Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Infrared Radiance Modeling by Optimal Spectral Sampling  

Science Conference Proceedings (OSTI)

This paper describes a rapid and accurate technique for the numerical modeling of band transmittances and radiances in media with nonhomogeneous thermodynamic properties (i.e., temperature and pressure), containing a mixture of absorbing gases ...

Jean-Luc Moncet; Gennady Uymin; Alan E. Lipton; Hilary E. Snell

2008-12-01T23:59:59.000Z

2

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. ...

P. Jonathan Gero; David D. Turner

2011-09-01T23:59:59.000Z

3

ARM - Measurement - Longwave spectral radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

spectral radiance spectral radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral radiance The rate at which the spectrally resolved radiant energy in the longwave portion of the spectrum is emitted in a particular direction per unit area perpendicular to the direction of radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer ASSIST : Atmospheric Sounder Spectrometer for Infrared Spectral

4

NIST Lunar spectral irradiance and radiance (LUSI)  

Science Conference Proceedings (OSTI)

... However, a spectrally resolved model that allows trending at the 0.1 % level ... of the lunar irradiance and radiance at reflected solar wavelengths. ...

2013-04-11T23:59:59.000Z

5

Absolute spectral radiance responsivity calibration of sun photometers  

SciTech Connect

Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

Xu Qiuyun; Zheng Xiaobing; Zhang Wei; Wang Xianhua; Li Jianjun; Li Xin [Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031 (China); Li Zhengqiang [Laboratoire d'Optique Atmospherique, Universite Lille 1, Villeneuve d'Ascq 59655 (France) and State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101 (China)

2010-03-15T23:59:59.000Z

6

RETRIEVAL OF ATMOSPHERIC INVERSIONS USING GEOSTATIONARY HIGH-SPECTRAL-RESOLUTION SOUNDER RADIANCE INFORMATION  

E-Print Network (OSTI)

P5.38 RETRIEVAL OF ATMOSPHERIC INVERSIONS USING GEOSTATIONARY HIGH-SPECTRAL- RESOLUTION SOUNDER RADIANCE INFORMATION Jun Li Cooperative Institute for Meteorological Satellite Studies (CIMSS) University and possible fog formation, numerical model initialization, and sounding retrieval. High- spectral

Li, Jun

7

Using Sun Glint to Check the Relative Calibration of Reflected Spectral Radiances  

Science Conference Proceedings (OSTI)

Observations of sunlight reflected from regions of sun glint are used to check the relative calibration of spectral radiances obtained with imaging radiometers. Reflectances at different wavelengths for sun-glint regions are linearly related. ...

Gunnar Luderer; James A. Coakley Jr.; William R. Tahnk

2005-10-01T23:59:59.000Z

8

Establishing the Moon as a Spectral Radiance Standard  

Science Conference Proceedings (OSTI)

A new automated observatory dedicated to the radiometry of the moon has been constructed to provide new radiance information for calibration of earth-orbiting imaging instruments, particularly Earth Observing System instruments. Instrumentation ...

Hugh H. Kieffer; Robert L. Wildey

1996-04-01T23:59:59.000Z

9

Surface Emissivity Impact on Temperature and Moisture Soundings from Hyperspectral Infrared Radiance Measurements  

Science Conference Proceedings (OSTI)

An accurate land surface emissivity (LSE) is critical for the retrieval of atmospheric temperature and moisture profiles along with land surface temperature from hyperspectral infrared (IR) sounder radiances; it is also critical to assimilating IR ...

Zhigang Yao; Jun Li; Jinlong Li; Hong Zhang

2011-06-01T23:59:59.000Z

10

Mesoscale Spectra of Mars’s Atmosphere Derived from MGS TES Infrared Radiances  

Science Conference Proceedings (OSTI)

Wavenumber spectra of the atmospheric potential energy of Mars at mesoscales (wavelengths of 64–957 km) were obtained as a function of latitude, season, and Martian year using infrared radiance data obtained by the Thermal Emission Spectrometer (...

Takeshi Imamura; Yasuhiro Kawasaki; Tetsuya Fukuhara

2007-05-01T23:59:59.000Z

11

Satellite Determinations of the Relationship between Total Longwave Radiation Flux and Infrared Window Radiance  

Science Conference Proceedings (OSTI)

Nimbus-7 satellite observations are used to determine the relationship between the total longwave radiation flux and the radiance in the 10-12 ?m infrared window. The total longwave fluxes are obtained from the earth radiation budget (ERB) narrow-...

George Ohring; Arnold Gruber; Robert Ellingson

1984-03-01T23:59:59.000Z

12

A Model for Solar Spectral Irradiance and Radiance at the Bottom and Top of a Cloudless Atmosphere  

Science Conference Proceedings (OSTI)

A simple model is presented that, in a cloud-free atmosphere, calculates solar spectral direct and diffuse irradiance and directional radiance at the surface, spectral absorption within the atmosphere and the upward reflected spectral irradiance ...

C. G. Justus; M. V. Paris

1985-03-01T23:59:59.000Z

13

Mesoscale Cloud State Estimation from Visible and Infrared Satellite Radiances  

Science Conference Proceedings (OSTI)

This study focuses on cloudy atmosphere state estimation from high-resolution visible and infrared satellite remote sensing measurements and a mesoscale model with explicit cloud prediction. The cloud state is defined as 3D spatially distributed ...

T. Vukicevic; T. Greenwald; M. Zupanski; D. Zupanski; T. Vonder Haar; A. S. Jones

2004-12-01T23:59:59.000Z

14

Process of preparing metal parts to be heated by means of infrared radiance  

DOE Patents (OSTI)

A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

Mayer, Howard Robinson (Cincinnati, OH); Blue, Craig A. (Knoxville, TN)

2009-06-09T23:59:59.000Z

15

Spatial and Temporal Variations in Mesoscale Water Vapor Retrieved from TOVS Infrared Radiances in a Nocturnal Inversion Situation  

Science Conference Proceedings (OSTI)

Mesoscale moisture fields are retrieved from TOVS (TIROS Operational Vertical Sounder) infrared radiances from two polar-orbiting satellites. A special feature of the retrieval process is the determination of the surface skin temperature ...

Donald W. Hillger

1984-05-01T23:59:59.000Z

16

Profiling the Lower Troposphere over the Ocean with Infrared Hyperspectral Measurements of the Marine-Atmosphere Emitted Radiance Interferometer  

Science Conference Proceedings (OSTI)

Measurements of the spectra of infrared emission from the atmosphere were taken by a Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on the NOAA ship Ronald H. Brown during the Aerosol and Ocean Science Expedition (AEROSE) in ...

Malgorzata Szczodrak; Peter J. Minnett; Nicholas R. Nalli; Wayne F. Feltz

2007-03-01T23:59:59.000Z

17

Mathematical Aspects in Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part I: Constructing the Measurement Estimate Using Spatial Smoothing  

Science Conference Proceedings (OSTI)

The accuracy of temperature and moisture vertical profiles retrieved from infrared spectral measurements is dependent on accurate definition of all contributions from the observed “surface–atmosphere” system to the outgoing radiances. The ...

Youri Plokhenko; W. Paul Menzel

2001-03-01T23:59:59.000Z

18

Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) observes spectrally resolved downwelling radiance emitted by the atmosphere in the infrared portion of the electromagnetic spectrum. Profiles of temperature and water vapor, and cloud liquid ...

D.D. Turner; U. Löhnert

19

Radiometric and Geometric Calibration of a Visible Spectral Electro-Optic “Fisheye” Camera Radiance Distribution System  

Science Conference Proceedings (OSTI)

Camera systems which measure a complete hemispherical field (“fisheye” lens systems), can be applied to the measurement of the radiance, but accurate radiometric and geometric calibrations are required to obtain absolute radiance data. The ...

Kenneth J. Voss; Giuseppe Zibordi

1989-08-01T23:59:59.000Z

20

Nadir Correction of AIRS Radiances  

Science Conference Proceedings (OSTI)

A statistical method to correct for the limb effect in off-nadir Atmospheric Infrared Sounder (AIRS) channel radiances is described, using the channel radiance itself and principal components (PCs) of the other channel radiances to account for ...

Chee-Kiat Teo; Tieh-Yong Koh

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations  

Science Conference Proceedings (OSTI)

Intersatellite radiance comparisons for the 19 infrared channels of the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 are performed with simultaneous nadir observations at the orbital intersections of the ...

Changyong Cao; Hui Xu; Jerry Sullivan; Larry McMillin; Pubu Ciren; Yu-Tai Hou

2005-04-01T23:59:59.000Z

22

Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields  

Science Conference Proceedings (OSTI)

Current techniques for deriving cirrus optical depth and altitude from visible (0.65 ?m) and infrared (11.5 ?m) satellite data use radiative transfer calculations based on scattering phase functions of spherical water droplets. This study ...

Patrick Minnis; Kuo-Nan Liou; Yoshihide Takano

1993-05-01T23:59:59.000Z

23

Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor in the NCAR CAM3 Climate Model with Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and observed fields retrieved from AIRS radiances. Models: OSS: Optimal Spectral Sampling model developed at AER was used to simulate clear sky AIRS radiance spectra in CAM3. RRTMG/McICA: ARM-supported LW and SW radiative transfer model developed at AER for application to GCMs. RRTMG has been fully

24

GPU-based Calculation for Scattering Characteristics of Complex Targets from Background Radiance in Infrared Spectrum  

Science Conference Proceedings (OSTI)

Scattering characteristic of complex targets from sky and ground background radiance plays an important role in engineering fields. Firstly, a 5-parameter BRDF (Bidirectional Reflectance Distributional Function) model is introduced. Then MODTRAN is used ... Keywords: scattering characteristic, background radiance, BRDF, GPU, CUDA, optimization

Xing Guo, Zhensen Wu, Longxiang Linghu, Yufeng Yang, Yunhua Cao, Jiaji Wu

2012-12-01T23:59:59.000Z

25

The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer  

Science Conference Proceedings (OSTI)

The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) is described, and some examples of the environmental variables that can be derived from its measurements and the types of research that these can support are briefly presented. The M-...

P. J. Minnett; R. O. Knuteson; F. A. Best; B. J. Osborne; J. A. Hanafin; O. B. Brown

2001-06-01T23:59:59.000Z

26

Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Remotely Controlled, Continuous Observations of Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement (CSIRO/ARM) Program Mark II infrared (IR) filter radiometer operated continuously at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site for a period of five weeks. Data of high quality were obtained by remote operation and data transfer with no evidence of spurious

27

Determination of Semi-Transparent Cirrus Cloud Temperature from Infrared Radiances: Application to METEOSAT  

Science Conference Proceedings (OSTI)

The use of simultaneous infrared measurements to derive the temperature and emissivity of semi-transparent cirrus clouds is experimentally investigated. Results from the NASA/CONVAIR-990 Winter Experiment Program, 1977 (WEP) are discussed. It is ...

Gerard Szejwach

1982-03-01T23:59:59.000Z

28

Analysis of Information Content of Infrared Sounding Radiances in Cloudy Conditions  

Science Conference Proceedings (OSTI)

Information content analysis of the Geostationary Operational Environmental Satellite (GOES) sounder observations in the infrared was conducted for use in satellite data assimilation. Information content is defined as a first-order response of ...

T. Koyama; T. Vukicevic; M. Sengupta; T. Vonder Haar; A. S. Jones

2006-12-01T23:59:59.000Z

29

Retrieval of Cloud Microphysical Properties from Thermal Infrared Observations by a Fast Iterative Radiance Fitting Method  

Science Conference Proceedings (OSTI)

An algorithm is presented for inferring the IR optical depth, effective radius, and liquid water path of clouds from multispectral observations of emitted thermal radiation, which takes advantage of the larger number of spectral channels of ...

C. Rathke; J. Fischer

2000-11-01T23:59:59.000Z

30

Mid?Infrared Spectral Diagnostics of Luminous Infrared Galaxies  

Science Conference Proceedings (OSTI)

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All?sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on?board Spitzer in the rest?frame wavelength range between 5 and 38 ?m. The GOALS sample enables a direct measurement of the relative contributions of star?formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large

A. Petric; The GOALS collaboration

2010-01-01T23:59:59.000Z

31

The use of measured sky radiance data to improve infrared signature modelling  

Science Conference Proceedings (OSTI)

In this paper we discuss the complications of modelling the infrared signature of objects, for example ships and land-vehicles. Specifically we focus on the difficulties of accounting correctly for the effect of the environment on the signature. We attribute ...

Marcus Wilson; Ross Elliott; Keith Youern

2008-04-01T23:59:59.000Z

32

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and Preliminary Assessments of Instrument Deployments in 2006 Dedecker, Ralph University of Wisconsin Demirgian, Jack Argonne National Laboratory Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Instruments One of the key operational instruments at the Atmospheric Radiation Measurement Climate Research Facility (ACRF) is the Atmospheric Emitted Radiance Interferometer (AERI). This instrument provides the ARM program with surface-based observations of infrared spectrally resolved radiance from a vertically directed cone with better than 1% accuracy. The data from

33

Toward an Integrated Land–Ocean Surface Skin Temperature Analysis from the Variational Assimilation of Infrared Radiances  

Science Conference Proceedings (OSTI)

Geostationary Operational Environmental Satellite (GOES)-East and -West window channel radiances are directly assimilated using a 1D variational technique, providing surface skin temperature (Ts) estimates over all surface types (land, water, or ...

Louis Garand

2003-05-01T23:59:59.000Z

34

Evaluation of a New Operational Technique for Producing Clear Radiances  

Science Conference Proceedings (OSTI)

To produce atmospheric temperature profiles from measurements of infrared data, it is necessary to obtain infrared radiances for clear areas. Clear radiances are obtained either by identifying spots that are completely clear or by extracting ...

L. M. McMillin; C. Dean

1982-07-01T23:59:59.000Z

35

Radiance Covariance and Climate Models  

Science Conference Proceedings (OSTI)

Spectral empirical orthogonal functions (EOFs) derived from the covariance of satellite radiance spectra may be interpreted in terms of the vertical distribution of the covariance of temperature, water vapor, and clouds. This has been done for ...

Robert Haskins; Richard Goody; Luke Chen

1999-05-01T23:59:59.000Z

36

The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance  

Science Conference Proceedings (OSTI)

Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in ...

D. D. Turner; D. C. Tobin; S. A. Clough; P. D. Brown; R. G. Ellingson; E. J. Mlawer; R. O. Knuteson; H. E. Revercomb; T. R. Shippert; W. L. Smith; M. W. Shephard

2004-11-01T23:59:59.000Z

37

Study of ice cloud properties using infrared spectral data  

E-Print Network (OSTI)

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the METOP-A satellite, which provide the bulk-scattering properties of these clouds for the 8461 IASI channels between 645 and 2760 cm-1. We investigate the sensitivity of simulated brightness temperatures in this spectral region to the bulk-scattering properties of ice clouds containing individual ice crystal habits as well as for one habit distribution. The second part of this thesis describes an algorithm developed to analyze the sensitivity of simulated brightness temperatures at 8.5 and 11.0 µm to changes in effective cloud temperature by adjusting cloud top height and geometric thickness in a standard tropical atmosphere. Applicability of using these channels in a bi-spectral approach to retrieve cirrus cloud effective particle size and optical thickness is assessed. Finally, the algorithm is applied to the retrieval of these ice cloud properties for a case of single-layered cirrus cloud over a tropical ocean surface using measurements from the Moderate Resolution Infrared Spectroradiometer (MODIS). Cloud top height and geometric thickness in the profile are adjusted to assess the influence of effective cloud temperature on the retrieval.

Garrett, Kevin James

2007-08-01T23:59:59.000Z

38

Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design  

Science Conference Proceedings (OSTI)

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) ...

R. O. Knuteson; H. E. Revercomb; F. A. Best; N. C. Ciganovich; R. G. Dedecker; T. P. Dirkx; S. C. Ellington; W. F. Feltz; R. K. Garcia; H. B. Howell; W. L. Smith; J. F. Short; D. C. Tobin

2004-12-01T23:59:59.000Z

39

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization  

Science Conference Proceedings (OSTI)

Calibration is a critical step for developing spectral imaging systems. This paper presents a systematic calibration and characterization approach for a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. A series ... Keywords: Characterization, Inspection, LCTF, Shortwave infrared, Spectral imaging, System calibration

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

40

Building Energy Software Tools Directory: Radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiance Radiance Radiance logo. Advanced lighting simulation and rendering package; calculates spectral radiance values (illuminance & color) and spectral irradiance (illuminance & color) for interior and exterior spaces considering electric lighting, daylight and interreflection. Used by architects and designers to predict illumination, visual quality and appearance of design spaces. Used by researchers to evaluate new lighting and daylighting technologies and study visual comfort and similar quantities related to the visual environment. Keywords lighting, daylighting, rendering Validation/Testing N/A Expertise Required High level of computer literacy required; 4 days training, minimum. Users Over 200. Audience Daylighting, lighting, and architectural designers.

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MID-INFRARED SPECTRAL PROPERTIES OF POST-STARBURST QUASARS  

SciTech Connect

We present Spitzer InfraRed Spectrograph low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z {approx} 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signatures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3 {mu}m and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.

Wei Peng; Shang Zhaohui [Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Brotherton, Michael S.; Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Cales, Sabrina L. [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Hines, Dean C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ganguly, Rajib [Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, Flint, MI 48502 (United States); Canalizo, Gabriela, E-mail: zshang@gmail.com [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

2013-07-20T23:59:59.000Z

42

Spectral UV Measurements of Global Irradiance, Solar Radiance, and Actinic Flux in New Zealand: Intercomparison between Instruments and Model Calculations  

Science Conference Proceedings (OSTI)

Presented here are the results of a short but intense measurement campaign at Lauder, New Zealand, in which spectral irradiance from instruments operated by the National Institute of Water and Atmospheric Research (NIWA) and Austria/Innsbruck (...

Mario Blumthaler; Barbara Schallhart; Michael Schwarzmann; Richard McKenzie; Paul Johnston; Michael Kotkamp; Hisako Shiona

2008-06-01T23:59:59.000Z

43

A Parameterization of Broadband Conversion Factors for METEOSAT Visible Radiances  

Science Conference Proceedings (OSTI)

The conversion of radiances measured by the METEOSAT visible channel into broadband radiances can be performed as long as the appropriate conversion factors are known. A simple model allowing a spectral description of the optical properties of ...

J. Stum; B. Pinty; D. Ramond

1985-12-01T23:59:59.000Z

44

ARM's Atmospheric Emitted Radiance Interferometer (AERI) Data  

DOE Data Explorer (OSTI)

The atmospheric emitted radiance interferometer (AERI) measures the absolute infrared spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. A calibrated sky radiance spectrum is produced every 8 minutes in normal mode and every minute in rapid sampling mode. The actual sample scan time is 20-30 sec in rapid sampling mode with periodic gaps when the instrument is looking at the blackbodies. Rapid sampling will become available in all AERIs. Rapid sampling time will eventually be reduced to data every 20 seconds. The AERI data can be used for (1) evaluating line-by-line radiative transport codes, (2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and (3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.[Copied from http://www.arm.gov/instruments/aeri]

The ARM Archive at Oak Ridge National Laboratory holds data collected from the AERI for three of the permanent ARM sites, North Slope Alaska (NSA), Southern Great Plains (SGP), and the Tropical Western Pacific (TWP), as well as from mobile facilities used during specific field campaigns. AERI data has been collected since 1995.

45

Radiance Temperature  

Science Conference Proceedings (OSTI)

... Temperature using Detectors Calibrated for Absolute Spectral Power Response, HW ... A Third Generation Water Bath Based Blackbody Source, JB ...

2013-06-27T23:59:59.000Z

46

The Gastropod Fast Radiative Transfer Model for Advanced Infrared Sounders and Characterization of Its Errors for Radiance Assimilation  

Science Conference Proceedings (OSTI)

Principal aspects of the development of Gastropod, a fixed-pressure-grid fast radiative transfer model for the Atmospheric Infrared Sounder (AIRS), are described. Performance of the forward and gradient operators is characterized, and the impact ...

V. Sherlock; A. Collard; S. Hannon; R. Saunders

2003-12-01T23:59:59.000Z

47

Assimilation of Satellite Infrared Radiances and Doppler Radar Observations during a Cool Season Observing System Simulation Experiment  

Science Conference Proceedings (OSTI)

An observing system simulation experiment is used to examine the impact of assimilating water vapor–sensitive satellite infrared brightness temperatures and Doppler radar reflectivity and radial velocity observations on the analysis accuracy of a ...

Thomas A. Jones; Jason A. Otkin; David J. Stensrud; Kent Knopfmeier

2013-10-01T23:59:59.000Z

48

Update of Radiance Calibrations for ISCCP  

Science Conference Proceedings (OSTI)

Since July 1983 ISCCP has collected, normalized, and calibrated radiance data (visible and thermal infrared) from the imaging radiometers on the National Oceanic and Atmospheric Administration polar orbiters and from the geostationary satellites ...

Christopher L. Brest; William B. Rossow; Miriam D. Roiter

1997-10-01T23:59:59.000Z

49

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods R. O. Knuteson, W. L. Smith, S. A. Ackerman, H. E. Revercomb, H. Woolf, and H. Howell Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison Madison, Wisconsin Introduction Data from the Atmospheric Emitted Radiance Inter- ferometer (AERI) have been analyzed for the Atmospheric Radiation Measurement (ARM) Program's Fourier Transform Data Analysis Tools science team project under the direction of William L. Smith of the University of Wisconsin-Madison. The data consist of observations of the downwelling infrared emission at the surface from gaseous atmospheric constituents and from cloud and particulate aerosols. The observations are at 0.5 cm-1 spectral resolution over the

50

Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data  

Science Conference Proceedings (OSTI)

Measured cloud spectral signatures in high-resolution infrared interferometer data have been separated from the clear-air signatures using singular value decomposition. Sets of empirical orthogonal functions (EOFs) have then been created from ...

Jonathan A. Smith; Jonathan P. Taylor

2004-01-01T23:59:59.000Z

51

A Statistics-Based Method For The Short-Wave Infrared Spectral...  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to:...

52

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration  

Science Conference Proceedings (OSTI)

This paper presents the methodology to design and integrate a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. The system consisted of an LCTF-based SWIR spectral imager, an illumination unit, a frame grabber, ... Keywords: Food quality and safety, Hyperspectral imaging, LCTF, Nondestructive inspection, SWIR, System design

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

53

The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths  

E-Print Network (OSTI)

New far-infrared and submillimeter data are used to solidify and to extend to long wavelengths the empirical calibration of the infrared spectral energy distribution (SED) of normal star-forming galaxies. As was found by Dale et al. (2001), a single parameter family, characterized by f_nu(60 microns)/f_nu(100 microns), is adequate to describe the range of normal galaxy spectral energy distributions observed by IRAS and ISO from 3 to 100 microns. However, predictions based on the first generation models at longer wavelengths (122 to 850 microns) are increasingly overluminous compared to the data for smaller f_nu(60 microns)/f_nu(100 microns), or alternatively, for weaker global interstellar radiation fields. After slightly modifying the far-infrared/submillimeter dust emissivity in those models as a function of the radiation field intensity to better match the long wavelength data, a suite of SEDs from 3 microns to 20 cm in wavelength is presented. Results from relevant applications are also discussed, including submillimeter-based photometric redshift indicators, the infrared energy budget and simple formulae for recovering the bolometric infrared luminosity, and dust mass estimates in galaxies. Regarding the latter, since galaxy infrared SEDs are not well-described by single blackbody curves, the usual methods of estimating dust masses can be grossly inadequate. The improved model presented herein is used to provide a more accurate relation between infrared luminosity and dust mass.

Daniel A. Dale; George Helou

2002-05-06T23:59:59.000Z

54

A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Details Activities (0) Areas (0) Regions (0) Abstract: We propose a simple graphic and statistical method for processing short-wave infrared (SWIR) reflectivity spectra of alteration minerals, which classifies spectra according to their shape and absorption features, thus obtaining groups of spectra equivalent to mineral assemblages. It also permits selection of fewer samples for further mineralogical verification.

55

A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation  

Science Conference Proceedings (OSTI)

A simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) ...

Yi Huang

2013-03-01T23:59:59.000Z

56

Accurate Spectrally Resolved Infrared Radiance Observation from Space: Implications for the Detection of Decade-to-Century–Scale Climatic Change  

Science Conference Proceedings (OSTI)

The character of data required to measure decade-to-century–scale climatic change is distinctly different from that required for weather prediction or for studies of meteorological processes. The data ought to possess the accuracy to detect the ...

David W. Keith; James G. Anderson

2001-03-01T23:59:59.000Z

57

Solar Stray Light Effects in Meteosat Radiances Observed and Quantified Using Operational Data Monitoring at ECMWF  

Science Conference Proceedings (OSTI)

Radiances in the water vapor (WV) and infrared channels of the Meteorological Satellite (Meteosat)-5 and -7 are being continuously monitored in the form of clear-sky radiances using the operational European Centre for Medium-Range Weather ...

Christina Köpken

2004-01-01T23:59:59.000Z

58

Mid-Infrared Spectral Diagnostics of Nearby Galaxies  

E-Print Network (OSTI)

The Spitzer Space Telescope is pushing into new frontiers in high redshift astronomy. Closer to home, Spitzer is making an equally large impact on our understanding of galaxy formation and evolution. In this contribution we present mid-infrared diagnostics based largely on data from the Spitzer Infrared Nearby Galaxies Survey (SINGS). Our main result is that these mid-infrared diagnostics effectively constrain a target's dominant power source. The combination of a high ionization line index and PAH strength serves as an efficient discriminant between AGN and star-forming nuclei, confirming progress made with ISO spectroscopy on starbursting and ultraluminous infrared galaxies. The sensitivity of Spitzer allows us to probe fainter nuclei and star-forming regions within galaxy disks. We find that both star-forming nuclei and extranuclear regions stand apart from nuclei that are powered by Seyfert or LINER activity. In fact, we identify areas within three diagnostic diagrams containing >90% Seyfert/LINER nuclei or >90% HII regions/HII nuclei. We also find that, compared to starbursting nuclei, extranuclear regions typically separate even further from AGN, especially for low-metallicity extranuclear environments. In addition, instead of the traditional mid-infrared approach to differentiating between AGN and star-forming sources that utilizes relatively weak high-ionization lines, we show that strong low-ionization cooling lines of X-ray dominated regions like [SiII] 34.82 micron can alternatively be used as excellent discrimants.

