser that is optically pumped by a CO{sub 2} laser. In this two-step process we first convert 10-{mu}m CO{sub 2} laser photons into 11{endash}13-{mu}m NH{sub 3} laser photons, which are then converted into 60{endash}400-{mu}m photons in a far-infrared NH{sub 3} laser. Continuous-wave laser action on 10 far-infrared lines of {sup 15}NH{sub 3}, including four new ones, has been obtained with a single CO{sub 2} laser pump line. {copyright} {ital 1996 Optical Society of America.}

Tachikawa, M.; Evenson, K.M. [Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303 (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.