Daniel A. Dale; the SINGS Team

2006-04-01T23:59:59.000Z

59

Global, Seasonal Surface Variations from Satellite Radiance Measurements  

Science Conference Proceedings (OSTI)

Global, daily, visible, and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July, and October 1977 to infer surface radiative properties A radiative transfer model that ...

William B. Rossow; Christopher L. Brest; Leonid C. Garder

1989-03-01T23:59:59.000Z

60

Radiance and Cloud Analyses from GOES-VAS Dwell Soundings  

Science Conference Proceedings (OSTI)

An analysis technique for Geostationary Operational Environmental Satellite-VISSR (Visible and Infrared Spin Scan Radiometer) Atmospheric Sounder (GOES-VAS) sounder data was developed to extract cloud and clear radiance information. This ...

Donald P. Wylie; Harold M. Woolf

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparing the Vertical Structures of Weighting Functions and Adjoint Sensitivity of Radiance and Verifying Mesoscale Forecasts Using AIRS Radiance Observations  

Science Conference Proceedings (OSTI)

An adjoint sensitivity analysis is conducted using the adjoint of the hyperspectral radiative transfer model (RTM) that simulates the radiance spectrum from the Advanced Infrared Sounder (AIRS). It is shown, both theoretically and numerically, ...

Matthew J. Carrier; Xiaolei Zou; William M. Lapenta

2008-04-01T23:59:59.000Z

62

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

Ryan T. Kristensen; John F. Beausang; David M. DePoy

2003-12-01T23:59:59.000Z

63

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

RF Kristensen; JF Beausang; DM DePoy

2004-06-28T23:59:59.000Z

64

An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning  

DOE Green Energy (OSTI)

We report the construction of a database of infrared spectra aimed at detecting the gases emitted by biomass burning (BB). The project uses many of the methods of the Pacific Northwest National Laboratory (PNNL) infrared database, but the selection of the species and special experimental considerations are optimized. Each spectrum is a weighted average derived from 10 or more individual measurements. Each composite has a spectral range from ? 600 cm-1 to ? 6500 cm-1 with an instrumental apodized resolution of 0.11 cm-1. The resolution was chosen to bring out all spectral features, but recognizing that pressure broadening at 760 Torr results in essentially all ro-vibrational lines having these or greater linewidths.

Johnson, Timothy J.; Profeta, Luisa TM; Sams, Robert L.; Griffith, David WT; Yokelson, Robert L.

2010-05-26T23:59:59.000Z

65

Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction  

Science Conference Proceedings (OSTI)

Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

D. Jui-Yuan Chiu

2010-10-19T23:59:59.000Z

66

Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) is a well-calibrated ground-based instrument that measures high-resolution atmospheric emitted radiances from the atmosphere. The spectral resolution of the instrument is better than one ...

Wayne F. Feltz; William L. Smith; Robert O. Knuteson; Henry E. Revercomb; Harold M. Woolf; H. Ben Howell

1998-09-01T23:59:59.000Z

67

Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm?1, 0.1 cm?1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere ...

Chenxi Wang; Ping Yang; Steven Platnick; Andrew K. Heidinger; Bryan A. Baum; Thomas Greenwald; Zhibo Zhang; Robert E. Holz

2013-03-01T23:59:59.000Z

68

The 27–28 October 1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12 ?m Window  

Science Conference Proceedings (OSTI)

Lidar and high spectral resolution infrared radiance observations taken on board the ER-2 on 28 October 1986 are used to study the radiative properties of cirrus cloud in the 8–12 ?m window region. Measurements from the High-spectral resolution ...

Steven A. Ackerman; W. L. Smith; H. E. Revercomb; J. D. Spinhirne

1990-11-01T23:59:59.000Z

69

SPECTRAL IRRADIANCE CALIBRATION IN THE INFRARED. XVII. ZERO-MAGNITUDE BROADBAND FLUX REFERENCE FOR VISIBLE-TO-INFRARED PHOTOMETRY  

Science Conference Proceedings (OSTI)

The absolutely calibrated infrared (IR) stellar spectra of standard stars described by Engelke et al. are being extended into the visible and will span a continuous wavelength range from {approx}0.35 {mu}m to 35.0 {mu}m. This paper, which is a continuation of the series on calibration initiated with Cohen et al., presents the foundation of this extension. We find that due to various irregularities Vega ({alpha} Lyr) is not suitable for its traditional role as the primary visible or near-infrared standard star. We therefore define a new zero-point flux that is independent of Vega and, as far as is feasible, uses measured spectral energy distributions (SEDs) and fluxes derived from photometry. The calibrated primary stars now underpinning this zero-point definition are 109 Vir in the visible and Sirius ({alpha} CMa) in the infrared. The resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also maintaining an unambiguous link to specific calibration stars, thus providing a pragmatic range of options for any researcher wishing to tie it to a given set of photometry.

Engelke, Charles W. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02135 (United States); Price, Stephan D.; Kraemer, Kathleen E. [Space Vehicle Directorate, Air Force Research Laboratory, 29 Randolph Road, Hanscom AFB, MA 01731 (United States)

2010-12-15T23:59:59.000Z

70

Time series analysis of AERI radiances for GCM testing and improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Time series analysis of AERI radiances for GCM testing and improvement Time series analysis of AERI radiances for GCM testing and improvement Dykema, John Harvard University Leroy, Stephen Harvard University Anderson, James Harvard University Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Category: Radiation High resolution infrared radiances measured by the Atmospheric Emitted Radiance Interferometer (AERI) contained detailed information about the structure and dynamics of temperature, water vapor, and clouds below 3 km. Infrared radiances also contain the signature of radiative forcing by well-mixed gases that constitutes the greenhouse effect. Direct comparison of these radiance observations to similar radiances calculated from output

71

radiance | OpenEI  

Open Energy Info (EERE)

radiance radiance Dataset Summary Description Freedom Field is a not-for-profit organization formed to facilitate development and commercialization of renewable energy solutions. The organization has installed a variety of renewable energy generating technologies at their facility (located at Rock River Water Reclamation in Rockford, IL), with the intention of serving as a demonstration facility. The facility monitors data (at 5-minute intervals) from a weather station, 12.4 kW of PV panels (56 220-watt panels), a 10kW wind turbine (HAWT), a 1.2 kW wind turbine (VAWT), an absorption cooling system, and biogas burners. Source Freedom Field Date Released July 19th, 2011 (3 years ago) Date Updated Unknown Keywords biogas monitoring data PV radiance solar temperature

72

Underwater Radiance Distributions Measured with Miniaturized Multispectral Radiance Cameras  

Science Conference Proceedings (OSTI)

Miniaturized radiance cameras measuring underwater multispectral radiances in all directions at high-radiometric accuracy (CE600) are presented. The camera design is described, as well as the main steps of its optical and radiometric ...

David Antoine; André Morel; Edouard Leymarie; Amel Houyou; Bernard Gentili; Stéphane Victori; Jean-Pierre Buis; Nicolas Buis; Sylvain Meunier; Marius Canini; Didier Crozel; Bertrand Fougnie; Patrice Henry

2013-01-01T23:59:59.000Z

73

Near infrared spectral imaging of explosives using a tunable laser source  

Science Conference Proceedings (OSTI)

Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

Klunder, G L; Margalith, E; Nguyen, L K

2010-03-26T23:59:59.000Z

74

The underwater radiance distribution problem  

E-Print Network (OSTI)

THE UNDERWATER RADIANCE DISTRIBUTION PROBLEM S. Q. DuntleyFunction of Depth in an Underwater Environment," which firsta Function of Depth in an Underwater Environment," which has

Duntley, Seibert Q

1959-01-01T23:59:59.000Z

75

Assessing NOAA-16 HIRS Radiance Accuracy Using Simultaneous Nadir Overpass Observations from AIRS  

Science Conference Proceedings (OSTI)

The High-Resolution Infrared Radiation Sounder (HIRS) has been carried on NOAA satellites for more than two decades, and the HIRS data have been widely used for geophysical retrievals, climate studies, and radiance assimilation for numerical ...

Likun Wang; Changyong Cao; Pubu Ciren

2007-09-01T23:59:59.000Z

76

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part I: Sensitivity of Analysis  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties. In this first paper in a ...

William B. Rossow; Leonid C. Garder; Andrew A. Lacis

1989-05-01T23:59:59.000Z

77

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties and their effects on the Earth ...

William B. Rossow; Andrew A. Lacis

1990-11-01T23:59:59.000Z

78

Hydrogen lines in the infrared region and spectral background for the thomson scattering diagnostics of the iter divertor plasma  

Science Conference Proceedings (OSTI)

Calculations are made of the plasma spectral background, which is important for the Thomson scattering diagnostics in the ITER divertor. Theoretical grounds have been elaborated for computing the hydrogen spectral line shapes in the infrared spectral region for a divertor plasma in ITER. The shape of the P-7 Paschen line (transition n = 7 {yields} n = 3) located near the laser scattering signal has been calculated for various lines of sight in the ITER divertor. Contributions from different mechanisms of broadening the P-7 line have been examined. The spectral intensities of bremsstrahlung and photorecombination continuum have been calculated. All calculations use data on the spatial distribution of temperatures and densities of all species of plasma particles computed with the SOLPS4.3 code for basic operation regimes of the ITER divertor.

Lisitsa, V. S. [National Research Center Kurchatov Institute, Tokamak Physics Institute (Russian Federation); Mukhin, E. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Kadomtsev, M. B.; Kukushkin, A. B. [National Research Center Kurchatov Institute, Tokamak Physics Institute (Russian Federation); Kukushkin, A. S. [ITER Organization, Cadarache (France); Kurskiev, G. S. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Levashova, M. G. [National Research Center Kurchatov Institute, Tokamak Physics Institute (Russian Federation); Tolstyakov, S. Yu. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

2012-02-15T23:59:59.000Z

79

Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)  

DOE Data Explorer (OSTI)

The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEĆs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsin’s Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

80

Final Scientific/Technical Report Grant title: Use of ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction This is a collaborative project with the NASA GSFC project of Dr. A. Marshak and W. Wiscombe (PIs). This report covers BU activities from February 2011 to June 2011 and BU "Â?no-cost extension" activities from June 2011 to June 2012. This report summarizes results that complement a final technical report submitted by the PIs in 2011.  

SciTech Connect

Main results are summarized for work in these areas: spectrally-invariant approximation within atmospheric radiative transfer; spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths; seasonal changes in leaf area of Amazon forests from leaf flushing and abscission; and Cloud droplet size and liquid water path retrievals from zenith radiance measurements.

Knyazikhin, Y

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Validation of ERBS Scanner Radiances  

Science Conference Proceedings (OSTI)

The earth radiation budget satellite (ERBS) has made broadband scanner measurements of the earth radiance for over 5 years. The redundancy between the shortwave, longwave, and total scanning radiometers and data averages have been used to ...

Richard N. Green; Lee M. Avis

1996-08-01T23:59:59.000Z

82

Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.  

SciTech Connect

Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

Alfano, Robert R. (3777 Independence Ave., Bronx, NY 10463); Demos, Stavros G. (3550 Pacific Ave., Apt. 304, Livermore, CA 94550); Zhang, Gang (3 Rieder Rd., Edison, NJ 08817)

2003-12-16T23:59:59.000Z

83

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple and satellite.holle generation  

E-Print Network (OSTI)

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple spectroscopyand persistentinfrared spectralhole (PIRSH) burning separatelyand together. With interferometry cm --'and, with PIRSH burning, it has beendemijnstratedthat the narrowestlinesare

Sethna, James P.

84

Radiance: Synthetic Imaging System | Open Energy Information  

Open Energy Info (EERE)

Radiance: Synthetic Imaging System Radiance: Synthetic Imaging System Jump to: navigation, search Tool Summary Name: RADIANCE Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Desktop Application Website: radsite.lbl.gov/radiance/ Cost: Free References: Radiance[1] Logo: RADIANCE RADIANCE is a highly accurate ray-tracing software system for UNIX computers that is licensed at no cost in source form. Radiance was developed with primary support from the U.S. Department Of Energy and additional support from the Swiss Federal Government. Radiance is a suite of programs for the analysis and visualization of lighting in design. Input files specify the scene geometry, materials, luminaires,time, date

85

Semi-supervised Machine Learning Algorithm in Near Infrared Spectral Calibration: A Case Study to Determine Cetane Number and Total Aromatics of Diesel Fuels  

Science Conference Proceedings (OSTI)

A new spectral calibration algorithm, Laplacian regularized least squares (LapRLS), was proposed. Commonly least squares support vector machine (LS-SVM) and partial least squares (PLS) are used for the spectral quantitative model establishment. However, ... Keywords: semi-supervised learning, supervised learning, laplacian regularized least squares, near infrared spectroscopy

Songjing Wang; Di Wu; Kangsheng Liu

2012-01-01T23:59:59.000Z

86

ARM - Measurement - Shortwave narrowband radiance  

NLE Websites -- All DOE Office Websites (Extended Search)

narrowband radiance narrowband radiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 {mu}, emitted by a radiator in a given direction, expressed in units of energy per unit time per unit solid angle. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer SWS : Shortwave Spectroradiometer

87

Radiance Solar | Open Energy Information  

Open Energy Info (EERE)

Radiance Solar Radiance Solar Jump to: navigation, search Name Radiance Solar Place Atlanta, Georgia Zip 30318 Product Commercial and residential PV installer based in Atlanta. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Synchrotron Infrared Spectroscopy with Multivariate Spectral Analyses Potentially Facilitates the Classification of Inherent Structures of Feed-Type of Sorghum  

Science Conference Proceedings (OSTI)

The objective of this study was to investigate the inherent structural-chemical features of Chinese feed-type sorghum seed using synchrotron-radiation Fourier transform infrared microspectroscopy (SRFTIRM) with two multivariate molecular spectral analysis techniques: Agglomerative Hierarchical cluster (AHCA) and principal component analyses (PCA). The results show that by application of these two multivariate techniques with the infrared spectroscopy of the SRFTIRM, it makes possible to discriminate and classify the inherent molecular structural features among the different layers of sorghum with a great efficiency. With the SRFTIRM, images of the molecular chemistry of sorghum could be generated at an ultra-spatial resolution. The features of nutrient matrix and nutrient make-up and interactions could be revealed.

Yu Peiqiang; Damiran, Daalkhaijav [College of Agriculture and Bioresources, University of Saskatchewan 51 Campus Drive, Saskatoon, S7N 5A8 (Canada); Liu Dasen [College of Animal Science and Technology, Northeast Agricultural University (China)

2010-02-03T23:59:59.000Z

89

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earth’s current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave “visible” to longwave “infrared” ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

90

Very high radiance edge-emitting LED  

SciTech Connect

A new light-emitting diode (LED) whose radiance is 1000 W/cm/sup 2/sr, an order of magnitude higher than any previous LED, is described. The LED is an (AlGa)As double-heterojunction edge-emitting structure. This structure acts as a waveguide for the internally generated light, and with appropriate Al concentration difference at the heterojunctions (..delta..x approximately equal to 0.3) and active region width (approximately 500 A), the radiation pattern perpendicular to the junction can be less than 30/sup 0/ (FWHM). For fiber-optic communications this LED is capable of coupling 850 ..mu..w, at a coupling loss of only -10 dB into a 0.14-numerical-aperture (NA), 90-..mu..m-diam low-loss fiber. The LED is capable of being directly modulated at 250 MHz and has a spectral width of less than 300 A.

Ettenberg, M.; Kressel, H.; Wittke, J.P.

1976-06-01T23:59:59.000Z

91

Assimilation of AIRS Radiances Affected by Mid- to Low-Level Clouds  

Science Conference Proceedings (OSTI)

An approach to make use of Atmospheric Infrared Sounder (AIRS) cloud-affected infrared radiances has been developed at Météo-France in the context of the global numerical weather prediction model. The method is based on (i) the detection and the ...

Thomas Pangaud; Nadia Fourrie; Vincent Guidard; Mohamed Dahoui; Florence Rabier

2009-12-01T23:59:59.000Z

92

Super-radiance in the sodium resonance lines from sodium iodide arc lamps  

Science Conference Proceedings (OSTI)

Super-radiance observed within the centers of the sodium resonance D lines emitted by arc lamps containing sodium iodide as additive in a high-pressure mercury plasma environment was studied by high-resolution emission spectroscopy. The spectral radiance of these self-reversed lines including super-radiance was simulated by considering a local enhancement of the source function due to the presence of an additional source of radiation near the arc wall. Causes of this hitherto unrecognized source of radiation are given.

Karabourniotis, D. [Department of Physics, Institute of Plasma Physics, University of Crete, 71003 Heraklion (Greece); Drakakis, E. [Department of Electrical Engineering, Technological Educational Institute, Heraklion (Greece)

2010-08-09T23:59:59.000Z

93

Mid-Infrared Spectral Diagnostics of Nuclear and Extra-Nuclear Regions in Nearby Galaxies  

E-Print Network (OSTI)

Mid-infrared diagnostics are presented for a large portion of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample plus archival data from the Infrared Space Observatory and the Spitzer Space Telescope. Our main result is that these mid-infrared diagnostics effectively constrain a target's dominant power source. The combination of a high ionization line index and PAH strength serves as an efficient discriminant between AGN and star-forming nuclei, confirming progress made with ISO spectroscopy on starbursting and ultraluminous infrared galaxies. The sensitivity of Spitzer allows us to probe fainter nuclei and star-forming regions within galaxy disks. We find that both star-forming nuclei and extranuclear regions stand apart from nuclei that are powered by Seyfert or LINER activity. In fact, we identify areas within four diagnostic diagrams containing >90% Seyfert/LINER nuclei or >90% HII regions/HII nuclei. We also find that, compared to starbursting nuclei, extranuclear regions typically separate even further from AGN, especially for low-metallicity extranuclear environments. In addition, instead of the traditional mid-infrared approach to differentiating between AGN and star-forming sources that utilizes relatively weak high-ionization lines, we show that strong low-ionization cooling lines of X-ray dominated regions like [SiII] 34.82 micron can alternatively be used as excellent discrimants. Finally, the typical target in this sample shows relatively modest interstellar electron density (~400 cm^{-3}) and obscuration (A_V ~ 1.0 mag for a foreground screen), consistent with a lack of dense clumps of highly obscured gas and dust residing in the emitting regions. [Abridged

D. A. Dale; J. D. T. Smith; L. Armus; B. A. Buckalew; G. Helou; R. C. Kennicutt; J. Moustakas; H. Roussel; K. Sheth; G. J. Bendo; D. Calzetti; B. T. Draine; C. W. Engelbracht; K. D. Gordon; D. J. Hollenbach; T. H. Jarrett; L. J. Kewley; C. Leitherer; A. Li; S. Malhotra; E. J. Murphy; F. Walter

2006-04-01T23:59:59.000Z

94

High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit  

Science Conference Proceedings (OSTI)

The first of the next-generation series of the Geostationary Operational Environmental Satellite (GOES-R) is scheduled for launch in 2015. The new series of GOES will not have an infrared (IR) sounder dedicated to acquiring high-vertical-...

Timothy J. Schmit; Jun Li; Steven A. Ackerman; James J. Gurka

2009-11-01T23:59:59.000Z

95

An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data  

Science Conference Proceedings (OSTI)

The next-generation Visible and Infrared Imaging Radiometer Suite (VIIRS) offers infrared (IR)-window measurements with a horizontal spatial resolution of at least 1 km, but it lacks IR spectral bands that are sensitive to absorption by carbon ...

Elisabeth Weisz; W. Paul Menzel; Nadia Smith; Richard Frey; Eva E. Borbas; Bryan A. Baum

2012-08-01T23:59:59.000Z

96

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

97

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H. Churnside, and J. B....

98

An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration ...

Changyong Cao; Kenneth Jarva; Pubu Ciren

2007-02-01T23:59:59.000Z

99

CIMEL Measurements of Zenith Radiances at the ARM SGP Site  

NLE Websites -- All DOE Office Websites (Extended Search)

CIMEL Measurements of Zenith Radiances CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania State University University Park, Pennsylvania A. B. Davis Los Alamos National Laboratory Space and Remote Sensing Sciences Los Alamos, New Mexico M. Miller Brookhaven National Laboratory Upton, New York Introduction The objective of our study is to exploit the sharp spectral contrast in vegetated surface reflectance across

100

Calibration of Radiances from Space  

Science Conference Proceedings (OSTI)

The authors compare the performance of broadband radiometers with spectrally dispersed measurements. Spectrally dispersed radiometers may be more accurately calibrated than is possible with broadband filter instruments. They also have a larger ...

Richard Goody; Robert Haskins

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Global illumination with radiance regression functions  

Science Conference Proceedings (OSTI)

We present radiance regression functions for fast rendering of global illumination in scenes with dynamic local light sources. A radiance regression function (RRF) represents a non-linear mapping from local and contextual attributes of surface points, ... Keywords: global illumination, neural network, non-linear regression, real time rendering

Peiran Ren; Jiaping Wang; Minmin Gong; Stephen Lin; Xin Tong; Baining Guo

2013-07-01T23:59:59.000Z

102

CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: A{sub V} = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption R{sub V} = 3.1 plus a contribution from local dust with R{sub V} > 4.0 in the Carina molecular clouds that increases as A{sub V} increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L{sub bol} {approx}> 10{sup 4} L{sub sun} by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by {approx}50%. Correcting for incompleteness due to OB stars falling below the L{sub bol} cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gagne, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Babler, Brian L.; Meade, Marilyn R.; Townsend, Richard H. D. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Indebetouw, Remy; Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Robitaille, Thomas P., E-mail: povich@astro.psu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

103

ETA CARINAE ACROSS THE 2003.5 MINIMUM: ANALYSIS IN THE VISIBLE AND NEAR-INFRARED SPECTRAL REGION  

Science Conference Proceedings (OSTI)

We present an analysis of the visible through near-infrared spectrum of Eta Carinae ({eta} Car) and its ejecta obtained during the '{eta} Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete {eta} Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid- and near-UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow-emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground-based seeing and contributions of nebular-scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.

Nielsen, K. E.; Kober, G. Vieira [Catholic University of America, Washington, DC 20064 (United States); Weis, K.; Bomans, D. J. [Astronomisches Institut, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, D-44780 Bochum (Germany); Gull, T. R. [Astrophysics Science Division, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stahl, O. [ZAH, Landessternwarte Heidelberg-Koenigstuhl, D-69117 Heidelberg (Germany)], E-mail: krister.nielsen@nasa.gov

2009-04-15T23:59:59.000Z

104

Immersion Factor of In-Water Radiance Sensors: Assessment for a Class of Radiometers  

Science Conference Proceedings (OSTI)

The spectral immersion factor of in-water radiance sensors If quantifies the effects of changes in the sensor's response when operated in water versus in air. The values of If are currently computed with a relationship derived from a basic sensor ...

Giuseppe Zibordi

2006-02-01T23:59:59.000Z

105

Platform and Environmental Effects on Above-Water Determinations of Water-Leaving Radiances  

Science Conference Proceedings (OSTI)

A comparison of above- and in-water spectral measurements in Case-1 conditions showed the uncertainty in above-water determinations of water-leaving radiances depended on the pointing angle of the above-water instruments with respect to the side ...

Stanford B. Hooker; André Morel

2003-01-01T23:59:59.000Z

106

Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers  

SciTech Connect

We present a study of the spectral and angular dependence of scattered mid-infrared light from surfaces coated with explosives residues (TNT, RDX, and tetryl) detected at a 2 meter standoff distance. An external cavity quantum cascade laser provided tunable illumination between 7 and 8 µm. Important differences were identified in the spectral features between specular reflection and diffuse scattering which will impact most practical testing scenarios and complicate material identification. We discuss some of the factors influencing the dependence of observed spectra on the experimental geometry.

Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

2012-09-01T23:59:59.000Z

107

THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

Using data from the mid-infrared to millimeter wavelengths for individual galaxies and for stacked ensembles at 0.5 tight correlation between star formation rate (SFR) and stellar mass (M {sub *}), and for starbursting galaxies that fall outside that relation. Exploiting the correlation of gas-to-dust mass with metallicity (M {sub gas}/M {sub dust}-Z), we use our measurements to constrain the gas content, CO-to-H{sub 2} conversion factors ({alpha}{sub CO}), and star formation efficiencies (SFE) of these distant galaxies. Using large statistical samples, we confirm that {alpha}{sub CO} and SFE are an order of magnitude higher and lower, respectively, in MS galaxies at high redshifts compared to the values of local galaxies with equivalently high infrared luminosities (L {sub IR} > 10{sup 12} L {sub Sun }). For galaxies within the MS, we show that the variations of specific star formation rates (sSFRs = SFR/M {sub *}) are driven by varying gas fractions. For relatively massive galaxies like those in our samples, we show that the hardness of the radiation field, (U), which is proportional to the dust-mass-weighted luminosity (L {sub IR}/M {sub dust}) and the primary parameter defining the shape of the IR spectral energy distribution (SED), is equivalent to SFE/Z. For MS galaxies with stellar mass log (M {sub *}/M {sub Sun }) {>=} 9.7 we measure this quantity, (U), showing that it does not depend significantly on either the stellar mass or the sSFR. This is explained as a simple consequence of the existing correlations between SFR-M {sub *}, M {sub *}-Z, and M {sub gas}-SFR. Instead, we show that (U) (or equally L {sub IR}/M {sub dust}) does evolve, with MS galaxies having harder radiation fields and thus warmer temperatures as redshift increases from z = 0 to 2, a trend that can also be understood based on the redshift evolution of the M {sub *}-Z and SFR-M {sub *} relations. These results motivate the construction of a universal set of SED templates for MS galaxies that are independent of their sSFR or M {sub *} but vary as a function of redshift with only one parameter, (U).

Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Daddi, E.; Bethermin, M.; Sargent, M.; Elbaz, D.; Pannella, M. [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Dickinson, M.; Kartaltepe, J. [NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Dannerbauer, H. [Institut fuer Astronophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Da Cunha, E.; Walter, F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Charmandaris, V. [Department of Physics and ICTP, University of Crete, GR-71003, Heraklion (Greece); Hwang, H. S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-11-20T23:59:59.000Z

108

SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA  

Science Conference Proceedings (OSTI)

We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

2012-07-15T23:59:59.000Z

109

Diagnosing Convective Instability from GOES-8 Radiances  

Science Conference Proceedings (OSTI)

Statistical algorithms are developed to diagnose the vertical change in equivalent potential temperature (??e) between 920 and 620 hPa from GOES-8 radiance data. The models are prepared using a training dataset of radiosonde releases from 10 ...

P. Anil Rao; Henry E. Fuelberg

1997-04-01T23:59:59.000Z

110

Polarized radiance fields under a dynamic ocean surface: a three-dimensional radiative transfer solution  

Science Conference Proceedings (OSTI)

The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)APOPAI0003-693510.1364/AO.47.001063] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.

You Yu; Zhai Pengwang; Kattawar, George W.; Yang Ping

2009-06-01T23:59:59.000Z

111

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

112

The Spectral Radiance Experiment (SPECTRE): Project Description and Sample Results  

Science Conference Proceedings (OSTI)

The fundamental climatic role of radiative processes has spurred the development of increasingly sophisticated models of radiative transfer in the earth-atmosphere system. Since the basic physics of radiative transfer is rather well known, this ...

Robert G. Ellingson; Warren J. Wiscombe

1996-09-01T23:59:59.000Z

113

Angular Distributions of Downward Longwave Radiance and Their Meteorological Applications  

Science Conference Proceedings (OSTI)

Measured thermal radiances (? > 3 ?m) from clear and cloudy skies are averaged over azimuth angles to obtain average sky radiances at various zenith angles. The observed variation of sky emissivity with zenith angle can be explained through the ...

Charles A. Coombes; Anthony W. Harrison

1986-08-01T23:59:59.000Z

114

* The far-infrared (λ > 15 µm) is an important  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

115

Observations of the Hubble Deep Field with the Infrared Space Observatory. V. Spectral Energy Distributions, Starburst Models and Star Formation History  

E-Print Network (OSTI)

We have modelled the spectral energy distributions of the 13 HDF galaxies reliably detected by ISO. For 2 galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far infrared luminosity and derive star formation rates for these galaxies of 8-1000 $\\phi M_{\\sun}$ per yr, where $\\phi$ takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the universe. Although uncertainties in the calibration, reliability of source detection, associations, and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least.

The ISO-HDF Consortium; :; Michael Rowan-Robinson

1997-07-02T23:59:59.000Z

116

A Multipurpose Scanning Spectral Polarimeter (SSP): Instrument Description and Sample Results  

Science Conference Proceedings (OSTI)

This paper describes the design and characteristics of a scanning spectral polarimeter designed to measure spectral radiances and fluxes in the range between 0.4 and 4.0 ?m. The instrument characteristics are described, and the procedures to ...

Graeme L. Stephens; Robert F. McCoy Jr.; Renata B. McCoy; Philip Gabriel; Philip T. Partain; Steven D. Miller; Steven P. Love

2000-05-01T23:59:59.000Z

117

A decadal gridded hyperspectral infrared record for climate sep 1st 2002--aug 31st 2012  

Science Conference Proceedings (OSTI)

We present a gridded Fundamental Decadal Data Record (FDDR) of Brightness Temperatures (BT) from the NASA Atmospheric Infrared Sounder (AIRS) from ten years of hyperspectral Infrared Radiances onboard the NASA EOS Aqua satellite. Although global surface ...

David Raymond Chapman / Milton Halem

2012-01-01T23:59:59.000Z

118

Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations  

Science Conference Proceedings (OSTI)

The calculation of infrared radiative fluxes and cooling rates using the two-stream equations is discussed. It is argued that at infrared wavelengths the two-stream equations are best viewed as an approximation to the differential radiance, the ...

J. M. Edwards

1996-07-01T23:59:59.000Z

119

Neural Network and Multiple Linear Regression for Estimating Surface Albedo from ASTER Visible and Near-Infrared Spectral Bands  

Science Conference Proceedings (OSTI)

The current Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-based broadband albedo model requires shortwave infrared bands 5 (2.145–2.185 nm), 6 (2.185–2.225 nm), 8 (2.295–2.365 nm), and 9 (2.360–2.430 nm) and visible/near-...

Mohammad H. Mokhtari; Ibrahim Busu; Hossein Mokhtari; Gholamreza Zahedi; Leila Sheikhattar; Mohammad A. Movahed

2013-04-01T23:59:59.000Z

120

Spectral longwave emission in the tropics: FTIR measurements at the sea surface and comparison with fast radiation codes  

Science Conference Proceedings (OSTI)

Longwave emission by the tropical western Pacific atmosphere has been measured at the ocean surface by a Fourier Transform Infrared (FTIR) spectroradiometer deployed aboard the research vessel John Vickers as part of the Central Equatorial Pacific Experiment. The instrument operated throughout a Pacific Ocean crossing, beginning on 7 March 1993 in Honiara, Solomon Islands, and ending on 29 March 1993 in Los Angeles, and recorded longwave emission spectra under atmospheres associated with sea surface temperatures ranging from 291.0 to 302.8 K. Precipitable water vapor abundances ranged from 1.9 to 5.5 column centimeters. Measured emission spectra (downwelling zenith radiance) covered the middled infrared (5-20 {mu}m) with one inverse centimeter spectral resolution. FTIR measurements made under an entirely clear field of view are compared with spectra generated by LOWTRAN 7 and MODTRAN 2, as well as downwelling flux calculated by the NCAR COmmunity Climate Model (CCM-2) radiation code, using radiosonde profiles as input data for these calculations. In the spectral interval 800-1000 cm{sup -1}, these comparisons show a discrepance between FTIR data and MODTRAN 2 having an overall variability of 6-7 mW m{sup -2} sr{sup -1} cm and a concave shape that may be related to the representation of water vapor continuum emission in MODTRAN 2. Another discrepancy appears in the spectral interval 1200-1300 cm{sup -1}, whether MODTRAN 2 appears to overestimate zenith radiance by 5 mW m{sup -2} sr-1 cm. These discrepancies appear consistently; however, they become only slightly larger at the highest water vapor abundances. Because these radiance discrepancies correspond to broadband (500-2000 cm{sup -1}) flux uncertainties of around 3 W m{sup -2}, there appear to be no serious inadequacies with the performance of MODTRAN 2 or LOWTRAN 7 at high atmospheric temperatures and water vapor abundances. 23 refs., 10 figs.

Lubin, D.; Cutchin, D.; Conant, W. [Univ. of California, La Jolla, CA (United States)] [Univ. of California, La Jolla, CA (United States); Grassl, H. [Institut fuer Meteorologie, Hamburg (Germany)] [Institut fuer Meteorologie, Hamburg (Germany); Schmid, U.; Biselli, W. [Universitaet Hamburg, Hamburg (Germany)] [Universitaet Hamburg, Hamburg (Germany)

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results H. E. Revercomb, R. O. Knuteson, W. L. Smith, F. A. Best, and R. G. Dedecker University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin Introduction Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds are now being provided to the Atmospheric Radiation Measurement (ARM) data base by the Atmospheric Emitted Radiance Interferometer (AERI) prototype at the Southern Great Plains Cloud and Radiation Testbed (CART) site. Spectra over the range from 520 to 3000 cm -1 (3 to 19 microns) with a resolution of 0.5 cm

122

A High-Accuracy Multiwavelength Radiometer for In Situ Measurements in the Thermal Infrared. Part I: Characterization of the Instrument  

Science Conference Proceedings (OSTI)

The new infrared radiometer (conveyable low-noise infrared radiometer for measurements of atmosphere and ground surface targets, or CLIMAT) is a highly sensitive field instrument designed to measure brightness temperatures or radiances in the ...

Michel Legrand; Christophe Pietras; Gérard Brogniez; Martial Haeffelin; Nader Khalil Abuhassan; Michaël Sicard

2000-09-01T23:59:59.000Z

123

Acceleration of Radiance for Lighting Simulation by using Parallel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Location Sydney, Australia Abstract This study attempted to accelerate annual daylighting simulations for fenestration systems in Radiance ray-tracing program. The...

124

Assessing Stability of CERES-FM3 Daytime Longwave Unfiltered Radiance with AIRS Radiances  

Science Conference Proceedings (OSTI)

Clouds and the Earth’s Radiant Energy System (CERES) daytime longwave (LW) radiances are determined from the difference between a total (TOT) channel (0.3–200 ?m) measurement and a shortwave (SW) channel (0.3–5 ?m) measurement, while nighttime LW ...

Xianglei Huang; Norman G. Loeb; Huiwen Chuang

2012-03-01T23:59:59.000Z

125

Hubble Space Telescope hot Jupiter Transmission Spectral Survey: detection of water in HAT-P-1b from Wide Field Camera 3 near-infrared spatial scan observations  

E-Print Network (OSTI)

We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {\\mu}m. These time series observations were taken with the newly available spatial scan mode that increases the duty cycle by nearly a factor of two, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R*=0.11709+/-0.00038 in the white light curve with the centre of transit occurring at 2456114.345+/-0.000133 (JD). We achieve S/N levels per exposure of 1840 (0.061%) at a resolution of {\\Delta\\lambda}=19.2nm (R~70) in the 1.1173 - 1.6549{\\mu}m spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultan...

Wakeford, H R; Deming, D; Gibson, N P; Fortney, J J; Burrows, A S; Ballester, G; Nikolov, N; Aigrain, S; Henry, G; Knutson, H; Etangs, A Lecavelier des; Pont, F; Showman, A P; Vidal-Madjar, A; Zahnle, K

2013-01-01T23:59:59.000Z

126

Calibration of METEOSAT Infrared Radiometer using Split Window Channels of NOAA AVHRR  

Science Conference Proceedings (OSTI)

A multispectral/multiangular procedure is proposed to calibrate the infrared channel of METEOSAT-2 IR 1 (760–980 cm?1), using the radiances of NOAA-7 AVHRR channels 4 (870–980 cm?1) and 5 (795–885 cm?1). The METEOSAT radiance can be successfully ...

A. Asem; P. Y. Deschamps; D. Ho

1987-12-01T23:59:59.000Z

127

Using digital cameras as quasi-spectral radiometers to study complex fenestration systems  

E-Print Network (OSTI)

This work discusses the use of digital cameras fitted with absorption filters as quasi-spectral radiometers. By filtering incident light into selected wavelength intervals, accurate estimates of radiances can be made for ...

Gayeski, Nicholas

128

Interpolation and Profile Correction (IPC) Method for Shortwave Radiative Transfer in Spectral Intervals of Gaseous Absorption  

Science Conference Proceedings (OSTI)

The new interpolation and profile correction (IPC) method for radiance/flux calculations in gaseous absorption bands is presented. The IPC method is designed to allow an arbitrary spectral resolution including monochromatic mode. It features a ...

Alexei I. Lyapustin

2003-03-01T23:59:59.000Z

129

Vertical Covariance Localization for Satellite Radiances in Ensemble Kalman Filters  

Science Conference Proceedings (OSTI)

A widely used observation space covariance localization method is shown to adversely affect satellite radiance assimilation in ensemble Kalman filters (EnKFs) when compared to model space covariance localization. The two principal problems are ...

William F. Campbell; Craig H. Bishop; Daniel Hodyss

2010-01-01T23:59:59.000Z

130

Determination of Moisture From NOAA Polar Orbiting Satellite Sounding Radiances  

Science Conference Proceedings (OSTI)

A method is presented for deducing lower troposphere moisture fields from radiances measured by the operational polar orbiting NOAA satellites. Statistical evaluation of the technique demonstrates the viability of the approach. A case study with ...

Christopher M. Hayden; William L. Smith; Harold M. Woolf

1981-04-01T23:59:59.000Z

131

Determination of Total Ozone Amount from TIROS Radiance Measurements  

Science Conference Proceedings (OSTI)

Total ozone amounts are determined from atmospheric radiances measured by the TIROS Operational Vertical Sounder (TOVS). The retrieval procedure is one of linear regression where total ozone amounts derived from Dobson spectrophotometer ...

Walter G. Planet; David S. Crosby; James H. Lienesch; Michael L. Hill

1984-02-01T23:59:59.000Z

132

Infrared Interferometric Measurements of the Near-Surface Air Temperature over the Oceans  

Science Conference Proceedings (OSTI)

The radiometric measurement of the marine air temperature using a Fourier transform infrared spectroradiometer is described. The measurements are taken by the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) that has been deployed on ...

P. J. Minnett; K. A. Maillet; J. A. Hanafin; B. J. Osborne

2005-07-01T23:59:59.000Z

133

Examination of the Relationship between Outgoing Infrared Window and Total Longwave Fluxes Using Satellite Data  

Science Conference Proceedings (OSTI)

The relationship between narrowband and broadband thermal radiances is explored to determine the accuracy of outgoing longwave radiation derived from narrowband data. Infrared window (10.2–12.2 ?m) data from the Geostationary Operational ...

Patrick Minnis; David F. Young; Edwin F. Harrison

1991-11-01T23:59:59.000Z

134

Acceleration of the matrix multiplication of Radiance three phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration of the matrix multiplication of Radiance three phase Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer Title Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer Publication Type Journal Article LBNL Report Number LBNL-6461E Year of Publication 2013 Authors Zuo, Wangda, Andrew McNeil, Michael Wetter, and Eleanor S. Lee Journal Journal of Building Performance Simulation Keywords daylighting simulation, graphics processing unit, multicore central processing unit, OpenCL, parallel computing Abstract Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.

135

Mathematical Aspects in Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part II: Analysis of Spatial and Temporal Continuity of Spectral Measurements from the GOES-8 Sounder  

Science Conference Proceedings (OSTI)

The spatial and temporal continuity of the infrared measurements from the Geostationary Operational Environmental Satellite (GOES)-8 sounder data are investigated, and an experimental processing approach is presented. Spatial filtering and cloud ...

Youri Plokhenko; W. Paul Menzel; Gail Bayler; Timothy J. Schmit

2003-06-01T23:59:59.000Z

136

Ground-Based Infrared Remote Sensing of Cloud Properties over the Antarctic Plateau. Part I: Cloud-Base Heights  

Science Conference Proceedings (OSTI)

A Fourier-transform interferometer, operated throughout 1992 at South Pole Station, measured downward spectral longwave radiance from 550 to 1500 cm?1 (7–18 ?m) at a resolution of 1 cm?1. Radiance measurements were usually made twice daily, ...

Ashwin Mahesh; Von P. Walden; Stephen G. Warren

2001-07-01T23:59:59.000Z

137

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 ?m to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

138

Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus  

Science Conference Proceedings (OSTI)

A set of simulated high-resolution infrared (IR) emission spectra of synthetic cirrus clouds is used to perform a sensitivity analysis of top-of-atmosphere (TOA) radiance to cloud parameters. Principal component analysis (PCA) is applied to ...

Brian H. Kahn; Annmarie Eldering; Michael Ghil; Simona Bordoni; Shepard A. Clough

2004-12-01T23:59:59.000Z

139

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

140

An All-Weather Observational Operator for Radiance Data Assimilation with Mesoscale Forecast Models  

Science Conference Proceedings (OSTI)

Assimilating satellite radiance data under all weather conditions remains an outstanding problem in numerical weather prediction. This study develops an observational operator for use in radiance assimilation under both clear and cloudy ...

Thomas J. Greenwald; Rolf Hertenstein; Tomislava Vuki?evi?

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument  

Science Conference Proceedings (OSTI)

A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument is presented. The method uses ...

Norman G. Loeb; Kory J. Priestley; David P. Kratz; Erika B. Geier; Richard N. Green; Bruce A. Wielicki; Patricia O’Rawe Hinton; Sandra K. Nolan

2001-04-01T23:59:59.000Z

142

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in the Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

2013-09-01T23:59:59.000Z

143

Observations of the Infrared Radiative Properties of the Ocean—Implications for the Measurement of Sea Surface Temperature via Satellite Remote Sensing  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) was used to measure the infrared radiative properties and the temperature of the Gulf of Mexico during a 5-day oceanographic cruise in January 1995. The ocean skin temperature was measured ...

William L. Smith; R. O. Knuteson; H. E. Revercomb; W. Feltz; N. R. Nalli; H. B. Howell; W. P. Menzel; Otis Brown; James Brown; Peter Minnett; Walter McKeown

1996-01-01T23:59:59.000Z

144

Glue Film Thickness Measurements by Spectral Reflectance  

SciTech Connect

Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 ?m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

B. R. Marshall

2010-09-20T23:59:59.000Z

145

Analysis of the SIAM Infrared Acquisition System  

SciTech Connect

This report describes and presents the results of an analysis of the performance of the infrared acquisition system for a Self-Initiated Antiaircraft Missile (SIAM). A description of the optical system is included, and models of target radiant intensity, atmospheric transmission, and background radiance are given. Acquisition probabilities are expressed in terms of the system signal-to-noise ratio. System performance against aircraft and helicopter targets is analyzed, and background discrimination techniques are discussed. 17 refs., 22 figs., 6 tabs.

Varnado, S.G.

1974-02-01T23:59:59.000Z

146

Study of the effects of ambient conditions upon the performance of fan powdered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1996--March 31, 1996  

DOE Green Energy (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared burner (PER) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PER burners for satisfactory performance. During this past quarter, a porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Various gas mixtures were tested. Results indicated that the stability limits of the burner and emissions vary with fuel gas composition and air/fuel ratio. However, the maximum radiant efficiency of the burner remained constant. Results obtained from this study can be useful to develop optimum design guidelines for PER burner manufacturers.

Bai, T.; Yeboah, Y.D.; Sampath, R.

1996-04-01T23:59:59.000Z

147

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

148

Evaluation of a Strategy for the Assimilation of Satellite Radiance Observations with the Local Ensemble Transform Kalman Filter  

Science Conference Proceedings (OSTI)

This paper evaluates a strategy for the assimilation of satellite radiance observations with the local ensemble transform Kalman filter (LETKF) data assimilation scheme. The assimilation strategy includes a mechanism to select the radiance ...

José A. Aravéquia; Istvan Szunyogh; Elana J. Fertig; Eugenia Kalnay; David Kuhl; Eric J. Kostelich

2011-06-01T23:59:59.000Z

149

Assimilation of Infrared Radiances in the Context of Observing System Simulation Experiments  

Science Conference Proceedings (OSTI)

The Observing System Simulation Experiment (OSSE) capability developed at Environment Canada allows simulation of all observation types currently used operationally as well as future data types. Its infrastructure, based on the operational global ...

Sylvain Heilliette; Yves J. Rochon; Louis Garand; Jacek W. Kaminski

2013-04-01T23:59:59.000Z

150

A Physical Formulation of Atmospheric Transmittances for the Massive Assimilation of Satellite Infrared Radiances  

Science Conference Proceedings (OSTI)

A continuous assimilation of high-density global satellite observations is required in order to improve numerical weather prediction analyses used to start forecasts. Until now, it was assumed that efficiency requirements imposed the use of ...

L. Garand; D. S. Turner; C. Chouinard; J. Hallé

1999-05-01T23:59:59.000Z

151

Precomputed local radiance transfer for real-time lighting design  

E-Print Network (OSTI)

This paper introduces a new method for real-time relighting of scenes illuminated by local light sources. We extend previous work on precomputed radiance transfer for distant lighting to local lighting by introducing the concept of unstructured light clouds. The unstructured light cloud enables a compact representation of local lights in the model and real-time rendering of complex models with full global illumination due to local light sources. We use simplification of lights, and clustered PCA to obtain a compressed representation. When storing only the indirect component of the illumination, we are able to get high quality with only 8– 16 lighting coefficients per vertex. Our results demonstrate real-time rendering of scenes with moving lights, dynamic cameras, glossy materials and global illumination.

Anders Wang Kristensen

2005-01-01T23:59:59.000Z

152

Visible/infrared radiometric calibration station  

Science Conference Proceedings (OSTI)

We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W. [Los Alamos National Lab., NM (United States); O`Brian, T.R. [National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Radiometric Physics Div.

1994-07-01T23:59:59.000Z

153

Method to analyze remotely sensed spectral data  

SciTech Connect

A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

Stork, Christopher L. (Albuquerque, NM); Van Benthem, Mark H. (Middletown, DE)

2009-02-17T23:59:59.000Z

154

Spectral Reflectance of Whitecaps: Instrumentation, Calibration, and Performance in Coastal Waters  

Science Conference Proceedings (OSTI)

A measurement system for determining the spectral reflectance of whitecaps in the open ocean is described. The upwelling radiance is obtained from a ship by observing a small region of the water surface over time using a six-channel radiometer (...

Karl D. Moore; Kenneth J. Voss; Howard R. Gordon

1998-04-01T23:59:59.000Z

155

Scene Radiance–Dependent Intersatellite Biases of HIRS Longwave Channels  

Science Conference Proceedings (OSTI)

Measurements from the simultaneous nadir overpass (SNO) observations of the High Resolution Infrared Radiation Sounder (HIRS) are examined. The SNOs are the measurements taken at the orbital intersections of each pair of satellites viewing the ...

Lei Shi; John J. Bates; Changyong Cao

2008-12-01T23:59:59.000Z

156

Radiance Comparisons of MODIS and AIRS Using Spatial Response Information  

Science Conference Proceedings (OSTI)

The combination of multiple satellite instruments on a pixel-by-pixel basis is a difficult task, even for instruments collocated in space and time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder ...

M. M. Schreier; B. H. Kahn; A. Eldering; D. A. Elliott; E. Fishbein; F. W. Irion; T. S. Pagano

2010-08-01T23:59:59.000Z

157

Improved Near–Infrared Spectral Responsivity Scale  

Science Conference Proceedings (OSTI)

... or materials are identi- fied in this paper to foster ... by using higher power monochromatized light, such as ... TR O'Brian, U. Arp, HH White, TB Lucatorto ...

2013-06-12T23:59:59.000Z

158

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

159

Radiance: Science and Stagecraft Come Together via Alan Alda and Marie  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiance: Science and Stagecraft Come Together via Alan Alda and Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie May 27, 2011 - 1:30pm Addthis Alan Alda | Photo Courtesy of www.alanalda.com Alan Alda | Photo Courtesy of www.alanalda.com Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science They might appear to have little in common. She received two Nobel Prizes. He won six Emmys. She was born in Poland and made her name in Paris. He was born in New York City, and made his fame in Hollywood. Despite their differences, Marie Curie and Alan Alda will be coming together on opening night of the upcoming World Science Festival, through a special reading of his first play, Radiance: The Passion of Marie Curie.

160

Radiance: Science and Stagecraft Come Together via Alan Alda and Marie  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiance: Science and Stagecraft Come Together via Alan Alda and Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie Radiance: Science and Stagecraft Come Together via Alan Alda and Marie Curie May 27, 2011 - 1:30pm Addthis Alan Alda | Photo Courtesy of www.alanalda.com Alan Alda | Photo Courtesy of www.alanalda.com Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science They might appear to have little in common. She received two Nobel Prizes. He won six Emmys. She was born in Poland and made her name in Paris. He was born in New York City, and made his fame in Hollywood. Despite their differences, Marie Curie and Alan Alda will be coming together on opening night of the upcoming World Science Festival, through a special reading of his first play, Radiance: The Passion of Marie Curie.

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Interchannel Error Correlation Associated with AIRS Radiance Observations: Inference and Impact in Data Assimilation  

Science Conference Proceedings (OSTI)

The interchannel observation error correlation (IOEC) associated with radiance observations is currently assumed to be zero in meteorological data assimilation systems. This assumption may lead to suboptimal analyses. Here, the IOEC is inferred ...

Louis Garand; Sylvain Heilliette; Mark Buehner

2007-06-01T23:59:59.000Z

162

Normalization and Calibration of Geostationary Satellite Radiances for the international Satellite Cloud Climatology Project  

Science Conference Proceedings (OSTI)

Procedures are described for normalizing the radiometric calibration of image radiances obtained from the suite of geostationary weather satellites that contributed data to the international Satellite Cloud Climatology Project. The key step is ...

Yves Desormeaux; William B. Rossow; Christopher L. Brest; G. Garrett Campbell

1993-06-01T23:59:59.000Z

163

Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

The impact of radiance observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) was investigated in the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). The GDAS ...

Masahiro Kazumori; Quanhua Liu; Russ Treadon; John C. Derber

2008-02-01T23:59:59.000Z

164

An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances  

Science Conference Proceedings (OSTI)

A high-quality dataset collected at an oceanographic tower was used to compare water-leaving radiances derived from simultaneous above- and in-water optical measurements. The former involved two different above-water systems and four different ...

Stanford B. Hooker; Gordana Lazin; Giuseppe Zibordi; Scott McLean

2002-04-01T23:59:59.000Z

165

Global Observations of Upper-Tropospheric Water Vapor Derived from TOVS Radiance Data  

Science Conference Proceedings (OSTI)

This paper describes a physically based method for the retrieval of upper-tropospheric humidity (UTH) and upper-tropospheric column water vapor (UTCWV) based an the use of radiance data collected by the TIROS Operational Vertical Sounder (TOVS), ...

Graeme L. Stephens; Darren L. Jackson; Ian Wittmeyer

1996-02-01T23:59:59.000Z

166

Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances  

Science Conference Proceedings (OSTI)

A fast physically based dual-regression (DR) method is developed to produce, in real time, accurate profile and surface- and cloud-property retrievals from satellite ultraspectral radiances observed for both clear- and cloudy-sky conditions. The ...

William L. Smith Sr.; Elisabeth Weisz; Stanislav V. Kireev; Daniel K. Zhou; Zhenglong Li; Eva E. Borbas

2012-08-01T23:59:59.000Z

167

A Technique for Estimating Outgoing Longwave Radiation from HIRS Radiance Observations  

Science Conference Proceedings (OSTI)

A new technique for estimating outgoing longwave radiation from observations on the NOAA operational satellites has been developed from a regression analysis of radiation model calculations. The technique consists of a weighted sum of radiance in ...

Robert G. Ellingson; David J. Yanuk; Hai-Tien Lee; Arnold Gruber

1989-08-01T23:59:59.000Z

168

A Method for Combining Radiances and Wind Shear to Define the Temperature Structure of the Atmosphere  

Science Conference Proceedings (OSTI)

The retrieval of temperature from satellite-observed radiances has traditionally been addressed as a one-dimensional or columnar problem which uses a guess profile of temperature. In this study, the traditional approach is augmented by ...

John Lewis; Christopher Hayden; John Derber

1989-06-01T23:59:59.000Z

169

Evaluating Added Benefits of Assimilating GOES Imager Radiance Data in GSI for Coastal QPFs  

Science Conference Proceedings (OSTI)

The Geostationary Operational Environmental Satellites (GOES) provide high-resolution, temporally continuous imager radiance data over the West Coast (GOES-West currently known as GOES-11) and East Coast (GOES-East currently GOES-12) of the United ...

Zhengkun Qin; Xiaolei Zou; Fuzhong Weng

2013-01-01T23:59:59.000Z

170

Satellite Radiance Assimilation in the JMA Operational Mesoscale 4D-Var System  

Science Conference Proceedings (OSTI)

The direct radiance assimilation scheme used in the Japan Meteorological Agency (JMA) global analysis system is applied to the JMA mesoscale 4-dimensional variational (4D-Var) system with two modifications. First, the data thinning distance is ...

Masahiro Kazumori

171

Clear-Sky Window Channel Radiances: A Comparison between Observations and the ECMWF Model  

Science Conference Proceedings (OSTI)

A comparison of clear-sky radiances of the Meteosat window channel with the European Centre for Medium-Range Weather Forecasts (ECMWF) model results is presented, aiming to assess both the model's performance and the quality of the observations. ...

Isabel F. Trigo; Pedro Viterbo

2003-10-01T23:59:59.000Z

172

Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model  

Science Conference Proceedings (OSTI)

In this paper results are presented from a simple offline assimilation system that uses radiances from the Moderate Resolution Imaging Spectroradiometer (MODIS) channels that sense atmospheric aerosols over land and ocean. The MODIS information ...

Clark Weaver; Arlindo da Silva; Mian Chin; Paul Ginoux; Oleg Dubovik; Dave Flittner; Aahmad Zia; Lorraine Remer; Brent Holben; Watson Gregg

2007-03-01T23:59:59.000Z

173

Development of a GOES-R Advanced Baseline Imager Solar Channel Radiance Simulator for Ice Clouds  

Science Conference Proceedings (OSTI)

This paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ...

Shouguo Ding; Ping Yang; Bryan A. Baum; Andrew Heidinger; Thomas Greenwald

2013-04-01T23:59:59.000Z

174

Boundary-Layer Structure Over Tropical Oceans from TIROS-N Infrared Sounder Observations  

Science Conference Proceedings (OSTI)

It has been shown by simulation studies that the 13.4, 11.1 and 8.3 ?m spectral radiances are sensitive to the moisture distribution within the boundary layer. If the distribution gets significantly perturbed due to some stratification present in ...

Vijay K. Agarwal; A. V. Ashajayanthi

1983-07-01T23:59:59.000Z

175

Spectral Content  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Content of the NLC Bunch Train due to Long Range Wakefields Peter Tenenbaum LCC-Note-0015 10-May-1999 Abstract The functional specifications of the sub-train position...

176

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

of radiance in the far-infrared region of the electromagnetic spectrum. Water vapor absorption in this spectral region affects radiative heating and cooling of the upper...

177

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL Wangda Zuo, Andrew McNeil, Michael Wetter, Eleanor Lee Building Technologies Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ABSTRACT We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross- platform parallel programming language. Numerical

178

Radiometry High Spectral Resolution Fourier  

NLE Websites -- All DOE Office Websites (Extended Search)

High Spectral Resolution Fourier High Spectral Resolution Fourier Transform Infrared Instruments for the Atmospheric Radiation Measurement Program H. E. Revercomb, W. L. Smith, R. O. Knuteson, F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, and J. F. Short University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin D. Murcray and F. Murcray University of Denver Denver, Colorado Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds have been identified as crucial for realizing the overall objectives of the Atmospheric Radiation Measurement (ARM) Program to improve the treatment of radiation and clouds in climate models. The observed

179

Monitoring of IR Clear-Sky Radiances over Oceans for SST (MICROS)  

Science Conference Proceedings (OSTI)

Monitoring of IR Clear-Sky Radiances over Oceans for SST (MICROS) is a Web-based tool to monitor “model minus observation” (M ? O) biases in clear-sky brightness temperatures (BTs) and sea surface temperatures (SSTs) produced by the Advanced Clear-...

Xingming Liang; Alexander Ignatov

2011-10-01T23:59:59.000Z

180

Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment  

Science Conference Proceedings (OSTI)

An autonomous system for making above-water radiance measurements has been produced by adding a new measurement scenario to a CIMEL CE-318 sun photometer. The new system, called the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Photometer ...

G. Zibordi; S. B. Hooker; J. F. Berthon; D. D'Alimonte

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of AIRS and IASI Radiances Using GOES Imagers as Transfer Radiometers toward Climate Data Records  

Science Conference Proceedings (OSTI)

The Atmospheric Infrared Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI), together with the future Cross-track Infrared Sounder, will provide long-term hyperspectral measurements of the earth and its atmosphere at 10 ...

Likun Wang; Xiangqian Wu; Mitch Goldberg; Changyong Cao; Yaping Li; Seung-Hee Sohn

2010-03-01T23:59:59.000Z

182

Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign  

E-Print Network (OSTI)

Surface downward far-infrared (far-IR) spectra were collected from NASA’s Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is known for its dry, cold, and dominantly clear atmosphere, which is optimal for studying the effects, that water vapor and cirrus clouds have on the far-IR. Comparisons with Line-By-Line Discrete Ordinants Radiative Transfer model, LBLDIS, show that FIRST observes the very fine spectral structure in the far-IR with differences as small as +/- 0.7% for both clear-sky and cloudy-sky simulations. Clear sky model analysis demonstrated the greatest sensitivity to atmospheric conditions is between 300 and 500 cm-1. The cloudy-sky simulations demonstrated that the far-IR radiation has minimal sensitivity to cloud particle effective radius, yet is very sensitive to cloud optical thickness at wavenumbers between 400 - 600 cm-1. In fact, cirrus optical thickness found to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but had little effect on the total far-IR radiative forcing. Furthermore, these far-IR measurements open a new window to understanding the radiative impacts of various atmospheric constituents such as water vapor and clouds, and to understanding and modeling the Earth’s climate and energy budget.

Baugher, Elizabeth

2011-12-01T23:59:59.000Z

183

Detection of Cloud-Top Height from Backscattered Radiances within the Oxygen A Band. Part 1: Theoretical Study  

Science Conference Proceedings (OSTI)

A series of radiative transfer calculations were performed to study the possibility of determining cloud-top pressure (height) from backscattered solar radiances within the oxygen A-band absorption. For the development of a cloud-top pressure ...

J. Fischer; H. Grassl

1991-09-01T23:59:59.000Z

184

Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The ...

W. F. Feltz; W. L. Smith; H. B. Howell; R. O. Knuteson; H. Woolf; H. E. Revercomb

2003-05-01T23:59:59.000Z

185

Spatial Patterns of Climate Variability in Upper-Tropospheric Water Vapor Radiances from Satellite Data and Climate Model Simulations  

Science Conference Proceedings (OSTI)

The use of multivariate fingerprints and spatial pattern correlation in the detection and attribution of climate change has concentrated on radiosonde temperature fields. However, the large body of radiance data from satellite-borne instruments ...

A. J. Geer; J. E. Harries; H. E. Brindley

1999-07-01T23:59:59.000Z

186

Retrieval of Atmospheric Profiles from Satellite Radiance Data by Typical Shape Function Maximum a Posteriori Simultaneous Retrieval Estimators  

Science Conference Proceedings (OSTI)

The retrieval of vertical profiles of temperature and water vapor from atmospheric radiances is an ill-posed, nonlinear inversion problem. A linear retrieval estimator must be cast in a form which both minimizes the effects of unmodeled nonlinear ...

Michael J. Uddstrom

1988-05-01T23:59:59.000Z

187

Inferring Convective Weather Characteristics with Geostationary High Spectral Resolution IR Window Measurements: A Look into the Future  

Science Conference Proceedings (OSTI)

A high spectral resolution geostationary sounder can make spectrally detailed measurements of the infrared spectrum at high temporal resolution, which provides unique information about the lower-tropospheric temperature and moisture structure. ...

Justin M. Sieglaff; Timothy J. Schmit; W. Paul Menzel; Steven A. Ackerman

2009-08-01T23:59:59.000Z

188

Background Error Correlation between Surface Skin and Air Temperatures: Estimation and Impact on the Assimilation of Infrared Window Radiances  

Science Conference Proceedings (OSTI)

This paper makes use of ensemble forecasts to infer the correlation between surface skin temperature Ts and air temperature Ta model errors. The impact of this correlation in data assimilation is then investigated. In the process of assimilating ...

Louis Garand; Mark Buehner; Nicolas Wagneur

2004-12-01T23:59:59.000Z

189

Cloud microphysical properties retrieved from downwelling infrared radiance measurements made at Eureka, Nunavut, Canada (2006-2009)  

Science Conference Proceedings (OSTI)

The radiative properties of clouds are related to cloud microphysical and optical properties, including water path, optical depth, particle size, and thermodynamic phase. Ground-based observations provide high quality, long-term, continuous ...

Christopher J. Cox; David D. Turner; Penny M. Rowe; Matthew D. Shupe; Von P. Walden

190

TALONNAGE EN LUMINANCE SPECTRALE NERGTIQUE DANS L'ULTRAVIOLET A L'AIDE D'UN PLASMA D'HYDROGNE (*)  

E-Print Network (OSTI)

transfert. Abstract. 2014 We describe spectral radiance measurements between 200 and 360 nm with a hydro développements à l'Institut National de Métrologie (I. N. M.). 2. Principe de l'expérience. - Le plasma d'hydro. L'hydrogène a été choisi car ses probabilités de transition et ses facteurs de Gaunt sont exactement

Paris-Sud XI, Université de

191

Infrared Quantum Dots** By Edward H. Sargent*  

E-Print Network (OSTI)

increasingly on mastery of the infrared spectral region. Fiber-optic communications systems rely on the low's progress in visible-light-emitting colloidal-quantum-dot synthesis, physical chemistry, and devices on applications and devices. The applications of interest surveyed include monolithic integration of fiber-optic

192

Shortwave Infrared Spectroradiometer for Atmospheric Transmittance Measurements  

Science Conference Proceedings (OSTI)

The use of a shortwave infrared (SWIR) spectroradiometer as a solar radiometer is presented. The radiometer collects 1024 channels of data over the spectral range of 1.1–2.5 ?m. The system was tested by applying the Langley method to data ...

M. Sicard; K. J. Thome; B. G. Crowther; M. W. Smith

1998-02-01T23:59:59.000Z

193

Assessment of the Quality of MODIS Cloud Products from Radiance Simulations  

Science Conference Proceedings (OSTI)

Observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS), the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat are synergistically used to ...

Seung-Hee Ham; Byung-Ju Sohn; Ping Yang; Bryan A. Baum

2009-08-01T23:59:59.000Z

194

Releasable infrared metamaterials J. A. D'Archangela)  

E-Print Network (OSTI)

-type resonating elements. These particles would be suitable for implementation in a paint if dispersed in an IR design was symmetric about a Cr ground plane). Infrared spectral reflectivity measurements from collected flakes were compared to infinite-surface simulations in Ansoft HFSS and spectral reflectance meas

Boreman, Glenn D.

195

The 27–28 October 1986 FIRE Cirrus Case Study: Retrieval of Cloud Particle Sizes and Optical Depths from Comparative Analyses of Aircraft and Satellite-based Infrared Measurements  

Science Conference Proceedings (OSTI)

Infrared radiance measurements were acquired from a narrow-field nadir-viewing radiometer based on the NASA ER-2 aircraft during a coincident Landsat 5 overpass on 28 October 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. ...

Philip D. Hammer; Francisco P. J. Valero; Stefan Kinne

1991-07-01T23:59:59.000Z

196

Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance  

SciTech Connect

We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

2011-01-21T23:59:59.000Z

197

Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL  

Science Conference Proceedings (OSTI)

We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.

Zuo, Wangda; McNeil, Andrew; Wetter, Michael; Lee, Eleanor

2011-09-06T23:59:59.000Z

198

A model for the directional distribution of the diffuse sky radiance with an application to a CPC collector  

SciTech Connect

The development of a new, semi-empirical model for the directional distribution of the diffuse radiance is reported. The proposed regression-type model, with the form of its base functions obtained from physical principles, is based on a combination of the purely physical reasoning approach and the purely empirical approach. Direct multiple-scattering calculations are circumvented through the use of the method of successive orders of scattering. The model is calibrated for the mean diffuse radiance estimated under all sky conditions reported in a large and comprehensive diffuse radiance data set. It is found that only a small increase in accuracy is gained by including higher orders of scattering, and this increase does not justify the complexity of the resulting model. Therefore, the single scattering approximation is recommended. The use of the model is illustrated in a typical application, in which the fraction of diffuse radiation intercepted by the receive of a compound parabolic concentrator is computed.

Siala, F.M.F. (Center for Solar Energy Studies, Tripoli (Libya)); Hooper, F.C. (Univ. of Toronto, Ontario (Canada))

1990-01-01T23:59:59.000Z

199

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

200

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to… (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NIST: Triatomic Spectral Database  

Science Conference Proceedings (OSTI)

... are listed with one standard deviation uncertainty for all values. ... Database Main Page Molecular Spectral Databases: Microwaves home page. ...

2011-12-09T23:59:59.000Z

202

Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-SGP TOA OLR Fluxes from GOES-8 IR ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband shortwave albedo and outgoing longwave radiation (OLR), as accurately as possible. Measurement of OLR over the ARM surface sites has only been possible since the advent of Clouds and the Earth's Radiant Energy System (CERES; Wielicki et al. 1998) in 1998. Prior to

203

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

204

Characteristics of the NOAA/NESDIS Cloud Retrieval Algorithm Using HIRS-MSU Radiance Measurements  

Science Conference Proceedings (OSTI)

A cloud retrieval algorithm using NOAA/National Environmental Satellite, Data and Information Service High-Resolution Infrared Radiation Sounder 2 Microwave Sounding Unit measurements from a polar-orbiting satellite, described in McMillin et al., ...

Shi-Keng Yang; Si-Song Zhou; Larry M. Mcmillin; Ken A. Campana

1996-11-01T23:59:59.000Z

205

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

206

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

207

Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation  

Science Conference Proceedings (OSTI)

The authors investigate whether combining a data type derived from radio occultation (RO) with the infrared spectral data in an optimal detection method improves the quantification of longwave radiative forcing and feedback. Signals derived from ...

Yi Huang; Stephen S. Leroy; James G. Anderson

2010-11-01T23:59:59.000Z

208

High Operating Temperature Quantum-Dot Infrared Photodetector Using Advanced Capping Techniques  

Science Conference Proceedings (OSTI)

We demonstrate an improvement in the operating temperature of a quantum dot-in-a-well (DWELL)-based infrared photodetector with spectral response observable till 250 K. This improvement was achieved through engineering the dot geometry and the quantum ...

Jiayi Shao; Thomas E. Vandervelde; Woo-Yong Jang; Andreas Stintz; Sanjay Krishna

2011-09-01T23:59:59.000Z

209

Overlap of Solar and Infrared Spectra and the Shortwave Radiative Effect of Methane  

Science Conference Proceedings (OSTI)

This paper focuses on two shortcomings of radiative transfer codes commonly used in climate models. The first aspect concerns the partitioning of solar versus infrared spectral energy. In most climate models, the solar spectrum comprises ...

J. Li; C. L. Curry; Z. Sun; F. Zhang

2010-07-01T23:59:59.000Z

210

Satellite Data Assimilation in Numerical Weather Prediction Models. Part II: Uses of Rain-Affected Radiances from Microwave Observations for Hurricane Vortex Analysis  

Science Conference Proceedings (OSTI)

A hybrid variational scheme (HVAR) is developed to produce the vortex analysis associated with tropical storms. This scheme allows for direct assimilation of rain-affected radiances from satellite microwave instruments. In the HVAR, the ...

Fuzhong Weng; Tong Zhu; Banghua Yan

2007-11-01T23:59:59.000Z

211

Impact of Assimilating AMSU-A Radiances on Forecasts of 2008 Atlantic Tropical Cyclones Initialized with a Limited-Area Ensemble Kalman Filter  

Science Conference Proceedings (OSTI)

The impact of assimilating radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A) on forecasts of several tropical cyclones (TCs) was studied using the Weather Research and Forecasting Model (WRF) and a limited-area ensemble ...

Zhiquan Liu; Craig S. Schwartz; Chris Snyder; So-Young Ha

2012-12-01T23:59:59.000Z

212

Top-of-Atmosphere Radiance-to-Flux Conversion in the SW Domain for the ScaRaB-3 Instrument on Megha-Tropiques  

Science Conference Proceedings (OSTI)

The earth radiation budget (ERB) is the difference between the solar absorbed flux and the terrestrial emitted flux. These fluxes are calculated from satellite measurements of outgoing shortwave (SW) and longwave (LW) radiances using empirical or ...

Michel Viollier; Carsten Standfuss; Olivier Chomette; Arnaud Quesney

2009-10-01T23:59:59.000Z

213

Effects of the Choice of Meteorological Data on a Radiation Model Simulation of the NOAA Technique for Estimating Outgoing Longwave Radiation from Satellite Radiance Observations  

Science Conference Proceedings (OSTI)

The technique used by NOAA to estimate the outgoing longwave flux from 10 ?m window radiance observations has been reexamined because the data that result from the application of the empirically determined regression equation are systematically ...

Robert G. Ellingson; David J. Yanuk; Arnold Gruber

1989-08-01T23:59:59.000Z

214

Flame Spectral Analysis for Boiler Control  

E-Print Network (OSTI)

An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (UV) and infrared (IR) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the IR and UV spectrum with a change in the combustion condition in individuals burners. This paper describes the instruments operation and these tests.

Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

1987-09-01T23:59:59.000Z

215

Influence of sky radiance measurement errors on inversion-retrieved aerosol properties  

SciTech Connect

Remote sensing of the atmospheric aerosol is a well-established technique that is currently used for routine monitoring of this atmospheric component, both from ground-based and satellite. The AERONET program, initiated in the 90's, is the most extended network and the data provided are currently used by a wide community of users for aerosol characterization, satellite and model validation and synergetic use with other instrumentation (lidar, in-situ, etc.). Aerosol properties are derived within the network from measurements made by ground-based Sun-sky scanning radiometers. Sky radiances are acquired in two geometries: almucantar and principal plane. Discrepancies in the products obtained following both geometries have been observed and the main aim of this work is to determine if they could be justified by measurement errors. Three systematic errors have been analyzed in order to quantify the effects on the inversion-derived aerosol properties: calibration, pointing accuracy and finite field of view. Simulations have shown that typical uncertainty in the analyzed quantities (5% in calibration, 0.2 Degree-Sign in pointing and 1.2 Degree-Sign field of view) yields to errors in the retrieved parameters that vary depending on the aerosol type and geometry. While calibration and pointing errors have relevant impact on the products, the finite field of view does not produce notable differences.

Torres, B.; Toledano, C.; Cachorro, V. E.; Bennouna, Y. S.; Fuertes, D.; Gonzalez, R.; Frutos, A. M. de [Atmospheric Optics Group (GOA), University of Valladolid, Valladolid (Spain); Berjon, A. J. [Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET), Sta. Cruz de Tenerife (Spain); Dubovik, O.; Goloub, P.; Podvin, T.; Blarel, L. [Laboratory of Atmospheric Optics, Universite Lille 1, Villeneuve d'Ascq (France)

2013-05-10T23:59:59.000Z

216

Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA  

Science Conference Proceedings (OSTI)

A new technique for ascertaining the thermodynamic cloud phase from high-spectral-resolution ground-based infrared measurements made by the Atmospheric Emitted Radiance Interferometer (AERI) is presented. This technique takes advantage of the ...

D. D. Turner; S. A. Ackerman; B. A. Baum; H. E. Revercomb; P. Yang

2003-06-01T23:59:59.000Z

217

Adaptable Multivariate Calibration Models for Spectral Applications  

SciTech Connect

Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

THOMAS,EDWARD V.

1999-12-20T23:59:59.000Z

218

Infrared emission from interplanetary dust  

Science Conference Proceedings (OSTI)

Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

1989-02-01T23:59:59.000Z

219

Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrillment Development Instrillment Development Multi-Spectral Automated Rotating Shadowt)and Radiometry L. Harrison Atmospheric: Sciences Research Center State University of New York at Albany Albany, NY 12205 I am developing two related instruments for use in the Atmospheric Radiation Measurement (ARM) p,rogram; both use an automated rotating shadowband technique to make spectrally resolved measurements of the direct-normal, total horizontal, and diffuse horizontal irradiances. These parameters of the sky-radiance function are measured using the same detector (for a given wavelength), eliminating the difficulties inherent in comparing these data when measured by independent detectors. The first of these instruments uses independent interterence-filter/photodiode detectors to measure any seven

220

Geothermal Exploration with Visible through Long Wave Infrared Imaging  

Open Energy Info (EERE)

with Visible through Long Wave Infrared Imaging with Visible through Long Wave Infrared Imaging Spectrometers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration with Visible through Long Wave Infrared Imaging Spectrometers Abstract Surface minerals of active geothermal systems have been mapped using visible-short wave infrared and mid wave and long wave imaging spectrometers separately. May and June 2008, the Prospectir sensor and SEBASS (Spatially Enhanced Broadband Array Spectrograph System) were located on together on a roll compensated mount viewing through the same camera port in a Twin Otter. These two imaging spectrometers have similar Instantaneous Fields of View (IFOV) and together collect over 600 channels of spectral information from the visible to the long wave infrared.

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

2004-06-09T23:59:59.000Z

222

Spectrally selective glazings  

SciTech Connect

Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

NONE

1998-08-01T23:59:59.000Z

223

Aerosol Properties from Multi-spectral and Multi-angular Aircraft 4STAR Observations: Expected Advantages and Challenges  

SciTech Connect

The airborne Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) is developed to retrieve aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. The necessarily compact design of the 4STAR may cause noticeable apparent enhancement of sky radiance at small scattering angles. We assess the sensitivity of expected 4STAR-based aerosol retrieval to such enhancement by applying the operational AERONET retrieval code and constructed synthetic 4STARlike data. Also, we assess the sensitivity of the broadband fluxes and the direct aerosol radiative forcing to uncertainties in aerosol retrievals associated with the sky radiance enhancement. Our sensitivity study results suggest that the 4STARbased aerosol retrieval has limitations in obtaining detailed information on particle size distribution and scattering phase function. However, these limitations have small impact on the retrieved bulk optical parameters, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 2%, or ±0.02), and the calculated direct aerosol radiative forcing (up to 6%, or 2 Wm-2).

Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

2012-11-01T23:59:59.000Z

224

Model Clouds over Oceans as Seen from Space: Comparison with HIRS/2 and MSU Radiances  

Science Conference Proceedings (OSTI)

Radiation observations are a key element in the evaluation of the 40-yr reanalysis at the European Centre for Medium-Range Weather Forecasts. This paper uses the High-Resolution Infrared Radiation Sounder/2 (HIRS/2) and Microwave Sounding Unit (...

F. Chevallier; P. Bauer; G. Kelly; C. Jakob; T. McNally

2001-11-01T23:59:59.000Z

225

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

226

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

227

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

228

Parametric Explosion Spectral Model  

Science Conference Proceedings (OSTI)

Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

Ford, S R; Walter, W R

2012-01-19T23:59:59.000Z

229

On Information Theory, Spectral Geometry and Quantum Gravity  

E-Print Network (OSTI)

We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

Achim Kempf; Robert Martin

2007-08-01T23:59:59.000Z

230

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

231

ARM - Instrument - assist  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsassist govInstrumentsassist Documentation ASSIST : Instrument Mentor Monthly Summary (IMMS) reports ASSIST : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Categories Radiometric The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST), like the AERI, measures infrared spectral zenith radiance at high spectral resolution. Output Datastreams assistch1 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data assistch2 : Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 2 data

232

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

233

Spectral tailoring device  

DOE Patents (OSTI)

A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

1987-08-05T23:59:59.000Z

234

Modeling the Dust Spectral Energy Distributions of Dwarf Galaxies  

E-Print Network (OSTI)

Recent efforts on the modeling of the infrared spectral energy distributions (SEDs) of dwarf galaxies are summarised here. The characterisation of the dust properties in these low metallicity environments is just unfolding, as a result of recently available mid-infrared to millimetre observations. From the limited cases we know to date, it appears that the hard radiation fields that are present in these star-bursting dwarf galaxies, as well as the rampent energetics of supernovae shocks and winds have modified the dust properties, in comparison with those in the Galaxy, or other gas and dust rich galaxies. The sophistication of the SED models is limited by the availability of detailed data in the mid infrared and particularly in the submillimetre to millimetre regime, which will open up in the near future with space-based missions, such as Herschel.

Suzanne C. Madden

2005-01-31T23:59:59.000Z

235

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

236

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

237

Data Analysis of Multi-Laser Standoff Spectral identification of chemical and biological compounds  

SciTech Connect

With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for develop- ment of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

Farahi, R H [ORNL; Zaharov, Viktor [ORNL; Tetard, Laurene [ORNL; Thundat, Thomas George [ORNL; Passian, Ali [ORNL

2013-01-01T23:59:59.000Z

238

Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid Clouds  

Science Conference Proceedings (OSTI)

The importance of accurately representing the role of clouds in climate change studies has become increasingly apparent in recent years, leading to a substantial increase in the number of satellite sensors and associated algorithms that are ...

Tristan S. L’Ecuyer; Philip Gabriel; Kyle Leesman; Steven J. Cooper; Graeme L. Stephens

2006-01-01T23:59:59.000Z

239

Infra-Red Process for Colour Fixation on Fabrics  

E-Print Network (OSTI)

Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for color fixation on fabrics. Shorter production cycles and energy saving are the main results.

Biau, D.; Raymond, D. J.

1983-01-01T23:59:59.000Z

240

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Infrared Extinction by Aggregates of SiC Particles  

E-Print Network (OSTI)

Particle shape and aggregation have a strong influence on the spectral profiles of infrared phonon bands of solid dust grains. In this paper, we use a discrete dipole approximation, a cluster-of-spheres code following the Gerardy-Ausloos approach and a T-matrix method for calculating IR extinction spectra of aggregates of spherical silicon carbide (SiC) particles. We compare the results obtained with the three different methods and discuss differences in the band profiles.

Anja C. Andersen; Harald Mutschke; Thomas Posch

2005-11-11T23:59:59.000Z

242

Solar Infrared Photometer  

Science Conference Proceedings (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

243

THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS  

SciTech Connect

We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

Shang Zhaohui; Li Jun; Xie Yanxia [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Wills, Beverley J.; Wills, D. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712 (United States); Green, Richard F. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Nemmen, Rodrigo S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Sarah C. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Ganguly, Rajib [Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, 213 Murchie Science Building, 303 Kearsley Street, Flint, MI 48502 (United States); Hines, Dean C. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Kriss, Gerard A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tang, Baitian, E-mail: zshang@gmail.com [Department of Physics, 1245 Webster Hall, Washington State University, Pullman, WA 99164-2814 (United States)

2011-09-01T23:59:59.000Z

244

Water vapor and greenhouse trapping: The role of far infrared absorption  

SciTech Connect

Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red, over the middle/upper troposphere; in the SAw case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change. 16 refs., 3 figs., 1 tab.

Sinha, A.; Harries, J.E. [Imperial College of Science, Technology and Medicine, Prince Consort Road (United Kingdom)

1995-08-15T23:59:59.000Z

245

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996  

DOE Green Energy (OSTI)

A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

Bai, T.; Yeboah, Y.D.; Sampath, R.

1996-07-01T23:59:59.000Z

246

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution Infrared Observations Revercomb, Henry University of Wisconsin-Madison DeSlover, Daniel University of Wisconsin Holz, Robert University of Wisconsin, CIMMS Knuteson, Robert University Of Wisconsin Li, Jun University of Wisconsin-Madison Moy, Leslie University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Radiation The overall objective of this research is to support the ARM BBHRP measurement-model comparison effort that will couple heating rates based on ARM data more directly into SCM and GCM models. We are making use of high spectral resolution infrared satellite, aircraft, and ground based data for

247

Practical Atmospheric Correction Algorithms for a Multi-Spectral Sensor From the Visible Through the Thermal Spectral Regions  

Science Conference Proceedings (OSTI)

Deriving information about the Earth's surface requires atmospheric corrections of the measured top-of-the-atmosphere radiances. One possible path is to use atmospheric radiative transfer codes to predict how the radiance leaving the ground is affected by the scattering and attenuation. In practice the atmosphere is usually not well known and thus it is necessary to use more practical methods. The authors will describe how to find dark surfaces, estimate the atmospheric optical depth, estimate path radiance and identify thick clouds using thresholds on reflectance and NDVI and columnar water vapor. The authors describe a simple method to correct a visible channel contaminated by a thin cirrus clouds.

Borel, C.C.; Villeneuve, P.V.; Clodium, W.B.; Szymenski, J.J.; Davis, A.B.

1999-04-04T23:59:59.000Z

248

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

249

The NMC Nested Regional Spectral Model  

Science Conference Proceedings (OSTI)

A nested primitive equation regional spectral model is developed. The model consists of two components—a low-resolution global spectral model and a high-resolution regional spectral model. The two components have identical vertical structure and ...

Hann-Ming Henry Juang; Masao Kanamitsu

1994-01-01T23:59:59.000Z

250

Spectral Wave–Turbulence Decomposition  

Science Conference Proceedings (OSTI)

A new method of wave–turbulence decomposition is introduced, for which the only instrument required is one high-frequency pointwise velocity sensor. This is a spectral method that assumes equilibrium turbulence and no wave–turbulence interaction. ...

Jeremy D. Bricker; Stephen G. Monismith

2007-08-01T23:59:59.000Z

251

Climate Modeling with Spectral Elements  

Science Conference Proceedings (OSTI)

As an effort toward improving climate model–component performance and accuracy, an atmospheric-component climate model has been developed, entitled the Spectral Element Atmospheric Climate Model and denoted as CAM_SEM. CAM_SEM includes a unique ...

Ferdinand Baer; Houjun Wang; Joseph J. Tribbia; Aimé Fournier

2006-12-01T23:59:59.000Z

252

Infrared Spectra of Meteoritic SiC Grains  

E-Print Network (OSTI)

We present here the first infrared spectra of meteoritic SiC grains. The mid-infrared transmission spectra of meteoritic SiC grains isolated from the Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in order to make available the optical properties of presolar SiC grains. These grains are most likely stellar condensates with an origin predominately in carbon stars. Measurements were performed on two different extractions of presolar SiC from the Murchison meteorite. The two samples show very different spectral appearance due to different grain size distributions. The spectral feature of the smaller meteoritic SiC grains is a relatively broad absorption band found between the longitudinal and transverse lattice vibration modes around 11.3 micron, supporting the current interpretation about the presence of SiC grains in carbon stars. In contrast to this, the spectral feature of the large (> 5 micron) grains has an extinction minimum around 10 micron. The obtained spectra are compared with commercially available SiC grains and the differences are discussed. This comparison shows that the crystal structure (e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the optical signature of SiC grains compared to e.g. grain size.

A. C. Andersen; C. Jager; H. Mutschke; A. Braatz; C. Clement; Th. Henning; U. G. Jorgensen; U. Ott

1998-12-22T23:59:59.000Z

253

NIST: Atomic Spectros. - Spectral Continuum Radiation  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy: home page. 21. Spectral Continuum Radiation. Hydrogenic Species. Precise quantum-mechanical ...

254

Spectral and Parametric Averaging for Integrable Systems  

E-Print Network (OSTI)

We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos - spectral averaging and parametric averaging. For spectral averaging, we introduce a new procedure - rescaled spectral averaging. Unlike traditional spectral averaging, it can describe the correlation function of spectral staircase and produce persistent oscillations of the interval level number variance. Parametric averaging, while not as accurate as rescaled spectral averaging for the correlation function of spectral staircase and interval level number variance, can also produce persistent oscillations of the global level number variance and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.

Tao Ma; R. A. Serota

2013-06-03T23:59:59.000Z

255

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

256

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

257

NIST Transient resonant infrared spectroscopy  

Science Conference Proceedings (OSTI)

... 0.7 to 1 mJ pulsed output energy) for UV excitation and ... including dual-beam probe normalization to reduce spectral intensity fluctuations and IR ...

2013-04-01T23:59:59.000Z

258

Filter Properties of Spectral transformations  

Science Conference Proceedings (OSTI)

Recently, a special group of global spherical coordinate transformations has been introduced in order to focus attention on the interactions of an enlarged spectral band of only one selected area, while de-focusing the rest of the globe and thus ...

Frank Schmidt

1981-02-01T23:59:59.000Z

259

Scalable spectral transforms at petascale  

Science Conference Proceedings (OSTI)

In this paper, I describe a framework for spectral transforms called P3DFFT, and its extended features and applications. I discuss the scaling seen on petascale platforms, and directions and some results of the ongoing work on improving performance, ... Keywords: community applications, high performance computing (HPC), numerical libraries, open source software, parallel performance, petascale, scalability, two-dimensional decomposition

Dmitry Pekurovsky

2013-07-01T23:59:59.000Z

260

Data reduction pipeline for the MMT Magellan Infrared Spectrograph  

E-Print Network (OSTI)

We describe principal components of the new spectroscopic data pipeline for the multi-object MMT/Magellan Infrared Spectrograph (MMIRS). The pipeline is implemented in IDL and C++. The performance of the data processing algorithms is sufficient to reduce a single dataset in 2--3 min on a modern PC workstation so that one can use the pipeline as a quick-look tool during observations. We provide an example of the spectral data processed by our pipeline and demonstrate that the sky subtraction quality gets close to the limits set by the Poisson photon statistics.

Chilingarian, Igor; Fabricant, Daniel; McLeod, Brian; Roll, John; Szentgyorgyi, Andrew

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Forward looking infrared Citation Wikipedia. Forward looking infrared...

262

Radiance Temperature Calibrations  

Science Conference Proceedings (OSTI)

... Argon Supply and Alarm 55 "C Chilled Water/Cold Water Switch Digital Voltmeter Gold-filled Crucible Heat Pipe Furnace Personal Computer ...

2010-08-19T23:59:59.000Z

263

Modeling the Stellar Spectral Energy Distributions of Star-Forming Galaxies  

E-Print Network (OSTI)

I will review recent progress in the modeling of the stellar spectral energy distributions of star-forming galaxies. I will cover the full relevant wavelength range from the near-infrared to the extreme ultraviolet, with an emphasis on the ultraviolet long- and shortward of the Lyman break where most of the stellar luminosity is emitted. Uncertainties in stellar atmosphere and evolution models will be critically examined, and the impact on the total panchromatic luminosity will be highlighted.

Claus Leitherer

2004-11-12T23:59:59.000Z

264

Spectral Emission of Moving Atom  

E-Print Network (OSTI)

A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

J. X. Zheng-Johansson

2006-06-17T23:59:59.000Z

265

Model Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition. In particular we find that an increasing iron content in silicates mainly causes an increase of the dust absorption effiency and thus increases the dust reemission continuum. Furthermore, the influence of the sp 2 /sp 3 hybridization

Sebastian Wolf; Lynne A. Hillenbr

2003-01-01T23:59:59.000Z

266

Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition.

Sebastian Wolf; Lynne Hillenbrand

2003-06-23T23:59:59.000Z

267

Method for determining and displaying the spacial distribution of a spectral pattern of received light  

DOE Patents (OSTI)

An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

Bennett, C.L.

1996-07-23T23:59:59.000Z

268

NIST Highlight about spectrally tunable lighting facility  

Science Conference Proceedings (OSTI)

... white light produced by fluorescent lamps? Which spectral combination gives the best color quality and energy efficiency? ...

2012-10-02T23:59:59.000Z

269

THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)  

SciTech Connect

We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H{sub 2}O and CH{sub 4} that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest-type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f{sub {lambda}}, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH{sub 3}. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS 0722-05 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.

Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 321-520, Pasadena, CA 91109 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Beichman, Charles A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Prato, Lisa A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simcoe, Robert A. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 37, Cambridge, MA 02139 (United States); Marley, Mark S.; Freedman, Richard S. [NASA Ames Research Center, MS 254-3, Moffett Field, CA 94035 (United States); Saumon, D. [Los Alamos National Laboratory, MS F663, Los Alamos, NM 87545 (United States); Wright, Edward L., E-mail: michael.cushing@gmail.com [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States)

2011-12-10T23:59:59.000Z

270

Cloud Cover over the South Pole from Visual Observations, Satellite Retrievals, and Surface-Based Infrared Radiation Measurements  

Science Conference Proceedings (OSTI)

Estimates of cloud cover over the South Pole are presented from five different data sources: routine visual observations (1957–2004; Cvis), surface-based spectral infrared (IR) data (2001; CPAERI), surface-based broadband IR data (1994–2003; Cpyr)...

Michael S. Town; Von P. Walden; Stephen G. Warren

2007-02-01T23:59:59.000Z

271

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

272

Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission  

E-Print Network (OSTI)

The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.

Reuter, Dennis C; Scherrer, John; Jennings, Donald E; Baer, James; Hanley, John; Hardaway, Lisa; Lunsford, Allen; McMuldroch, Stuart; Moore, Jeffrey; Olkin, Cathy; Parizek, Robert; Reitsma, Harold; Sabatke, Derek; Spencer, John; Stone, John; Throop, Henry; Van Cleve, Jeffrey; Weigle, Gerald E; Young, Leslie A

2007-01-01T23:59:59.000Z

273

Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission  

E-Print Network (OSTI)

The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.

Dennis C. Reuter; S. Alan Stern; John Scherrer; Donald E. Jennings; James Baer; John Hanley; Lisa Hardaway; Allen Lunsford; Stuart McMuldroch; Jeffrey Moore; Cathy Olkin; Robert Parizek; Harold Reitsma; Derek Sabatke; John Spencer; John Stone; Henry Throop; Jeffrey Van Cleve; Gerald E. Weigle; Leslie A. Young

2007-09-26T23:59:59.000Z

274

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

275

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

276

Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared  

E-Print Network (OSTI)

We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of th...

da Cunha, Elisabete; Diaz-Santos, Tanio; Armus, Lee; Marshall, Jason A; Elbaz, David

2010-01-01T23:59:59.000Z

277

GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response  

E-Print Network (OSTI)

Cryst. (2001). D57, 1735±1738 short communications reducing SDS±PAGE and isoelectric focusing gel (Phast

Jalali. Bahram

278

Infrared Thermography Guide (Revision 3)  

Science Conference Proceedings (OSTI)

Costly equipment outages can be reduced by implementing a comprehensive predictive maintenance program. Infrared thermography (IR), a fundamental component of such programs, uses nonintrusive techniques to monitor the operating condition of equipment and components. This revised report provides updated information to assist utilities in implementing an effective IR program.

2002-05-30T23:59:59.000Z

279

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

280

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hybrid least squares multivariate spectral analysis methods  

SciTech Connect

A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

Haaland, David M. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

282

Spectral utilization in thermophotovoltaic devices  

DOE Green Energy (OSTI)

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

Clevenger, M.B.; Murray, C.S.

1997-12-31T23:59:59.000Z

283

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

284

Spectral Measurements of Pulse Solar Simulators  

DOE Green Energy (OSTI)

Spectral measurements of pulse solar simulators are used to quantify the wavelength-dependant characteristics of the light. Because every PV device has a unique spectral response, it is important to know the spectral irradiance and to periodically monitor the spectra for changes. Measurements are made at the National Renewable Energy Laboratory (NREL) using several different techniques including the NREL-developed Pulse Analysis Spectroradiometer System (PASS).

Cannon, T. W.

1998-11-12T23:59:59.000Z

285

Spectral solar radiation data base documentation  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the neutral variability in the spectral (color) content to outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 of this report documents the history, approach, content, and format of the data base; Volume 2 contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI.

Riordan, C.J.; Myers, D.R.; Hulstrom, R.L.

1990-01-01T23:59:59.000Z

286

ARM - Measurement - Longwave spectral brightness temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation at the same spectrally resolved wavelengths....

287

Spectral Solar Radiation Data Base at NREL  

DOE Data Explorer (OSTI)

*In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/

288

A Reduced Spectral Transform for the NCEP Seasonal Forecast Global Spectral Atmospheric Model  

Science Conference Proceedings (OSTI)

A reduced spectral transformation is applied to the NCEP atmospheric global spectral model for operational seasonal forecasts. The magnitude of the associated Legendre coefficient provides a basis for this new transformation, which is a simple ...

Hann-Ming Henry Juang

2004-04-01T23:59:59.000Z

289

Sensitivity of Spectroradiometric Calibrations in the Near Infrared to Variations in Atmospheric Water Vapor: Preprint  

DOE Green Energy (OSTI)

Spectra of natural sunlight and artificial sources are important in photovoltaic research. Calibration of the spectroradiometers used for these measurements is derived from the response to spectral irradiance standards from the National Institute of Standards and Technology (NIST). Some photovoltaic devices respond in the near infrared, or NIR, so spectral measurements and calibrations are needed in this region. Over the course of several calibrations, we identified variations> 5% in spectroradiometer NIR calibration data for a certain spectroradiometer. A detailed uncertainty analysis did not reflect the observed variation. Reviewing calibration procedures and historical data, we noted that the variations were seen in water vapor absorption bands. We used spectral transmission models to compute changes in atmospheric transmission (as a function of water vapor content) over path lengths occurring during calibration. The results indicate that the observed variations result from varying water vapor content. A correction algorithm for adjusting measured data was developed based on our analysis.

Myers, D. R.; Andreas, A. A.

2004-03-01T23:59:59.000Z

290

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

291

High temperature spectral gamma well logging  

Science Conference Proceedings (OSTI)

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

Normann, R.A.; Henfling, J.A.

1997-01-01T23:59:59.000Z

292

Nonlinear spectral density estimation: thresholding the correlogram  

E-Print Network (OSTI)

in a nonlinear way. The rate of convergence of the new estimators is quantified, and practical issues estimation of the spectral density function; examples include astronomy, economics, electrical engineering Einstein (1914); see Brillinger (1993) for a historical perspective. The prevalent spectral estimation

Politis, Dimitris N.

293

Spectral Monitoring with Cerenkov Photons Rick Kessler  

E-Print Network (OSTI)

Spectral Monitoring with Cerenkov Photons Rick Kessler Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave. Chicago 60637 May 21, 2002 This memo describes the possible use of Cerenkov is to monitor the spectral response of a telescope. Compared to a lamp, the advantage of a Cerenkov light source

294

Ferroelectric infrared detector and method  

DOE Patents (OSTI)

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

295

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

296

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

297

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

298

Using MetOp-A AVHRR Clear-Sky Measurements to Cloud-Clear MetOp-A IASI Column Radiances  

Science Conference Proceedings (OSTI)

High spatial resolution measurements from the Advanced Very High Resolution Radiometer (AVHRR) on the Meteorological Operation (MetOp)-A satellite that are collocated to the footprints from the Infrared Atmospheric Sounding Interferometer (IASI) ...

Eric S. Maddy; Thomas S. King; Haibing Sun; Walter W. Wolf; Christopher D. Barnet; Andrew Heidinger; Zhaohui Cheng; Mitchell D. Goldberg; Antonia Gambacorta; Chen Zhang; Kexin Zhang

2011-09-01T23:59:59.000Z

299

FAR-INFRARED PROPERTIES OF TYPE 1 QUASARS  

SciTech Connect

We use the Spitzer Space Telescope Enhanced Imaging Products and the Spitzer Archival Far-InfraRed Extragalactic Survey to study the spectral energy distributions (SEDs) of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the Two Micron All Sky Survey, we are able to construct a statistically robust rest-frame 0.1-100 {mu}m type 1 quasar template. We find that the quasar population is well-described by a single power-law SED at wavelengths less than 20 {mu}m, in good agreement with previous work. However, at longer wavelengths, we find a significant excess in infrared luminosity above an extrapolated power-law, along with significant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 {mu}m.

Hanish, D. J.; Teplitz, H. I.; Capak, P.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 E California Blvd., Pasadena, CA 91125 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Huynh, M. [International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009 (Australia); Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Murphy, E. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Shenoy, S., E-mail: hanish@ipac.caltech.edu [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States)

2013-05-01T23:59:59.000Z

300

Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers  

SciTech Connect

The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

1999-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud  

E-Print Network (OSTI)

The infrared (IR) emission from interstellar dust in the Small Magellanic Cloud (SMC) is modelled using a mixture of amorphous silicate and carbonaceous grains, including a population of polycyclic aromatic hydrocarbon (PAH) molecules. (1) It is shown that this dust model is able to reproduce the spectral energy distribution from near-IR to far-IR for the entire SMC Bar region, provided the PAH abundance in the SMC Bar region is very low. (2) The IR spectrum of the SMCB1#1 molecular cloud can also be reproduced by our dust model provided the PAH abundance is increased relative to the overall SMC Bar. The PAHs in SMCB1#1 incorporate ~3% of the SMC C abundance, compared to environmental conditions. Other possibilities such as super-hydrogenation of PAHs and softening of the starlight spectrum are also discussed.

Aigen Li; B. T. Draine

2001-12-05T23:59:59.000Z

302

Questions may be addressed via e-mail to Carl Salvaggio at salvaggio@cis.rit.edu, to Lon E. Smith at smith@cis.rit.edu, and to Emily J. Antoine at eja7248@rit.edu.  

E-Print Network (OSTI)

. For sensing systems working in what is generally referred to as the visible, near infrared, and shortwave is a composite of the radiance leaving the surface, composed of reflected direct solar, scattered solar s + LD ( ) + LB ( ) ( , , , s, s) ( , ) + Lu( , ) (4) where Es is the spectral exoatmospheric solar

Salvaggio, Carl

303

Apparatus and system for multivariate spectral analysis  

DOE Patents (OSTI)

An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

Keenan, Michael R. (Albuquerque, NM); Kotula, Paul G. (Albuquerque, NM)

2003-06-24T23:59:59.000Z

304

Spectral Energy Distributions of T Tauri Stars With Passive Circumstellar Disks  

E-Print Network (OSTI)

We derive hydrostatic, radiative equilibrium models for passive disks surrounding T Tauri stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer re-emits directly to space about half the stellar energy it absorbs. The other half is emitted inward and regulates the interior temperature of the disk. The heated disk flares. As a consequence, it absorbs more stellar radiation, especially at large radii, than a flat disk would. The portion of the spectral energy distribution contributed by the disk is fairly flat throughout the thermal infrared. At fixed frequency, the contribution from the surface layer exceeds that from the interior by about a factor 3 and is emitted at more than an order of magnitude greater radius. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on.

Chiang, E I

1997-01-01T23:59:59.000Z

305

Recent variability of the solar spectral irradiance and its impact on climate modelling  

E-Print Network (OSTI)

The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temp...

Ermolli, I; de Wit, T Dudok; Krivova, N A; Tourpali, K; Weber, M; Unruh, Y C; Gray, L; Langematz, U; Pilewskie, P; Rozanov, E; Schmutz, W; Shapiro, A; Solanki, S K; Woods, T N

2013-01-01T23:59:59.000Z

306

Infrared Properties of z=7 Galaxies from Cosmological Simulations  

E-Print Network (OSTI)

Three-dimensional panchromatic dust radiative transfer calculations are performed on a set of 198 galaxies of stellar masses in the range 5x10^8-3x10^10 Msun from a cosmological hydrodynamic simulation (resolved at 29pc/h) at z=7. In a companion paper (Kimm & Cen), the stellar mass and UV luminosity functions, and UV-optical and FUV-NUV colors are shown to be in good agreement with observations, if an SMC-type dust extinction curve is adopted. Here we make useful predictions, self-consistently, of the infrared properties of these z=7 simulated galaxies that can be confronted with upcoming ALMA data. Our findings are as follows. (1) The effective radius in the rest-frame MIPS 70 micron band is in the range of 80-400pc proper for z=7 galaxies with L_FIR=10^{11.3-12}Lsun. (2) The median of the peak wavelength of the far-infrared (FIR) spectral energy distribution is in the range of 45-60 micron, depending on the dust-to-metal ratio. (3) For star formation rate in the range 3-100 Msun/yr the median FIR to bol...

Cen, Renyue

2013-01-01T23:59:59.000Z

307

Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations  

SciTech Connect

Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participating pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.

Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.; Michalsky, Joseph J.; Reda, I.; Stifter, Armin; Wendling, Peter; Wood, Norm; Clough, Shepard A.; Mlawer, Eli J.; Anderson, Gail; Revercomb, Henry E.; Shippert, Timothy R.

2001-06-04T23:59:59.000Z

308

Early stage expansion and time-resolved spectral emission of laser-induced  

NLE Websites -- All DOE Office Websites (Extended Search)

Early stage expansion and time-resolved spectral emission of laser-induced Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer Title Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer Publication Type Journal Article Year of Publication 2009 Authors Boueri, Myriam, Matthieu Baudelet, Jin Yu, Xianglei Mao, Samuel S. Mao, and Richard E. Russo Journal Applied Surface Science Volume 255 Issue 24 Pagination 9566-9571 Date Published 09/2009 Keywords Early stage plasma expansion, Laser ablation of polymer, Plasma spectral emission Abstract In the nanosecond laser ablation regime, absorption of laser energy by the plasma during its early stage expansion critically influences the properties of the plasma and thus its interaction with ambient air. These influences can significantly alter spectral emission of the plasma. For organic samples especially, recombination of the plasma with the ambient air leads to interfering emissions with respect to emissions due to native species evaporated from the sample. Distinguishing interfering emissions due to ambient air represents a critical issue for the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of organic materials. In this paper, we report observations of early stage expansion and interaction with ambient air of the plasma induced on a typical organic sample (nylon) using timeresolved shadowgraph. We compare, in the nanosecond ablation regime, plasmas induced by infrared (IR) laser pulses (1064 nanometers) and ultraviolet (UV) laser pulses (266 nanometers). Nanosecond ablation is compared with femtosecond ablation where the post-ablation interaction is absent. Subsequent to the early stage expansion, we observe for each studied ablation regime, spectral emission from CN, a typical radical for organic and biological samples. Time-resolved LIBS allows identifying emissions from native molecular species and those due to recombination with ambient air through their different time evolution behaviors.

309

Statistical Quality of Spectral Polarimetric Variables for Weather Radar  

Science Conference Proceedings (OSTI)

Spectral polarimetry for weather radar capitalizes on both Doppler and polarimetric measurements to reveal polarimetric variables as a function of radial velocity through spectral analysis. For example, spectral differential reflectivity at a ...

Tian-You Yu; Xiao Xiao; Yadong Wang

2012-09-01T23:59:59.000Z

310

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

311

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

312

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

313

Warm water vapor envelope in Mira variables and its effects on the apparent size from the near-infrared to the mid-infrared  

E-Print Network (OSTI)

We present a possible interpretation for the increase of the angular diameter of the Mira variables o Cet, R Leo, and chi Cyg from the K band to the 11 micron region revealed by the recent interferometric observations using narrow bandpasses where no salient spectral feature is present (Weiner et al. 2003a, 2003b). A simple two-layer model consisting of hot and cool H2O layers for the warm water vapor envelope can reproduce the angular diameters observed with Infrared Spatial Interferometer as well as the high-resolution TEXES spectra obtained in the 11 micron region. The strong absorption of H2O expected from the dense water vapor envelope is filled in by emission from the extended part of the envelope, and this results in the high-resolution 11 micron spectra which exhibit only weak, fine spectral features, masking the spectroscopic evidences of the dense, warm water vapor envelope. On the other hand, the presence of the warm water vapor envelope manifests itself as the larger angular diameters in the 11 micron region as compared to those measured in the near-infrared. Furthermore, comparison of the visibilities predicted in the near-infrared with observational results available in the literature demonstrates that our two-layer model for the warm water vapor envelope can also reproduce the observed near-infrared visibilities and angular diameters. The radii of the hot H2O layers in the three Mira variables are derived to be 1.5--1.7 Rstar with temperatures of 1800--2000 K and H2O column densities of (1--5) x 10^{21} cm^{-2}, while the radii of the cool H2O layers are derived to be 2.2--2.5 Rstar with temperatures of 1200--1400 K and H2O column densities of (1--7) x 10^{21} cm^{-2}.

Keiichi Ohnaka

2004-06-30T23:59:59.000Z

314

A Spectral Approach to the Unification of Satellite and Conventional Temperature Data  

Science Conference Proceedings (OSTI)

A new method to combine temperature soundings derived from VAS radiance observations with conventional data is proposed. Unlike similar previous attempts, only a portion of the signal contained in the VAS temperature soundings was combined with ...

Kyung-Sup Shin; James R. Scoggins

1988-08-01T23:59:59.000Z

315

Highly IR-transparent microfluidic chip with surface-modified BaF2 optical windows for Infrared Microspectroscopy of living cells  

Science Conference Proceedings (OSTI)

In this contribution we present the first example of a microfluidic chip based on BaF"2 for Infrared Microspectroscopy (IRMS) of living cells. The advantage in using barium fluoride as platform relies on its high IR transparency, especially in the spectral ... Keywords: Barium fluoride, IRMS, Living cells, Microfluidic

E. Mitri, A. Pozzato, G. Coceano, D. Cojoc, L. Vaccari, M. Tormen, G. Grenci

2013-07-01T23:59:59.000Z

316

Spectral Modeling at the National Meteorological Center  

Science Conference Proceedings (OSTI)

A model with spectral representation in the horizontal and Arakawa quadratic conserving finite differencing in the vertical is formulated. The model includes a moisture cycle consisting of large-scale condensation processes, as well as a ...

Joseph G. Sela

1980-09-01T23:59:59.000Z

317

Experiments with a Spectral Tropical Cyclone Model  

Science Conference Proceedings (OSTI)

The three-layer balanced axisymmetric tropical cyclone model presented by Ooyama is generalized to dimensions and the resultant primitive equations are solved using the spectral (Galerkin) method with Fourier basis functions on a doubly-periodic ...

Mark DeMaria; Wayne H. Schubert

1984-03-01T23:59:59.000Z

318

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

319

Spectral solar radiation data base documentation  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the natural variability in the spectral (color) content of outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume I of this report documents the history, approach, content and format of the data base; Volume II contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI. 18 refs., 29 figs., 5 tabs.

Riordan, G.J.; Myers, D.R.; Hulstrom, R.L.

1990-01-01T23:59:59.000Z

320

Urban Cloud Condensation Nuclei Spectral Flux  

Science Conference Proceedings (OSTI)

The cloud condensation nuclei (CCN) spectral flux and the condensation nuclei (CN) flux from an urban area are determined from in situ aircraft measurements at Denver, Colorado. The concentration differences between upwind and downwind cross ...

Paul R. Frisbie; James G. Hudson

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Spectral Element Version of CAM2  

Science Conference Proceedings (OSTI)

The authors describe a recent development and some applications of a spectral element dynamical core. The improvements and development include the following: (i) the code was converted from FORTRAN 77 to FORTRAN 90; (ii) the dynamical core was ...

Houjun Wang; Joseph J. Tribbia; Ferdinand Baer; Aimé Fournier; Mark A. Taylor

2007-11-01T23:59:59.000Z

322

A probabilistic approach to spectral unmixing  

Science Conference Proceedings (OSTI)

In this paper, we present a statistical approach to spectral unmixing with unknown endmember spectra and unknown illuminant power spectrum. The method presented here is quite general in nature, being applicable to settings in which sub-pixel information ...

Cong Phuoc Huynh; Antonio Robles-Kelly

2010-08-01T23:59:59.000Z

323

A Spectral Energetics Analysis of Atmospheric Blocking  

Science Conference Proceedings (OSTI)

The spectral energetics of two blocking case studies from the winter of 1978–79 are calculated. One case occurred over the North Atlantic and the other over the North Pacific. The temporal evolution and geographical distribution of the energetics ...

Anthony R. Hansen; Tsing-Chang Chen

1982-09-01T23:59:59.000Z

324

Improving Spectral Models By Unfolding Their Singularities  

Science Conference Proceedings (OSTI)

Maximally truncated spectral models have been used recently by fluid and atmospheric dynamicists to study nonlinear behavior of the governing partial differential system. However, too few external control parameters may be available in the ...

Hampton N. Shirer; Robert Wells

1982-03-01T23:59:59.000Z

325

Spectrally Invariant Approximation within Atmospheric Radiative Transfer  

Science Conference Proceedings (OSTI)

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These “spectrally invariant relationships” are the consequence of wavelength ...

A. Marshak; Y. Knyazikhin; J. C. Chiu; W. J. Wiscombe

2011-12-01T23:59:59.000Z

326

Infra-red signature neutron detector  

SciTech Connect

A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generating a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

327

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

328

Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven .  

E-Print Network (OSTI)

??A quantitative, model-based understanding of heat exchange in infrared and combined infrared-microwave heating of food inside an oven is developed. The research is divided into… (more)

Frangipani Almeida, Marialuci

2004-01-01T23:59:59.000Z

329

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

330

IR Spectral Bands and Performance | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for IR Spectral Bands and Performance Citation Chris Douglass. IR Spectral Bands...

331

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy...  

Open Energy Info (EERE)

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Logo: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy:...

332

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

333

Wavenumber Standards for Mid-infrared Spectrometry ...  

Science Conference Proceedings (OSTI)

... the future, more complete knowledge of an increasing number of gas species spectral ... RCM Learner, AP Thorne, I. Wynne-Joes, JW Brault and MC ...

2012-11-03T23:59:59.000Z

334

Retrieval and Use of High-Resolution Moisture and Stability Fields from Nimbus 6 HIRS Radiances in Pre-Convective Situations  

Science Conference Proceedings (OSTI)

This is a study of environmental conditions prior to convective development on the Great Plains of the United States on four case study days in August 1975. The tool used was the High-resolution Infrared Radiation Sounder (HIRS) on Nimbus 6. A ...

Donald W. Hillger; Thomas H. Vonder Haar

1981-08-01T23:59:59.000Z

335

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

336

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

337

THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG  

SciTech Connect

With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

Debes, John H.; Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Wachter, Stefanie [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

2011-12-01T23:59:59.000Z

338

Maximum Spectral Luminous Efficacy of White Light  

E-Print Network (OSTI)

As lighting efficiency improves, it is useful to understand the theoretical limits to luminous efficacy for light that we perceive as white. Independent of the efficiency with which photons are generated, there exists a spectrally-imposed limit to the luminous efficacy of any source of photons. We find that, depending on the acceptable bandpass and---to a lesser extent---the color temperature of the light, the ideal white light source achieves a spectral luminous efficacy of 250--370 lm/W. This is consistent with previous calculations, but here we explore the maximum luminous efficacy as a function of photopic sensitivity threshold, color temperature, and color rendering index; deriving peak performance as a function of all three parameters. We also present example experimental spectra from a variety of light sources, quantifying the intrinsic efficacy of their spectral distributions.

Murphy, T W

2013-01-01T23:59:59.000Z

339

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents (OSTI)

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

340

Spatially resolving variations in giant magnetoresistance, undetectable with four-point probe measurements, using infrared microspectroscopy  

Science Conference Proceedings (OSTI)

Magnetorefractive infrared (IR) microspectroscopy is demonstrated to resolve spatial variations in giant magnetoresistance (GMR) and, by modelling, provide an insight into the origin of the variations. Spatial variations are shown to be masked in conventional four-point probe electrical or IR spectral measurements. IR microspectroscopy was performed at the SMIS beamline at the SOLEIL synchrotron, modified to enable measurements in magnetic fields. A GMR gradient was induced in a CoFe/Cu multilayer sample by annealing in a temperature gradient. Modelling revealed that variations in GMR at 900 Oe could be attributed to local variations in interlayer coupling locally changing the switching field.

Kelley, C. S.; Thompson, S. M.; Illman, M. D. [Department of Physics, University of York, Heslington, York, North Yorkshire YO10 5DD (United Kingdom); LeFrancois, S.; Dumas, P. [SMIS Beamline, SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, Paris, BP 48 91192 (France)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS  

SciTech Connect

We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2013-08-01T23:59:59.000Z

342

An Evaluation of a Self-Calibrating Infrared Radiometer for Measuring Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Satellite radiometer measurements of global sea surface temperature (SST) with an accuracy of 0.3 K are required for climate change monitoring. In order to validate that this accuracy can be achieved, in situ measurements of sea surface radiance ...

J. P. Thomas; R. J. Knight; H. K. Roscoe; J. Turner; C. Symon

1995-04-01T23:59:59.000Z

343

Surface Temperature from ERS-1 ATSR Infrared Thermal Satellite Data in Polar Regions  

Science Conference Proceedings (OSTI)

The relationship between Along Track Scanning Radiometer (ATSR) thermal radiances and snow surface temperature for the Greenland ice sheet is examined through forward calculations of the LOWTRAN 7 radiative transfer model. Inputs to the model ...

Julienne Stroeve; Marcel Haefliger; Konrad Steffen

1996-08-01T23:59:59.000Z

344

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

345

Nano-Mechanical Infrared Detectors  

SciTech Connect

Infrared radiation (IR) is electromagnetic radiation with wavelengths between 0.7 m and 100 m. It extends from visible light to THz waves. Because fundamentally different phenomena can be observed within the IR region, four sub-bands are usually distinguished: near-IR (NIR), mid-wave-IR (MWIR), long-wave-IR (LWIR) and very long-wave-IR (VLWIR). Although somewhat different definitions exist in literature, wavelengths from 0.7 m to 2.5 m belong to NIR, from 2.5 m to 8 m belong to MWIR, from 8 m to 14 m belong to LWIR and wavelengths above 14 m belong to VLWIR. The IR photon energies range from 1.77 eV for 0.7 m photons to 0.0124 eV for 100 m photons. The significance and practical applications of IR detectors are related to two distinct phenomena: emission of electromagnetic waves by all objects at T > 0 K and interaction of electromagnetic waves with vibrational modes of molecular bonds. Thermal imaging and molecular spectroscopy are, respectively, the two major fields that critically depend on the ability to detect IR radiation.

Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott [Oak Ridge National Laboratory (ORNL); Hunt, Rodney Dale [ORNL; Datskos, Panos G [ORNL

2011-01-01T23:59:59.000Z

346

Designing Optimal Spectral Filters for Inverse Problems  

Science Conference Proceedings (OSTI)

Spectral filtering suppresses the amplification of errors when computing solutions to ill-posed inverse problems; however, selecting good regularization parameters is often expensive. In many applications, data are available from calibration experiments. ... Keywords: Bayes risk, Bayesian risk, Tikhonov, Wiener filter, empirical risk, filtering, ill-posed problem, image deblurring, machine learning, optimal design, optimal filtering, regularization, singular value decomposition, stochastic programming

Julianne Chung; Matthias Chung; Dianne P. O'Leary

2011-11-01T23:59:59.000Z

347

Digitization Noise in Power Spectral Analysis  

Science Conference Proceedings (OSTI)

It is well-known that the digitization noise variance is ?2/12 for a continuous time series sampled with the signal resolution ?. It is also generally accepted that this variance often has a white-power spectral density. We have examined in ...

L. Kristensen; P. Kirkegaard

1987-06-01T23:59:59.000Z

348

Practical spectral characterization of trichromatic cameras  

Science Conference Proceedings (OSTI)

Simple and effective geometric and radiometric calibration of camera devices has enabled the use of consumer digital cameras for HDR photography, for image based measurement and similar applications requiring a deeper understanding about the camera characteristics. ... Keywords: calibration, camera, color filter, spectral

Martin Rump; Arno Zinke; Reinhard Klein

2011-12-01T23:59:59.000Z

349

The spectral irradiance traceability chain at PTB  

Science Conference Proceedings (OSTI)

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

350

Evidence that the spectral dependence of light absorption by aerosols is  

NLE Websites -- All DOE Office Websites (Extended Search)

Evidence that the spectral dependence of light absorption by aerosols is Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Title Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Publication Type Journal Article LBNL Report Number LBNL-55056 Year of Publication 2004 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research: Atmospheres Volume 109 Issue D21 Keywords aerosol light absorption, biomass burning, organic carbon Abstract The wavelength dependence of light absorption by aerosols collected on filters is investigated throughout the near-ultraviolet to near-infrared spectral region. Measurements were made using an optical transmission method. Aerosols produced by biomass combustion, including wood and savanna burning, and by motor vehicles, including diesel trucks, are included in the analysis. These aerosol types were distinguished by different wavelength (λ) dependences in light absorption. Light absorption by the motor vehicle aerosols exhibited relatively weak wavelength dependence; absorption varied approximately as λ-1, indicating that black carbon (BC) was the dominant absorbing aerosol component. By contrast, the biomass smoke aerosols had much stronger wavelength dependence, approximately λ-2. The stronger spectral dependence was the result of enhanced light absorption at wavelengths shorter than 600 nm and was largely reduced when much of the sample organic carbon (OC) was extracted by dissolution in acetone. This indicates that OC in addition to BC in the biomass smoke aerosols contributed significantly to measured light absorption in the ultraviolet and visible spectral regions and that OC in biomass burning aerosols may appreciably absorb solar radiation. Estimated absorption efficiencies and imaginary refractive indices are presented for the OC extracted from biomass burning samples and the BC in motor vehicle-dominated aerosol samples. The uncertainty of these constants is discussed. Overall, results of this investigation show that low-temperature, incomplete combustion processes, including biomass burning, can produce light-absorbing aerosols that exhibit much stronger spectral dependence than high-temperature combustion processes, such as diesel combustion.

351

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

352

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

353

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

354

Science and applications of infrared semiconductor nanocrystals  

E-Print Network (OSTI)

In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

Geyer, Scott Mitchell

2010-01-01T23:59:59.000Z

355

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory, ...

356

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2001-01-01T23:59:59.000Z

357

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2002-01-01T23:59:59.000Z

358

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

359

NIST Infrared laser gonioreflectometer instrument (ILGRI)  

Science Conference Proceedings (OSTI)

... stable CO 2 , near infrared diode, and continuously tunable OPO PPLN lasers) and a ... from 1 nW to 1 W. The addition of other laser wavelengths in ...

2010-10-05T23:59:59.000Z

360

Session Z: Pb-Salt Infrared Materials  

Science Conference Proceedings (OSTI)

In order to demonstrate the advantages of this light coupling scheme, a two-color C-QWIP covering the two infrared atmospheric windows as well as a relatively ...

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Temperature Calibration of Infrared Thermometers  

Science Conference Proceedings (OSTI)

A method was developed for calibrating infrared thermometers to properly measure target temperatures ranging from ?70 to 0°C. Once calibrated for this range, the thermometer can then be used to measure the flux of thermal radiation from the sky. ...

B. A. Kimball; S. T. Mitchell

1984-12-01T23:59:59.000Z

362

Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors  

DOE Patents (OSTI)

Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

1999-01-01T23:59:59.000Z

363

Infrared Issues in Graviton Higgs Theory  

E-Print Network (OSTI)

We investigate the one-loop infrared behaviour of the effective potential in minimally coupled graviton Higgs theory in Minkowski background. The gravitational analogue of one loop Coleman Weinberg effective potential turns out to be complex, the imaginary part indicating an infrared instability. This instability is traced to a tachyonic pole in the graviton propagator for constant Higgs fields. Physical implications of this behaviour are studied. We also discuss physical differences between gauge theories coupled to Higgs fields and graviton Higgs theory.

Srijit Bhattacharjee; Parthasarathi Majumdar

2013-01-30T23:59:59.000Z

364

Comparing Optical and Near Infrared Luminosity Functions  

E-Print Network (OSTI)

The Sloan Digital Sky Survey [SDSS] has measured an optical luminosity function for galaxies in 5 bands, finding 1.5 to 2.1 times more luminosity density than previous work. This note compares the SDSS luminosity density to two recent determinations of the near infrared luminosity function based on 2MASS data, and finds that an extrapolation of the SDSS results gives a 2.3 times greater near infrared luminosity density.

Edward L. Wright

2001-02-02T23:59:59.000Z

365

ARM - Measurement - Shortwave spectral diffuse downwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

diffuse downwelling irradiance diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments RSS : Rotating Shadowband Spectroradiometer

366

Spectral analysis of ambient weather patterns  

DOE Green Energy (OSTI)

A Fourier spectral analysis of ambient weather data, consisting of global and direct solar radiation, dry and wet bulb temperatures, and wind speed, is given. By analyzing the heating and cooling seasons independently, seasonal variations are isolated and a cleaner spectrum emerges. This represents an improvement over previous work in this area, in which data for the entire year were analyzed together. As a demonstration of the efficacy of this method, synthetic data constructed with a small number of parameters are used in typical simulations, and the results are compared with those obtained with the original data. A spectral characterization of fluctuations around the moving average is given, and the changes in the fluctuation from season to season are examined.

Anderson, J.V.; Subbarao, K.

1981-01-01T23:59:59.000Z

367

Spectral diversity of Type Ia Supernovae  

E-Print Network (OSTI)

We use published spectroscopic and photometric data for 8 Type Ia supernovae to construct a dispersion spectrum for this class of object, showing their diversity over the wavelength range 3700A to 7100A. We find that the B and V bands are the spectral regions with the least dispersion, while the U band below 4100A is more diverse. Some spectral features such as the Si line at 6150A are also highly diverse. We then construct two objective measures of 'peculiarity' by (i) using the deviation of individual objects from the average SN Ia spectrum compared to the typical dispersion and (ii) applying principle component analysis. We demonstrate these methods on several SNe Ia that have previously been classified as peculiar.

J. Berian James; Tamara M. Davis; Brian P. Schmidt; Alex G. Kim

2006-05-05T23:59:59.000Z

368

Laser stabilization using spectral hole burning  

E-Print Network (OSTI)

We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

L. Rippe; B. Julsgaard; A. Walther; S. Kröll

2006-11-05T23:59:59.000Z

369

NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS  

Science Conference Proceedings (OSTI)

The Trojan asteroids, a very substantial population of primitive bodies trapped in Jupiter's stable Lagrange regions, remain quite poorly understood. Because they occupy these orbits, the physical properties of Trojans provide a unique perspective on the chemical and dynamical processes that shaped the Solar System. The current study was therefore undertaken to investigate surface compositions of these objects. We present 66 new near-infrared (NIR; 0.7-2.5 {mu}m) spectra of 58 Trojan asteroids, including members of both the leading and trailing swarms. We also include in the analysis previously published NIR spectra of 13 Trojans (3 of which overlap with the new sample). This data set permits not only a direct search for compositional signatures, but also a search for patterns that may reveal clues to the origin of the Trojans. We do not report any confirmed absorption features in the new spectra. Analysis of the spectral slopes, however, reveals an interesting bimodality among the NIR data. The two spectral groups identified appear to be equally abundant in the leading and trailing swarms. The spectral groups are not a result of family membership; they occur in the background, non-family population. The average albedos of the two groups are the same within uncertainties (0.051 {+-} 0.016 and 0.055 {+-} 0.016). No correlations between spectral slope and any other physical or orbital parameter are detected, with the exception of a possible weak correlation with inclination among the less-red spectral group. The NIR spectral groups are consistent with a similar bimodality previously suggested among visible colors and spectra. Synthesizing the present results with previously published properties of Trojans, we conclude that the two spectral groups represent objects with different intrinsic compositions. We further suggest that whereas the less-red group originated near Jupiter or in the main asteroid belt, the redder spectral group originated farther out in the Solar System. If this suggestion is correct, the Trojan swarms offer the most readily accessible large reservoir of Kuiper Belt material as well as a unique reservoir for the study of material from the middle part of the solar nebula.

Emery, J. P.; Burr, D. M. [Earth and Planetary Science Department and Planetary Geosciences Institute, University of Tennessee, Knoxville, TN 37996 (United States); Cruikshank, D. P., E-mail: jemery2@utk.edu [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

2011-01-15T23:59:59.000Z

370

Spectral converters and luminescent solar concentrators  

E-Print Network (OSTI)

In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of Luminescent Solar Concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and provide specific examples of application of this principle to the development of solar concentration devices.

Petra F. Scudo; Luigi Abbondanza; Roberto Fusco

2009-07-21T23:59:59.000Z

371

Spectral converters and luminescent solar concentrators  

E-Print Network (OSTI)

In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of Luminescent Solar Concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and provide specific examples of application of this principle to the development of solar concentration devices.

Scudo, Petra F; Fusco, Roberto

2009-01-01T23:59:59.000Z

372

Spectral measures of powers of random matrices  

E-Print Network (OSTI)

This paper considers the empirical spectral measure of a power of a random matrix drawn uniformly from one of the compact classical matrix groups. We give sharp bounds on the $L_p$-Wasserstein distances between this empirical measure and the uniform measure on the circle, which show a smooth transition in behavior when the power increases and yield rates on almost sure convergence when the dimension grows. Along the way, we prove the sharp logarithmic Sobolev inequality on the unitary group.

Elizabeth Meckes; Mark Meckes

2012-10-09T23:59:59.000Z

373

Influence of Urban Aerosol on Spectral Solar Irradiance  

Science Conference Proceedings (OSTI)

From a dataset of spectral distribution of global and disuse solar irradiances measured in Barcelona during the last three years, the influence of turbidity caused by urban aerosol on spectral composition of solar radiation and transmissivity of ...

J. Lorente; A. Redań; X. De Cabo

1994-03-01T23:59:59.000Z

374

A Description of the GFDL Global Spectral Model  

Science Conference Proceedings (OSTI)

A multi-level, global, spectral transform model of the atmosphere, based upon spherical harmonies, has been developed at GFDL. The basic model has nine sigma levels in the vertical and rhomboidal spectral truncation at wavenumber 30. However, ...

Charles T. Gordon; William F. Stern

1982-07-01T23:59:59.000Z

375

A Semi-Lagrangian Transport Scheme with Spectral Interpolation  

Science Conference Proceedings (OSTI)

Advective transport using the flexible and stable semi-Lagrangian scheme coupled with the highly accurate spectral interpolation in a limited domain is demonstrated. The spectral method for solving nonperiodic boundary problems is based on a ...

H. N. Lee

1993-12-01T23:59:59.000Z

376

Spectral Energy Dissipation due to Surface Wave Breaking  

Science Conference Proceedings (OSTI)

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave breaking is presented and then used to propose a model for the spectral dependence of the breaking strength parameter b, defined in the O. M. ...

Leonel Romero; W. Kendall Melville; Jessica M. Kleiss

2012-09-01T23:59:59.000Z

377

The Fleet Numerical Oceanography Center Global Spectral Ocean Wave Model  

Science Conference Proceedings (OSTI)

The Spectral Ocean Wave Model (SOWM) has been an operational product at Fleet Numerical Oceanography Center since the mid 1970s; the Global Spectral Ocean Wave Model (GSOWM) was developed to replace it. An operational test of GSOWM, using buoy, ...

R. M. Clancy; J. E. Kaitala; L. F. Zambresky

1986-05-01T23:59:59.000Z

378

Optimal Spectral Topography and Its Effect on Model Climate  

Science Conference Proceedings (OSTI)

Gibbs oscillations in the truncated spectral representation of the earth's topography are strongly reduced by determining its spectral coefficients as a minimum of a nonuniformly weighted, nonquadratic cost function. The cost function penalizes ...

Mark Holzer

1996-10-01T23:59:59.000Z

379

Spectral Viscosity for Shallow Water Equations in Spherical Geometry  

Science Conference Proceedings (OSTI)

A spherical spectral viscosity operator is proposed as an alternative to standard horizontal diffusion terms in global atmospheric models. Implementation in NCAR's Spectral Transform Shallow Water Model and application to a suite of standard test ...

Anne Gelb; James P. Gleeson

2001-09-01T23:59:59.000Z

380

Polarimetric Spectral Filter for Adaptive Clutter and Noise Suppression  

Science Conference Proceedings (OSTI)

In this paper, spectral decompositions of differential reflectivity, differential phase, and copolar correlation coefficient are used to discriminate between weather and nonweather signals in the spectral domain. This approach gives a greater ...

Dmitri N. Moisseev; V. Chandrasekar

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

Science Conference Proceedings (OSTI)

The authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing ...

K. J. Evans; P. H. Lauritzen; S. K. Mishra; R. B. Neale; M. A. Taylor; J. J. Tribbia

2013-02-01T23:59:59.000Z

382

A multiresolution spectral angle-based hyperspectral classification method  

Science Conference Proceedings (OSTI)

Due to the lack of training samples, hyperspectral classification often adopts the minimum distance classification method based on spectral metrics. This paper proposes a novel multiresolution spectral-angle-based hyperspectral classification method, ...

Jin Chen; Runsheng Wang; Cheng Wang

2008-06-01T23:59:59.000Z

383

Similarity measures for spectral discrimination of salt-affected soils  

Science Conference Proceedings (OSTI)

This paper illustrates a pilot study designed to examine the spectral response of soils due to salt variations. The aim of the study includes determining whether salt-affected soils can be discriminated based on their spectral characteristics, by establishing ...

J. Farifteh; F. van der Meer; E. J. M. Carranza

2007-11-01T23:59:59.000Z

384

The Parallel Scalability of the Spectral Transform Method  

Science Conference Proceedings (OSTI)

This paper investigates the suitability of the spectral transform method for parallel implementation. The spectral transform method is a natural candidate for general circulation models (GCMs) designed to run on large-scale parallel computers due ...

Ian Foster; William Gropp; Rick Stevens

1992-05-01T23:59:59.000Z

385

The mid-infrared diameter of W Hydrae  

E-Print Network (OSTI)

Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Modeling results in an apparent angular FDD diameter of W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12 microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/- 0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 +/- 20) deg and an axis ra...

Zhao-Geisler, R; Koehler, R; Lopez, B; Leinert, C

2011-01-01T23:59:59.000Z

386

Infrared Emission from the Nearby Cool Core Cluster Abell 2597  

E-Print Network (OSTI)

We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.

Megan Donahue; Andres Jordan; Stefi A. Baum; Patrick Cote; Laura Ferrarese; Paul Goudfrooij; Duccio Macchetto; Christopher P. O'Dea; James E. Pringle; James E. Rhoads; William B. Sparks; G. Mark Voit

2007-08-10T23:59:59.000Z

387

Lowner's Operator and Spectral Functions in Euclidean Jordan ...  

E-Print Network (OSTI)

Dec 26, 2004 ... Lowner's Operator and Spectral Functions in Euclidean Jordan Algebras ... functions under the framework of Euclidean Jordan algebras.

388

Incremental spectral clustering by efficiently updating the eigen-system  

Science Conference Proceedings (OSTI)

In recent years, the spectral clustering method has gained attentions because of its superior performance. To the best of our knowledge, the existing spectral clustering algorithms cannot incrementally update the clustering results given a small change ... Keywords: Graph, Incidence vector/matrix, Incremental clustering, Spectral clustering, Web-blogs

Huazhong Ning; Wei Xu; Yun Chi; Yihong Gong; Thomas S. Huang

2010-01-01T23:59:59.000Z

389

Performance improvement of physically based spectral rendering using stochastic sampling  

Science Conference Proceedings (OSTI)

In recent years, many researchers in computer graphics pay attention to spectral rendering where light transport is modeled with multiple wavelengths instead of just using the red, green and blue components. This paper discusses some of the advantages ... Keywords: global illumination, photon mapping, spectral distribution, spectral rendering, stochastic sampling

Shin Watanabe; Shota Kanamori; Sho Ikeda; Bisser Raytchev; Toru Tamaki; Kazufumi Kaneda

2013-03-01T23:59:59.000Z

390

Spectral unfolds of PITHON Flash X-ray source.  

SciTech Connect

Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C. (L-3 Pulse Sciences)

2007-11-01T23:59:59.000Z

391

Electromagnetically induced transparency over spectral hole-burning  

E-Print Network (OSTI)

Electromagnetically induced transparency over spectral hole-burning temperature in a rare the spectral hole-burning temperature. The transmission of the probe laser beam is increased by a factor of exp over the spectral hole-burning temperature in a rare-earth­doped solid represents important progress

Shahriar, Selim

392

Impact of Increased TOVS Signal on the NMC Global Spectral Model: A Tropical-Plume Case Study  

Science Conference Proceedings (OSTI)

Information exists in tropical operational TIROS Operational Vertical Sounder (TOVS) radiance observations that is not utilized by operational sounding retrieval and analysis-initialization schemes. Temperature and moisture signals are extracted ...

James P. McGuirk

1993-03-01T23:59:59.000Z

393

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

394

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

395

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

396

Infrared light sources with semimetal electron injection  

DOE Patents (OSTI)

An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

397

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

398

Modelling the spectral energy distribution of galaxies from the ultraviolet to submillimeter  

E-Print Network (OSTI)

We present results from a new modelling technique which can account for the observed optical/NIR - FIR/submm spectral energy distributions (SEDs) of normal star-forming galaxies in terms of a minimum number of essential parameters specifying the star-formation history and geometrical distribution of stars and dust. The model utilises resolved optical/NIR images to constrain the old stellar population and associated dust, and geometry-sensitive colour information in the FIR/submm to constrain the spatial distributions of young stars and associated dust. It is successfully applied to the edge-on spirals NGC891 and NGC5907. In both cases the young stellar population powers the bulk of the FIR/sub-mm emission. The model also accounts for the observed surface brightness distribution and large-scale radial brightness profiles in NGC891 as determined using the Infrared Space Observatory (ISO) at 170 and 200 mcrions and at 850 micron using SCUBA.

Cristina C. Popescu; Richard J. Tuffs

2002-03-07T23:59:59.000Z

399

Infrared Heating of Hydrogen Layers in Hohlraums  

DOE Green Energy (OSTI)

The authors report results of modeling and experiments on infrared heated deuterium-hydride (HD) layers in hohlraums. A 2 mm diameter, 40 {micro}m thick shell with 100-400 {micro}m thick HD ice inside a NIF scale-1 gold hohlraum with 1-3 {micro}m rms surface roughness is heated by pumping the HD vibrational bands. Models indicate control of the low-mode layer shape by adjusting the infrared distribution along the hohlraum walls. They have experimentally demonstrated control of the layer symmetry perpendicular to the hohlraum axis.

Kozioziemski, B J; McEachern, R L; London, R A; Bitter, D N

2001-08-15T23:59:59.000Z

400

The FourStar Infrared Camera  

E-Print Network (OSTI)

The FourStar infrared camera is a 1.0-2.5 micron (JHKs) near infrared camera for the Magellan Baade 6.5m telescope at Las Campanas Observatory (Chile). It is being built by Carnegie Observatories and the Instrument Development Group at Johns Hopkins and is scheduled for completion in 2009. The instrument uses four Teledyne HAWAII-2RG arrays that produce a 10.9 x 10.9 arcmin field of view. The outstanding seeing at the Las Campanas site coupled with FourStar's high sensitivity and large field of view will enable many new survey and targeted science programs.

S. E. Persson; Robert Barkhouser; Christoph Birk; Randy Hammond; Albert Harding; E. R. Koch; J. L. Marshall; Patrick J. McCarthy; David Murphy; Joe Orndorff; Gregg Scharfstein; Stephen A. Shectman; Stephen Smee; Alan Uomoto

2008-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of an infrared absorption spectroscope based on linear variable filters  

E-Print Network (OSTI)

The objective of this thesis is to develop a low-cost infrared absorption spectroscope based on linear variable filter (LVF) technology for the automated detection of gases and vapors, and the semi-automated detection of liquids. This instrument represents an alternative to electronic-nose instruments based on cross-selective gas sensor arrays. Instead, the proposed instrument uses the idea of computational “pseudo-sensors”, whereby spectral lines in an analytical instrument are clustered into groups and used as independent variables. We characterize the system on a number of performance metrics, uncovering its detection limits and resolving power. We present calibration methods to estimate the concentration of analytes in a matrix of absorbing species, as well as signal processing techniques for spectral classification. Specifically, we validate the instrument on a mixture calibration problem with simple and complex chemicals, and compare the efficiency of different calibration methods to estimate the concentration of one analyte in the matrix. Moreover, we demonstrate the use of the instrument on two real-world applications in the foodstuffs domain: oil adulteration and trans fatty acid (TFA) detection. The instrument, combined with signal processing techniques, is able to fully discriminate oils, as well as classify margarine and spreads onto high-TFA and low-TFA groups. Despite operating at a low spectral resolution, our results show that the LVF based spectroscope is a promising alternative to traditional analytical techniques for selected niche applications.

Nogueira, Felipe Guimaraes

2006-12-01T23:59:59.000Z

402

Spectral energy distribution modelling of Southern candidate massive protostars using the Bayesian inference method  

E-Print Network (OSTI)

Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution modelling for 227 of the 405 millimetre continuum sources of Hill et al. (2005) which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation. The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM-only cores) display similar characteristics to those of high mass star formation regions. Attributing significance to the marginal distinctions between the MM-only cores and the high-mass star formation sample we draw hypotheses regarding the nature of the MM-only cores, including the possibility that the population itself is comprised of different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far-infrared data can not be used to determine the evolution of massive protostars or massive young stellar objects.

T. Hill; C. Pinte; V. Minier; M. G. Burton; M. R. Cunningham

2008-10-17T23:59:59.000Z

403

X-ray spectral states of microquasars  

E-Print Network (OSTI)

We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Julien Malzac; Renaud Belmont

2008-10-25T23:59:59.000Z

404

MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS  

Science Conference Proceedings (OSTI)

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

Xia, X. Y.; Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Gao, Y.; Tan, Q. H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mao, S. [National Astronomical Observatories of China, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Omont, A. [Institut d'Astrophysique de Paris, UMR7095, UPMC and CNRS, 98bis boulevard Arago, F-75014 Paris (France); Flaquer, B. O.; Leon, S. [Instituto de Radioastronomia Milimetrica (IRAM), Avenida Divina Pastora 7, Nucleo Central, 18012 Granada (Spain); Cox, P., E-mail: xyxia@bao.ac.cn [Institut de Radio Astronomie Millimetrique (IRAM), F-38406 St. Martin d'Heres (France)

2012-05-10T23:59:59.000Z

405

SiGeC Near Infrared Photodetectors  

E-Print Network (OSTI)

A near infrared waveguide photodetector in Si-based ternary Si?â??xâ??yGexCy alloy was demonstrated for 0.85~1.06 µm wavelength fiber-optic interconnection system applications. Two sets of detectors with active absorption ...

Li, Baojun

406

Cirrus Cloud Properties Derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part III: Ground-Based HIS Results  

Science Conference Proceedings (OSTI)

During FIRE II, cirrus clouds were observed in the wavelength range 3–19, µm with two High Resolution Interferometer Sounders as described in the Part I companion paper. One, known as AC-HIS, was mounted on the NASA ER-2 aircraft in order to look ...

A. D. Collard; S. A. Ackerman; W. L. Smith; X. Ma; H. E. Revercomb; R. O. Knuteson; S-C. Lee

1995-12-01T23:59:59.000Z

407

Nontemplated Approach to Tuning the Spectral Propertiesof Cyanine-Based Fluorescent NanoGUMBOS  

SciTech Connect

Template-free controlled aggregation and spectral properties in fluorescent organic nanoparticles (FONs) is highly desirable for various applications.Herein, we report a nontemplated method for controlling the aggregation in near-infrared (NIR) cyanine-based nanoparticles derived from a group of uniformmaterials based on organic salts (GUMBOS). Cationic heptamethine cyanine dye 1,10,3,3,30,30-hexamethylindotricarbocyanine (HMT) was coupled with five different anions, viz., [NTf2 -], [BETI-], [TFPB-], [AOT-], and [TFP4B-], by an ion-exchange method to obtain the respective GUMBOS. The nanoGUMBOS obtained via a reprecipitation method were primarily amorphous and spherical (30-100 nm) as suggested by selected area electron diffraction (SAED) and transmission electron microscopy (TEM). The formation of tunable self-assemblies within the nanoGUMBOS was characterized using absorption and fluorescence spectroscopy in conjunction with molecular dynamics simulations. Counterion-controlled spectral properties observed in the nanoGUMBOS were attributed to variations in J/H ratios with different anions. Association with the [AOT-] anion afforded predominant J aggregation enabling the highest fluorescence intensity, whereas [TFP4B-] disabled the fluorescence due to predominantHaggregation in the nanoparticles. Analyses of the stacking angle of the cations based on molecular dynamic simulation results in [HMT][NTf2], [HMT][BETI], and [HMT][AOT] dispersed in water and a visual analysis of the representative simulation snapshots also imply that the type of aggregation was controlled through the counterion associated with the dye cation.

Das, Susmita [Louisiana State University; Bwambok, David [Louisiana State University; El-Zahab, Bilal [Lousianna State University; Monk, Joshua [Louisiana State University; De Rooy, Sergio [Louisiana State University; Challa, Santhosh [Louisiana State University; Li, Min [Lousianna State University; Hung, Francisco [Louisiana State University; Baker, Gary A [ORNL; Warner, Isiah M [ORNL

2010-01-01T23:59:59.000Z

408

Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground  

Science Conference Proceedings (OSTI)

Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.

Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H.

2010-06-01T23:59:59.000Z

409

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals  

Science Conference Proceedings (OSTI)

Comparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch ...

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias M. Schreier; Richard A. Frey

2011-05-01T23:59:59.000Z

410

Noise reduction efforts for the ALS infrared beamlines  

E-Print Network (OSTI)

is being commissioned at the ALS that should help quietalso has links to the main ALS Infrared Website, where PDF’sNoise reduction efforts for the ALS infrared beamlines Tom

2003-01-01T23:59:59.000Z

411

Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms  

Science Conference Proceedings (OSTI)

The development of a combined infrared and passive microwave satellite rainfall estimation technique is outlined. Infrared data from geostationary satellites are combined with polar-orbiting passive microwave estimates to provide 30-min rainfall ...

Chris Kidd; Dominic R. Kniveton; Martin C. Todd; Tim J. Bellerby

2003-12-01T23:59:59.000Z

412

Infrared Brightness Temperature of Mars, 1983-2103  

E-Print Network (OSTI)

The predicted infrared brightness temperature of Mars using the 1976 model of Wright is tabulated here for the period 1983 to 2103. This model was developed for far-infrared calibration, and is still being used for JCMT calibration.

E. L. Wright

2007-03-25T23:59:59.000Z

413

A Comparison of Infrared Light Emitting Diodes (IR-LED) versus Infrared  

E-Print Network (OSTI)

B. Characteristics of a typical IR LED analogous to the typeLight Emitting Diodes (IR-LED) versus Infrared Helium-Neon (light emitting diode (IR-LED) to quantitatively measure fuel

Girard, James W.; Bogin, Gregory E; Mack, John Hunter; Chen, J-Y; Dibble, Rober W

2005-01-01T23:59:59.000Z

414

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

415

A multimedia museum guide system with instant infrared communication  

Science Conference Proceedings (OSTI)

In this paper, we describe a prototype of an multimedia guide system that use instant infrared communication to get the multimedia contents and play the contents based on the operation of the users. The portable guide device is conposed of an infrared ... Keywords: guide system, infrared, uubiquitous computing, wireless communication

Dawei Cai

2008-03-01T23:59:59.000Z

416

Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)  

DOE Green Energy (OSTI)

The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

2013-03-01T23:59:59.000Z

417

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Title: Water Heat Pipe Blackbody as a Reference Spectral Radiance Source Between 50 C and 250 C. Published: Date Unknown. ...

2012-04-09T23:59:59.000Z

418

Model for spectral and chromatographic data  

DOE Patents (OSTI)

A method and apparatus using a spectral analysis technique are disclosed. In one form of the invention, probabilities are selected to characterize the presence (and in another form, also a quantification of a characteristic) of peaks in an indexed data set for samples that match a reference species, and other probabilities are selected for samples that do not match the reference species. An indexed data set is acquired for a sample, and a determination is made according to techniques exemplified herein as to whether the sample matches or does not match the reference species. When quantification of peak characteristics is undertaken, the model is appropriately expanded, and the analysis accounts for the characteristic model and data. Further techniques are provided to apply the methods and apparatuses to process control, cluster analysis, hypothesis testing, analysis of variance, and other procedures involving multiple comparisons of indexed data.

Jarman, Kristin [Richland, WA; Willse, Alan [Richland, WA; Wahl, Karen [Richland, WA; Wahl, Jon [Richland, WA

2002-11-26T23:59:59.000Z

419

Cyclotron emission effect on CMB spectral distortions  

E-Print Network (OSTI)

We investigated the role of the cyclotron emission (CE) associated to cosmic magnetic fields (MF) on the evolution of cosmic microwave background (CMB) spectral distortions. We computed the photon and energy injection rates by including spontaneous and stimulated emission and absorption. These CE rates have been compared with those of bremsstrahlung (BR) and double Compton scattering (DC), for realistic CMB distorted spectra at various cosmic epochs. For reasonable MF strengths we found that the CE contribution to the evolution of the CMB spectrum is much smaller than the BR and DC contributions. The constraints on the energy exchanges at various redshifts can be then derived, under quite general assumptions, by considering only Compton scattering (CS), BR, and DC, other than the considered dissipation process. Upper limits to the CMB polarization degree induced by CE have been estimated.

Carlo Burigana; Andrea Zizzo

2006-01-12T23:59:59.000Z

420

Spectral energy distribution for GJ406  

E-Print Network (OSTI)

We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).

Pavlenko, Ya V; Lyubchik, Y; Tennyson, J; Pinfield, D J; Pavlenko, Ya. V.; Lyubchik, Yu.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spectral energy distribution for GJ406  

E-Print Network (OSTI)

We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).

Ya. V. Pavlenko; H. R. A. Jones; Yu. Lyubchik; J. Tennyson; D. J. Pinfield

2005-10-19T23:59:59.000Z

422

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

423

Interpretations of Space-Time Spectral Energy Equations  

Science Conference Proceedings (OSTI)

Interpretations are given of two different formulations of space-time spectral energy equations derived by Kao (1968) and Hayashi (1980).

Yoshikazu Hayashi

1982-03-01T23:59:59.000Z

424

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions  

E-Print Network (OSTI)

Nov 22, 2011 ... Abstract: We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is ...

425

JOINT SPECTRAL RADIUS AND PATH-COMPLETE GRAPH ...  

E-Print Network (OSTI)

proximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple ...

426

A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discontinuous Galerkin Lattice Boltzmann Method for Simulating Natural Convection Heat Transfer in a Horizontal Concentric Annulus Title A Spectral-Element Discontinuous...

427

Löwner's Operator and Spectral Functions in Euclidean Jordan ...  

E-Print Network (OSTI)

Dec 24, 2004 ... spectral functions under the framework of Euclidean Jordan algebras. ... over any symmetric cone defined in a Euclidean Jordan algebra is ...

428

Light-Speed Spectral Analysis of a Laser Pulse  

Spectral sentry development team: (front row, from left) Rob Campbell, William Molander, Paul Armstrong, Christopher Ebbers, and Noel Peterson; (back row) Steven ...

429

Cloud properties derived from the High Spectral Resolution Lidar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud properties derived from the High Spectral Resolution Lidar during MPACE Eloranta, Edwin University of Wisconsin Category: Field Campaigns Cloud properties were derived from...

430

Posters Long-Pathlength Infrared Absorption Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 µm, this absorption can be attributed primarily to water vapor. It consists of 1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the υ 2 rovibrational band (at the high-wavenumber boundary of the window); and 2) the

431

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

432

THE INFRARED COLORS OF THE SUN  

Science Conference Proceedings (OSTI)

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

2012-12-10T23:59:59.000Z

433

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

434

Infrared Sky Brightness Monitors for Antarctica  

E-Print Network (OSTI)

. Two sky brightness monitorsone for the near-infrared and one for the mid-infraredhave been developed for site survey work in Antarctica. The instruments, which we refer to as the NISM (Near-Infrared Sky Monitor) and the MISM (Mid-Infrared Sky Monitor), are part of a suite of instruments being deployed in the Automated Astrophysical Site-Testing Observatory (AASTO). The chief design constraints include reliable, autonomous operation, low power consumption, and of course the ability to operate under conditions of extreme cold. The instruments are currently operational at the Amundsen-Scott South Pole Station, prior to deployment at remote, unattended sites on the high antarctic plateau. 1. INTRODUCTION The antarctic plateau is recognized as having the potential to provide some of the best astronomical observing conditions on earth (see, e.g., Burton et al. 1994). Almost all the site testing to date has been carried out at the South Pole, where it has already been demonstrated t...

Storey Ashley Boccas; J. W. V. Storey; M. C. B. Ashley; M. Boccas; M. A. Phillips; A. E. T. Schinckel

1999-01-01T23:59:59.000Z

435

Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy  

E-Print Network (OSTI)

Herschel was launched on 14 May 2009, and is now an operational ESA space observatory offering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55-671 {\\mu}m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

Pilbratt, G L; Passvogel, T; Crone, G; Doyle, D; Gageur, U; Heras, A M; Jewell, C; Metcalfe, L; Ott, S; Schmidt, M

2010-01-01T23:59:59.000Z

436

Infrared emission spectra or uranium and thorium  

Science Conference Proceedings (OSTI)

The region between 1 and 5.5 ..mu..m has been observed with a high-resolution Fourier transform spectrometer. See-through hollow cathode lamps with calcium fluoride windows were operated at high current. Special precautions were required to minimize interference by blackbody radiation from the hot cathode. Observed lines were measured to an absolute accuracy of about 0.001 cm/sup -1/ and about 5% relative intensity accuracy. The argon carrier gas lines were readily distinguished by their much wider Doppler-broadened linewidths. Many lines were assigned to neutral or singly-ionized thorium on the basis of predicted transition wavenumbers calculated from accurate level lists. However, many lines remain to be assigned. This new spectral data connects to, and extends similar, spectral information given in our uranium and thorium atlases which cover the ultraviolet and visible regions.

Palmer, B.A.; Phillips, M.V.; Engleman, R. Jr.

1983-01-01T23:59:59.000Z

437

Time Spectral Analysis of Midlatitude Disturbances in the Martian Atmosphere  

Science Conference Proceedings (OSTI)

The nature of the synoptic period variations in the Viking 2 pressure, wind and temperature data is investigated, using time-spectral and cross-spectral analysis, for selected portions of the Mars fall, winter and spring seasons. Estimates of the ...

Jeffrey R. Barnes

1980-09-01T23:59:59.000Z

438

On Gravity, Torsion and the Spectral Action Principle  

E-Print Network (OSTI)

We consider compact Riemannian spin manifolds without boundary equipped with orthogonal connections. We investigate the induced Dirac operators and the associated commutative spectral triples. In case of dimension four and totally anti-symmetric torsion we compute the Chamseddine-Connes spectral action, deduce the equations of motions and discuss critical points.

Frank Pfaeffle; Christoph A. Stephan

2011-01-07T23:59:59.000Z

439

Parametric spectral analysis of malaria gene expression time series data  

Science Conference Proceedings (OSTI)

Spectral analysis of DNA microarray gene expressions time series data is important for understanding the regulation of gene expression and gene function of the Plasmodium falciparum in the intraerythrocytic developmental cycle. In this paper, ... Keywords: autoregressive model, microarray time series analysis, plasmodium falciparum, singular spectrum analysis, spectral estimation

Liping Du; Shuanhu Wu; Alan Wee-Chung Liew; David Keith Smith; Hong Yan

2006-09-01T23:59:59.000Z

440

A Fast Spectral Subtractional Solver for Elliptic Equations  

Science Conference Proceedings (OSTI)

The paper presents a fast subtractional spectral algorithm for the solution of the Poisson equation and the Helmholtz equation which does not require an extension of the original domain. It takes O(N2 log N) operations, ... Keywords: equations in complex geometries, fast spectral direct solver, preconditioned iterative algorithm for elliptic equations, the Poisson equation, the modified Helmholtz equation

Elena Braverman; Boris Epstein; Moshe Israeli; Amir Averbuch

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Spectral estimation for locally stationary time series with missing observations  

Science Conference Proceedings (OSTI)

Time series arising in practice often have an inherently irregular sampling structure or missing values, that can arise for example due to a faulty measuring device or complex time-dependent nature. Spectral decomposition of time series is a traditionally ... Keywords: Missing data, Nondecimated transform, Spectral estimation, Wavelet lifting

Marina I. Knight; Matthew A. Nunes; Guy P. Nason

2012-07-01T23:59:59.000Z

442

Investigation into Spectral Parameters as they Impact CPV Module Performance  

DOE Green Energy (OSTI)

The CPV industry is well aware that performance of triple junction cells depends on spectral conditions but there is a lack of data quantifying this spectral dependence at the module level. This paper explores the impact of precipitable water vapor, aerosol optical depth (AOD), and optical air mass on multiple CPV module technologies on-sun in Golden, CO.

Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J.

2011-03-01T23:59:59.000Z

443

The Unusual Infrared Object HDF-N J123656.3+621322  

E-Print Network (OSTI)

We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise ~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.

Mark Dickinson; Christopher Hanley; Richard Elston; Peter R. Eisenhardt; S. A. Stanford; Kurt L. Adelberger; Alice Shapley; Charles C. Steidel; Casey Papovich; Alexander S. Szalay; Matthew A. Bershady; Christopher J. Conselice; Henry C. Ferguson; Andrew S. Fruchter

1999-08-07T23:59:59.000Z

444

REMARKABLE SPECTRAL VARIABILITY OF PDS 456  

SciTech Connect

We report on the highest to date signal-to-noise ratio X-ray spectrum of the luminous quasar PDS 456, as obtained during two XMM-Newton orbits in 2007 September. The present spectrum is considerably different from several previous X-ray spectra recorded for PDS 456 since 1998. The ultra-high-velocity outflow seen as recently as 2007 February is not detected in absorption. Conversely, a significant reflection component is detected (DELTAchi{sup 2} = 313 compared to a simple absorbed power law). The reflection model suggests that the reflecting medium may be outflowing at a velocity v/c = -0.06 +- 0.02 (DELTAchi{sup 2} = 28 compared to v/c = 0). The present spectrum is analyzed in the context of the previous ones in an attempt to understand all spectra within the framework of a single model. We examine whether an outflow with variable partial covering of the X-ray source along the line of sight that also reflects the source from other lines of sight can explain the dramatic variations in the broadband spectral curvature of PDS 456. It is established that absorption plays a major role in shaping the spectrum of other epochs, while the 2007 XMM-Newton spectrum is dominated by reflection, and the coverage of the source by the putative outflow is small (<20%).

Behar, Ehud; Mushotzky, Richard [Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kaspi, Shai [Department of Physics, Technion, Haifa 32000 (Israel); Reeves, James [School of Physics and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); O'Brien, Paul T. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

2010-03-20T23:59:59.000Z

445

Automated coregistration of MTI spectral bands.  

SciTech Connect

In the focal plane of a pushbroom imager, a linear array of pixels is scanned across the scene, building up the image one row at a time. For the Multispectral Thermal Imager (MTI), each of fifteen different spectral bands has its own linear array. These arrays are pushed across the scene together, but since each band's array is at a different position on the focal plane, a separate image is produced for each band. The standard MTI data products resample these separate images to a common grid and produce coregistered multispectral image cubes. The coregistration software employs a direct 'dead reckoning' approach. Every pixel in the calibrated image is mapped to an absolute position on the surface of the earth, and these are resampled to produce an undistorted coregistered image of the scene. To do this requires extensive information regarding the satellite position and pointing as a function of time, the precise configuration of the focal plane, and the distortion due to the optics. These must be combined with knowledge about the position and altitude of the target on the rotating ellipsoidal earth. We will discuss the direct approach to MTI coregistration, as well as more recent attempts to 'tweak' the precision of the band-to-band registration using correlations in the imagery itself.

Theiler, J. P. (James P.); Galbraith, A. E. (Amy E.); Pope, P. A. (Paul A.); Ramsey, K. A. (Keri A.); Szymanski, J. J. (John J.)

2002-01-01T23:59:59.000Z

446

Spectral hole burning for stopping light  

E-Print Network (OSTI)

We propose a novel protocol for storage and retrieval of photon wave packets in a $\\Lambda$-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid state systems at low temperature, such as rare earth ion doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy is carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground state Raman coherence by using brief $\\pi$-pulses. The protocol exhibits some resemblance with the well known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters and theoretically examine the recovery efficiency.

R. Lauro; T. Chaneliere; J. -L. Le Gouet

2009-02-16T23:59:59.000Z

447

New and Underutilized Technology: Spectrally Enhanced Lighting | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spectrally Enhanced Lighting Spectrally Enhanced Lighting New and Underutilized Technology: Spectrally Enhanced Lighting October 4, 2013 - 4:50pm Addthis The following information outlines key deployment considerations for spectrally enhanced lighting within the Federal sector. Benefits U.S. Department of Energy (DOE) research studies show that simply shifting the color of fluorescent lamps from the warmer yellow to the cooler blue end of the color spectrum allows people to see things more clearly and for spaces to appear brighter. By changing the light color to be more like daylight, lighting levels can be reduced to save energy while still achieving the same visual acuity. Conventional practices use lamps with correlated color temperature (CCT) of 3,000K to 4,100K. Spectrally enhanced lighting uses lamps with a CCT of

448

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS  

Open Energy Info (EERE)

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Agency/Company /Organization: National Renewable Energy Laboratory, Centro de EnergĂ­as Renovables (CER), United States Department of Energy Sector: Energy Focus Area: Solar Resource Type: Software/modeling tools, Webinar, Training materials References: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model[1] Logo: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Webinar Video SMARTSwebinar.JPG Announcement " Monday, December 6, 2010 11-12 a.m. Golden, CO 1-2 p.m., Washington, D.C. 3-4 p.m., Santiago, Chile

449

Equivariant spectral triples on the quantum SU(2) group.  

E-Print Network (OSTI)

We characterize all equivariant odd spectral triples for the quantum SU(2) group acting on its L_2-space and having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and given any element of the K-homology group of SU_q(2), there is an equivariant odd spectral triple of dimension 3 inducing that element. The method employed to get equivariant spectral triples in the quantum case is then used for classical SU(2), and we prove that for p<4, there does not exist any equivariant spectral triple with nontrivial K-homology class and dimension p acting on the L_2-space.

Partha Sarathi Chakraborty; Arupkumar Pal.; 28(2003); No. 2; 107-126.

450

Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint  

DOE Green Energy (OSTI)

Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

Myers, D. R.

2011-04-01T23:59:59.000Z

451

Infrared absorption strengths of potential gaseous diffusion plant coolants and related reaction products  

SciTech Connect

The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is scheduled for production curtailment within the next few years, a search for substitutes is underway, and apparently workable alternatives have been found and are under testing. The presently favored substitutes, FC-c3l8 and FC-3110, satisfy ozone depletion and operational chemical compatibility concerns, but will be long-lived greenhouse gases, and thus may be regulated on that basis in the future. A further search is therefore underway for compounds with shorter atmospheric lifetimes which could otherwise satisfy operational physical and chemical requirements. A number of such candidates are in the process of being screened for chemical compatibility in a fluorinating environment. This document presents infrared spectral data developed and used in that study for candidates recently examined, and also for many of their fluorination reaction products. The data include gas-phase infrared spectra, quantitative peak intensities as a function of partial pressure, and integrated absorbance strength in the IR-transparent atmospheric window of interest to global warming modeling. Combining this last property with literature or estimated atmospheric lifetimes, rough estimates of global warming potential for these compounds are also presented.

Trowbridge, L.D.; Angel, E.C.

1993-05-01T23:59:59.000Z

452

A Semi-Empirical Model of the Infra-Red Universe  

E-Print Network (OSTI)

We present a simple model of the infra-red universe, based as much as possible on local observations. We model the luminosity and number evolution of disk and starburst galaxies, including the effects of dust, gas and spectral evolution. Although simple, our approach is able to reproduce observations of galaxy number counts and the infra-red and sub-millimeter extra-galactic backgrounds. It provides a useful probe of galaxy formation and evolution out to high redshift. The model demonstrates the significant role of the starburst population and predicts high star formation rates at redshifts 3 to 4, consistent with recent extinction-corrected observations of Lyman break galaxies. Starbursting galaxies are predicted to dominate the current SCUBA surveys. Their star formation is driven predominantly by strong tidal interactions and mergers of galaxies. This leads to the creation of spheroidal stellar systems, which may act as the seeds for disk formation as gas infalls. We predict the present-day baryonic mass in bulges and halos is comparable to that in disks. From observations of the extra-galactic background, the model predicts that the vast majority of star formation in the Universe occurs at z<5.

Jonathan C. Tan; Joe Silk; Christophe Balland

1999-04-01T23:59:59.000Z

453

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

454

GPU spectral viewer: analysing paintings from a colorimetric perspective  

Science Conference Proceedings (OSTI)

Over the last fifteen years, multipsectral imaging has gained in importance and interest, especially in the field of Cultural Heritage, art investigation and conservation. Extending the concept of scientific imagery such as colorimetric, infrared reflectography ...

P. Colantoni; D. Pitzalis; R. Pillay; G. Aitken

2007-11-01T23:59:59.000Z

455

Infrared Images of Shock-Heated Tin  

Science Conference Proceedings (OSTI)

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

456

Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602  

E-Print Network (OSTI)

Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated self-consistently to understand their spectral energy distributions (SED). Radiative transfer calculations in spherical geometry involving the dust as well as the gas component, have been carried out to explain observations covering a wide spectral range encompassing near-infrared to radio continuum wavelengths. Various geometric and physical details of the YSOs are determined from this modelling scheme. In order to assess the effectiveness of this self-consistent scheme, three young Galactic star forming regions associated with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test cases. They cover a large range of luminosity ($\\approx$ 40). The modelling of their SEDs has led to information about various details of these sources, e.g. embedded energy source, cloud structure & size, density distribution, composition & abundance of dust grains etc. In all three cases, the best fit model corresponds to the uniform density distribution.

Bhaswati Mookerjea; S. K. Ghosh

1999-06-28T23:59:59.000Z

457

Spectral Phase Distribution Retrieval through Coherent Control of Harmonic Generation  

SciTech Connect

The temporal intensity distribution of the third harmonic of a Ti:sapphire laser generated in Xe gas is fully reconstructed from its spectral phase and amplitude distributions. The spectral phases are retrieved by cross correlating the fundamental laser frequency field with that of the third harmonic, in a three laser versus one harmonic photon coupling scheme. The third harmonic spectral amplitude distribution is extracted from its field autocorrelation. The measured pulse duration is found to be in agreement with that expected from lowest order perturbation theory both for unstretched and chirped pulses.

Papalazarou, E.; Charalambidis, D. [Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, PO Box 1527, GR711 10 Heraklion (Crete) (Greece); Department of Physics, University of Crete, PO Box 2208, GR71003 Heraklion (Crete) (Greece); Kovacev, M.; Tzallas, P.; Benis, E.P.; Kalpouzos, C. [Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, PO Box 1527, GR711 10 Heraklion (Crete) (Greece); Tsakiris, G. D. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

2006-04-28T23:59:59.000Z

458

AMIP Simulation with the CAM4 Spectral Element Dynamical Core  

SciTech Connect

We evaluate the climate produced by the Community Earth System Model, version 1, running with the new spectral-element atmospheric dynamical core option. The spectral-element method is congured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere, increased parallel scalability and removing the need for polar filters. It uses a fourth order accurate spatial discretization which locally conserves mass and moist total energy. Using the Atmosphere Model Intercomparison Project protocol, we compare the results from the spectral-element dy- namical core with those produced by the default nite-volume dynamical core and with observations.

Evans, Katherine J [ORNL; Lauritzen, Peter [National Center for Atmospheric Research (NCAR); Mishra, Saroj [National Center for Atmospheric Research (NCAR); Neale, Rich [National Center for Atmospheric Research (NCAR); Taylor, Mark [Sandia National Laboratories (SNL); Tribbia, Joe [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

459

DECODING SPECTRAL ENERGY DISTRIBUTIONS OF DUST-OBSCURED STARBURST-ACTIVE GALACTIC NUCLEUS  

SciTech Connect

We present BayeSED, a general purpose tool for Bayesian analysis of spectral energy distributions (SEDs) using pre-existing model SED libraries or their linear combinations. The artificial neural networks, principal component analysis, and multimodal-nested sampling (MultiNest) techniques are employed to allow the highly efficient sampling of posterior distribution and the calculation of Bayesian evidence. As a demonstration, we apply this tool to a sample of hyperluminous infrared galaxies (HLIRGs). The Bayesian evidence obtained for a pure starburst, a pure active galactic nucleus (AGN), and a linear combination of starburst+AGN models show that the starburst+AGN model has the highest evidence for all galaxies in this sample. The Bayesian evidence for the three models and the estimated contributions of starbursts and AGNs to infrared luminosity show that HLIRGs can be classified into two groups: one dominated by starbursts and the other dominated by AGNs. Other parameters and corresponding uncertainties about starbursts and AGNs are also estimated using the model with the highest Bayesian evidence. We find that the starburst region of the HLIRGs dominated by starbursts tends to be more compact and has a higher fraction of OB stars than that of HLIRGs dominated by AGNs. Meanwhile, the AGN torus of the HLIRGs dominated by AGNs tends to be more dusty than that of HLIRGs dominated by starbursts. These results are consistent with previous researches, but need to be tested further with larger samples. Overall, we believe that BayeSED could be a reliable and efficient tool for exploring the nature of complex systems such as dust-obscured starburst-AGN composite systems by decoding their SEDs.

Han Yunkun; Han Zhanwen, E-mail: hanyk@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Beijing 100012 (China)

2012-04-20T23:59:59.000Z

460

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

462

a prospective for new mid-infrared medical endoscopy  

Science Conference Proceedings (OSTI)

It is shown that chalcogenide glass fiberoptics could underpin new mid-infrared medical endoscopic systems for real-time molecular sensing, imaging and ...

463

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

464

Application Of High-Resolution Thermal Infrared Sensors For Geothermal...  

Open Energy Info (EERE)

Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

465

Infrared Imagery Applied to A Large Buoyant Plume  

Science Conference Proceedings (OSTI)

The possibility of applying infrared imagery to the study of a large, hot plume materialized by carbon particles resulting from the incomplete combustion of fuel oil is investigated.

J-M. Brustet; B. Benech; P. Waldteufel

1981-05-01T23:59:59.000Z

466

First Principles Simulations of the Infrared Spectrum of Liquid...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared spectra. These important findings suggest that through the use of high-performance computing, we can improve our predictive power of aqueous environments. Prof. Galli...

467

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

468

Near Infrared Heating and Sintering; A Versatile Tool to Enable ...  

Science Conference Proceedings (OSTI)

A single heating technique (near infrared (NIR)) can bring down oven residence times to seconds. Five examples in relation to HOPV production are: (1) TiO2 ...

469

Testing and Deployment of an Infrared Thermometer Network at...  

NLE Websites -- All DOE Office Websites (Extended Search)

four user- definable field-of-view retrievals centered on zenith * Ferroelectric thermal infrared detector does not need cryogenic cooling * Detector is resistant to...

470

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager  

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager ... The field emission current of each cesiated carbon nanoflake structure is modulated by the

471

Laboratory Procedures for using Infrared Thermography to Validate...  

NLE Websites -- All DOE Office Websites (Extended Search)

925 Laboratory Procedures for using Infrared Thermography to Validate Heat Transfer Models Daniel Trler, Brent T. Griffith, and Dariush K. Arasteh Lawrence Berkeley National...

472

Climate Parameters from Satellite Spectral Measurements. Part 1: Collocated AVHRR and HIRS/2 Observations of Spectral Greenhouse Parameter  

Science Conference Proceedings (OSTI)

An automated method of monitoring various climate parameters using collocated Advanced Very High Resolution Radiometer (AVHRR) and High-Resolution Infrared Sounder-2 (HIRS/2) observations has been developed. The method, referred to as CHAPS (...

Richard A. Frey; S. A. Ackerman; Brian J. Soden

1996-02-01T23:59:59.000Z

473

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

474

High-sensitivity, and cost-effective system for infrared imaging of concealed objects in dynamic mode.  

Science Conference Proceedings (OSTI)

Novel, cost-efficient, and highly-sensitive IR imaging systems play an important role in homeland security functions. Technical limitations in the areas of sensitivity, contrast ratio, bandwidth and cost continue to constrain imaging capabilities. We have designed and prototyped a compact computer-piloted high sensitivity infrared imaging system. The device consists of infrared optics, cryostat, low-noise pre-amplifier, Analog-to-Digital hardware, feedback electronics, and unique image processing software. Important advantages of the developed system are: (i) Eight electronic channels are available for simultaneous registration of IR and visible images in multiple spectral ranges, (ii) Capability of real-time analysis such as comparing the 'sensed' image with 'reference' images from a database, (iii) High accuracy temperature measurement of multiple points on the image by referencing the radiation intensity from the object to a black body model, (iv) Image generation by real-time integration of images from multiple sensors operating from the visible to the terahertz range. The device was tested with a liquid-nitrogen-cooled, single-pixel HgCdTe detector for imaging in 8-12 microns range. The demonstrated examples of infrared imaging of concealed objects in static and dynamic modes include a hammer (metal head and wooden handle), plastic imitator of handguns hidden under clothes, powder in an envelope, and revealing complex wall structures under decorative plaster.

Gordiyenko, E.; Yefremenko, V.; Pearson, J.; Bader, S.; Novosad, V.; Materials Science Division

2005-08-05T23:59:59.000Z

475

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

476

Precipitation Nowcasting by a Spectral-Based Nonlinear Stochastic Model  

Science Conference Proceedings (OSTI)

A novel rainfall nowcasting method based on the combination of an empirical nonlinear transformation of measured precipitation fields and the stochastic evolution in spectral space of the transformed fields is introduced. The power spectrum and ...

Sabino Metta; Jost von Hardenberg; Luca Ferraris; Nicola Rebora; Antonello Provenzale

2009-10-01T23:59:59.000Z

477

Characterization of Tornado Spectral Signatures Using Higher-Order Spectra  

Science Conference Proceedings (OSTI)

Distinct tornado spectral signatures (TSSs), which are similar to white noise spectra or have bimodal features, have been observed in both simulations and real data from Doppler radars. The shape of the tornado spectrum depends on several ...

Tian-You Yu; Yadong Wang; Alan Shapiro; Mark B. Yeary; Dusan S. Zrni?; Richard J. Doviak

2007-12-01T23:59:59.000Z

478

Method and apparatus for measuring film spectral properties  

DOE Patents (OSTI)

Film spectral properties are measured by projecting chopped monochromatic light onto a luminescent film sample deposited on a substrate, and coupling through use of immersion oil the reflection of light therefrom to a light detector.

Forrest, Stephen R. (Princeton, NJ); Burrows, Paul E. (Princeton, NJ); Garbuzov, Dmitri Z. (Princeton, NJ); Bulovic, Vladimir (Metuchen, NJ)

1999-12-21T23:59:59.000Z

479

A Further Study of Spectral Energetics in the Winter Atmosphere  

Science Conference Proceedings (OSTI)

The contributions of standing (time-mean) and transient (time-departure) waves to the atmospheric spectral energetics are analyzed using the NMC (National Meteorological Center) data of winter 1976–1977. It is found that the standing long waves ...

Tsing-Chang Chen

1982-08-01T23:59:59.000Z

480

The spectral distribution of solar ultraviolet radiation at the ground  

Science Conference Proceedings (OSTI)

Measurements of spectral UV irradiance were made at Sutton Bonington and other sites in Saudi Arabia using a spectroradiometric system developed in this study. On clear days a linear relation between the logarithm of global irradiance I[sub [lambda

Albar, O.F.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared spectral radiance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Spectral Distribution of Solar Radiation in the Nordic Countries  

Science Conference Proceedings (OSTI)

In 1977 a cooperative research project between the Nordic countries (Denmark, Finland, Iceland, Norwayand Sweden) was started. The objective was to chart the spectral distribution of solar radiation in the Nordicarea with a view to furnish ...

G. Kvifte; K. Hegg; V. Hansen

1983-01-01T23:59:59.000Z

482

Shifts of optical frequency references based on spectral-hole ...  

Science Conference Proceedings (OSTI)

... These results suggest that spectral holes in Eu3+:Y2SiO5 could form a frequency-stable flywheel for optical atomic clocks and potentially extend ...

2013-04-02T23:59:59.000Z

483

Direct Solar Spectral Irradiance Measurements and Updated Simple Transmittance Models  

Science Conference Proceedings (OSTI)

A set of 509 direct solar irradiance spectra, carefully measured over one year, is checked against spectral irradiances computed from five updated transmittance models. The wavelengths under investigation range from 290 to 900 nm, with a 5- or 10-...

A. de La Casiničre; A. I. Bokoye; T. Cabot

1997-05-01T23:59:59.000Z

484

Turbulence Sensor Dynamic Calibration Using Real-Time Spectral Computations  

Science Conference Proceedings (OSTI)

The integration of plug-in Fast Fourier Transform (FFT) boards in data acquisition computers allows a considerable development in the dynamic calibration of turbulence sensors. The spectral transfer function of a fast and sensitive turbulence ...

P. G. Mestayer; S. E. Larsen; C. W. Fairall; J. B. Edson

1990-12-01T23:59:59.000Z

485

High performance computing with a conservative spectral Boltzmann solver  

Science Conference Proceedings (OSTI)

We present new results building on the conservative deterministic spectral method for the space inhomogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation

Jeffrey R. Haack; Irene M. Gamba

2012-01-01T23:59:59.000Z

486

On Scalar and Vector Transform Methods for Global Spectral Models  

Science Conference Proceedings (OSTI)

We compare scalare and vector transform methods for global spectral models of the shallow-water equations. For the scalar transform methods, we demonstrate some economies in the number of Legendre transforms required. It is shown that the ...

Clive Temperton

1991-05-01T23:59:59.000Z

487

A New Database Program for Spectral Surface UV Measurements  

Science Conference Proceedings (OSTI)

A program package for the management and analysis of spectral ultraviolet radiation (UV) data on an IBM-compatible PC is described. The present version can accommodate data from UV spectroradiometers operating in Russia, the U.S. National Science ...

N. A. Krotkov; I. V. Geogdzhaev; N. Ye Chubarova; S. V. Bushnev; V. U. Khattatov; T. V. Kondranin

1996-12-01T23:59:59.000Z

488

Implementation of Prognostic Cloud Scheme for a Regional Spectral Model  

Science Conference Proceedings (OSTI)

The purpose of this study is to develop a precipitation physics package for the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) designed to improve the skill of precipitation forecasts. The package incorporates ...

Song-You Hong; Hann-Ming Henry Juang; Qingyun Zhao

1998-10-01T23:59:59.000Z

489

Crosswinds from a Single-Aperture Scintillometer Using Spectral Techniques  

Science Conference Proceedings (OSTI)

In this study, spectral techniques to obtain crosswinds from a single large-aperture scintillometer (SLAS) time series are investigated. The crosswind is defined as the wind component perpendicular to a path. A scintillometer obtains a path-...

Daniëlle van Dinther; Oscar K. Hartogensis; Arnold F. Moene

2013-01-01T23:59:59.000Z

490

The National Meteorological Center's Spectral Statistical-Interpolation Analysis System  

Science Conference Proceedings (OSTI)

At the National Meteorological Center (NMC), a new analysis system is being extensively tested for possible use in the operational global data assimilation system. This analysis system is called the spectral statistical- interpolation (SSI) ...

David F. Parrish; John C. Derber

1992-08-01T23:59:59.000Z

491

Improving Wind Profiler–Measured Winds Using Coplanar Spectral Averaging  

Science Conference Proceedings (OSTI)

A method is presented that increases the detectability of weak clear-air signals by averaging Doppler spectra from coplanar wind profiler beams. The method, called coplanar spectral averaging (CSA), is applied to both simulated wind profiler ...

Robert Schafer; Susan K. Avery; Kenneth S. Gage; Paul E. Johnston; D. A. Carter

2004-11-01T23:59:59.000Z

492

Preliminary Results from Two Spectral-Geobotanical Surveys over...  

Open Energy Info (EERE)

Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library...

493

An Ultrasimple Spectral Parameterization for Nonorographic Gravity Waves  

Science Conference Proceedings (OSTI)

This paper describes a new computationally efficient, ultrasimple nonorographic spectral gravity wave parameterization model. Its predictions compare favorably, though not perfectly, with a model of gravity wave propagation and breaking that ...

C. D. Warner; M. E. McIntyre

2001-07-01T23:59:59.000Z

494

Spectral Characteristics of the Convective Boundary Layer Over Uneven Terrain  

Science Conference Proceedings (OSTI)

The paper describes a convective boundary layer experiment conducted in April 1978 at the Boulder Atmospheric Observatory, and examines the spectral behavior of wind velocity and temperature from the Observatory's 300 m tower, from aircraft ...

J. C. Kaimal; R. A. Eversole; D. H. Lenschow; B. B. Stankov; P. H. Kahn; J. A. Businger

1982-05-01T23:59:59.000Z

495

On spectral basis selection for single channel polyphonic music separation  

Science Conference Proceedings (OSTI)

In this paper we present a method of separating musical instrument sound sources from their monaural mixture, where we take the harmonic structure of music into account and use the sparseness and the overlapping NMF to select representative spectral ...

Minje Kim; Seungjin Choi

2005-09-01T23:59:59.000Z

496

Linear Spectral Numerical Model for Internal Gravity Wave Propagation  

Science Conference Proceedings (OSTI)

A three-dimensional linear spectral numerical model is proposed to simulate the propagation of internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave ...

J. Marty; F. Dalaudier

2010-05-01T23:59:59.000Z

497

An Efficient Spectral Dynamical Core for Distributed Memory Computers  

Science Conference Proceedings (OSTI)

The practical question of whether the classical spectral transform method, widely used in atmospheric modeling, can be efficiently implemented on inexpensive commodity clusters is addressed. Typically, such clusters have limited cache and memory ...

L. Rivier; R. Loft; L. M. Polvani

2002-05-01T23:59:59.000Z

498

Spectral element method in time for rapidly actuated systems  

Science Conference Proceedings (OSTI)

In this paper, the spectral element (SE) method is applied in time to find the entire time-periodic or transient solution of time-dependent differential equations. The time-periodic solution is computed by enforcing periodicity of the element set. Of ... Keywords: 65D30, 65M06, 65M60, 65M70, 74H45, Aeroacoustic, Limit-cycle oscillations, Rapid excitation, Spectral element, Time periodicity, Transient response, Wave equation

Mohammad H. Kurdi; Philip S. Beran

2008-01-01T23:59:59.000Z

499

Methods for spectral image analysis by exploiting spatial simplicity  

Science Conference Proceedings (OSTI)

Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral