Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Principal component analysis and radiative transfer modelling of Spitzer Infrared Spectrograph spectra of ultraluminous infrared galaxies  

Science Journals Connector (OSTI)

......St, Engomi, 1516 Nicosia, Cyprus The mid-infrared spectra of...ULIRGs is a result of dust and gas reprocessing the optical and...densities (n HS) and assuming a gas-to-dust ratio of 150. The...information in IRS spectra, it is natural to use the PCs as a classification......

P. D. Hurley; S. Oliver; D. Farrah; L. Wang; A. Efstathiou

2012-08-11T23:59:59.000Z

2

Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)  

SciTech Connect (OSTI)

Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x speedup for 1 GPU and 1455x speedup for all 4 GPUs, both with respect to the original CPU-based single-threaded Fortran code with the -O{sub 2} compiling optimization. The significant 1455x speedup using a computer with four GPUs means that the proposed GPU-based high-performance forward model is able to compute one day's amount of 1,296,000 IASI spectra within nearly 10 min, whereas the original single CPU-based version will impractically take more than 10 days. This model runs over 80% of the theoretical memory bandwidth with asynchronous data transfer. A novel CPU-GPU pipeline implementation of the IASI radiative transfer model is proposed. The GPU-based high-performance IASI radiative transfer model is suitable for the assimilation of the IASI radiance observations into the operational numerical weather forecast model.

Huang Bormin, E-mail: bormin@ssec.wisc.ed [Space Science and Engineering Center, University of Wisconsin, Madison (United States); Mielikainen, Jarno [Department of Computer Science, University of Eastern Finland, Kuopio (Finland); Oh, Hyunjong; Allen Huang, Hung-Lung [Space Science and Engineering Center, University of Wisconsin, Madison (United States)

2011-03-20T23:59:59.000Z

3

A high-spectral-resolution radiative transfer model for simulating multi-layered clouds and aerosols in the infrared spectral region  

Science Journals Connector (OSTI)

A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm?1 with a spectral resolution of 0.1 cm?1 for scattering/absorbing atmospheres. In a single run and at multiple user-...

Chenxi Wang; Ping Yang; Xu Liu

4

Infrared radiation: Herschel revisited  

Science Journals Connector (OSTI)

The year 2000 marks the 200th anniversary of Herschel’s discovery of infrared radiation. Using a car light in place of the Sun and a liquid crystal sheet instead of thermometers the experiment is an effective classroom demonstration of invisible light.

Erin E. Pursell; Richard Kozlowski

2000-01-01T23:59:59.000Z

5

INFRARED RADIATIVE COOLING  

E-Print Network [OSTI]

Hydrogen Requirement for Coal Slurry Reactor . . . . . . .Mass Transfer Resistances in Coal Liquefaction. . . . . . .ZnClp/MeOH Coal L i q u e f a c t i o n P r o c e s s D e s

Berdahl, Paul

2011-01-01T23:59:59.000Z

6

RADIATIVE TRANSFER IN ULTRARELATIVISTIC OUTFLOWS  

SciTech Connect (OSTI)

Analytical and numerical solutions are obtained for the equation of radiative transfer in ultrarelativistic opaque jets. The solution describes the initial trapping of radiation, its adiabatic cooling, and the transition to transparency. Two opposite regimes are examined. (1) Matter-dominated outflow. Surprisingly, radiation develops enormous anisotropy in the fluid frame before decoupling from the fluid. The radiation is strongly polarized. (2) Radiation-dominated outflow. The transfer occurs as if radiation propagated in vacuum, preserving the angular distribution and the blackbody shape of the spectrum. The escaping radiation has a blackbody spectrum if (and only if) the outflow energy is dominated by radiation up to the photospheric radius.

Beloborodov, Andrei M., E-mail: amb@phys.columbia.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street New York, NY 10027 (United States)

2011-08-20T23:59:59.000Z

7

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect (OSTI)

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

8

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

9

Posters Comparison of Stochastic Radiation Transfer Predictions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Posters Comparison of Stochastic Radiation Transfer Predictions with Multi-Filter Rotating Shadowband Radiometer Data N. Byrne and G. Ramanathan Science Applications...

10

Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells  

E-Print Network [OSTI]

Near-infrared sideband generation induced by intense far-infrared radiation in GaAs quantum wells J illuminated with near-infrared NIR radiation at frequency nir and intense far-infrared FIR radiation from and quenching of photoluminescence PL .8,9 The nonlinear interaction of FIR and near-infrared NIR radiation

Kono, Junichiro

11

Multilevel bioluminescence tomography based on radiative transfer equation  

E-Print Network [OSTI]

, "A fast forward solver of radiative transfer equation," Transport Theory and Statistical Physics 38Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 approach for bioluminescence tomography based on radiative transfer equation with the emphasis on improving

Soatto, Stefano

12

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

Berdahl, Paul H. (Oakland, CA)

1998-01-01T23:59:59.000Z

13

Pigments which reflect infrared radiation from fire  

DOE Patents [OSTI]

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

14

Radiative heat transfer between dielectric bodies  

E-Print Network [OSTI]

The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

Svend-Age Biehs

2011-03-16T23:59:59.000Z

15

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network [OSTI]

B Near-Infrared Radiative Transfer Model B.15 Near-Infrared Observations of Neptune’s Clouds with the133 6.2 Near-infrared spectroscopy . . . . . .

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

16

Radiative Heat Transfer between Neighboring Particles  

E-Print Network [OSTI]

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

17

Nanoantennas for visible and infrared radiation  

E-Print Network [OSTI]

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of inves...

Biagioni, Paolo; Hecht, Bert

2011-01-01T23:59:59.000Z

18

A 3D radiative transfer framework: II. line transfer problems  

E-Print Network [OSTI]

Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate $\\Lambda$ operator is constructed considering nearest neighbors {\\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.

E. Baron; Peter H. Hauschildt

2007-03-16T23:59:59.000Z

19

Multi-model Preconditioning for Radiative Transfer Problems  

E-Print Network [OSTI]

, multigrid, radiative transfer, neutron transport, linear Boltzmann equation 2000 MSC: 65N22, 85A25, 65N30 1 and radiation dominated regions must be combined. Since the character of the equation is very different in those of the monochromatic radiative transfer problem leads to a diffusion equation, approximating the radiative transfer

20

Infrared absorption spectra, radiative efficiencies, and global warming potentials  

E-Print Network [OSTI]

. Nutt,3 Keith P. Shine,4 Kevin Smith,5 and Timothy J. Wallington2 Received 17 July 2010; revised 21. Wallington (2010), Infrared absorption spectra, radiative efficiencies, and global warming potentials

Wirosoetisno, Djoko

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radiative Transfer in Terms of Integral Equations  

Science Journals Connector (OSTI)

... linear integral equation of the Fredholm type. Another year after that (1914), K. Schwarzschild showed that the problem of the radiative equilibrium of an atmosphere leads to a Fredholm ... of an atmosphere leads to a Fredholm equation, and Milne, ten years later, extended Schwarzschild's work by showing how different transfer problems all lead to similar types of integral ...

SVEIN ROSSELAND

1950-07-29T23:59:59.000Z

22

Free-standing inductive grid filter for infrared radiation rejection  

Science Journals Connector (OSTI)

We developed a fabrication method for free-standing metal structures with high aspect ratios to manufacture inductive grid filters for infrared rejection. Deep grooves in thermally evaporated SiO2 layer, fabricated by electron beam lithography and etching, were filled with iridium by atomic layer deposition technique. Characterization shows that the fabricated structures can suppress infrared radiation over two orders of magnitude while transmitting 40% of XUV radiation.

Konstantins Jefimovs; Janne Laukkanen; Tuomas Vallius; Tero Pilvi; Mikko Ritala; Tomi Meilahti; Matti Kaipiainen; Marcos Bavdaz; Markku Leskelä; Jari Turunen

2006-01-01T23:59:59.000Z

23

RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS  

E-Print Network [OSTI]

RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

24

RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda  

E-Print Network [OSTI]

RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

25

Multilevel bioluminescence tomography based on radiative transfer equation  

E-Print Network [OSTI]

Multilevel bioluminescence tomography based on radiative transfer equation Part 2: total variation with both l1 and total- variation norm for bioluminescence tomography based on radiative transfer equation, Radiative Transfer (Dover Publications, 1960). 14. K. M. Case and P. F. PF Zweifel, Linear Transport Theory

Soatto, Stefano

26

Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 691713  

E-Print Network [OSTI]

: Equation of radiative transfer; Transport theory; Photon propagation; Scattering media; Discrete.elsevier.com/locate/jqsrt Optical tomography using the time-independent equation of radiative transfer -- Part 1: forward model optical tomographic imaging algorithm that is based on the equation of radiative transfer. Using

Hielscher, Andreas

27

Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220237  

E-Print Network [OSTI]

discontinuities associated with the propagation of a radiation front in transient radiation transport. r 2005 q heat flux s geometric path length S source term in the radiative transfer equation t time tc timeJournal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220­237 Modified method

Pilon, Laurent

28

High speed infrared radiation thermometer, system, and method  

DOE Patents [OSTI]

The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

Markham, James R. (Middlefield, CT)

2002-01-01T23:59:59.000Z

29

Infrared Radiation Filament And Metnod Of Manufacture  

DOE Patents [OSTI]

An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

Johnson, Edward A. (Bedford, MA)

1998-11-17T23:59:59.000Z

30

Posters The Effects of Radiative Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters The Effects of Radiative Transfer on Low-Level Cyclogenesis M. J. Leach and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina Introduction Many investigators have documented the role that thermodynamic forcing due to radiative flux divergence plays in the enhancement or generation of circulation. Most of these studies involve large-scale systems (e.g., Slingo et al. 1988), small-scale systems such as thunderstorms (Chen and Cotton 1988), and squall lines (Chin, submitted). The generation of circulation on large scales results from the creation of divergence in the upper troposphere and the maintenance of low-level potentially unstable air, and the maintenance of baroclinicity throughout

31

Lattice Boltzmann method for one-dimensional radiation transfer  

Science Journals Connector (OSTI)

The macroscopic conservation equations of radiation energy and radiation momentum are derived on the basis of radiation hydrodynamics. Based on the Chapman-Enskog method, the lattice Boltzmann model for one-dimensional radiative transfer is proposed from the Boltzmann equation. The numerical simulation results agree well with the exact solution and show that the lattice Boltzmann method developed in this paper has good accuracy and stability for solving one-dimensional radiative transfer problems.

Yu Ma; ShiKui Dong; HePing Tan

2011-07-14T23:59:59.000Z

32

Journal of Quantitative Spectroscopy & Radiative Transfer 91 (2005) 2746  

E-Print Network [OSTI]

used in the field of transport phenomena simulation, and more specifically in the field of radiative (application of the reciprocity principle to the integral form of the radiative transfer equation), and to netJournal of Quantitative Spectroscopy & Radiative Transfer 91 (2005) 27­46 A boundary-based net

Dufresne, Jean-Louis

33

Radiative Transfer in Interacting Media J.Kenneth Shultis  

E-Print Network [OSTI]

of nuclear energy. Today, radiative transport plays an important role in many other areas besides nuclear, and many others. 1.1 Radiative Transfer Regimes The transport of radiant energy through a medium falls shielding analyses, the radiative transfer equation is linear, and a wealth of numerical techniques exist

Shultis, J. Kenneth

34

Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere  

E-Print Network [OSTI]

dioxide Water vapor #12;Atmospheric composition (parts per million by volume) · Nitrogen (N2) 780Thermal Infrared Radiation and Carbon Dioxide in the Atmosphere Bill Satzer 3M Company #12;Outline,840 · Oxygen (O2) 209,460 · Argon (Ar) 9340 · Carbon dioxide (CO2) 394 · Methane (CH4) 1.79 · Ozone (O3) 0

Olver, Peter

35

Improvements to the SHDOM Radiative Transfer Modeling Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration...

36

Radiative heat transfer in a flow of rheologically complex fluid  

Science Journals Connector (OSTI)

The problem of complex radiative and convective heat transfer in steady-state generalized Couette flow of a nonlinear viscoplastic fluid is examined.

V. F. Volchenok; Z. P. Shul'man

1980-09-01T23:59:59.000Z

37

Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 159168  

E-Print Network [OSTI]

-dependence of radiative transport due to the large but ÿnite speed of radiation propagation must be incorporated usion approximation is often used to describe the transient radiation transport [5]. However, recent the fully transient radiative transfer equation. Kumar et al. [8] and Kumar and Mitra [9] were among

Guo, Zhixiong "James"

38

Two-frequency radiative transfer and asymptotic solution  

E-Print Network [OSTI]

radiative transfer equation has been derived with full mathematical rigor [13,14]. In the case the wave nature of the process and is not just about energy transport. Hence the governing equation cannotTwo-frequency radiative transfer and asymptotic solution Albert C. Fannjiang* Department

Fannjiang, Albert

39

Heat Transfer by Radiation to Surfaces at Low Temperatures  

Science Journals Connector (OSTI)

...August 1948 research-article Heat Transfer by Radiation to Surfaces at Low...E. V. Truter A study of the transfer of heat between the walls of vacuum vessels...more efficient in diminishing the heat transfer than a highly polished surface...

1948-01-01T23:59:59.000Z

40

Journal of Quantitative Spectroscopy & Radiative Transfer 94 (2005) 357371  

E-Print Network [OSTI]

rights reserved. Keywords: Time dependent radiation transport; M1 approximation; Multigroup models; Mean that solve the radiative transfer equation at a low cost. Among these models, we find diffusion, flux this equation, see [3] and [4]. The first three angular moments of the radiative intensity are defined as Eðn

Coudière, Yves

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Enhanced radiative heat transfer between nanostructured gold plates  

E-Print Network [OSTI]

We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-03-07T23:59:59.000Z

42

Radiative heat transfer in 2D Dirac materials  

E-Print Network [OSTI]

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene. Neglecting spatial dispersion, we derive both numerically and analytically the short-distance asymptotics of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. We argue that this scaling law for the near-field heat transfer is generic for any two-dimensional systems.

Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

2014-10-16T23:59:59.000Z

43

Modelling of Radiative Transfer in Light Sources  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . 30 2.5.3 Temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . 32 2-X radiative transition that is responsible for the sulfur lamp's bright sun-like spectrum #12;Contents 1

Eindhoven, Technische Universiteit

44

Discrete Ordinate Method for Solving Inhomogeneous Vector Radiative Transfer Equation  

E-Print Network [OSTI]

paper.. This type of equation appears when modeling radiative transport in plane parallel media. WeDiscrete Ordinate Method for Solving Inhomogeneous Vector Radiative Transfer Equation We describe here a solution method for equations of the type given by: µ I(,µ) +I(,µ)- () 2 1 -1 Z(,µ,µ )I(,µ )dµ

Pattanaik, Sumanta N.

45

Di usion Approximation of Radiative Transfer Equations in a Channel  

E-Print Network [OSTI]

direction. 1 #12; 1 Introduction Radiative transport equations were #12;rst used to describe the propagationDi#11;usion Approximation of Radiative Transfer Equations in a Channel Guillaume Bal Department by a di#11;usion equation. However, the thickness of the crust is of the order of the transport mean free

Bal, Guillaume

46

Small distance expansion for radiative heat transfer between curved objects  

E-Print Network [OSTI]

We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest order proximity transfer approximation. The range of validity of such expansion depends on temperature as well as material properties. Generally, the expansion converges faster for the derivative of the transfer than for the transfer itself, which we use by introducing a near-field adjusted plot. For the case of a sphere and a plate, the logarithmic correction to the leading term has a very small prefactor for all materials investigated.

Vladyslav A. Golyk; Matthias Krüger; Alexander P. McCauley; Mehran Kardar

2012-10-12T23:59:59.000Z

47

Cross Validation of Satellite Radiation Transfer Models during SWERA  

Open Energy Info (EERE)

Cross Validation of Satellite Radiation Transfer Models during SWERA Cross Validation of Satellite Radiation Transfer Models during SWERA Project in Brazil Dataset Summary Description (Abstract): This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the SUNY-Albany. The model cross validation was performed by using two reference sites in Brazil: at Caicó (06°28'01"S - 037°05'05"W,175.8 m), and Florianópolis (27°34'18"S - 048°31'42"W, 10 m), Satellite data were collected by INPE-CPTEC for GOES-8, that also provides for its quality assessment, sectoring, storing and distribution to the participating teams. In this work we show the first results of this cross-validation along with some discussions on model deviations

48

Examination of ChlorinBacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes  

E-Print Network [OSTI]

Examination of Chlorin­Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared features across the red and near-infrared (NIR) regions, tunable excited-state lifetimes (10 ns absorption and efficient emission in the red or near-infrared (NIR) spectral region, (2) sharp absorption

Larson-Prior, Linda

49

A mesoscopic description of radiative heat transfer at the nanoscale  

E-Print Network [OSTI]

We present a formulation of the nanoscale radiative heat transfer (RHT) using concepts of mesoscopic physics. We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The formalism provides a convenient framework to analyse the physics of RHT at the nanoscale. Finally, we propose a RHT experiment in the regime of quantized conductance.

Svend-Age Biehs; Emmanuel Rousseau; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

50

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network [OSTI]

roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

51

Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem  

SciTech Connect (OSTI)

This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

Dana E. Veron

2012-04-09T23:59:59.000Z

52

Radiative heat transfer in 2D Dirac materials  

E-Print Network [OSTI]

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

2015-02-02T23:59:59.000Z

53

Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau  

E-Print Network [OSTI]

Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

Paris-Sud XI, Université de

54

Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application  

E-Print Network [OSTI]

Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application to Crystal University of New York at Stony Brook Stony Brook N.Y. 11794 ABSTRACT Radiative heat transfer plays simulating radiative heat transfer in the crystal and in the region above the melt containing gas under

New York at Stoney Brook, State University of

55

A dynamic multi-scale model for transient radiative transfer calculations  

E-Print Network [OSTI]

on the radiative transfer equation (RTE) or the diffusion equation (DE). The RTE is a kinetic transport equation-scale model which couples the transient radiative transfer equation (RTE) and the diffusion equation (DE: transient radiative transfer, multi-scale model, finite volume method, diffusion equation, domain

Boyer, Edmond

56

Three-dimensional optical tomography with the equation of radiative transfer  

E-Print Network [OSTI]

on a transport-backtransport method applied to the two-dimensional time-dependent equation of radiative transferThree-dimensional optical tomography with the equation of radiative transfer Gassan S. Abdoulaev reconstruction scheme that is based on the time-independent equation of radiative transfer (ERT) and allows

Hielscher, Andreas

57

CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT  

Open Energy Info (EERE)

ISES- 2003 ISES- 2003 CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B. Pereira, Fernando R. Martins 1 Brazilian Institute for Space Research - INPE, São José dos Campos, 12245-970, SP, Brazil Phone + 55 12 39456741, Fax + 55 12 39456810, enio@dge.inpe.br Samuel L. Abreu, Hans Georg Beyer, Sergio Colle, and Solar Energy Laboratory - LABSOLAR - Department of Mechanical Engineering, Federal University of Santa Catarina -UFSC, Florianopolis, 88040-900, (SC), Brazil, Richard Perez The University at Albany (SUNY), ASRC-CESTM, Albany, 12203 (NY), USA Abstract - This work describes the cross validation between two different core radiation transfer models that will be applied during the SWERA (Solar and Wind Energy Assessment): the BRAZIL-SR, and the

58

Free-standing inductive grid filter for infrared radiation rejection  

Science Journals Connector (OSTI)

We developed a fabrication method for free-standing metal structures with high aspect ratios to manufacture inductive grid filters for infrared rejection. Deep grooves in thermally evaporated SiO"2 layer, fabricated by electron beam lithography and etching, ... Keywords: Inductive grid filter, Infrared rejection, Metallic nanostructures

Konstantins Jefimovs; Janne Laukkanen; Tuomas Vallius; Tero Pilvi; Mikko Ritala; Tomi Meilahti; Matti Kaipiainen; Marcos Bavdaz; Markku Leskelä; Jari Turunen

2006-04-01T23:59:59.000Z

59

Heat transfer through a water spray curtain under the effect of a strong radiative source  

E-Print Network [OSTI]

Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

Paris-Sud XI, Université de

60

A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS  

SciTech Connect (OSTI)

We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S 3H4 (Canada); Stone, James M.; Jiang Yanfei [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On the radiative and thermodynamic properties of the extragalactic far infrared background radiation using COBE FIRAS instrument data  

E-Print Network [OSTI]

Using the explicit form of the function to describe the average spectrum of the extragalactic far infrared background (FIRB) radiation measured by the COBE FIRAS instrument in the 0.15 - 2.4 THz frequency interval, the radiative and thermodynamic properties, such as the total emissivity, total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density are calculated. The calculated value of the total intensity received in the 0.15 - 2.4 THz frequency interval is 13.6 nW m^-2 sr^-1, and comprises about 19.4 % of the total intensity expected from the energy released by stellar nucleosynthesis over cosmic history. The radiative and thermodynamic functions of the extragalactic far infrared background (FIRB) radiation are calculated at redshift z = 1.5.

Fisenko, Anatoliy I

2014-01-01T23:59:59.000Z

62

Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the Chlorophyll d-Containing Cyanobacterium Acaryochloris marina  

Science Journals Connector (OSTI)

...communities (6) depleted of visible radiation (VIS, 400 to 700 nm) and enriched in near-infrared radiation (NIR, 700 nm). While naturally...light-dark period. Near-infrared radiation (NIR) was provided by narrow-band...720 nm) (Epitex, Inc., Japan) at an irradiance of 20 to...

Lars Behrendt; Verena Schrameyer; Klaus Qvortrup; Luisa Lundin; Søren J. Sørensen; Anthony W. D. Larkum; Michael Kühl

2012-03-30T23:59:59.000Z

63

Near-field radiative heat transfer for structured surfaces  

E-Print Network [OSTI]

We apply an analytical approach for determining the near-field radiative heat transfer between a metallic nanosphere and a planar semi-infinite medium with some given surface structure. This approach is based on a perturbative expansion, and evaluated to first order in the surface profile. With the help of numerical results obtained for some simple model geometries we discuss typical signatures that should be obtainable with a near-field scanning thermal microscope operated in either constant-height or constant-distance mode.

Svend-Age Biehs; Oliver Huth; Felix Rüting

2011-03-15T23:59:59.000Z

64

USE OF INFRARED RADIATION IN THE STUDY OF FISH BEHAVIOR  

E-Print Network [OSTI]

, 000° K. (high -temperature tungsten lamp) . Relative emission from sun. #12;#12;The Eye of experimental facilities - ·^ Figure 4. Distribution of fingerling Pacific salmon (O^. kisutch) under ordinary room lighting 9 Figure 5. Distribution of fingerling Pacific salmon (O. kisutch) with infrared

65

Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic  

E-Print Network [OSTI]

of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media time-resolved transmittance.13­15 The complete transient radiative transfer equation has been conEquivalent isotropic scattering formulation for transient short-pulse radiative transfer

Guo, Zhixiong "James"

66

Project: (version of January 28, 2009) Sparse tensor product methods for radiative transfer  

E-Print Network [OSTI]

simulating a dense gas at very high temperatures, energy transport by means of radiation has to be taken into account. However, as even the non-scattering stationary monochromatic radiative transfer equation s · x. Applying an adaptive sparse discretiza- tion to the radiative transfer equation [1] allows to significantly

Hiptmair, Ralf

67

A FAST FORWARD SOLVER OF RADIATIVE TRANSFER HAO GAO AND HONGKAI ZHAO  

E-Print Network [OSTI]

studying the numerical solutions to the radiative transport equation (RTE) or the within-group neutron transport equation [4, 13] in the field of neutron transport [4], atmospheric radiative transfer [1], heatA FAST FORWARD SOLVER OF RADIATIVE TRANSFER EQUATION HAO GAO AND HONGKAI ZHAO Abstract

Soatto, Stefano

68

A Far-infrared Undulator for Coherent Synchrotron Radiation and Free Electron Laser at Tohoku University  

SciTech Connect (OSTI)

In order to develop an intense far-infrared radiation source, a high quality electron beam has been studied at Tohoku University, Sendai. The bunch length of the beam expected is very much shorter than terahertz (THz) wavelength, so that coherent spontaneous emission of synchrotron radiation will be a promising high brilliant far-infrared source. An undulator consisting of permanent magnets has been designed in which optional free electron laser (FEL) will be operated in free space mode. Consequently the minimum gap of the undulator is decided to be 54 mm for 0.36 mm radiation to avoid diffraction loss, and then the period length of 10 cm is employed. The undulator may cover a wavelength range from 0.18 to 0.36 mm with the beam energy of 17 MeV. Property of coherent THz radiation from the undulator and possibility of novel pre-bunched THz FEL is discussed.

Hama, Hiroyuki; Hinode, Fujio; Kawai, Masayuki; Nanbu, Kenichi; Miyahara, Fusashi; Yasuda, Mafuyu [Laboratory of Nuclear Science, Tohoku University School of Science, 1-2-1 Mikamine, Taihaku-ku, Sendai 982-0826 (Japan)

2010-06-23T23:59:59.000Z

69

Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloudy Sky RRTM Shortwave Radiative Transfer and Cloudy Sky RRTM Shortwave Radiative Transfer and Comparison to the Revised ECMWF Shortwave Model M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Introduction An important step toward improving radiative transfer codes in general circulation models (GCMs) is their thorough evaluation by comparison to measurements directly, or to other data-validated radiation models. This work extends the clear-sky shortwave (SW) GCM evaluation presented by Iacono et al. (2001) to computations including clouds. The rapid radiative transfer model (RRTM) SW radiation model accurately reproduces clear-sky direct beam fluxes from the Line-By-Line Radiative Transfer

70

Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc Plasma and Its  

E-Print Network [OSTI]

of an atmospheric-pressure arc plasma are described from the viewpoint of continuorts radiation tlieory of the atmospheric arc plasma column is very sensitive to the electron density in the near infrared frequency rangeB ) Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc

Eagar, Thomas W.

71

Approximating the time-domain radiative transfer equation using truncated Fourier series  

Science Journals Connector (OSTI)

The radiative transfer equation describes propagation of light in scattering media. It is widely used model, with applications in medical imaging, astronomy and atmospheric sciences to...

Pulkkinen, Aki; Tarvainen, Tanja

72

E-Print Network 3.0 - analytical radiative-transfer solutions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Illumination Engineering Society... . Stephens. On the fundamental solution of the radiative transfer equation. Journal of Astrophysical Research... . A numerical solution to...

73

Heat transfer in a radiating fluid with slug flow in a parallel-plate channel  

Science Journals Connector (OSTI)

As a step towards a better understanding of combined conduction, convection, and radiation, fully developed heat transfer in slug flow in a flat duct ... , nonblack, isothermal surfaces. The gray radiating fluid ...

R. Viskanta

1964-01-01T23:59:59.000Z

74

Method of Reducing the Error of Transferring the Size of a Unit of Laser Radiation Energy  

Science Journals Connector (OSTI)

A method is considered of reducing the error of transferring the size of a unit of laser radiation energy for a secondary standard of the units of average power and energy of laser radiation by using the readi...

A. N. Shchipunov

2002-10-01T23:59:59.000Z

75

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect (OSTI)

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

76

TWO-DIMENSIONAL TRANSIENT RADIATIVE HEAT TRANSFER USING DISCRETE ORDINATES METHOD  

E-Print Network [OSTI]

transport is time-dependent radiative transfer equation. The solution of the hyperbolic transient radiative-pulsed laser radiation interaction and transport within biological tissues. INTRODUCTION With the advent of the short-pulsed laser with the duration of the order of femtoseconds, transient laser radiation transport

Guo, Zhixiong "James"

77

Photochemical synthesis of disilane from silane with infrared laser radiation  

SciTech Connect (OSTI)

The authors report the clean and efficient conversion of silane to disilane by CO{sub 2} laser irradiation. The direct irradiation of pure silane at high pressures (from 75 to 1,700 Torr) converts silane to disilane with high selectivity and with efficient use of the absorbed laser radiation. Hydrogen is the only other major volatile product, and the production of solid products is minimal. The proposed mechanism of the photochemical reaction includes (1) collisionally enhanced absorption of the laser radiation by silane, (2) collisional deexcitation of the vibrationally excited silane, (3) concurrent decomposition to SiH{sub 2} and H{sub 2}, (4) production of vibrationally excited disilane by SiH{sub 2} insertion into a silane Si-H bond, (5) collisional quenching of the excited disilane, and (6) rapid cooling of the irradiated gas by thermal expansion. They support the proposed mechanism by additional experiments and model calculations.

Zavelovich, J. (Amoco Technology Co., Naperville, IL (USA)); Lyman, J.L. (Los Alamos National Lab., NM (USA))

1989-07-27T23:59:59.000Z

78

Modified Method of Characteristics for Transient Radiative Transfer  

E-Print Network [OSTI]

conditions. The radiative transport equation is a hyperbolicTo solve the radiative transport equation for collimated

Katika, Kamal M.; Pilon, Laurent

2006-01-01T23:59:59.000Z

79

Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model  

E-Print Network [OSTI]

Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model quantities driving the algorithms used in regional and global biogeochemical, ecological and meteorological) and the inversion of a canopy radiative transfer (RT) model. In recent years, applications of the genetic algorithms

Liang, Shunlin

80

Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method  

E-Print Network [OSTI]

Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

Yuen, Walter W.

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau  

E-Print Network [OSTI]

Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer. Emmanuel Rousseau-sud Campus Polytechnique RD 128 91127 Palaiseau cedex, France Heat transfer between two plates of polar far-field value. In this article, we show that nanoscale heat transfer is dominated by the coupling

Paris-Sud XI, Université de

82

Excess Infrared Radiation from a Massive DAZ White Dwarf: GD362 - a Debris Disk?  

E-Print Network [OSTI]

We report the discovery of excess K-band radiation from a massive DAZ white dwarf star, GD362. Combining infrared photometric and spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a debris disk. This would be only the second such system known, discovered 18 years after G29-38, the only single white dwarf currently known to be orbited by circumstellar dust. Both of these systems favor a model with accretion from a surrounding debris disk to explain the metal abundances observed in DAZ white dwarfs. Nevertheless, observations of more DAZs in the mid-infrared are required to test if this model can explain all DAZs.

Mukremin Kilic; Ted von Hippel; S. K. Leggett; D. E. Winget

2005-09-07T23:59:59.000Z

83

PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD  

E-Print Network [OSTI]

the radiative transport equation on parallel computers. Mathematical libraries developed by third parties the discrete ordi- nates method. They observed that the global nature of radiative transport resultedPARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD Gautham

Utah, University of

84

Satellite Data Assimilation in Numerical Weather Prediction Models. Part I: Forward Radiative Transfer and Jacobian Modeling in Cloudy Atmospheres  

Science Journals Connector (OSTI)

Satellite data assimilation requires rapid and accurate radiative transfer and radiance gradient models. For a vertically stratified scattering and emitting atmosphere, the vector discrete-ordinate radiative transfer model (VDISORT) was developed ...

Fuzhong Weng; Quanhua Liu

2003-11-01T23:59:59.000Z

85

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

86

Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 727740  

E-Print Network [OSTI]

solution of the Fokker­Planck equation. This equation gives a good approximation to the radiative transport of this method. r 2007 Elsevier Ltd. All rights reserved. Keywords: Radiative transport equation; Fokker tissues is governed by the theory of radiative transport [1]. The radiative transport equation takes

Kim, Arnold D.

87

Graphene-assisted near-field radiative heat transfer between corrugated polar materials  

SciTech Connect (OSTI)

Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2014-06-23T23:59:59.000Z

88

Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Three-Dimensional Cloudy Radiative Transfer Estimating Three-Dimensional Cloudy Radiative Transfer Effects from Time-Height Cross Sections C. Hannay and R. Pincus National Oceanic and Atmospheric Administration Climate Diagnostics Center Boulder, Colorado K. F. Evans Program in Atmospheric and Oceanic Sciences University of Colorado Boulder, Colorado Introduction Clouds in the atmosphere are finite in extent and variable in every direction and in time. Long data sets from ground-based profilers, such as lidars or cloud radars, could provide a very valuable set of observations to characterize this variability. We may ask how well such profiling instruments can represent the cloud structure as measured by the magnitude of the three-dimensional (3D) radiative transfer effect. The 3D radiative transfer effect is the difference between the domain average broadband solar surface

89

Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network [OSTI]

It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

Ilic, Ognjen

90

Heat transfer during laminar fluid flow in a pipe with radiative heat removal  

Science Journals Connector (OSTI)

The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a ... pipe having a parabolic entry velocity distribution and heat removal by radiation from the surface of...

Ya. S. Kadaner; Yu. P. Rassadkin; É. L. Spektor

1971-01-01T23:59:59.000Z

91

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite ... vary with temperature, that is a compressible fluid. If the temper...

A. R. Bestman; S. K. Adjepong

92

Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels  

E-Print Network [OSTI]

This dissertation presents a numerical simulation of three-dimensional flow and heat transfer in a channel with a backward-facing step. Flow was considered to be steady, incompressible, and laminar. The flow medium was treated to be radiatively...

Ko, Min Seok

2009-05-15T23:59:59.000Z

93

Experimental Measurement of Radiation Heat Transfer from Complex Fenestration Systems.  

E-Print Network [OSTI]

??A well instrumented facility for the measurement of heat transfer from complex fenestration systems was built and validated. The facility provided very accurate measurements based… (more)

Wilson, Barry Allan

2007-01-01T23:59:59.000Z

94

The multiple absorption coefficient zonal method (MACZM), an efficient computational approach for the analysis of radiative heat transfer in multidimensional inhomogeneous nongray media  

E-Print Network [OSTI]

of Radiative Heat Transfer, the P-3 Approximation”, AIAAMedia”, Journal of Heat Transfer, Vol. 109, No. 3 (1987),Media”, Numerical Heat Transfer, Part B, Fundamentals, Vol.

Yuen, W W

2006-01-01T23:59:59.000Z

95

A HIGH-ORDER-ACCURATE GPU-BASED RADIATIVE TRANSFER EQUATION SOLVER FOR COMBUSTION  

E-Print Network [OSTI]

is a dominant mode of heat transfer in combustion systems such as rocket engines, scramjets, and industrial development to result in a robust and fail-safe design. Hydrocarbon combustion results in exhaust gases whichA HIGH-ORDER-ACCURATE GPU-BASED RADIATIVE TRANSFER EQUATION SOLVER FOR COMBUSTION AND PROPULSION

Pilon, Laurent

96

accelerated radiative transfer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dominated Outflows Astrophysics (arXiv) Summary: Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate...

97

Change in regime and transfer function models of global solar radiation in Kuwait  

Science Journals Connector (OSTI)

The development of the models for global solar radiation in Kuwait is based on removing the annual periodicity and seasonal variation. The first methodology used here is the change in regime technique that relies on dividing the observations into two ... Keywords: ARMA model, Harmonic analysis, Solar radiation, Transfer function

S. A. Al-Awadhi

2005-09-01T23:59:59.000Z

98

Solution of the equation of radiative transfer using a NewtonKrylov approach and adaptive mesh refinement  

E-Print Network [OSTI]

Solution of the equation of radiative transfer using a Newton­Krylov approach and adaptive mesh Available online 25 November 2011 Keywords: Radiation transport Discrete ordinates method Finite ordinates method (DOM) and finite-volume method (FVM) are used exten- sively to solve the radiative transfer

Groth, Clinton P. T.

99

Can the Infrared Radiation that Causes the Enhanced Greenhouse Effect Be Put to Better Use?  

Science Journals Connector (OSTI)

Increasing levels of certain greenhouse gases (GHGs) most importantly CO 2 in the earths atmosphere lead to climate change and global warming as a result of these gases interacting with thermal infrared (TIR) radiation from earth to space. Here the option of modifying this radiation is analyzed which would result in modified TIR radiation that would interact less with atmospheric CO 2 . This alleviates the enhanced greenhouse effect and at the same time would allow for energy recovery as heat and/or power. Power production is of course limited by thermodynamics Second Law. It is shown that various options exist for TIR radiation modification which may be used to generate temperature gradients or temperature differences between volumes of (gases containing) CO 2 of sufficient optical thickness. This may be further exploited for power generation: a first simple case shows power generation of ?1? W ? per ? m 2 surface at a Carnot efficiency of ?7% using the sky and ground level surroundings as heat reservoirs.

Ron Zevenhoven

2008-01-01T23:59:59.000Z

100

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report  

Open Energy Info (EERE)

Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Cross-Validation of SWERA's Core Radiative Transfer Models - Partial Report Dataset Summary Description (Abstract): This partial report describes the results obtained by two of the core radiative transfer models adopted in the SWERA Project for global horizontal solar irradiation during the cross-validation step. They are BRASIL-SR and SUNY-ALBANY models (Martins, 2001; Stuhlmann et al. 1990; Perez et al., 2002). The results from other two other core models, NREL and DLR, are not yet available. The HELIOSAT was included as a reference model at this stage. The HELIOSAT model is widely employed for solar energy assessment in Europe and is well know by the solar energy community worldwide (Beyer et al., 1996; Cano et al., 1986). (Purpose): SWERA solar cross-validation study

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poisson Stochastic Radiative Transfer Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Background Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different stochastic models have been developed to describe radiative transfer regime in single-layer broken clouds (Kargin 1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; Kargin and Prigarin 1994; Prigarin and Titov 1996; Marshak et al. 1998; Prigarin et al. 1998, 2001; Evans et al. 1999, 2001). Recently Kassianov (2003a) generalized the Titov's (1990) stochastic model

102

14 Three-Dimensional Radiative Transfer in Vegetation Canopies  

E-Print Network [OSTI]

transport equa- tion. This equation has a very simple physical interpretation; it is a mathematical to correctly de- scribe the photon transport. Second, the radiation regime is substantially influenced, 1981, p. 144). This allows the transport equation to relate micro-scale properties of the medium

Myneni, Ranga B.

103

Radiative Transfer in Photocatalytic Systems Matteo Pasquali and Francesco Santarelli  

E-Print Network [OSTI]

; these components are usually anatase titanium dioxide, near-ultraviolet radiation, and oxygen, respectively as adsorption, chemical oxida- tion, and biodegradation) in that PCO can completely de- grade many classes of toxic organic compounds, forming only carbon dioxide and mineral acids, and it can achieve this within

Natelson, Douglas

104

Author's personal copy Radiative heat transfer in enhanced hydrogen  

E-Print Network [OSTI]

tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here and the glass samples. In brief, the radiation emitted by the incandescent lamp is concentrated between 0

Pilon, Laurent

105

Assessment of Low Linear Energy Transfer Radiation–Induced Bystander Mutagenesis in a Three-Dimensional Culture Model  

Science Journals Connector (OSTI)

...Department of Energy cleanup operations...mutation was a measurement of changes...with low-energy protons (28...Puck TT. Measurement of mutagenesis...on Radiation Units and Measurements; 1984. 23...low linear energy transfer radiation-induced...

Rudranath Persaud; Hongning Zhou; Sarah E. Baker; Tom K. Hei; and Eric J. Hall

2005-11-01T23:59:59.000Z

106

Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for GCM Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Evaluation of RRTMG_SW, Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for General Circulation Model Applications M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Center for Medium-Range Weather Forecasts Reading, United Kingdom Y.-T. Hou National Centers for Environmental Prediction Camp Springs, Maryland Introduction The k-distribution shortwave radiation model developed for the Atmospheric Radiation Measurement (ARM) Program, RRTM_SW_V2.4 (Clough et al. 2004), utilizes the discrete ordinates radiative transfer model, DISORT, for scattering calculations and 16 g-points in each of its 16 spectral bands. DISORT provides agreement with line-by-line flux calculations to within 1 Wm

107

Synergistic Bactericidal Effect of Simultaneous Near-Infrared Radiant Heating and UV Radiation against Cronobacter sakazakii in Powdered Infant Formula  

Science Journals Connector (OSTI)

...UV radiation, as well as NIR thermal energy in the powder bed, a rotational mixer...sakazakii in food production environments and households. Lancet 363 :39-40. doi: 10.1016...and advances in far infrared heating in Japan. Trends Food Sci. Technol. 5 :357-362...

Jae-Won Ha; Dong-Hyun Kang

2014-01-10T23:59:59.000Z

108

Radiative transfer with partial coherence in optically thick plasmas Aix-Marseille Universite, CNRS, PIIM UMR 7345, F-13397 Marseille Cedex 20, France  

E-Print Network [OSTI]

approach to address radiative transfer prob- lems involves a transport equation of Boltzmann-type, referred to as "radiative transfer equation", accounting for radiation-matter interaction processes such as spon- taneous the use of a transport theory for photons unavoidable. Opac- ity models for radiative transfer are widely

Paris-Sud XI, Université de

109

Data-driven modelling of shortwave radiation transfer to snow through boreal birch and conifer canopies  

E-Print Network [OSTI]

, Sweden, in spring 2011 and mixed conifer forest near Sodankylä, Finland, in spring 2012. Above models predict canopy shortwave transmission similarly well for leafless birch forest, but for conifersData-driven modelling of shortwave radiation transfer to snow through boreal birch and conifer

110

Diffusion Approximation of Radiative Transfer Problems with Guillaume Bal \\Lambda Leonid Ryzhik y  

E-Print Network [OSTI]

Ryzhik y Abstract We derive the diffusion approximation of transport equations with discontinuities at interfaces. The transport equations model the energy density of acoustic waves. The waves are reflected in the high frequency regime by a radiative transfer equation. This model has been first proposed

Ryzhik, Lenya

111

Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 255}273  

E-Print Network [OSTI]

s is the minimum of the total cross-section set, and consider the (vector) transport equation * * ( , )# ( , )" 1 2Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 255}273 A discrete-ordinates solution for multigroup transport theory with upscattering C.E. Siewert Mathematics Department, North

Siewert, Charles E.

112

An Efficient Approach for Optical Radiative Transfer Tomography using the Spherical Harmonics Discrete Ordinates Method  

E-Print Network [OSTI]

This paper introduces a method to preform optical tomography, using 3D radiative transfer as the forward model. We use an iterative approach predicated on the Spherical Harmonics Discrete Ordinates Method (SHDOM) to solve the optimization problem in a scalable manner. We illustrate with an application in remote sensing of a cloudy atmosphere.

Levis, Aviad; Aides, Amit; Davis, Anthony B

2015-01-01T23:59:59.000Z

113

Impact of surface inhomogeneity on solar radiative transfer under overcast conditions  

E-Print Network [OSTI]

Impact of surface inhomogeneity on solar radiative transfer under overcast conditions Zhanqing Li1. Trishchenko Canada Centre for Remote Sensing, Ottawa, Ontario, Canada Received 20 June 2001; revised 26 to a method of estimating surface spectral areal-mean albedo from downwelling solar transmittance measurements

Li, Zhanqing

114

Human In vivo Dose-Response to Controlled, Low-Dose Low Linear Energy Transfer Ionizing Radiation Exposure  

Science Journals Connector (OSTI)

...biotinylated nucleotide analogue/ribonucleotide mix. The biotinylated cRNA targets were then...dose-response to controlled, low-dose low linear energy transfer ionizing radiation exposure. | The effect of low doses of low-linear energy transfer (photon) ionizing radiation...

Zelanna Goldberg; David M. Rocke; Chad Schwietert; Susanne R. Berglund; Alison Santana; Angela Jones; Jörg Lehmann; Robin Stern; Ruixiao Lu; and Christine Hartmann Siantar

2006-06-15T23:59:59.000Z

115

Use of eigenfunctions for solving radiation transfer in anisotropically scattering, plane?parallel media  

Science Journals Connector (OSTI)

Radiation transfer in an absorbing emitting gray anisotropicallyscattering plane?parallel medium is solved by using the naturally occurring eigenfunctions and expressions for the forward and backward radiation intensities the incident radiation and forward and backward radiation heat fluxes are presented. To illustrate the method of solution the situation involving an externally incident isotropic radiation at the boundary surfacex=0 and no energy sources in the medium is considered for the cases of four different scattering phase functions. It is shown that the convergence to the exact results is fast and that lower order approximations are accurate. In addition the present method of solution has an excellent potential for generalization to problems of plane?parallel media without azimuthal symmetry and to problems in cylindrical and spherical geometries.

S. T. Thynell; M. N. Özi?ik

1986-01-01T23:59:59.000Z

116

Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity  

Science Journals Connector (OSTI)

The effect of electric field on the performance of automobile radiator is investigated in this work. In this experiment, a louvered fin and flat tube automobile radiator was mounted in a wind tunnel and there was heat exchange between a hot water stream circulating inside the tube and a cold air stream flowing through the external surface. The electric field was supplied on the airside of the heat exchanger and its supply voltage was adjusted from 0 kV to 12 kV. From the experiment, it was found that the unit with electric field pronounced better heat transfer rate, especially at low frontal velocity of air. The correlations for predicting the air-side heat transfer coefficient of the automobile radiator, with and without electric field, at low frontal air velocity were also developed and the predicted results agreed very well with the experimental data.

S. Vithayasai; T. Kiatsiriroat; A. Nuntaphan

2006-01-01T23:59:59.000Z

117

Photoluminescent Energy Transfer from Poly(phenyleneethynylene)s to Near-Infrared Emitting Fluorophores  

E-Print Network [OSTI]

Photoluminescent energy transfer was investigated in conjugated polymer-fluorophore blended thin films. A pentiptycene-containing poly(phenyleneethynylene) was used as the energy donor, and 13 fluorophores were used as ...

Swager, Timothy Manning

118

Human In vivo Dose-Response to Controlled, Low-Dose Low Linear Energy Transfer Ionizing Radiation Exposure  

Science Journals Connector (OSTI)

...effects of low-dose low-linear energy transfer ionizing radiation (LDIR) in humans...direct evidence that doses in the range of 1 to 10 cGy...the intentional radiation of healthy tissue...the response to ionizing radiation. Attempts...

Zelanna Goldberg; David M. Rocke; Chad Schwietert; Susanne R. Berglund; Alison Santana; Angela Jones; Jörg Lehmann; Robin Stern; Ruixiao Lu; and Christine Hartmann Siantar

2006-06-15T23:59:59.000Z

119

Absorption of infra-red radiation by atmospheric molecular cluster-ions  

E-Print Network [OSTI]

Protonated water clusters are a common species of atmospheric molecular cluster-ion, produced by cosmic rays throughout the troposphere and stratosphere. Under clear-sky conditions or periods of increased atmospheric ionisation, such as solar proton events, the IR absorption by atmospheric ions may affect climate through the radiative balance. Fourier Transform Infrared Spectrometry in a long path cell, of path length 545m, has been used to detect IR absorption by corona-generated positive molecular cluster-ions. The column concentration of ions in the laboratory spectroscopy experiment was estimated to be ~10^13 m-2; the column concentration of protonated atmospheric ions estimated using a simple model is ~10^14 m-2. Two regions of absorption, at 12.3 and 9.1 um are associated with enhanced ion concentrations. After filtering of the measured spectra to compensate for spurious signals from neutral water vapour and residual carbon dioxide, the strongest absorption region is at 9.5 to 8.8 um (1050 to 1140 cm-1)...

Aplin, K L

2005-01-01T23:59:59.000Z

120

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect (OSTI)

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network [OSTI]

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

122

Non-contact pumping of light emitters via non-radiative energy transfer  

DOE Patents [OSTI]

A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

2010-01-05T23:59:59.000Z

123

Near-Field Radiative Heat Transfer between Metamaterials coated with Silicon Carbide Film  

E-Print Network [OSTI]

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC.By careful tuning of the optical properties of metamaterial it is possible to excite electrical and magnetic resonance for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

Basu, Soumyadipta; Wang, Liping

2014-01-01T23:59:59.000Z

124

Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign  

E-Print Network [OSTI]

for its dry, cold, and dominantly clear atmosphere, which is optimal for studying the effects, that water vapor and cirrus clouds have on the far-IR. Comparisons with Line-By-Line Discrete Ordinants Radiative Transfer model, LBLDIS, show that FIRST...

Baugher, Elizabeth

2012-02-14T23:59:59.000Z

125

Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)  

E-Print Network [OSTI]

Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

Delgado-Correal, Camilo; Castaño, Gabriel

2012-01-01T23:59:59.000Z

126

A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows  

E-Print Network [OSTI]

A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

Greendyke, Robert Brian

2012-06-07T23:59:59.000Z

127

PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene  

E-Print Network [OSTI]

in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

Soljaèiæ, Marin

128

Infrared Spectrophotometry  

Science Journals Connector (OSTI)

The wavelengths at which radiation is absorbed or emitted by minerals in the IR region can be related to the interatomic vibrations in the molecules or crystals. Infrared measurements, therefore, have definite...

W. M. Tuddenham; J. D. Stephens

1971-01-01T23:59:59.000Z

129

Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method  

SciTech Connect (OSTI)

The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.

Mishra, Subhash C. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India)]. E-mail: scm_iitg@yahoo.com; Roy, Hillol K. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

2007-04-10T23:59:59.000Z

130

Radiative heat transfer between two dielectric nanogratings in the scattering approach  

E-Print Network [OSTI]

We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering approach. As a comparision with these exact results, we also evaluate the domain of validity of Derjaguin's Proximity Approximation (PA). We consider a system of two corrugated silica plates with various grating geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such a displacement.

J. Lussange; R. Guérout; F. S. S. Rosa; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-06-01T23:59:59.000Z

131

Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage  

SciTech Connect (OSTI)

We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

T.J. Urbatsch; T.M. Evans

2006-02-15T23:59:59.000Z

132

A 3D radiative transfer framework: I. non-local operator splitting and continuum scattering problems  

E-Print Network [OSTI]

We describe a highly flexible framework to solve 3D radiation transfer problems in scattering dominated environments based on a long characteristics piece-wise parabolic formal solution and an operator splitting method. We find that the linear systems are efficiently solved with iterative solvers such as Gauss-Seidel and Jordan techniques. We use a sphere-in-a-box test model to compare the 3D results to 1D solutions in order to assess the accuracy of the method. We have implemented the method for static media, however, it can be used to solve problems in the Eulerian-frame for media with low velocity fields.

Peter H. Hauschildt; E. Baron

2006-01-09T23:59:59.000Z

133

Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation  

SciTech Connect (OSTI)

We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

2014-06-23T23:59:59.000Z

134

The radiative and combined mode heat transfer within the L-shaped nonhomogeneous and nongray participating media  

SciTech Connect (OSTI)

The solutions of pure radiative and combined radiative and conductive heat transfer within a L-shaped enclosure are presented. The enclosure contains a mixture of pulverized carbon particles, CO{sub 2}, and N{sub 2}. Three different types of problems are solved: homogeneous radiative properties, nonhomogeneous radiative properties, and combined conduction-radiation problem with nonhomogeneous radiative properties. To obtain solutions for these problems, the YIX method is used. The YIX quadrature uses piecewise constant interpolation of the integrands. To handle the L-shaped enclosure, an ad hoc approach of searching the struck surface node in the line-of-sight is developed. The general approach of handling any arbitrary complex geometry is briefly described. A single point, implicit, quasi-Newton scheme is used to solve the energy equation when both the radiation and conduction heat transfer modes are present. The quasi-Newton works well for a wide range of dimensionless conduction-radiation parameter except when the parameter is less than 0.2, i.e., radiation is the dominant heat transfer mode.

Hsu, P.F. [Florida Inst. of Tech., Melbourne, FL (United States). Mechanical and Aerospace Engineering Programs; Tan, Z. [Univ. of Texas, Austin, TX (United States). Aerospace Engineering and Engineering Mechanics Dept.

1996-11-01T23:59:59.000Z

135

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

136

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

137

The Escape of Ionizing Photons from OB Associations in Disk Galaxies Radiation Transfer Through Superbubbles  

E-Print Network [OSTI]

By solving the time-dependent radiation transfer problem of stellar radiation through evolving superbubbles within a smoothly varying H I distribution, we have estimated the fraction of ionizing photons emitted by OB associations that escapes the H I disk of our Galaxy. We considered a coeval star-formation history and a Gaussian star-formation history with a time spread sigma_t = 2 Myr. We find that the shells of the expanding superbubbles quickly trap or attenuate the ionizing flux, such that most of the escaping radiation escapes shortly after the formation of the superbubble. Superbubbles of large associations can blowout of the H I disk and form dynamic chimneys, which allow the ionizing radiation directly to escape the H I disk. However, blowout occurs when the ionizing photon luminosity has dropped well below the association's maximum luminosity. For the coeval star-formation history, the fraction of photons that escape each side of the disk in the solar vicinity is f_esc approx 6% (the total fraction ...

Dove, J B; Ferrara, A; Dove, James B.; Ferrara, Andrea

1999-01-01T23:59:59.000Z

138

Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics  

E-Print Network [OSTI]

We have developed a three-dimensional radiative transfer method designed specifically for use with parallel adaptive mesh refinement hydrodynamics codes. This new algorithm, which we call hybrid characteristics, introduces a novel form of ray tracing that can neither be classified as long, nor as short characteristics, but which applies the underlying principles, i.e. efficient execution through interpolation and parallelizability, of both. Primary applications of the hybrid characteristics method are radiation hydrodynamics problems that take into account the effects of photoionization and heating due to point sources of radiation. The method is implemented in the hydrodynamics package FLASH. The ionization, heating, and cooling processes are modelled using the DORIC ionization package. Upon comparison with the long characteristics method, we find that our method calculates the column density with a similarly high accuracy and produces sharp and well defined shadows. We show the quality of the new algorithm in an application to the photoevaporation of multiple over-dense clumps. We present several test problems demonstrating the feasibility of our method for performing high resolution three-dimensional radiation hydrodynamics calculations that span a large range of scales. Initial performance tests show that the ray tracing part of our method takes less time to execute than other parts of the calculation (e.g. hydrodynamics and adaptive mesh refinement), and that a high degree of efficiency is obtained in parallel execution. Although the hybrid characteristics method is developed for problems involving photoionization due to point sources, the algorithm can be easily adapted to the case of more general radiation fields.

Erik-Jan Rijkhorst; Tomasz Plewa; Anshu Dubey; Garrelt Mellema

2005-05-10T23:59:59.000Z

139

Evaluation of Radiometric Measurements from the NASA Multiangle Imaging Spectroradiometer (MISR): Two- and Three-Dimensional Radiative Transfer Modeling of an Inhomogeneous Stratocumulus Cloud Deck  

SciTech Connect (OSTI)

In December 1999, NASA launched the Terra satellite. This platform carries five instruments that measure important properties of the Earth climate system. One of these instruments is the Multiangle Imaging Spectroradiometer, or MISR. This instrument measures light reflected from the Earth at a spatial resolution of 275-1100 m, at four wavelengths (446, 558, 672, and 866 nm), and at nine different viewing angles that vary from +70 to -70 degrees along the direction of flight [Diner et al., 2002]. These multiangle data have the potential to provide information on aerosols, surface, and cloud characteristics that compliments traditional single-view-direction satellite measurements. Before this potential can be realized, the accuracy of the satellite radiance measurements must be carefully assessed, and the implications of the radiometric accuracy on remote-sensing algorithms must be evaluated. In this article, we compare MISR multiangle measurements against two-dimensional (2-D) and 3-D radiative transfer calculations from an inhomogeneous cloud scene. Inputs to the radiative transfer code are based entirely on independently gathered data (ground-based radar, lidar, microwave radiometer, in situ aircraft data, etc.). The 2-D radiative transfer calculations compare favorably near nadir and in most of the forward scattering directions, but differ by as much as 10% in the backscattering directions. Using 3-D radiative transfer modeling, we show that this difference is due to the 3-D structure of the cloud deck, including variations in the cloud top height on scales less than 275 m, which are not resolved in the 2-D simulations. Comparison of the 2-D calculations to the MISR measurements, after accounting for the 3-D structure, show residual differences that are less than 4% at all angles at the MISR blue and green wavelengths. The comparison also reveals that the MISR measurements at the red and near-infrared wavelengths are too bright relative to measurements in the blue and green bands. On the basis of the results of this study, along with results from five other comparisons, the MISR calibration is being adjusted to reduce the red and nearinfrared Radiances.

Marchand, Roger T.; Ackerman, Thomas P.

2004-09-29T23:59:59.000Z

140

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect (OSTI)

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect (OSTI)

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

142

Three-dimensional Continuum Radiative Transfer Images of a Molecular Cloud Core Evolution  

E-Print Network [OSTI]

We analyze a three-dimensional smoothed particle hydrodynamics simulation of an evolving and later collapsing pre-stellar core. Using a three-dimensional continuum radiative transfer program, we generate images at 7 micron, 15 micron, 175 micron, and 1.3 mm for different evolutionary times and viewing angles. We discuss the observability of the properties of pre-stellar cores for the different wavelengths. For examples of non-symmetric fragments, it is shown that, misleadingly, the density profiles derived from a one-dimensional analysis of the corresponding images are consistent with one-dimensional core evolution models. We conclude that one-dimensional modeling based on column density interpretation of images does not produce reliable structural information and that multidimensional modeling is required.

J. Steinacker; B. Lang; A. Burkert; A. Bacmann; Th. Henning

2004-10-12T23:59:59.000Z

143

Collisional and radiative excitation transfers in Kr-Xe mixtures: Quenching of Kr  

Science Journals Connector (OSTI)

A detailed study of electronic energy transfers in Kr-Xe mixtures has been made using a 250-keV electron accelerator to excite Kr-Xe mixtures over a wide range of Kr-host-gas pressure and Xe-impurity concentrations. Kr pressure ranged from 25 to 900 Torr with Xe concentrations varying from 0.1% to 10% of Kr partial pressure. Emission spectra taken in the vacuum-ultraviolet (vuv) region indicate that energy is transferred efficiently from Kr to Xe, with radiation from the Xe(3P1) state becoming greatly enhanced as the Xe-impurity concentration is increased. Emission spectra from the vuv also show that the Xe(1P1) state is populated by absorption of photons emitted from the Kr2 * first continuum. Two-body quenching rates with Xe ground-state atoms have been found for the Kr(1P1) [kq(1165 Å)=1.2×105 sec-1/Torr] and for the Kr(3P1) [kq(1236 Å)=9.5×105 sec-1/Torr] resonance states. Time-resolved measurements have also been made on the Kr2 * first and second continua. These measurements show the Kr(3P1) state is the atomic precursor of the Kr2 * first continuum. The results obtained in the Kr2 * second continuum are rate limited by the decay of Kr(3P1) at large Xe-impurity concentrations.

Jerry D. Cook and P. K. Leichner

1985-01-01T23:59:59.000Z

144

Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization  

E-Print Network [OSTI]

problem for the radiative transport equation,” Inv. Prob.the beginning, radiative transport equation (RTE) is used as

Gao, Hao; Zhao, Hongkai

2010-01-01T23:59:59.000Z

145

Spectrally enhancing near-field radiative heat transfer by exciting magnetic polariton in SiC gratings  

E-Print Network [OSTI]

In the present work, we theoretically demonstrate, for the first time, that near field radiative transport between 1D periodic grating microstructures separated by subwavelength vacuum gaps can be significantly enhanced by exciting magnetic resonance or polariton. Fluctuational electrodynamics that incorporates scattering matrix theory with rigorous coupled wave analysis is employed to exactly calculate the near field radiative heat flux between two SiC gratings. Besides the well known coupled surface phonon polaritons (SPhP), an additional spectral radiative heat flux peak, which is due to magnetic polariton, is found within the phonon absorption band of SiC. The mechanisms, behaviors and interplays between magnetic polariton, coupled SPhP, single interface SPhP, and Wood's anomaly in the near field radiative transport are elucidated in detail. The findings will open up a new way to control near field radiative heat transfer by magnetic resonance with micro or nanostructured metamaterials.

Yang, Yue

2015-01-01T23:59:59.000Z

146

A trajectory-based approach to modeling nonlinear infrared spectra : interrogating strong hydrogen bonds and proton transfer  

E-Print Network [OSTI]

This work describes a phenomenological approach for modeling linear and nonlinear infrared spectroscopy of condensed phase chemical systems, focusing on applications to strongly hydrogen bonded complexes. To overcome the ...

Hornng, Andrew D. (Andrew Davis)

2012-01-01T23:59:59.000Z

147

Infrared radiation from hot cones on cool conifers attracts seed-feeding insects  

Science Journals Connector (OSTI)

...British Columbia, Canada V8M 1W4 3 British Columbia...British Columbia, Canada V1B 2C7 Foraging animals...conducive to absorbing solar radiation and heating...left empty, absorbed solar energy, heated up and...British Columbia, Canada. (c) Schematic of...

2009-01-01T23:59:59.000Z

148

Infrared floodlight  

DOE Patents [OSTI]

An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

Levin, Robert E. (S. Hamilton, MA); English, George J. (Reading, MA)

1986-08-05T23:59:59.000Z

149

High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation  

Science Journals Connector (OSTI)

......irradiation, especially thermal neutron irradiation. Boron-10 (10B) releases alpha (4He) and 7Li particles through...14 Kobayashi T , Kanda K. Analytical calculation of boron-10 dosage in cell nucleus for neutron capture therapy. Radiat......

Yuki Hirota; Shin-Ichiro Masunaga; Natsuko Kondo; Shinji Kawabata; Hirokazu Hirakawa; Hirohiko Yajima; Akira Fujimori; Koji Ono; Toshihiko Kuroiwa; Shin-Ichi Miyatake

2014-01-01T23:59:59.000Z

150

Cosmological Radiative Transfer Codes Comparison Project I: The Static Density Field Tests  

E-Print Network [OSTI]

Radiative transfer simulations are now at the forefront of numerical astrophysics. They are becoming crucial for an increasing number of astrophysical and cosmological problems; at the same time their computational cost has come to the reach of currently available computational power. Further progress is retarded by the considerable number of different algorithms (including various flavours of ray-tracing and moment schemes) developed, which makes the selection of the most suitable technique for a given problem a non-trivial task. Assessing the validity ranges, accuracy and performances of these schemes is the main aim of this paper, for which we have compared 11 independent RT codes on 5 test problems: (0) basic physics, (1) isothermal H II region expansion and (2) H II region expansion with evolving temperature, (3) I-front trapping and shadowing by a dense clump, (4) multiple sources in a cosmological density field. The outputs of these tests have been compared and differences analyzed. The agreement between the various codes is satisfactory although not perfect. The main source of discrepancy appears to reside in the multi-frequency treatment approach, resulting in different thicknesses of the ionized-neutral transition regions and different temperature structure. The present results and tests represent the most complete benchmark available for the development of new codes and improvement of existing ones. To this aim all test inputs and outputs are made publicly available in digital form.

Ilian T. Iliev; Benedetta Ciardi; Marcelo A. Alvarez; Antonella Maselli; Andrea Ferrara; Nickolay Y. Gnedin; Garrelt Mellema; Taishi Nakamoto; Michael L. Norman; Alexei O. Razoumov; Erik-Jan Rijkhorst; Jelle Ritzerveld; Paul R. Shapiro; Hajime Susa; Masayuki Umemura; Daniel J. Whalen

2006-03-08T23:59:59.000Z

151

3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries  

E-Print Network [OSTI]

Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

2014-01-01T23:59:59.000Z

152

ht. 1. Han Mass 7h&r. Vol. 13, pp. 13494357. Pergamon Pra 1970. PhIed in Great Britain RADIATIVE TRANSFER IN A CONSERVATIVE  

E-Print Network [OSTI]

involving radiative transport and wall temperature slip in a finite, absorbing, emitting gray medium, equation of transfer then equation (4) reduces to the simpler form where Z(z,Zl)is the radiation intensity, Zlis the In their work on radiative transport and wall direction cosine (as measured from the positive

Siewert, Charles E.

153

The effects of radiative transfer in maintaining the Indian summer monsoon  

SciTech Connect (OSTI)

Atmospheric radiative transfer is an important thermodynamic forcing for the Indian summer monsoon. The monsoon is a component of a larger scale circulation system the principal components of which are the Hadley cell and the Walker Circulation. The Hadley cell is a thermally direct circulation that transports heat toward the poles. In the northern hemispheric summer, the ascending branch of the Hadley cell moves northward, due to heating of the land masses. This ascending branch of the Hadley cell is referred to as the Intertropical Convergence Zone (ITCZ). The return branch of the Hadley cell is characterized by southwesterly surface winds. At the surface, the ITCZ is marked by convergence of southwesterly surface winds from the south and northeasterly surface winds from the north. As the ITCZ moves northward, the southern extent of the northerly surface winds also moves northward, and southerly surface winds from the south side of the ITCZ also move northward. The surface convergence at the ITCZ is a driving mechanism for the summer monsoon circulation. The northward drift of the Hadley cell in the northern summer ITCZ is the deep convection over the warm pool of water in the western tropical Pacific ocean, located at about 160E. The latent heating in the deep convection drives another direct circulation, known as the Walker Circulation. The upper branch of the Walker Circulation over south Asia is easterly winds created by the deep convection in the western tropical Pacific. Convective activity over the Indian peninsula interacts with the Walker Circulation, creating a jet structure over the western part of India and the eastern Arabian Sea. This structure is known as the Tropical Easterly Jet (TEJ). Secondary circulations associated with the Indian convection also help to maintain the baroclinicity, which is essential to the development of monsoon depression, the maintenance of the monsoon trough, and the circulation and hydrology of the region in general.

Leach, M.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

1995-04-01T23:59:59.000Z

154

Inversionless amplification in semiconductor nanostructures: A way to create a frequency-tunable laser of far-infrared and terahertz radiation  

SciTech Connect (OSTI)

A scheme of a far-infrared and terahertz amplifier or laser based on a semiconductor nanostructure, consisting of a superlattice of double quantum wells of a certain design placed into a planar metal waveguide and pumped by a CO{sub 2} laser, is suggested. The structure operation is based on the inversionless mechanism of electromagnetic field amplification, which allows passing to room-temperature operation (in the pulsed mode) and significant (by a factor of more than 1.7) variation in the output radiation frequency by simple variation in the pump intensity. A laser based on such a scheme can be a convenient and easily tunable source of infrared and terahertz radiation for both basic research and various applications.

Kukushkin, V. A., E-mail: vakuk@appl.sci-nnov.ru [Russian Academy of Sciences, Institute Applied Physics (Russian Federation)

2010-11-15T23:59:59.000Z

155

Heat transfer of a micropolar fluid by the presence of radiation  

Science Journals Connector (OSTI)

An analysis of the steady flow of a micropolar fluid past an unmoving plate by the presence of radiation is considered. Numerical solution for temperature field has been derived and the effect of the radiation...

C. Perdikis; A. Raptis

1996-08-01T23:59:59.000Z

156

Asymptotic Preserving Unified Gas Kinetic Scheme for Grey Radiative Transfer Equations  

E-Print Network [OSTI]

The solutions of radiative transport equations can cover both optical thin and optical thick regimes due equations, where the radiation transport equation is coupled with the material thermal energy equation(2013), 138-156] from a one-dimensional linear radiation transport equation to a nonlinear two

Xu, Kun

157

Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering and ModeCoupling  

E-Print Network [OSTI]

systematically to derive the radiative transport equations that describe the evolution of acoustic correlation : : : : : : : : : : : : : : : : : : : : 8 3.2 The radiative transport equations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 of the radiative transport equations 21 B Derivation of the diffusion equation without flow­straining 23 C

Ryzhik, Lenya

158

Heat and Mass Transfer in the MHD Flow of a Visco-elastic Fluid in a Rotating Porous Channel with Radiative Heat  

Science Journals Connector (OSTI)

This paper deals with heat and mass transfer in the magnetohydrodynamic flow of a visco-elastic fluid in a rotating porous channel with radiative heat. The flow phenomenon has been characterized by the fluid para...

M. Jena; M. Goswami; S. Biswal

2014-12-01T23:59:59.000Z

159

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network [OSTI]

)" #12;1. Introduction Brazed aluminium heat exchangers are composed of flat tubes on the refrigerant exchangers with round tube, such as charge reduction and higher heat transfer coefficient. But, according are thus not suitable to small-channel heat exchangers. As a consequence, the refrigerant distribution

Boyer, Edmond

160

E-Print Network 3.0 - atmospheric radiative transfer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth and Atmospheric Sciences, Cornell University Collection: Geosciences 49 The Greenhouse Effect without Feedbacks Summary: Number microns10.016.7 7.14 T261K 12;Radiative...

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies  

E-Print Network [OSTI]

We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e. for any set of temperatures, dielectric and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the non-additivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

Riccardo Messina; Mauro Antezza

2014-02-11T23:59:59.000Z

162

Variable waveband infrared imager  

DOE Patents [OSTI]

A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

Hunter, Scott R.

2013-06-11T23:59:59.000Z

163

Stochastic Radiative Transfer in Multilayer Broken Clouds. Part II: Validation Tests  

SciTech Connect (OSTI)

In the second part of our two-part paper we estimated the accuracy and robustness of the approximated equations for the mean radiance that were derived in Part I. In our analysis we used the three-dimensional (3D) cloud fields provided by (i) the stochastic Boolean model, (ii) large-eddy simulation model and (iii) satellite cloud retrieval. The accuracy of the obtained equations was evaluated by comparing the ensemble-averaged radiative properties that were obtained by the numerical averaging method (reference) and the analytical averaging method (approximation). The robustness of these equations was estimated by comparing the domain-averaged radiative properties obtained by using (i) the full 3D cloud structure (reference) and (ii) the bulk cloud statistics (approximation). It was shown that the approximated equations could provide reasonable accuracy ({approx}15%) for both the ensemble-averaged and domain-averaged radiative properties.

Kassianov, Evgueni I.; Ackerman, Thomas P.; Marchand, Roger T.; Ovtchinnikov, Mikhail

2003-04-01T23:59:59.000Z

164

Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 219}226  

E-Print Network [OSTI]

of the discrete-ordinates approximation to the transport equation in plane geometry. The Green's function of papers [1}3] concerning radiation-transport problems in plane geometry, linear-algebra techniques were of the Fourier-component (m50) problems basic to the general azimuth-dependent transport equation [6], and since

Siewert, Charles E.

165

Diffusion Approximation of Radiative Transfer Problems with Guillaume Bal \\Lambda Leonid Ryzhik y  

E-Print Network [OSTI]

propagation. The radiative transport equation for the evolution of the average phase space energy density a Ryzhik y September 16, 1998 Abstract We derive the diffusion approximation of transport equations with discontinuities at interfaces. The transport equations model the energy density of acoustic waves. The waves

Bal, Guillaume

166

On radiative transfer in water spray curtains using the Discrete Ordinates Method  

E-Print Network [OSTI]

addressed in conditions similar to devices used in fire protection systems. The radiation propagation from solutions involved in fire protection systems. In this case, the expected aim is to protect given devices of the spray efficiency would be a useful tool for people concerned with fire protection. Our group is involved

Paris-Sud XI, Université de

167

Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations  

E-Print Network [OSTI]

Characterization of the solar light field within the ocean mesopelagic zone based on radiative t The solar light field within the ocean from the sea surface to the bottom of the mesopelagic zone there is sufficient amount of solar light to support the process of photosynthesis, and below by the aphotic

Stramski, Dariusz

168

Kinetic Scheme for Solving the M1 Model of Radiative Transfer  

Science Journals Connector (OSTI)

......of the intensity, but not the energy density. Thus, FLD cannot evaluate...it takes account of only the energy density. Gonzalez, Audit, and Huynh (2007) proposed...radiation field is expressed by the energy density and the flux, i.e......

Yuji Kanno; Tetsuya Harada; Tomoyuki Hanawa

2013-08-25T23:59:59.000Z

169

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

170

Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network  

Science Journals Connector (OSTI)

Abstract For the first time, an efficient simultaneous trans/esterification process for biodiesel synthesis from waste goat tallow with considerable free fatty acids (FFAs) content has been explored employing an infrared radiation assisted reactor (IRAR). The impacts of methanol to tallow molar ratio, IRAR temperature and H2SO4 concentration on goat tallow conversion were evaluated by response surface methodology (RSM). Under optimal conditions, 96.7% FFA conversion was achieved within 2.5 h at 59.93 wt.% H2SO4, 69.97 °C IRAR temperature and 31.88:1 methanol to tallow molar ratio. The experimental results were also modeled using artificial neural network (ANN) and marginal improvement in modeling efficiency was observed in comparison with RSM. The infrared radiation strategy could significantly accelerate the conversion process as demonstrated through a substantial reduction in reaction time compared to conventionally heated reactor while providing appreciably high biodiesel yield. Moreover, the in situ water removal using silica-gel adsorbent could also facilitate achieving higher FFA conversion to fatty acid methyl ester (FAME). Owing to the occurrence of simultaneous transesterification of triglycerides present in goat tallow, overall 98.5 wt.% FAME content was determined at optimal conditions in the product biodiesel which conformed to ASTM and EN biodiesel specifications.

R. Chakraborty; H. Sahu

2014-01-01T23:59:59.000Z

171

Infrared divergence of the resonant Raman-Compton scattering  

Science Journals Connector (OSTI)

The infrared divergence of the resonant Raman-Compton scattering has been studied in collisions of photons on atomic L electrons in the intermediate-momentum-transfer regime. Low-energy continua emitted by Zr atoms, excited, in the vicinity of the K edge, by the monochromatized x rays delivered by the LURE Synchrotron Radiation Facility, have been observed on vary thin targets and compared with the theoretically predicted infrared divergence of the Raman scattering. The characteristic change in shape of these continua has been studied on a wide energy range below the Zr K edge.

J. P. Briand; A. Simionovici; P. Chevallier; P. Indelicato

1989-05-01T23:59:59.000Z

172

General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes  

SciTech Connect (OSTI)

We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.

2007-01-05T23:59:59.000Z

173

Simulation of Infrared Laser Heating of Silica Using Heat Conduction and Multifrequency Radiation Diffusion Equations Adapted for Homogeneous Refractive Lossy Media  

SciTech Connect (OSTI)

Localized, transient heating of materials using micro-scale, highly absorbing laser light has been used in many industries to anneal, melt and ablate material with high precision. Accurate modeling of the relative contributions of conductive, convective and radiative losses as a function of laser parameters is essential to optimizing micro-scale laser processing of materials. In bulk semi-transparent materials such as silicate glass melts, radiation transport is known to play a significantly larger role as the temperature increases. Conventionally, radiation is treated in the frequency-averaged diffusive limit (Rosseland approximation). However, the role and proper treatment of radiative processes under rapidly heated, high thermal gradient conditions, often created through laser-matter interactions, is at present not clear. Starting from the radiation transport equation for homogeneous, refractive lossy media, they derive the corresponding time-dependent multi-frequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The radiation equations are coupled to a diffusion equation for the matter temperature. They are interested in modeling infrared laser heating of silica over sub-millimeter length scales, and at possibly rapid rates. Hence, in contrast to related work, they retain the temporal derivative of the radiation field. They derive boundary conditions at a planar air-silica interface taking account of reflectivities obtained from the Fresnel relations that include absorption. The effect of a temperature-dependent absorption index is explored through construction of a multi-phonon dielectric function that includes mode dispersion. The spectral dimension is discretized into a finite number of intervals yielding a system of multigroup diffusion equations. Simulations are presented. To demonstrate the bulk heat loss due to radiation and the effect of the radiation's temporal derivative, they model cooling of a silica slab, initially at 2500 K, for 10 s. Retaining the derivative enables correctly modeling the loss of photons initially present in the slab. Other simulations model irradiating silica discs (of approximately 5 mm radii and thickness) with a CO2 laser: {lambda} = 10.59 and 4.6 um, Gaussian profile, r{sub 0} = 0.5 mm for 1/e decay. By surrounding the disks in room-temperature air, they make use of the boundary conditions described above.

Shestakov, A I; Matthews, M J; Vignes, R M; Stolken, J S

2010-10-28T23:59:59.000Z

174

Radiative Importance of ThinŽ Liquid Water Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Accomplishments of the Instantaneous Radiative Flux (IRF) Working Group August 2006 AERI Observations at Southern Great Plains Improve Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations used to evaluate clear sky IR radiative transfer models * Long-term comparisons have improved - Spectral line database parameters - Water vapor continuum absorption models * Reduced errors in computation of downwelling radiative IR flux by approx 4; current uncertainty is on the order of 1.5 W/m 2 AERI - (Pre-ARM Model) AERI - (Model in 2003) 1 RU = 1 mW / (m 2 sr cm -1 ) Excellent Agreement in Clear Sky Shortwave Radiative Transfer Between Obs and Calcs Shortwave Flux Bias (Solid) Shortwave Flux RMS (Hatched) W m -2 * Comparison of shortwave radiative flux at the surface

175

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect (OSTI)

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

176

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect (OSTI)

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

177

Direct Aerosol Forcing in the Infrared at the SGP Site?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

178

Astrophysical S factor for the radiative capture (12)N(p,gamma)(13)O determined from the (14)N((12)N,(13)O)(13)C proton transfer reaction  

E-Print Network [OSTI]

The cross section of the radiative proton capture reaction on the drip line nucleus (12)N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the (14)N((12)N,(13)O)(13)C proton transfer reaction at 12 Me...

Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, Carl A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.; Zhai, Y.; Carstoiu, F.; Burjan, V.; Kroha, V.

2009-01-01T23:59:59.000Z

179

Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials  

E-Print Network [OSTI]

of energy from a hot to a cold body is well known to be enhanced (even exceeding the black- body limit) whenFrequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Department

Soljaèiæ, Marin

180

Infrared Thermometer (IRT) Handbook  

SciTech Connect (OSTI)

The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

VR Morris

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France  

Science Journals Connector (OSTI)

The Land Surface Analysis Satellite Applications Facility (LSA SAF) project radiation fluxes, derived from the Meteosat Second Generation (MSG) geostationary satellite, were used in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) ...

D. Carrer; S. Lafont; J.-L. Roujean; J.-C. Calvet; C. Meurey; P. Le Moigne; I. F. Trigo

2012-04-01T23:59:59.000Z

182

Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence  

Science Journals Connector (OSTI)

We present model spectral energy distributions (SEDs), colors, polarization, and images for an evolutionary sequence of a low-mass protostar from the early collapse stage (Class 0) to the remnant disk stage (Class III). We find a substantial overlap in colors and SEDs between protostars embedded in envelopes (Class 0-I) and T Tauri disks (Class II), especially at mid-IR wavelengths. Edge-on Class I-II sources show double-peaked SEDs, with a short-wavelength hump due to scattered light and a long-wavelength hump due to thermal emission. These are the bluest sources in mid-IR color-color diagrams. Since Class 0 and I sources are diffuse, the size of the aperture over which fluxes are integrated has a substantial effect on the computed colors, with larger aperture results showing significantly bluer colors. Viewed through large apertures, the Class 0 colors fall in the same regions of mid-IR color-color diagrams as Class I sources and are even bluer than Class II-III sources in some colors. It is important to take this into account when comparing color-color diagrams of star formation regions at different distances or different sets of observations of the same region. However, the near-IR polarization of the Class 0 sources is much higher than the Class I-II sources, providing a means to separate these evolutionary states. We varied the grain properties in the circumstellar envelope, allowing for larger grains in the disk midplane and smaller grains in the envelope. In comparing with models with the same grain properties throughout, we find that the SED of the Class 0 source is sensitive to the grain properties of the envelope only—that is, grain growth in the disk in Class 0 sources cannot be detected from the SED. Grain growth in disks of Class I sources can be detected at wavelengths greater than 100 ?m. Our image calculations predict that the diffuse emission from edge-on Class I and II sources should be detectable in the mid-IR with the Space Infrared Telescope Facility (SIRTF) in nearby star-forming regions (out to several hundred parsecs).

Barbara A. Whitney; Kenneth Wood; J. E. Bjorkman; Martin Cohen

2003-01-01T23:59:59.000Z

183

A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications  

E-Print Network [OSTI]

radiative heat flux through the grid element boundary ˆ sstair-case grid. Figure 5 shows the net radiative heat fluxgrid consisted of 6872 tetrahedral elements. The dimensionless radiative heat

He, Xing; Lee, Euntaek; Wilcox, Lucas; Munipalli, Ramakanth; Pilon, Laurent

2013-01-01T23:59:59.000Z

184

Heat and moisture transfer through clothing  

E-Print Network [OSTI]

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forsimulation of heat and moisture transfer in a human-

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

185

Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs  

SciTech Connect (OSTI)

Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake. 35 references.

Sinton, W.M.; Kaminski, C.

1988-08-01T23:59:59.000Z

186

A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron radiation use  

SciTech Connect (OSTI)

A new cell has been designed for accurate spectroscopic measurements in the 80–400 K temperature range with variable path lengths from 3 to more than 141 m. The spectral coverage at these temperatures ranges from the visible to less than 10 cm{sup ?1}, thanks to the use of diamond windows. The design of the cryostat and vacuum setups allows vibration-free operation. The equipment provides temperature homogeneity and pressure control to better than 2% over the 100–400 K and the 0.1–1000 mbar ranges. Remote-controlled opto-mechanical systems enable in situ adjustments as well as changes of the optical path length within half an hour, in order to optimize measurement time in an open user facility. It allows then to meet the specific requirements of high resolution measurements on the Far-Infrared AILES beamline at SOLEIL as well at the LISA facility, in Créteil, in the mid-IR. This new instrument opens up the way for many experiments in the field of high-resolution gas-phase IR spectroscopy, in particular, in quantitative spectroscopy for atmospheric applications: measurements of absorption line parameters (absolute intensities, cross sections, and pressure-induced widths) using Fourier transform spectroscopy. The design and performance of the equipment are briefly presented and illustrated on spectroscopic examples.

Kwabia Tchana, Fridolin; Willaert, Fabrice; Landsheere, Xavier; Flaud, Jean-Marie [LISA, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris-Est Créteil (UPEC) et Université Paris-Diderot (UPD), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France)] [LISA, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris-Est Créteil (UPEC) et Université Paris-Diderot (UPD), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France); Lago, Leatitia; Chapuis, Mylène; Herbeaux, Christian; Roy, Pascale; Manceron, Laurent [High Vacuum Group and Beamline AILES, Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France)] [High Vacuum Group and Beamline AILES, Synchrotron SOLEIL, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France)

2013-09-15T23:59:59.000Z

187

Robust Calibration Transfer in Noninvasive Ethanol Measurements, Part I: Mathematical Basis for Spectral Distortions in Fourier Transform Near-Infrared Spectroscopy (FT-NIR)  

Science Journals Connector (OSTI)

Multivariate calibration transfer in spectroscopy is an active area of interest. Many current approaches rely on the measurement of a subset of calibration samples on each instrument...

Ridder, Trent D; Ver Steeg, Benjamin J; Price, Glenn L

2014-01-01T23:59:59.000Z

188

Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies  

E-Print Network [OSTI]

Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

Kitzmann, D; Rauer, H

2013-01-01T23:59:59.000Z

189

Assigning Structures to Gas-Phase Peptide Cations and Cation-Radicals. An Infrared Multiphoton Dissociation, Ion Mobility, Electron Transfer, and Computational Study of a Histidine Peptide Ion  

Science Journals Connector (OSTI)

Infrared multiphoton dissociation (IRMPD) spectroscopy, using a free-electron laser, and ion mobility measurements, using both drift-cell and traveling-wave instruments, were used to investigate the structure of gas-phase peptide (AAHAL + 2H)2+ ions ...

Christopher L. Moss; Julia Chamot-Rooke; Edith Nicol; Jeffery Brown; Iain Campuzano; Keith Richardson; Jonathan P. Williams; Matthew F. Bush; Benjamin Bythell; Bela Paizs; Frantisek Turecek

2012-02-27T23:59:59.000Z

190

Radiator Labs | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of steam buildings. Radiator Labs developed a mechanism that allows heating systems to control heat transfer at each radiator. The Radiator Labs design utilizes an...

191

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......predicted and measured data. The CFD simulations...methods to improve the heat transfer rate and provide quantitative data which can be used...important in the combustion and the heat transfer processes...models on hydrogen-hydrocarbon combustion modelling......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

192

Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL  

SciTech Connect (OSTI)

RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

Conklin, J.C.

1981-08-01T23:59:59.000Z

193

Monte Carlo solution methods in a moment-based scale-bridging algorithm for thermal radiative transfer problems: Comparison with Fleck and Cummings  

SciTech Connect (OSTI)

We have developed a moment-based scale-bridging algorithm for thermal radiative transfer problems. The algorithm takes the form of well-known nonlinear-diffusion acceleration which utilizes a low-order (LO) continuum problem to accelerate the solution of a high-order (HO) kinetic problem. The coupled nonlinear equations that form the LO problem are efficiently solved using a preconditioned Jacobian-free Newton-Krylov method. This work demonstrates the applicability of the scale-bridging algorithm with a Monte Carlo HO solver and reports the computational efficiency of the algorithm in comparison to the well-known Fleck-Cummings algorithm. (authors)

Park, H. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Densmore, J. D. [Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); Wollaber, A. B.; Knoll, D. A.; Rauenzahn, R. M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

194

E-Print Network 3.0 - active infrared systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Renewable Energy ; Materials Science 71 A DEDICATED INFRARED SYNCHROTRON RADIATION SOURCE AT W. Barry, A. Biocca, J. M. Byrd Summary: on the Infrared Beamline",...

195

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

196

The convergence of an explicit finite difference solution for transient heat transfer in solids with radiation at one boundary  

E-Print Network [OSTI]

at the Interior Point 'n ' 17 8 ? 01 Temperature Resp C 2'( C 1, Wi Constant Tempera x = L, and Havin Transfer to a He Degree Absolute Calculated With Modulus as Per S at x/L = 0. 0 onse th a ture g Ra at S Temp a Mr tabi of Hea at dian ink.... The Fourier equation for one? dimensional heat conduction in solids with constant physical properties is BT K 0 T Qe gC Q~x (3 ? 01) The net radiant heat transfer rate between two gray bodies A and B at absolute temperature T and T will be B according...

Patel, Bhagubhai Desaibhai

2012-06-07T23:59:59.000Z

197

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

198

Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation  

E-Print Network [OSTI]

with UV laser radiation Jason S. Hummelta and John E. Scharer Department of Electrical and Computer of oxygen has on the ionization of nitrogen in laser air breakdown. Plasma is created by focusing a 193 nm ArF excimer laser using an 18 cm focal length lens, producing a cylindrical 540 m wide spot

Scharer, John E.

199

Frequency selective infrared sensors  

DOE Patents [OSTI]

A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

Davids, Paul; Peters, David W

2013-05-28T23:59:59.000Z

200

Frequency selective infrared sensors  

SciTech Connect (OSTI)

A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

Davids, Paul; Peters, David W

2014-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

202

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

203

Induction and Persistence of Large ?H2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinase–Deficient Cells  

SciTech Connect (OSTI)

Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of ?-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (?H2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of ?H2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of ?H2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in ?H2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 ?m{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of ?H2AX foci after high-LET irradiation.

Bracalente, Candelaria; Ibañez, Irene L. [Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Molinari, Beatriz [Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Palmieri, Mónica [Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Kreiner, Andrés [Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Valda, Alejandro [Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); and others

2013-11-15T23:59:59.000Z

204

Using radiative transfer models to study the atmospheric water vapor content and to eliminate telluric lines from high-resolution optical spectra  

E-Print Network [OSTI]

The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400-24 000 {\\AA} range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000-10 000 {\\AA} range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.

Gardini, A; Pérez, E; Quesada, J A; Funke, B

2012-01-01T23:59:59.000Z

205

Computer modeling of infrared head-on emission from missile noses  

SciTech Connect (OSTI)

A computer model that takes into account the effect of aerodynamic and solar heating, sky irradiation, and radiative cooling on infrared emission from missile noses is presented. The heat transfer equation was solved with numerical techniques both in the steady-state (constant sped and altitude flight of cruise missiles) and in the nonstationary regime (quickly variable speed and altitude of short to medium range ballistic missiles) to give the temperature distribution on the skin surface. The corresponding head-on absolute infrared emission in the 3 to 5 {mu}m spectral bands was computed as a function of time of flight and missile altitude. Results show a strong dependence of temperature on the skin material, on the character of the aerodynamic flow (laminar or turbulent boundary layer), and on the physical characteristics of the atmosphere. By varying these parameters into reasonable ranges, infrared emissions spanning over more than an order of magnitude were obtained.

Tofani, A. (Officine Galileo SpA, Via Einstein 35, 50013 Campi Bisenzio, Florence (IT))

1990-02-01T23:59:59.000Z

206

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

207

Infrared Audit  

Science Journals Connector (OSTI)

The infrared audit is a technique of investigation that allows ... a surface. Applications of thermography in the energy fields are very widespread, since through such ... . This chapter describes the application...

Giuliano Dall’O’

2013-01-01T23:59:59.000Z

208

Estimation of net radiation and surface heat fluxes using NOAA-7 satellite infrared data during fair-weather cloudy situations of Mesogers-84 experiment  

Science Journals Connector (OSTI)

Estimation of radiation during fair weather cloudy situations of the MESOGERS-84 experiment has been examined using micrometeorological observations and satellite data. Diurnal variation of cloudiness is empirica...

M. Zhong; A. Weill; O. Taconet

1990-12-01T23:59:59.000Z

209

HEAT AND MOISTURE TRANSFER THROUGH CLOTHING  

E-Print Network [OSTI]

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forCheng, X. -Y. 2005. Heat and moisture transfer with sorption

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

210

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Posters Preliminary Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H....

211

Shielded cells transfer automation  

SciTech Connect (OSTI)

Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

Fisher, J J

1984-01-01T23:59:59.000Z

212

Near-infrared spectroscopy of HD the barrier to linearity  

E-Print Network [OSTI]

Near-infrared spectroscopy of HD 3 above the barrier to linearity BY JENNIFER L. GOTTFRIED, transitions of HC 3 above the barrier to linearity have been observed. A highly sensitive near-infrared-adiabatic and radiative corrections is revealed. Keywords: HD 3 ; near-infrared spectroscopy; barrier to linearity 1

Oka, Takeshi

213

On the influence of the companion star in Eta Carinae: 2D radiative transfer modeling of the ultraviolet and optical spectra  

E-Print Network [OSTI]

We present 2D radiative transfer modeling of the Eta Carinae binary system accounting for the presence of a wind-wind collision (WWC) cavity carved in the optically-thick wind of the primary star. By comparing synthetic line profiles with HST/STIS spectra obtained near apastron, we show that the WWC cavity has a strong influence on multi-wavelength diagnostics. This influence is regulated by the modification of the optical depth in the continuum and spectral lines. We find that H-alpha, H-beta, and Fe II lines are the most affected by the WWC cavity, since they form over a large volume of the primary wind. These spectral lines depend on latitude and azimuth since, according to the orientation of the cavity, different velocity regions of a spectral line are affected. For 2D models with orientation corresponding to orbital inclination angle 110deg < i < 140deg and longitude of periastron 210deg < omega < 330deg, the blueshifted and zero-velocity regions of the line profiles are the most affected. Th...

Groh, Jose H; Madura, Thomas I; Weigelt, Gerd

2012-01-01T23:59:59.000Z

214

Instrumentation for Far-infrared Spectroscopy Peter R. Griffiths1  

E-Print Network [OSTI]

at one end with an infrared transparent window (A) through which radiation reaches a thin absorbing film- and Far-Infrared Spectroscopy Window Incident radiation A B Absorbing film Pneumatic chamber Ballasting passes through the window onto a blackened film, causing the pressure of the gas in the pneumatic chamber

Homes, Christopher C.

215

Multivariate classification of infrared spectra of cell and tissue samples  

DOE Patents [OSTI]

Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

Haaland, David M. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Thomas, Edward V. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

216

High-resolution mapping of interstellar clouds with near-infrared scattered light  

E-Print Network [OSTI]

With current wide-field near-infrared (NIR) instruments the scattered light in the near-infrared can be mapped over large areas. Below A_V ~ 10 the surface brightness is directly proportional to the column density, and at slightly higher column densities the saturation of the intensity values can be corrected using the ratios of the intensity in different NIR bands. NIR scattered light provides a promising new method for the mapping of quiescent interstellar clouds. We develop a method to convert the observed near-infrared surface brightness into estimates of the column density. We study and quantify the effect that different error sources could have on the accuracy of such estimates. We also propose to reduce systematic errors by combining surface brightness data with extinction measurements derived from the near-infrared colour excess of background stars. Our study is based on a set of three-dimensional magnetohydrodynamic turbulence simulations. Maps of near-infrared scattered light are obtained with radiative transfer calculations, and the maps are converted back into column density estimates using the proposed method. The results are compared with the true column densities. Extinction measurements are simulated using the same turbulence simulations, and are used as a complementary column density tracer. We find that NIR intensities can be converted into a reliable estimate of the column density in regions with A_V up to almost 20mag.

M. Juvela; V. -M. Pelkonen; P. Padoan; K. Mattila

2006-03-14T23:59:59.000Z

217

5. Heat transfer Ron Zevenhoven  

E-Print Network [OSTI]

1/120 5. Heat transfer Ron Zevenhoven �bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B�88 �bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer �bo Akademi

Zevenhoven, Ron

218

Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remotely Controlled, Continuous Observations of Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement (CSIRO/ARM) Program Mark II infrared (IR) filter radiometer operated continuously at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site for a period of five weeks. Data of high quality were obtained by remote operation and data transfer with no evidence of spurious

219

Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997  

DOE R&D Accomplishments [OSTI]

This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

Lamb, W. E. Jr.

1981-12-00T23:59:59.000Z

220

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network [OSTI]

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Eurotherm Seminar N81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81-1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION  

E-Print Network [OSTI]

of a packed bed reactor for gasifying coal in mixed control using concentrated solar radiation is proposed], Taylor et al. [3], Belghit et al. [4]). A moving bed reactor, for gasifying coconut charcoal with CO2 the radiative exchange in the porous medium. Case's normal-mode expansion technique [6] is used to obtain

Boyer, Edmond

222

MODELING MID-INFRARED DIAGNOSTICS OF OBSCURED QUASARS AND STARBURSTS  

SciTech Connect (OSTI)

We analyze the link between active galactic nuclei (AGNs) and mid-infrared flux using dust radiative transfer calculations of starbursts realized in hydrodynamical simulations. Focusing on the effects of galaxy dust, we evaluate diagnostics commonly used to disentangle AGN and star formation in ultraluminous infrared galaxies (ULIRGs). We examine these quantities as a function of time, viewing angle, dust model, AGN spectrum, and AGN strength in merger simulations representing two possible extremes of the ULIRG population: one is a typical gas-rich merger at z {approx} 0, and the other is characteristic of extremely obscured starbursts at z {approx} 2-4. This highly obscured burst begins star-formation-dominated with significant polycyclic aromatic hydrocarbon (PAH) emission, and ends with a {approx}10{sup 9} yr period of red near-IR colors. At coalescence, when the AGN is most luminous, dust obscures the near-infrared AGN signature, reduces the relative emission from PAHs, and enhances the 9.7 {mu}m absorption by silicate grains. Although generally consistent with previous interpretations, our results imply none of these indicators can unambiguously estimate the AGN luminosity fraction in all cases. Motivated by the simulations, we show that a combination of the extinction feature at 9.7 {mu}m, the PAH strength, and a near-infrared slope can simultaneously constrain the AGN fraction and dust grain distribution for a wide range of obscuration. We find that this indicator, accessible to the James Webb Space Telescope, may estimate the AGN power as tightly as the hard X-ray flux alone, thereby providing a valuable future cross-check and constraint for large samples of distant ULIRGs.

Snyder, Gregory F.; Jonsson, Patrik; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Sajina, Anna [Department of Physics and Astronomy, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Cox, Thomas J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hopkins, Philip F. [Department of Astronomy, University of California at Berkeley, C-208 Hearst Field Annex, Berkeley, CA 94720 (United States); Yan Lin, E-mail: gsnyder@cfa.harvard.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-05-10T23:59:59.000Z

223

Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes  

SciTech Connect (OSTI)

The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2013-11-18T23:59:59.000Z

224

Numerical Simulations of Radiatively-Driven Dusty Winds  

E-Print Network [OSTI]

Radiation pressure on dust grains may be an important mechanism in driving winds in a wide variety of astrophysical systems. However, the efficiency of the coupling between the radiation field and the dusty gas is poorly understood in environments characterized by high optical depths like those in ultra-luminous infrared galaxies (ULIRGs) and massive dense star clusters. We present a series of idealized numerical experiments, performed with the radiation-hydrodynamic code \\textsc{orion}, in which we study the dynamics of such winds and quantify their properties. We find that, after wind acceleration begins, radiation Rayleigh-Taylor instability forces the gas into a configuration that reduces the rate of momentum transfer from the radiation field to the gas by a factor ~ 10 - 100 compared to an estimate based on the optical depth at the base of the atmosphere; instead, the rate of momentum transfer from a driving radiation field of luminosity L to the gas is roughly L/c multiplied by half the optical depth at...

Krumholz, Mark R

2013-01-01T23:59:59.000Z

225

Extended Near-Infrared Resonance Raman Investigations of an Organic Mixed-Valence System: Diazatetracyclodiene Radical Cation  

E-Print Network [OSTI]

Extended Near-Infrared Resonance Raman Investigations of an Organic Mixed-Valence System near-infrared region show that six modes are coupled to the intramolecular charge-transfer transition transfer (IVCT) absorption bands in the red to near- infrared region of the spectrum, which are, at least

226

Infrared Imaging for Inquiry-Based Learning  

Science Journals Connector (OSTI)

Based on detecting long-wavelength infrared (IR) radiation emitted by the subject IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words an IR camera has great potential in teaching heat transfer which is otherwise invisible. The idea of using IR imaging in teaching was first discussed by Vollmer et al. in 2001.1–3 IR cameras were then too expensive for most schools. Thanks to the growing need of home energy inspection using IR thermography the price of IR cameras has plummeted and they have become easy to use. As of 2011 the price of an entry-level handheld IR camera such as the FLIR I3 has fallen below $900 for educators. A slightly better version FLIR I5 was used to take the IR images in this paper. As easy to use as a digital camera the I5 camera automatically generates IR images of satisfactory quality with a temperature sensitivity of 0.1°C. The purpose of this paper is to demonstrate how these affordable IR cameras can be used as a visualization inquiry and discovery tool. As the prices of IR cameras continue to drop it is time to give teachers an update about the educational power of this fascinating tool especially in supporting inquiry-based learning.

Charles Xie; Edmund Hazzard

2011-01-01T23:59:59.000Z

227

Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference July 19-23, 2009, San Francisco, CA, USA HT2009-88261 SIMULATION OF FOCUSED RADIATION PROPAGATION AND TRANSIENT HEAT TRANSFER IN TURBID-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical

Guo, Zhixiong "James"

228

A model of heat and moisture transfer through clothing integrated with the UC Berkeley comfort model  

E-Print Network [OSTI]

M. Convective and radiative heat transfer coefficients forH, Katayama T. Convective heat transfer coefficients andequations, and the heat transfer effects of different

Fu, Ming; Yu, Tiefeng; Zhang, Hui; Arens, Edward; Weng, Wenguo; Yuan, Hongyong

2014-01-01T23:59:59.000Z

229

HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU  

SciTech Connect (OSTI)

We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A'ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

2013-08-01T23:59:59.000Z

230

Surface Radiation from GOES: A Physical Approach; Preprint  

SciTech Connect (OSTI)

Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

Habte, A.; Sengupta, M.; Wilcox, S.

2012-09-01T23:59:59.000Z

231

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

232

E-Print Network 3.0 - als infrared beamlines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2002 Advances in Bioengineering RADIATIVE PROPERTIES OF POLAR BEAR HAIR Summary: synchroton infrared spectromicroscopy beamline was utilized to provide a continuous spectrum of...

233

E-Print Network 3.0 - absorption infrared spectroscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electron paramagnetic resonance spectroscopy to establish the technology needed... , terahertz radiation is between microwave and infrared. the dynamics of many important ......

234

Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.  

SciTech Connect (OSTI)

Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

2009-09-01T23:59:59.000Z

235

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

236

Transferring Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

237

Infrared Thermography (IRT) Working Group  

Broader source: Energy.gov (indexed) [DOE]

Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

238

1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference  

E-Print Network [OSTI]

with biological media during biomedical laser therapeutic applications [1-6], involve the transport of radiative of radiative transfer, accurate solutions of the Equation of Radiative Transfer (ERT) are required. The ERT 8-12, 2012, Rio Grande, Puerto Rico HT2012-58307 NORMALIZATION FOR ULTRAFAST RADIATIVE TRANSFER

Guo, Zhixiong "James"

239

E-Print Network 3.0 - abscopal radiation effects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

will introduce the theory of radiative transfer; the second part Summary: to greenhouse effect and solar radiation 6. Radiative heating and cooling a. The Chapman layer b....

240

FEATURE ARTICLE Photoexcitation, Ionization, and Dissociation of Molecules Using Intense Near-Infrared  

E-Print Network [OSTI]

FEATURE ARTICLE Photoexcitation, Ionization, and Dissociation of Molecules Using Intense Near-Infrared The coupling mechanism between an intense (1013 W cm-2, 780 nm) near-infrared radiation field of duration 50 above threshold dissociation,3 multiple electron emission,4 and mo- lecular ionization using near-infrared

Levis, Robert J.

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances  

E-Print Network [OSTI]

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances Petr remote-sensing algorithm that utilizes reflected visible and near-infrared radiation to discriminate using multispectral near-infrared and visible radiances, J. Geophys. Res., 112, D24S20, doi:10

Dozier, Jeff

242

DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS  

SciTech Connect (OSTI)

This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup –1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup –1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ?{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ?1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ?4.9 × 10{sup –10} at atmospheric pressures of ?1 mbar.

Abbas, M. M.; LeClair, A. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Woodard, E.; Young, M.; Stanbro, M. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kunde, V. G., E-mail: Mian.M.Abbas@nasa.gov, E-mail: Andre.C.LeClair@nasa.gov, E-mail: eaw0009@uah.edu, E-mail: mcs0001@uah.edu, E-mail: youngmm@uah.edu, E-mail: f.m.flasar@nasa.gov, E-mail: virgil.g.kunde@gsfc.nasa.gov [University of Maryland, College Park, MD 20742 (United States); Collaboration: and the Cassini/CIRS team

2013-10-20T23:59:59.000Z

243

CFD simulation of heat transfer enhancement of Al2O3/water and Al2O3/ethylene glycol nanofluids in a car radiator  

Science Journals Connector (OSTI)

Abstract The present numerical study simulated turbulent and laminar flow heat transfer in nanofluids (Al2O3 particles in water and ethylene glycol-based fluid) passing through a flat tube in 3D using computational fluid dynamics (CFD) for single and two-phase approaches. The advantages over pure base fluids were evaluated. Empirical correlations were used to calculate nanofluid viscosity and thermal conductivity as a function of the volumetric concentration of the nanoparticles. First, the Nusselt numbers of the pure water and pure ethylene glycol in flat tubes were compared with the experimental data. Next, the Nusselt numbers for both approaches were compared with those for experimental data at the same Reynolds number for different concentrations of nanoparticles. A small difference in the friction factors of the tube was observed between the two approaches and the Nusselt number for the two-phase model was markedly different from that for the single-phase model; however, the volumetric flow for the same heat transfer rate decreased and less pumping power was required for the nanofluids.

Vahid Delavari; Seyed Hassan Hashemabadi

2014-01-01T23:59:59.000Z

244

High efficiency quasi-monochromatic infrared emitter  

SciTech Connect (OSTI)

Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

2014-02-24T23:59:59.000Z

245

Enhanced heat transfer for thermionic power modules  

SciTech Connect (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

246

Theory of terahertz/near-infrared optical mixing in quantum wells in strong magnetic fields Takeshi Inoshita, Junichiro Kono,* and Hiroyuki Sakaki  

E-Print Network [OSTI]

Theory of terahertz/near-infrared optical mixing in quantum wells in strong magnetic fields TakeshiAs quantum wells illuminated simultaneously by near-infrared and terahertz THz radiation in strong magnetic the sample is illuminated simul- taneously by THz frequency T) and near-infrared fre- quency N) radiation

Kono, Junichiro

247

Infrared microscope inspection apparatus  

DOE Patents [OSTI]

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

248

Infrared microscope inspection apparatus  

DOE Patents [OSTI]

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

Forman, Steven E. (Framingham, MA); Caunt, James W. (Concord, MA)

1985-02-26T23:59:59.000Z

249

Theoretical and Numerical Analysis of Polarization for Time Dependent Radiative  

E-Print Network [OSTI]

transport equation with respect to the polariza- tion parameters solve the matrix-valued radiative transferTheoretical and Numerical Analysis of Polarization for Time Dependent Radiative Transfer Equations@math.stanford.edu Abstract We consider the matrix-valued radiative transfer equations for the Stokes param- eters

Bal, Guillaume

250

ME 339 Heat Transfer ABET EC2000 syllabus  

E-Print Network [OSTI]

ME 339­ Heat Transfer Page 1 ABET EC2000 syllabus ME 339 ­ Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives

Ben-Yakar, Adela

251

A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties  

Science Journals Connector (OSTI)

Longwave (LW) spectral flux and cloud radiative effect (CRE) are important for understanding the earth’s radiation budget and cloud–radiation interaction. Here, the authors extend their previous algorithms to collocated Atmospheric Infrared ...

Xianglei Huang; Xiuhong Chen; Gerald L. Potter; Lazaros Oreopoulos; Jason N. S. Cole; Dongmin Lee; Norman G. Loeb

2014-10-01T23:59:59.000Z

252

Visualizing infrared phenomena with a webcam  

Science Journals Connector (OSTI)

The concept of light (electromagnetic radiation) outside of the visible spectrum is an abstract concept for students in an introductory science class. When students are presented with demonstrations or experiments meant to explore this portion of the spectrum the equipment involved often hides the phenomena. A simple modification to a standard inexpensive web camera (webcam) can take advantage of the sensitivity of the charged-coupled-device (CCD) to the infrared (IR) portion of the spectrum allowing students to visualize many IR phenomena. This note reports how such a modified webcam can be used in lecture demonstrations and laboratory activities to study infrared phenomena including an IR light emitting diode(LED) the IR component of different light sources IR spectroscopy and blackbody radiation. As a final example the modified camera can be employed to view the charcoal under-drawing of a “painting” created for this paper and used in our classroom demonstrations.

N. A. Gross; M. Hersek; A. Bansil

2005-01-01T23:59:59.000Z

253

AndreiG.Fedorov Title: George W. Woodruff Professorship in Heat Transfer, Combustion and  

E-Print Network [OSTI]

AndreiG.Fedorov Title: George W. Woodruff Professorship in Heat Transfer, Combustion and Energy Research Areas of Interest Heat Transfer, combustion, and energy systems Bioengineering, lab ionization and imaging for bioanalytical mass spectrometry Thermal radiation heat transfer Thermal

Garmestani, Hamid

254

Near infrared detectors for SNAP  

E-Print Network [OSTI]

Near Infrared Detectors for SNAP M. Schubnell a , N. Barron1k × 1k and 2k × 2k) near infrared detectors manufactured byas part of the near infrared R&D e?ort for SNAP (the Super-

2006-01-01T23:59:59.000Z

255

Radiation Sources and Radioactive Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

256

Carbon nanotubes as near infrared laser susceptors  

E-Print Network [OSTI]

.1. Near Infrared radiation and its interaction with materials ................................... 7 2.1.1. Atomic response to photon absorption .............................................................. 10 2.1.2. Electronic absorption processes... absorption, this extinction of the incident light by atoms is called Raleigh scattering. 10 2.1.1. Atomic response to photon absorption The simple first order explanation of the interaction of atoms with photons was made by Einstein. No explicit quantum...

Bahrami, Amir

2011-01-11T23:59:59.000Z

257

Near infrared 3~~ overtone band of Hl Brian F. Ventrudo and Daniel T. Cassidy  

E-Print Network [OSTI]

Near infrared 3~~ overtone band of Hl Brian F. Ventrudo and Daniel T. Cassidy Department transitions. Short-external-cavity InCaAsP diodes were used as tunable near infrared radiation sources and understand the spectrum of vibra- tional excited states. This paper updates the list of observed near-infrared

Oka, Takeshi

258

Non-destructive component separation using infrared radiant energy  

DOE Patents [OSTI]

A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

Simandl, Ronald F. (Knoxville, TN); Russell, Steven W. (Knoxville, TN); Holt, Jerrid S. (Knoxville, TN); Brown, John D. (Harriman, TN)

2011-03-01T23:59:59.000Z

259

Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells  

SciTech Connect (OSTI)

Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfected cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results strongly suggest that curcumin inhibits IR-induced TA in an NF{kappa}B dependent manner in human neuroblastoma cells.

Aravindan, Natarajan, E-mail: naravind@ouhsc.ed [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S. [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Natarajan, Mohan [Department of Otolaryngology, Head and Neck Surgery, University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States)

2011-03-15T23:59:59.000Z

260

3D Continuum radiative transfer in complex dust configurations around young stellar objects and active nuclei II. 3D Structure of the dense molecular cloud core Rho Oph D  

E-Print Network [OSTI]

Constraints on the density and thermal 3D structure of the dense molecular cloud core Rho Oph D are derived from a detailed 3D radiative transfer modeling. Two ISOCAM images at 7 and 15 micron are fitted simultaneously by representing the dust distribution in the core with a series of 3D Gaussian density profiles. Size, total density, and position of the Gaussians are optimized by simulated annealing to obtain a 2D column density map. The projected core density has a complex elongated pattern with two peaks. We propose a new method to calculate an approximate temperature in an externally illuminated complex 3D structure from a mean optical depth. This T(tau)-method is applied to a 1.3 mm map obtained with the IRAM 30m telescope to find the approximate 3D density and temperature distribution of the core Rho Oph D. The spatial 3D distribution deviates strongly from spherical symmetry. The elongated structure is in general agreement with recent gravo-turbulent collapse calculations for molecular clouds. We discuss possible ambiguities of the background determination procedure, errors of the maps, the accuracy of the T(tau)-method, and the influence of the assumed dust particle sizes and properties.

J. Steinacker; A. Bacmann; Th. Henning; R. Klessen; M. Stickel

2004-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

262

Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at  

E-Print Network [OSTI]

Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at 1.5 µm for Controllable Fo is important in a wide-variety of applications, especially in the near-infrared region where applications transfer in large, monodisperse lead sulfide quantum dots with ground-state transitions near 1.5 µm (0.8 e

Hone, James

263

Evolution of infrared instrumentation  

SciTech Connect (OSTI)

The emergence of consumer-oriented infrared (IR) imaging devices is discussed. The discussion shows that the industry is presently dwindling because it does not fulfill expanding consumer needs. The features of future imaging devices are pointed out - smaller, easier to use, and easier to maintain. The challenge in the 1980s for the infrared manufacturing industry is to develop new technical innovations, smart IR imagining sensors, and consumer-oriented marketing, and produce a business/competitive industry. (MCW)

Sears, R.W.

1980-01-01T23:59:59.000Z

264

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

265

Posters Radiation Singularities, Multiple Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mean C 1 0.75 and Levy index 1.35 (as empirically observed) and apply to it the Radiative Transfer Equation in the perfect scattering case. We have analytical and numerical...

266

Linear Kinetic Heat Transfer: Moment Equations, Boundary Conditions, and Knudsen  

E-Print Network [OSTI]

] and phonons [6], and the radiative transfer equation [7]. The solution of any kinetic equation is usually][25], radiative transfer [7][26], and phonon transport in crystals [6]. Despite the long history, and success method, and the methods employed in [18][19][20], are based solely on the transport equations in the bulk, and

Struchtrup, Henning

267

E-Print Network 3.0 - advanced space radiators Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to investigate radiation variations across land cover discontinuities, to advance... radiative transfer properties Timothy E. Link,1 * Danny Marks2 and Janet P. Hardy3 1...

268

E-Print Network 3.0 - anisotropic k-shell radiation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: media. Specifically, we provide: (i) an anisotropic version of the radiative transport equation (RTE... scattering model in section 4. 3 Anisotropic Radiative Transfer The...

269

A High-Efficiency Light-Collection System for Energy-Limited Infrared Emission Radiometers  

Science Journals Connector (OSTI)

An optical system that combines radiation from four solid angles about an emission source into a single beam was used in conjunction with a detector-noise-limited, flame infrared...

Busch, Kenneth W; Busch, Marianna A; Tilotta, David C; Kubala, S Wayne; Ravishankar, S

1991-01-01T23:59:59.000Z

270

Electron Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

271

TECHNOLOGY TRANSFER  

Broader source: Energy.gov (indexed) [DOE]

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

272

AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA  

SciTech Connect (OSTI)

At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

Bowler, Brendan P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Waller, William H. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Patten, Brian M. [National Science Foundation, 4201 Wilson Blvd. Arlington, VA 22230 (United States); Tamura, Motohide [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)], E-mail: bpbowler@ifa.hawaii.edu, E-mail: william.waller@tufts.edu, E-mail: megeath@physics.utoledo.edu, E-mail: bpatten@nsf.gov, E-mail: motohide.tamura@nao.ac.jp

2009-03-15T23:59:59.000Z

273

The Effect of g-Jitter on Heat Transfer  

Science Journals Connector (OSTI)

...research-article The Effect of g-Jitter on Heat Transfer Norsarahaida Amin In a gravity-free...in the absence of radiation, heat transfer in a fluid medium is effected...investigation is centred upon the heat transfer from a sphere, maintained at...

1988-01-01T23:59:59.000Z

274

Molecular-like Ag clusters sensitized near-infrared down-conversion luminescence in oxyfluoride glasses for broadband spectral modification  

SciTech Connect (OSTI)

Molecular-like Ag clusters sized at 1–4 nm have been stabilized in Pb/Cd-free oxyfluoride glasses, showing broadband excitation/emission characteristics and unique wavelength-dependent luminescent performance with a maximal quantum yield of 26.9%. It was experimentally demonstrated that an energy transfer route of Ag clusters ? Tb{sup 3+} ? Yb{sup 3+} occurs in Ag{sup +}/Tb{sup 3+}/Yb{sup 3+} tri-doped sample, wherein Ag clusters act as sensitizers for near-infrared down-conversion spectral modification. Hopefully, the proposed strategy that noble metal clusters being applied for harvesting solar radiation may potentially solve the sticky problems of the narrow excitation bandwidth and the low excitation efficiency in rare earth ions doped down-conversion materials.

Lin, Hang; Chen, Daqin; Yu, Yunlong; Zhang, Rui; Wang, Yuansheng [State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)] [State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

2013-08-26T23:59:59.000Z

275

Infrared source test  

SciTech Connect (OSTI)

The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

Ott, L.

1994-11-15T23:59:59.000Z

276

Radiative Transfer in Reflection Edvald Ingi Gislason  

E-Print Network [OSTI]

unique skills and deep understanding of the theory involved proved vital to the success of this project coming from stars within them. With development of new algorithms and hardware, improvements can be made

277

NNSA Transfers Responsibility for Radiation Detection System...  

National Nuclear Security Administration (NNSA)

Twitter, Tumblr, YouTube and Flickr. Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national...

278

Present and Future Computing Requirements Radiative Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Burrows, Jason Nordhaus, Louis Howell, Mike Zingale topics and open questions * thermonuclear supernova: What are the progenitors: 1 or 2 white dwarfs? How does the nuclear...

279

NETL: Tech Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensing & Technology Transfer Available Technologies Partnerships and Licensing Success Stories Contact Us Technology transfer is the process of transferring new technologies...

280

Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials  

DOE Patents [OSTI]

A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1993-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015...

282

Solar Infrared Photometer  

Science Journals Connector (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

283

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

284

Quantitative nondestructive testing using Infrared Thermography  

E-Print Network [OSTI]

turbine blade . . . . . . . . . . FLIR TM A320G InfraredTable 1.1: Specifications of the FLIR TM A320G InfraredInfrared Camera: A FLIR TM A320G Infrared camera was used

Manohar, Arun

2012-01-01T23:59:59.000Z

285

Tunable source of terahertz radiation using molecular modulation  

E-Print Network [OSTI]

Tunable source of terahertz radiation using molecular modulation D. D. Yavuz* and J. J. Weber a high power and widely tunable coher- ent source of THz radiation remains a very challenging task of terahertz (THz) radiation that is based on Raman down-shifting of an infrared laser beam using highly

Yavuz, Deniz

286

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

287

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

288

An infrared and luminescence study of tritiated amorphous silicon  

SciTech Connect (OSTI)

Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of {beta} particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency.

Sidhu, L.S.; Kosteski, T.; Kherani, N.P.; Gaspari, F.; Zukotynski, S.; Shmayda, W.

1997-07-01T23:59:59.000Z

289

FALL 2011 EMEC 326 DR. RUHUL AMIN HEAT TRANSFER 201 C Roberts Hall  

E-Print Network [OSTI]

FALL 2011 EMEC 326 DR. RUHUL AMIN HEAT TRANSFER 201 C Roberts Hall Phone: 994-6295 POLICY STATEMENT, convection, and radiation formulations. Introduction to heat transfer equipment. Course credit: 4

Dyer, Bill

290

Solid state radiative heat pump  

DOE Patents [OSTI]

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

291

Shock wave structure in astrophysical flows with account of photon transfer  

E-Print Network [OSTI]

For an accurate treatment of the shock wave propagation in high-energy astrophysical phenomena, such as supernova shock breakouts, gamma-ray bursts and accretion discs, a knowledge of radiative transfer plays a crucial role. In this paper we consider 1D special relativistic radiation hydrodynamics by solving the Boltzmann equation for radiative transfer. The structure of a radiative shock is calculated for a number of shock tube problems including strong shock waves, a relativistic and radiation dominated cases. Calculations are performed using an iterative technique which consistently solves the equations of relativistic hydrodynamics and relativistic comoving radiative transfer. Comparison of radiative transfer solutions with the Eddington approximation and the M1 closure is made. Qualitative analysis of moment equations for radiation is performed and conditions for the existence of jump discontinuity for non-relativistic case are investigated numerically.

Tolstov, Alexey; Nagataki, Shigehiro; Nomoto, Ken'ichi

2014-01-01T23:59:59.000Z

292

Transferring Data at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

293

Heat transfer in open cell polyurethane foam insulation  

Science Journals Connector (OSTI)

This paper study systematic investigates the combined conductive and non-gray radiative heat transfer of open cell polyurethane (PU) foam in the pressure range between 760 and 0.02?Torr. Direct transmission m...

J.-W. Wu; H.-S. Chu

1998-11-01T23:59:59.000Z

294

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

295

NEAR-INFRARED DETECTION OF A SUPER-THIN DISK IN NGC 891  

SciTech Connect (OSTI)

We probe the disk structure of the nearby, massive, edge-on spiral galaxy NGC 891 with subarcsecond resolution JHK{sub s}-band images covering {approx} {+-}10 kpc in radius and {+-}5 kpc in height. We measure intrinsic surface brightness (SB) profiles using realistic attenuation corrections constrained from near- and mid-infrared (Spitzer) color maps and three-dimensional Monte Carlo radiative-transfer models. In addition to the well-known thin and thick disks, a super-thin disk with 60-80 pc scale-height-comparable to the star-forming disk of the Milky Way-is visibly evident and required to fit the attenuation-corrected light distribution. Asymmetries in the super-thin disk light profile are indicative of young, hot stars producing regions of excess luminosity and bluer (attenuation-corrected) near-infrared color. To fit the inner regions of NGC 891, these disks must be truncated within {approx}3 kpc, with almost all their luminosity redistributed in a bar-like structure 50% thicker than the thin disk. There appears to be no classical bulge but rather a nuclear continuation of the super-thin disk. The super-thin, thin, thick, and bar components contribute roughly 30%, 42%, 13%, and 15% (respectively) to the total K{sub s}-band luminosity. Disk axial ratios (length/height) decrease from 30 to 3 from super-thin to thick components. Both exponential and sech{sup 2} vertical SB profiles fit the data equally well. We find that the super-thin disk is significantly brighter in the K{sub s}-band than typically assumed in integrated spectral energy distribution models of NGC 891: it appears that in these models the excess flux, likely produced by young stars in the super-thin disk, has been mistakenly attributed to the thin disk.

Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States)

2013-08-10T23:59:59.000Z

296

Astronomy: Green Light for Infrared  

Science Journals Connector (OSTI)

... THE new branch of astronomy based on the observation of celestial objects in infrared light has received a significant boost ... boost from the Science Research Council in the form of a grant to the infrared astronomy group at Imperial College. Although the grant of just over £27,000 is modest ...

Our Astronomy Correspondent

1969-01-18T23:59:59.000Z

297

The erosion resistance of infrared transparent materials  

Science Journals Connector (OSTI)

...research-article The erosion resistance of infrared transparent materials E.J. Coad C.S...discussed. erosion resistance|infrared materials|liquid impact...Keywords: erosion resistance; infrared materials; liquid impact...

1998-01-01T23:59:59.000Z

298

$\\alpha$ Centauri A in the far infrared  

E-Print Network [OSTI]

Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. The region of the temperature reversal can be directly observed only in the far infrared and submm. We aim at the determination of the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star alpha Cen A. For the nearby binary system alpha Centauri, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate in the grid of GAIA/PHOENIX stellar model atmospheres and compute the corresponding model for the G2 V star alpha Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is co...

Liseau, R; Olofsson, G; Bryden, G; Marshall, J P; Ardila, D; Aran, A Bayo; Danchi, W C; del Burgo, C; Eiroa, C; Ertel, S; Fridlund, M C W; Krivov, A V; Pilbratt, G L; Roberge, A; Thébault, P; Wiegert, J; White, G J

2012-01-01T23:59:59.000Z

299

Lateral conduction infrared photodetector  

DOE Patents [OSTI]

A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

300

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and intercomparison of cirrus retrievals from a-train instruments  

E-Print Network [OSTI]

, 2007 (UTC time 18:45).......................... 93 4.6 GOES-12 and GOES-10 merged infrared (11mm) color images over Central America for a) 10:45 b) 12:45 c) 14:28 d) 16:45 e) 18:45 and f) 20:28 UTC, on July 22, 2007............................................................................................. 106 4.14 Same as Fig. 4.10 for the ratio ! c A / MODIS . ......................................... 109 4.15 Same as Fig. 4.10 for the ratio B ?????????????. 111 4.16 Same as Fig. 4.10 for the ratio c C / A ?????????????. 113 4.17 The left...

Zhang, Zhibo

2009-05-15T23:59:59.000Z

302

Final LDRD report : infrared detection and power generation using self-assembled quantum dots.  

SciTech Connect (OSTI)

Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

2008-02-01T23:59:59.000Z

303

Probing Organic Transistors with Infrared Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood,...

304

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

looking infrared Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Forward looking infrared Author Wikipedia Published Publisher Not Provided, 2013 DOI...

305

The design and construction of an infrared detector for use with a highway traffic survey system  

E-Print Network [OSTI]

, sn4 celestial bodies. Background radiation causes noise in the infrared system which msy cancel the target signal or cause a false detection. The infrared x'ad1atlon emitted by a target, such ss an automobile or background. must yeas through... to reduce vibration noise snd then sealed with a threaded plate containing a Switchcraft connector. The spectral response for this detector was obtained by using a standard 500 K blsckbody source. A monochromatic source signal was 2 obtained by using...

Mundkowsky, William Fredrick

2012-06-07T23:59:59.000Z

306

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

SciTech Connect (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL; ,

2005-07-11T23:59:59.000Z

307

About Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

308

Proceedings of the 8 International Symposium on Heat Transfer  

E-Print Network [OSTI]

, contributions from radiation can be determined via solution of the Equation of Radiative Transfer (ERT equation can lead to significant error, due to the short time-duration of the transport processes, Beijing, China ISHT8-07-05 MODELING OF ULTRAFAST LASER TRANSPORT AND APPLICATIONS Zhixiong Guo Rutgers

Guo, Zhixiong "James"

309

* The far-infrared (λ > 15 µm) is an important  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

310

Non-equilibrium electromagnetic fluctuations: Heat transfer and interactions  

E-Print Network [OSTI]

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in non-equilibrium cases where each body, and the environment, is at a different temperature. The formalism tracks the radiation from each body and its scatterings by the other objects. We discuss the radiation from a cylinder, emphasizing its polarized nature, and obtain the heat transfer between a sphere and a plate, demonstrating the validity of proximity transfer approximation at close separations and arbitrary temperatures.

Matthias Krüger; Thorsten Emig; Mehran Kardar

2011-02-18T23:59:59.000Z

311

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberDecember 2000  

E-Print Network [OSTI]

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, October­December 2000 Multidimensional are optical tomographyof tissue, remote sensing of oceansand atmospheres, laser material processing radiative heat transfer in participat- ing media in recent years. However, the analysis of radiative heat

Guo, Zhixiong "James"

312

W. FIFTH AVE. RADIATION LAB  

E-Print Network [OSTI]

W. FIFTH AVE. NASA SPACE RADIATION LAB 958 ENERGY EFFICIENCY & CONSERVATION DIVISION THOMSON RD. E Development & Technology Transfer 490 H7 Energy Efficiency and Conservation Division 526 L5 Energy Sciences CAD Installation Complex 933 K2 Carpentry/Signs Shops 422 F6 Cavendish House 153 G7 Center

Ohta, Shigemi

313

7, 72357275, 2007 Adaptive radiative  

E-Print Network [OSTI]

Discussions Two adaptive radiative transfer schemes for numerical weather prediction models V. Venema 1 , A numerical weather prediction (NWP) and climate models. The atmosphere and the land surface are complex-stream approximation. In most weather prediction models these parameterisation schemes are therefore called infre

Boyer, Edmond

314

Report of the Nuclear Energy Agency Expert Group on Gut Transfer Factors: Implications for Dose per Unit Intake  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Report of the Nuclear Energy Agency Expert Group on Gut Transfer Factors: Implications...transfer factors recommended by an Expert Group of the Nuclear Energy Agency for intakes of certain important elements in......

G.M. Kendall; J.D. Harrison; T.P. Fell

1988-09-01T23:59:59.000Z

315

Danger radiations  

ScienceCinema (OSTI)

Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

316

Design of the First Infrared Beamline at the Siam Photon Laboratory  

SciTech Connect (OSTI)

This report presents the optical design and optical simulations for the first infrared beamline at the Siam Photon Laboratory. The beamline collects the edge radiation and bending magnet radiation, producing from the BM4 bending magnet of the 1.2 GeV storage ring of the Siam Photon Source. The optical design is optimized for the far- to mid-infrared spectral range (4000-100 cm{sup -1}) for microspectroscopic applications. The optical performance has been examined by computer simulations.

Pattanasiriwisawa, W. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, P. [Synchrotron Light Research Institute, P.O. Box 93, Muang, Nakhon Ratchasima 30000 (Thailand); School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand); Dumas, P. [SOLEIL Synchrotron, L'Orme des Merisiers, BP48, F-91192 Gif sur Yvette Cedex (France)

2010-06-23T23:59:59.000Z

317

NERSC's Data Transfer Nodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

318

Inverse Energy Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which is unstable. It saturates by transfer to a separate, damped eigenmode (i.e., a subcritical spectrum of damped waves). Inverse energy transfer is carried by three-wave...

319

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

320

Phase-Transfer Catalysts  

Science Journals Connector (OSTI)

In previous chapters we learned that a phase-transfer catalyst must have two particular chemical functions to be successful, that is, it must rapidly transfer one of the reactant species into the normal phase ...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

322

High-power parametric conversion from near-infrared to short-wave infrared  

E-Print Network [OSTI]

High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

Dalang, Robert C.

323

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network [OSTI]

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

324

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Window Frames  

E-Print Network [OSTI]

1 Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer Arasteh and Dragan Curcija ABSTRACT Accurately analyzing heat transfer in window frame cavities radiation heat-transfer effects.) We examine three representative complex cavity cross-section profiles

325

Outdoor Scene Synthesis in the Infrared Range for Remote Sensing Applications  

E-Print Network [OSTI]

Outdoor Scene Synthesis in the Infrared Range for Remote Sensing Applications Thierry Poglio Eric under remote sensing applications, like meteorology, farming, or military information are concerned. Yet. The solar forcing leads to an increase in temperature, while heat transfer due to strong cold wind decreases

Boyer, Edmond

326

ENHANCING THE TRANSFER STUDENT  

E-Print Network [OSTI]

Efforts #12;Who Are Ohio State Transfer Students? #12;TRANSFER PROFILE DatafromSU12,AU12,SP13 3 as NFYS: 576 Average Transfer Hours of Enrolled Student: 52.2 Living on Campus: 470 Total # Sending Expectations (time management skills, balancing a more rigorous course load, study skills) 13.24% Majors (how

327

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

328

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

329

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

330

THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS  

SciTech Connect (OSTI)

The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information regarding the nature of sources contributing to the cosmic reionization. The angular power spectrum of the IGM, in most cases, is much smaller than the halo angular power spectrum, except when f{sub esc} is close to unity, t{sub SF} is longer, or the minimum redshift at which the star formation is occurring is high. In addition, low levels of the observed mean background intensity tend to rule out high values of f{sub *} {approx}> 0.2.

Fernandez, Elizabeth R. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Komatsu, Eiichiro; Shapiro, Paul R. [Texas Cosmology Center and the Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Iliev, Ilian T., E-mail: elizabeth.fernandez@colorado.ed [Astronomy Centre, Department of Physics and Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom)

2010-02-20T23:59:59.000Z

331

A Source for Ultrafast Continuum Infrared and Terahertz Radiation  

E-Print Network [OSTI]

A compact and stable method for generating high-intensity linearly polarized continuum mid-IR and terahertz light using ultrafast femtosecond (fs) laser pulses is demonstrated. Continuous light generation from <400cm?1 ...

Petersen, Poul B.

332

OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION  

E-Print Network [OSTI]

$N=-l $~=AA $8=b8 $BMA=B-A $BPA=B+A VJ=0. ,*aPA $UO=0.5*TEM*FUO=FJl $FhO=F~l $BMA=B-A $BPA=B+A $GU TO 70 ~=N-l $lFI~.SB12'~1 $A=SA12(NI BMA=B-A $BPA=B+A $\\IO=SV1ZINI $UC=SUIZtNI

Morris, J.R.

2010-01-01T23:59:59.000Z

333

Anisotropic radiation from accretion disc-coronae in active galactic nuclei  

E-Print Network [OSTI]

In the unification scheme of active galactic nuclei (AGN), Seyfert 1s and Seyfert 2s are intrinsically same, but they are viewed at different angles. However, the Fe K\\alpha emission line luminosity of Seyfert 1s was found in average to be about twice of that of Seyfert 2s at given X-ray continuum luminosity in the previous work (Ricci et al. 2014). We construct an accretion disc-corona model, in which a fraction of energy dissipated in the disc is extracted to heat the corona above the disc. The radiation transfer equation containing Compton scattering processes is an integro-differential equation, which is solved numerically for the corona with a parallel plane geometry. We find that the specific intensity of X-ray radiation from the corona changes little with the viewing angle \\theta when \\theta is small (nearly face-on), and it is sensitive to \\theta if the viewing angle is large (\\theta> 40 degrees). The radiation from the cold disc, mostly in infrared/optical/UV bands, is almost proportional to cos\\thet...

Xu, Ya-Di

2015-01-01T23:59:59.000Z

334

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

335

THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER  

SciTech Connect (OSTI)

Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

2013-08-15T23:59:59.000Z

336

Lattice Simulations and Infrared Conformality  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal.

Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

2011-09-01T23:59:59.000Z

337

Radiated relics  

Science Journals Connector (OSTI)

...and symbolic reenactment by exposing the objects to light, objects that have already been exposed to all of the energy of a thermonuclear blast: hard gamma rays, X-rays, ultra-violet light, visible light, and then infra-red light. The artist likens...

Rebecca Horne

2013-01-01T23:59:59.000Z

338

Intrinsic near-infrared spectroscopic markers of breast tumors  

E-Print Network [OSTI]

cycle on the red and near-infrared optical properties of thecancer imaging using near-infrared optical measurements andet al. / Intrinsic near-infrared spectroscopic markers of

Kukreti, Shwayta; Cerussi, Albert; Tromberg, Bruce; Gratton, Enrico

2008-01-01T23:59:59.000Z

339

AKARI NEAR-INFRARED SPECTROSCOPY OF LUMINOUS INFRARED GALAXIES  

SciTech Connect (OSTI)

We present the AKARI near-infrared (NIR; 2.5-5 {mu}m) spectroscopic study of 36 (ultra)luminous infrared galaxies ((U)LIRGs) at z = 0.01-0.4. We measure the NIR spectral features including the strengths of 3.3 {mu}m polycyclic aromatic hydrocarbon emission and hydrogen recombination lines (Br{alpha} and Br{beta}), optical depths at 3.1 and 3.4 {mu}m, and NIR continuum slope. These spectral features are used to identify optically elusive, buried active galactic nuclei (AGNs). We find that half of the (U)LIRGs optically classified as non-Seyferts show AGN signatures in their NIR spectra. Using a combined sample of (U)LIRGs with NIR spectra in the literature, we measure the contribution of buried AGNs to the infrared luminosity from the spectral energy distribution fitting to the IRAS photometry. The contribution of these buried AGNs to the infrared luminosity is 5%-10%, smaller than the typical AGN contribution of (U)LIRGs including Seyfert galaxies (10%-40%). We show that NIR continuum slopes correlate well with WISE [3.4]-[4.6] colors, which would be useful for identifying a large number of buried AGNs using the WISE data.

Lee, Jong Chul; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Ho Seong [CEA Saclay/Service d'Astrophysique, F-91191 Gif-sur-Yvette (France); Kim, Minjin; Lee, Joon Hyeop, E-mail: mglee@astro.snu.ac.kr, E-mail: jclee@kasi.re.kr, E-mail: mkim@kasi.re.kr, E-mail: jhl@kasi.re.kr, E-mail: hhwang@cfa.harvard.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2012-09-01T23:59:59.000Z

340

Radiator Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Radiator Labs Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radiator Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

342

Radiator Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

343

MULTI-POINT RADIATION MONITOR  

SciTech Connect (OSTI)

A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

2006-05-12T23:59:59.000Z

344

Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Land Surface Emissivity in the Vicinity Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the vicinity of the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Central Facility (CF) in North Central Oklahoma. The UW-Madison LSE model is part of the ARM best

345

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

346

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

347

Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry  

E-Print Network [OSTI]

to the existing intrinsic carrier density. According to the principle of conser- vation of energy,4 the radiation, such as silicon, the dominant process takes place through nonradiative energy conversion accompanied by phononTemperature dependence of carrier mobility in Si wafers measured by infrared photocarrier

Mandelis, Andreas

348

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

349

Sub-Arcsecond Near-Infrared Images of Massive Star Formation Region NGC 6334 V  

E-Print Network [OSTI]

We present high spatial resolution (0$\\farcs$3) polarimetric images in the $H$ and $K$ bands and direct images in the $L'$ and $M'$ bands of the NGC 6334 V infrared nebulae. The images show complex structures including the multi-shells and various knots in the nebulae. The appearances and colors of the eastern and western nebulae differ considerably. Our polarization images also show differences between the illuminating sources of the nebulae: the eastern nebula is illuminated by a deeply embedded mid-infrared source, KDJ 4, and the western nebula by our newly detected near-infrared source, WN-A1. The degree of polarization of the nebulae is very large, up to 70% at $K$ and 60% at $H$, which is consistent with a single scattering of near-infrared radiation from each source at the walls of the mass outflows.

Jun Hashimoto; Motohide Tamura; Hiroshi Suto; Lyu Abe; Miki Ishii; Tomoyuki Kudo; Satoshi Mayama

2006-12-19T23:59:59.000Z

350

Technology Transfer: About the Technology Transfer Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

351

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

352

Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer  

SciTech Connect (OSTI)

Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior-posterior direction, with systematic ( N-Ary-Summation ) and random ({sigma}) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%{+-}19.8% of treatment time. Real-time tracking reduced prostate motion to N-Ary-Summation =0.01 mm and {sigma} = 0.55 mm in the anterior-posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%{+-}4.6% and 99.7%{+-}0.4% of the time, respectively. Without real-time tracking, pass rates based on a {gamma} index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

Wilbert, Juergen; Baier, Kurt [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany)] [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany); Hermann, Christian [Department of Computer Sciences VII, Robotics, and Telematics, University of Wuerzburg, Wuerzburg (Germany)] [Department of Computer Sciences VII, Robotics, and Telematics, University of Wuerzburg, Wuerzburg (Germany); Flentje, Michael [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany)] [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany); Guckenberger, Matthias, E-mail: guckenberger_m@klinik.uni-wuerzburg.de [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany)] [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany)

2013-01-01T23:59:59.000Z

353

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

354

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

355

Technology Transfer Ombudsman Program  

Broader source: Energy.gov [DOE]

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

356

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

357

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

358

Tunable transfer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to microbes by studying that transfer in a nature-inspired, protein and iron-based nanoparticle system. Iron plays a crucial role in environmental biogeochemistry. It readily...

359

Astronomy: Bright Future for Infrared  

Science Journals Connector (OSTI)

... ALTHOUGH the prediction of what is likely to happen in astronomy in the future is a hazardous undertaking just now, it seems increasingly obvious in ... is a hazardous undertaking just now, it seems increasingly obvious in astronomical circles that infrared astronomy is going to be an important field of investigation during the next few years. ...

Our Astronomy Correspondent

1968-09-21T23:59:59.000Z

360

Infrared emitting device and method  

DOE Patents [OSTI]

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.  

SciTech Connect (OSTI)

Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

GRIFFITHS, P.R.; HOMES, C.

2001-05-04T23:59:59.000Z

362

Industrial Use of Infrared Inspections  

E-Print Network [OSTI]

, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections...

Duch, A. A.

1979-01-01T23:59:59.000Z

363

A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS  

SciTech Connect (OSTI)

Protostellar systems, ranging from low-luminosity classical T Tauri and Herbig Ae stars to high-luminosity Herbig Be stars, exhibit a near-infrared (NIR) excess in their spectra that is dominated by a bump in the monochromatic luminosity with a peak near 3 {mu}m. The bump can be approximated by a thermal emission component of temperature {approx}1500 K that is of the order of the sublimation temperature of interstellar dust grains. In the currently popular 'puffed-up rim' scenario, the bump represents stellar radiation that propagates through the optically thin inner region of the surrounding accretion disk and is absorbed and reemitted by the dust that resides just beyond the dust sublimation radius r {sub sub}. However, this model cannot account for the strongest bumps measured in these sources, and it predicts a pronounced secondary bounce in the interferometric visibility curve that is not observed. In this paper we present an alternative interpretation, which attributes the bump to reemission of stellar radiation by dust that is uplifted from the disk by a centrifugally driven wind. Winds of this type are a leading candidate for the origin of the strong outflows associated with protostars, and there is observational evidence for disk winds originating on scales {approx}r {sub sub}. Using a newly constructed Monte Carlo radiative transfer code and focusing on low-luminosity sources, we show that this model can account for the NIR excess emission even in bright Herbig Ae stars such as AB Auriga and MWC 275, and that it successfully reproduces the basic features of the visibilities measured in these protostars. We argue that a robust dusty outflow in these sources could be self-limiting-through shielding of the stellar FUV photons-to a relatively narrow launching region between r {sub sub} and {approx}2 r {sub sub}. We also suggest that the NIR and scattered-light variability exhibited by a source like MWC 275 can be attributed in this picture to the uplifting of dust clouds from the disk.

Bans, Alissa; Koenigl, Arieh, E-mail: abans@uchicago.edu, E-mail: akonigl@uchicago.edu [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

2012-10-20T23:59:59.000Z

364

Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies  

E-Print Network [OSTI]

Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

2015-01-01T23:59:59.000Z

365

Synthesis of materials with infrared and ultraviolet lasers  

SciTech Connect (OSTI)

This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

Lyman, J.L.

1988-01-01T23:59:59.000Z

366

THE FAR-INFRARED ROTATIONAL SPECTRUM OF ETHYLENE OXIDE  

SciTech Connect (OSTI)

High-resolution FTIR spectra of ethylene oxide have been measured in the far-infrared region using synchrotron radiation. A total of 1182 lines between 15 and 73 cm{sup -1} were assigned, with J{sub max} = 64, expanding upon previous studies that had recorded spectra up to 12 cm{sup -1}, J{sub max} = 49. All available data were co-fitted to provide greatly imp- roved rotational constants for the ground vibrational state that are capable of predicting transitions up to 73 cm{sup -1}.

Medcraft, Chris; Thompson, Christopher D.; McNaughton, Don [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Robertson, Evan G. [Department of Chemistry, La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086 (Australia); Appadoo, Dominique R. T., E-mail: donald.mcnaughton@monash.edu [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

2012-07-01T23:59:59.000Z

367

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation for  

E-Print Network [OSTI]

Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation using spectral imaging. This has been accom- plished with both visible/near-infrared (Vis/NIR) sunlight-path laser absorption measurements [14]­[16], in-situ visible and near-infrared (Vis/NIR) spectral

Lawrence, Rick L.

368

Multiphoton microscopy with near infrared contrast  

E-Print Network [OSTI]

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

369

Category:Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared page? For detailed information on Long-Wave Infrared as exploration techniques, click here. Category:Long-Wave Infrared Add.png Add a new Long-Wave Infrared...

370

new freshmen new transfers  

E-Print Network [OSTI]

for AP courses. Transfer GPA is based on a 4-point scale. #12;ETHNICITY African American/Black Am Indian% Number 48 81 GENDER Male Female ETHNICITY African American Am Indian/AK Native Asian Hispanic Pacificth %-ile 690 740 710 31 Transfers 3.67 Freshman GPA is calculated taking into account a 5-point scale

Koehler, Carla

371

Optical properties of silicon carbide for astrophysical applications I. New laboratory infrared reflectance spectra and optical constants  

E-Print Network [OSTI]

Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous data to constrain abundances of these dust grains.

K. M. Pitman; A. M. Hofmeister; A. B. Corman; A. K. Speck

2008-03-10T23:59:59.000Z

372

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

373

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

374

Transfers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

375

Data Transfer Examples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

376

Selective radiative cooling with MgO and/or LiF layers  

DOE Patents [OSTI]

A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

377

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

378

Enhanced Photoresponse in Solid-State Excitonic Solar Cells via Resonant Energy Transfer and Cascaded Charge Transfer from a Secondary Absorber  

Science Journals Connector (OSTI)

Förster resonant energy transfer from spiro-TBT to the near-infrared sensitizing dye TT1 was verified through a survey of the photoluminescence properties of the FRET pair including emission and excitation profiles and decay dynamics. ... with the dark current. ...

Kristina Driscoll; Junfeng Fang; Nicola Humphry-Baker; Toma?s Torres; Wilhelm T. S. Huck; Henry J. Snaith; Richard H. Friend

2010-11-09T23:59:59.000Z

379

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

380

Fireball during combustion of hydrocarbon fueld releases II. Thermal radiation  

Science Journals Connector (OSTI)

The processes of radiative heat transfer in a fireball which develops upon ignition of a cloud of hydrocarbon fuel near the Earth’s surface are simulated numerically. The emissive characteristics of combustion pr...

G. M. Makhviladze; J. P. Roberts; S. E. Yakush

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity  

Science Journals Connector (OSTI)

......closure relation among the radiation stress tensor, energy density, and energy flux, and a variable Eddington factor, which works...Transfer (1984) 31:149. 15) Gonzalez M. , Audit E., Huynh P. Astron. Astrophys. (2007) 464......

Masaru Shibata; Kenta Kiuchi; Yu-ichiro Sekiguchi; Yudai Suwa

2011-06-01T23:59:59.000Z

382

Appendix G. Radiation Appendix G. Radiation  

E-Print Network [OSTI]

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

383

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect (OSTI)

The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

384

Infrared emitting device and method  

DOE Patents [OSTI]

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

385

Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste.

Not Available

1994-10-01T23:59:59.000Z

386

Modelling of Heat Transfer in Single Crystal Growth  

E-Print Network [OSTI]

An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

Zhmakin, Alexander I

2014-01-01T23:59:59.000Z

387

Technology Transfer Reporting Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

388

NREL: Solar Radiation Research - Optical Metrology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

389

VOLUNTARY LEAVE TRANSFER PROGRAM  

Broader source: Energy.gov (indexed) [DOE]

VOLUNTARY LEAVE TRANSFER PROGRAM VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM) Form 630, Application to Become A Leave Recipient Under the Voluntary Leave Transfer Program, through your supervisor to be considered for the program. The application must include an explanation of the reason the donation is needed (including a brief description of the

390

Technology Transfer Summit  

Broader source: Energy.gov (indexed) [DOE]

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

392

VOLUNTARY LEAVE TRANSFER PROGRAM  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM LIST Name Organization Fairbanks, Mary H. AU Garnett-Harris, Deborah A. AU James, Debra A. AU Johnston, Robyne AU May, Melanie P. AU Pickens,...

393

Smoothness- transferred random field  

E-Print Network [OSTI]

We propose a new random field (RF) model, smoothness-transfer random field (ST-RF) model, for image modeling. In the objective function of RF models, smoothness energy is defined with compatibility function to capture the ...

Wei, Donglai

2013-01-01T23:59:59.000Z

394

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

395

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in Capabilities, Carbon...

396

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

397

Ombuds Services for Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

398

Radiation receiver  

DOE Patents [OSTI]

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

399

Motion-induced radiation from electrons moving in Maxwell's fish-eye  

E-Print Network [OSTI]

In \\u{C}erenkov radiation and transition radiation, evanescent wave from motion of charged particles transfers into radiation coherently. However, such dissipative motion-induced radiations require particles to move faster than light in medium or to encounter velocity transition to pump energy. Inspired by a method to detect cloak by observing radiation of a fast-moving electron bunch going through it by Zhang {\\itshape et al.}, we study the generation of electron-induced radiation from electrons' interaction with Maxwell's fish-eye sphere. Our calculation shows that the radiation is due to a combination of \\u{C}erenkov radiation and transition radiation, which may pave the way to investigate new schemes of transferring evanescent wave to radiation.

Liu, Yangjie

2013-01-01T23:59:59.000Z

400

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Relation between clinical and laboratory parameters with radiation dose rates from patients receiving iodine-131 therapy for thyroid carcinoma  

Science Journals Connector (OSTI)

......educate every patient on radiation safety procedures for the dosage...improvised containers; the safety officer transferred...origin of emission, and radiation detection survey metre...significant. SPSS for Windows software package (Release 11......

Isa Neshandar Asli; Nastaran Baharfard; Babak Shafiei; Faraj Tabei; Hamid Javadi; Mohammad Seyedabadi; Iraj Nabipour; Majid Assadi

2010-03-01T23:59:59.000Z

402

Infrared emission spectroscopic study of brucite  

Science Journals Connector (OSTI)

Both infrared absorption and emission spectroscopy have been used to assign the vibrational bands of brucite. IR absorption bands are observed in the hydroxyl stretching region at 3698 and 3248 cm?1. Low frequency bands are observed at 627, 565 and 440 cm?1. Naturally occurring brucites are contaminated with other magnesium minerals which are easily identified by the infrared spectra. Infrared emission bands are observed at 3686, 3571, 3251 and 2940 cm?1. The intensity of these bands decreases upon thermal treatment corresponding to the dehydration and dehydroxylation of the brucite. Low frequency infrared emission bands are observed at 876, 706, 622 and 559 cm?1. Dehydroxylation of the brucite may be followed by the loss of intensity of the hydroxyl vibrations during thermal treatment. Importantly infrared emission spectroscopy enables the study of the dehydroxylation in situ at the elevated temperatures. Infrared emission also confirms the absorption bands assigned to brucite.

Ray L Frost; J.Theo Kloprogge

1999-01-01T23:59:59.000Z

403

A FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVERADIATIVE HEAT TRANSFER EQUATIONS IN TWO  

E-Print Network [OSTI]

#12; The isotropic, monoenergetic, radiative transport equation is [10], [25], [34], \\Omega \\Delta r r­ differential equations that model steady­state combined conductive­radiative heat transfer in two spaceA FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVE­RADIATIVE HEAT

404

POSITION DESCRIPTION 2012 TRANSFER MENTOR  

E-Print Network [OSTI]

interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff to CSU including (but not limited to) helping transfer students explore study skills, time management

405

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

406

RIJKSUNIVERSITEIT GRONINGEN Mid-Infrared Spectroscopy of  

E-Print Network [OSTI]

RIJKSUNIVERSITEIT GRONINGEN Mid-Infrared Spectroscopy of Dusty Galactic Nuclei PROEFSCHRIFT ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op

Spoon, Henrik

407

Probing Organic Transistors with Infrared Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is...

408

Radiation Protection Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

409

7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics  

E-Print Network [OSTI]

i #12;ExHFT-7 7th World Conference on Experimental Heat Transfer, Fluid Mechanics Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 28 June ­ 03 July 2009, Krakow environment of high surface and volumetric heating, intense radiation fluxes, strong 3-component magnetic

Abdou, Mohamed

410

Coherent Synchrotron Radiation: Theory and Simulations.  

SciTech Connect (OSTI)

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

411

Low Dose Radiation Research Program: Research Institutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutions Institutions Lovelace Respiratory Research Institute Biological Bases for Radiation Adaptive Responses in the Lung-Lovelace Respiratory Research Institute, Albuquerque, NM USA Contact: Dr. Bobby R. Scott Program Objective Our research focuses on elucidating the biological bases for radiation adaptive responses in the lung and for suppressing lung cancer, and to use the knowledge gained to produce an improved systems-biology-based, risk model for lung cancer induction by low-dose, low linear-energy-transfer (LET) radiation. Research was initiated in October 2009. This research should help foster a new era of low-dose radiation risk/benefit assessment. It will have important implications for possible use of low-dose diagnostic radiation (e.g., X-rays) in cancer therapy. It

412

A new technique of radiation thermometry using a consumer digital camcorder: Observations of red glow at Aso volcano, Japan  

Science Journals Connector (OSTI)

We newly developed a technique of radiation thermometry using a Sony’s consumer digital camcorder. Our system is not only convenience and cost effective but with a better performance than previous infrared the...

Takeshi Saito; Satoshi Sakai; Isao Iizawa; Eriko Suda…

2005-02-01T23:59:59.000Z

413

NREL: Technology Transfer - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

414

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

415

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

416

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

417

Estimates of Radiation Dose from Strontium-90 Due to Fallout  

Science Journals Connector (OSTI)

...2412"` d., 74" h. 2" fiberglas insulation. 1 50() watts, 11 5, 208, or 230...gratings, electro-luminescence, thermal radiation backgrounds, infrared polarizers...chart. Write for complete data and specifications. SMALL ANIMAL BALANCE Model 4203B-TC-SA...

MERRIL EISENBUD

1959-09-18T23:59:59.000Z

418

Radiation protection: Natural radiation risks  

Science Journals Connector (OSTI)

... radiation to which humans are exposed consists of four components - cosmic, gamma, internal, radon. The relative contribution that each makes to the sum is shown in the chart. ... but exposure of the whole body to terrestrial gamma rays and of the lungs to radon daughters are influenced by the nature and location of housing. Gamma rays are emitted ...

M. C. O'Riordan

1983-11-17T23:59:59.000Z

419

A CLASS OF PHYSICALLY MOTIVATED CLOSURES FOR RADIATION HYDRODYNAMICS  

SciTech Connect (OSTI)

Radiative transfer and radiation hydrodynamics use the relativistic Boltzmann equation to describe the kinetics of photons. It is difficult to solve the six-dimensional time-dependent transfer equation unless the problem is highly symmetric or in equilibrium. When the radiation field is smooth, it is natural to take angular moments of the transfer equation to reduce the degrees of freedom. However, low order moment equations contain terms that depend on higher order moments. To close the system of moment equations, approximations are made to truncate this hierarchy. Popular closures used in astrophysics include flux-limited diffusion and the M{sub 1} closure, which are rather ad hoc and do not necessarily capture the correct physics. In this paper, we propose a new class of closures for radiative transfer and radiation hydrodynamics. We start from a different perspective and highlight the consistency of a fully relativistic formalism. We present a generic framework to approximate radiative transfer based on relativistic Grad's moment method. We then derive a 14-field method that minimizes unphysical photon self-interaction.

Chan, Chi-kwan, E-mail: ckchan@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-02-01T23:59:59.000Z

420

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect (OSTI)

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

STh3M.6.pdf CLEO:2014 2014 OSA Silicon Chip Based Near-Infrared and Mid-Infrared Optical  

E-Print Network [OSTI]

STh3M.6.pdf CLEO:2014 © 2014 OSA Silicon Chip Based Near-Infrared and Mid-Infrared Optical near-infrared and mid-infrared with detection limit down to 1ppb. Strip waveguide, slot waveguide and PC-based chip integrated optical absorption spectroscopy devices are compared in near-infrared

Chen, Ray

422

Astronomy: Lowering Sights in the Infrared  

Science Journals Connector (OSTI)

... Imperial College, London, into a fully-equipped instrument has now been passed by the Astronomy Policy and Grants Committee of the Science Research Council. In this way an infrared ... Science Research Council. In this way an infrared telescope that is able to do valuable astronomy from a site with good seeing conditions could be available to British astronomers by next ...

Our Astronomy Correspondent

1970-06-13T23:59:59.000Z

423

A CATALOG OF GALACTIC INFRARED CARBON STARS  

SciTech Connect (OSTI)

We collected almost all of the Galactic infrared carbon stars (IRCSs) from literature published up to the present to organize a catalog of 974 Galactic IRCSs in this paper. Some of their photometric properties in the near-, mid-, and far-infrared are discussed.

Chen, P. S. [National Astronomical Observatories/Yunnan Observatory and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China); Yang, X. H., E-mail: iraspsc@yahoo.com.cn, E-mail: yangxh@cqu.edu.cn [Department of Physics, Chongqing University, Chongqing 400044 (China)

2012-02-15T23:59:59.000Z

424

SRNL - Technology Transfer - Ombudsman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

425

Technology Transfer Overview  

Broader source: Energy.gov [DOE]

DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

426

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

427

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

Vie, and Ø. Ulleberg, “Hydrogen Production and Storage - R&Dfor production. The procedure for hydrogen storage and

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

428

Uncertainty of microwave radiative transfer computations in rain  

E-Print Network [OSTI]

retrieval using new thermodynamic observations; and 3) to investigate the characteristics of four different RT codes. Firstly, a plane-parallel RT Model (RTM) of n layers in light rainfall was used for the analytical and computational derivation...

Hong, Sung Wook

2009-06-02T23:59:59.000Z

429

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

and J.A. Lercher, “Hydrogen Storage in Microspheres - FinalHydrogen Program Review Hydrogen Storage”, U.S. DepartmentAn overview of hydrogen storage methods”, in Hydro- gen

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

430

Journal of Quantitative Spectroscopy & Radiative Transfer 103 (2007) 168174  

E-Print Network [OSTI]

.05.010 Ã?Corresponding author. Tel.: +1 303 871 2897; fax: +1 303 871 4405. E-mail addresses: agoldman@du.edu, goldman

431

Validation of the community radiative transfer model Shouguo Ding a  

E-Print Network [OSTI]

changing weather conditions, a rational and computationally efficient method to use satellite cloud of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA b Satellite Meteorology and Climatology Division, Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, MD 20746, USA

Li, Jun

432

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

samples are exposed to an incandescent lamp. Acknowledgmentin a furnace or by an incandescent lamp. It was observedwhen heated by an incandescent lamp than within furnace.

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

433

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

Energy, O?ce of Hydrogen, Fuel Cells and Infrastructurefuel cells, (d) the large amount of energy required to compress hydrogen

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

434

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network [OSTI]

transport in a machinable glass-ceramic”, Journal of Non-in soda-lime-silicate glasses by reaction with hydrogen”,1971. [16] I. Fanderlik, Glass Science and Technology, Vol.

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

435

Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 384399  

E-Print Network [OSTI]

). #12;where I is the intensity in the ^s-direction and c is the speed of light in the medium. The linear and scattering coefficients as well as the scattering phase function consist of measuring

Pilon, Laurent

436

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect (OSTI)

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

437

Mass Transfer between Double White Dwarfs  

E-Print Network [OSTI]

Three periodically variable stars have recently been discovered (V407 Vul, P=9.5 min; ES Cet, P=10.3 min; RX J0806.3+1527, P=5.3 min) with properties that suggest that their photometric periods are also their orbital periods, making them the most compact binary stars known. If true, this might indicate that close, detached, double white dwarfs are able to survive the onset of mass transfer caused by gravitational wave radiation and emerge as the semi-detached, hydrogen-deficient stars known as the AM CVn stars. The accreting white dwarfs in such systems are large compared to the orbital separations. This has two effects: first it makes it likely that the mass transfer stream can hit the accretor directly, and second it causes a loss of angular momentum from the orbit which can destabilise the mass transfer unless the angular momentum lost to the accretor can be transferred back to the orbit. The effect of the destabilisation is to reduce the number of systems which survive mass transfer by as much as one hundred-fold. In this paper we analyse this destabilisation and the stabilising effect of a dissipative torque between the accretor and the binary orbit. We obtain analytic criteria for the stability of both disc-fed and direct impact accretion, and carry out numerical integrations to assess the importance of secondary effects, the chief one being that otherwise stable systems can exceed the Eddington accretion rate. We show that to have any effect upon survival rates, the synchronising torque must act on a timescale of order 1000 years or less. If synchronisation torques are this strong, then they will play a significant role in the spin rates of white dwarfs in cataclysmic variable stars as well.

T. R. Marsh; G. Nelemans; D. Steeghs

2003-12-22T23:59:59.000Z

438

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

439

FY 2006 Infrared Photonics Final Report  

SciTech Connect (OSTI)

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

2006-12-28T23:59:59.000Z

440

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Infrared spectroscopy of ionic clusters  

SciTech Connect (OSTI)

This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

442

FY 2005 Infrared Photonics Final Report  

SciTech Connect (OSTI)

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

2005-12-01T23:59:59.000Z

443

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Broader source: Energy.gov (indexed) [DOE]

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

444

A Green's function formalism of energy and momentum transfer in fluctuational electrodynamics  

E-Print Network [OSTI]

Radiative energy and momentum transfer due to fluctuations of electromagnetic fields arising due to temperature difference between objects is described in terms of the cross-spectral densities of the electromagnetic fields. We derive relations between thermal non-equilibrium contributions to energy and momentum transfer and surface integrals of tangential components of the dyadic Green's functions of the vector Helmholtz equation. The expressions derived here are applicable to objects of arbitrary shapes, dielectric functions, as well as magnetic permeabilities. For the case of radiative transfer, we derive expressions for the generalized transmissivity and generalized conductance that are shown to obey reciprocity and agree with theory of black body radiative transfer in the appropriate limit.

Arvind Narayanaswamy; Yi Zheng

2013-02-03T23:59:59.000Z

445

Tunable Radiation Source by Coupling Laser-Plasma-Generated Electrons to a Periodic Structure  

SciTech Connect (OSTI)

Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV/m field strength can be achieved by using appropriate grating parameters.

Jin, Z. [Photon Pioneers Center, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871 (Japan); Chen, Z. L.; Kon, A.; Nakatsutsumi, M. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871 (Japan); Zhuo, H. B. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871 (Japan); School of Science, National University of Defense Technology, Changsha 410073 (China); Wang, H. B.; Zhang, B. H.; Gu, Y. Q.; Wu, Y. C.; Zhu, B.; Wang, L. [National Key Laboratory of Laser Fusion, CAEP, Mianyang 621900 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); Sheng, Z. M. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Kodama, R. [Photon Pioneers Center, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871 (Japan); Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, 565-0871 (Japan)

2011-12-23T23:59:59.000Z

446

Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors.  

E-Print Network [OSTI]

??Thermal infrared detectors based on MEMS bimorph beams have the potential to exceed the performance of current uncooled thermal infrared cameras both in terms of… (more)

Warren, Clinton Gregory

2010-01-01T23:59:59.000Z

447

High Throughput Operando Studies using Fourier Transform Infrared...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Throughput Operando Studies using Fourier Transform Infrared Imaging and Raman Spectroscopy. High Throughput Operando Studies using Fourier Transform Infrared Imaging and Raman...

448

An Infrared Spectral Library for Atmospheric Environmental Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy is one of several...

449

NDE of Concrete Structures Strengthened with FRP Using Infrared Thermography  

E-Print Network [OSTI]

NDE of Concrete Structures Strengthened with FRP Using Infrared Thermography Monica A. STARNES that infrared thermography is a promising nondestructive evaluation (NDE) method considering testing speed

Entekhabi, Dara

450

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network [OSTI]

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

451

Modeling of plasma-controlled evaporation and surface condensation of Al induced by 1.06 and 0.248 {mu}m laser radiations  

SciTech Connect (OSTI)

Phase transition on the surface of an aluminum target and vapor plasma induced by laser irradiation in the nanosecond regime at the wavelengths of 1.06 {mu}m in the infrared range and 0.248 {mu}m in the ultraviolet range with an intensity of 10{sup 8}-10{sup 9} W/cm{sup 2} in vacuum are analyzed. Special attention is paid to the wavelength dependence of the observed phenomena and the non-one-dimensional effects caused by the nonuniform (Gaussian) laser intensity distribution and the lateral expansion of the plasma plume. A transient two-dimensional model is used which includes conductive heat transfer in the condensed phase, radiative gas dynamics, and laser radiation transfer in the plasma as well as surface evaporation and back condensation at the phase interface. It was shown that distinctions in phase transition dynamics for the 1.06 and 0.248 {mu}m radiations result from essentially different characteristics of the laser-induced plasmas. For the 1.06 {mu}m radiation, evaporation stops after the formation of hot optically thick plasma, can occasionally resume at a later stage of the pulse, and proceeds nonuniformly in the spot area, and the major contribution to the mass removal occurs in the outer part of the irradiated region. Plasma induced by the 0.248 {mu}m laser is colder and partially transparent since it transmits 30%-70% of the incident radiation; therefore evaporation does not stop but continues in the subsonic regime with the Mach number of about 0.1. The amount of evaporated matter that condenses back to the surface is as high as 15%-20% and less than 10% for the 1.06 and 0.248 {mu}m radiations, respectively. For a beam radius smaller than {approx}100 {mu}m, the screening and retarding effect of the plasma weakens because of the lateral expansion, thickness of the removed layer increases, and condensation after the end of the pulse is not observed. Comparison of the numerical and experimental results on the removed layer thickness has shown, in particular, the importance of accounting for the plasma effect to predict the correct trends for radiation intensity and beam radius.

Mazhukin, V. I.; Nossov, V. V.; Smurov, I. [Institute of Mathematical Modeling of RAS, 4a Miusskaya Square, 125047 Moscow (Russian Federation); Ecole Nationale d'Ingenieurs de Saint-Etienne, 58 rue Jean Parot, 42023 Saint-Etienne Cedex 2 (France)

2007-01-15T23:59:59.000Z

452

Radiating gravastars  

SciTech Connect (OSTI)

Considering a Vaidya exterior spacetime, we study dynamical models of prototype gravastars, made of an infinitely thin spherical shell of a perfect fluid with the equation of state p = ?, enclosing an interior de Sitter spacetime. We show explicitly that the final output can be a black hole, an unstable gravastar, a stable gravastar or a 'bounded excursion' gravastar, depending on how the mass of the shell evolves in time, the cosmological constant and the initial position of the dynamical shell. This work presents, for the first time in the literature, a gravastar that emits radiation.

Chan, R. [Coordenação de Astronomia e Astrofísica, Observatório Nacional, Rua General José Cristino, 77, São Cristóvão 20921-400, Rio de Janeiro, RJ (Brazil); Silva, M.F.A. da [Departamento de Física Teórica, Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã 20550-900, Rio de Janeiro - RJ (Brazil); Rocha, Jaime F. Villas da [Instituto de Biociências, Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, Urca, CEP 22290-240, Rio de Janeiro, RJ (Brazil); Wang, Anzhong, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: jfvroch@pq.cnpq.br, E-mail: anzhong_wang@baylor.edu [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798 (United States)

2011-10-01T23:59:59.000Z

453

Heat Transfer and Convection Currents  

Science Journals Connector (OSTI)

...October 1965 research-article Heat Transfer and Convection Currents D. C...convection in a medium with internal heat generation is discussed semi-quantitatively...States English United Kingdom 1966 Heat transfer and convection currents Tozer D...

1965-01-01T23:59:59.000Z

454

Faculty Positions Heat Transfer and  

E-Print Network [OSTI]

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

455

Phase-Transfer-Catalyzed Reductions  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) procedures that have been developed for use with sodium borohydride, lithium aluminum hydride, and several other reducing agents involving anion transfer to organic media are des...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

456

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

457

NREL: Technology Transfer - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

458

Efficient Data Transfer Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps on today's hardware. RDMA over Converged Ethernet (RoCE) is a promising new technology for high-performance network data movement with minimal CPU impact over circuit-based infrastructures. We compare the performance of TCP, UDP, UDT, and RoCE over high latency 10Gbps and 40Gbps network paths, and show that RoCE-based data transfers can fill a 40Gbps path using much less CPU than other protocols.

459

Technology Transfer: Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

460

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measuring Information Transfer  

Science Journals Connector (OSTI)

An information theoretic measure is derived that quantifies the statistical coherence between systems evolving in time. The standard time delayed mutual information fails to distinguish information that is actually exchanged from shared information due to common history and input signals. In our new approach, these influences are excluded by appropriate conditioning of transition probabilities. The resulting transfer entropy is able to distinguish effectively driving and responding elements and to detect asymmetry in the interaction of subsystems.

Thomas Schreiber

2000-07-10T23:59:59.000Z

462

Natural and Radiation Carcinogenesis in Man. III. Radiation Carcinogenesis  

Science Journals Connector (OSTI)

...mice. NATURAL AND RADIATION CARCINOGENESIS IN MAN. 3. RADIATION CARCINOGENESIS. | Journal Article | Japan Neoplasms etiology Neoplasms, Radiation-Induced Radiation Genetics | JAPAN NEOPLASM ETIOLOGY NEOPLASMS, RADIATION-INDUCED RADIATION...

1965-01-01T23:59:59.000Z

463

Optical properties of CdS-PbS films and the possibility of the photoeffect in the mid-infrared range  

SciTech Connect (OSTI)

The possibility of using the plasma resonance in semiconductors to excite exoelectron photoemission in the mid-infrared spectral range without special cooling is discussed. Optical reflection spectra in the mid-infrared range of vacuum-deposited radiation-resistant films of limited CdS-PbS solid solutions containing a minimum associated with the plasma resonance are presented. The plasma resonance of secondary-electron emission is compared with the secondary-ion photoeffect and a conclusion is made concerning the possibility of the influence of the plasma resonance in the mid-infrared range on the escape of electrons from the semiconductor photocathode at room temperature.

Rokakh, A. G., E-mail: rokakhag@mail.ru; Bilenko, D. I.; Shishkin, M. I.; Skaptsov, A. A.; Venig, S. B.; Matasov, M. D. [Saratov State University (Russian Federation)

2014-12-15T23:59:59.000Z

464

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect (OSTI)

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

465

Low Dose Radiation Research Program: Radiation-Induced Nuclear Factor kB  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation-Induced Nuclear Factor kB mediates survival advantage by Radiation-Induced Nuclear Factor kB mediates survival advantage by Telomerase Activation. Authors: Natarajan M.,1 Mohan S.,2 Pandeswara, S.L.,1 and Herman T.S.1 Institutions: Departments of 1Radiation Oncology and 2Pathology, The University of Texas Health Science Center, San Antonio, Texas Activation of NF-kB in response to low doses of ionizing radiation was first shown in our laboratory. Although studies have shown that NF-kB plays an important role in anti-apoptotic function, little has been done to understand the molecular link between the activation of NF-kB and cellular outcome such as enhanced cell survival after low dose low-linear transfer (LET) radiation. Because upregulation of telomerase activity is associated with longevity and allows cells to escape from senescence, we hypothesize

466

LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. IV. {sup 12}CO J = 6-5 OBSERVATIONS OF VV 114  

SciTech Connect (OSTI)

We present high-resolution (?2.''5) observations of {sup 12}CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect {sup 12}CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new {sup 12}CO J = 6-5 observations with previously published or archival low-J CO observations, which include {sup 13}CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer code RADEX and a Bayesian likelihood code to constrain the temperature (T{sub kin}), density (n{sub H{sub 2}}), and column density (N{sub {sup 1}{sup 2}CO}) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T{sub kin} = 38 K), moderately dense (n{sub H{sub 2}} = 10{sup 2.89} cm{sup –3}) molecular gas component. We find that the most probable {sup 12}CO to {sup 13}CO abundance ratio ([{sup 12}CO]/[{sup 13}CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high {sup 12}CO/ {sup 13}CO line ratio (>25). The unusual {sup 13}CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate {sup 13}CO optical depths (? = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H{sub 2} conversion factor, ?{sub CO}, to be 0.5{sup +0.6}{sub -0.3} M{sub ?} (K km s{sup –1} pc{sup 2}){sup –1}, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes and Solomon (?{sub CO} = 0.8 M{sub ?} (K km s{sup –1} pc{sup 2}){sup –1})

Sliwa, Kazimierz; Wilson, Christine D. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Krips, Melanie [Institut de Radio Astronomie Millimetrique, 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d'Heres (France); Petitpas, Glen R. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Iono, Daisuke [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Juvela, Mika [University of Helsinki, FI-00014 Helsinki (Finland); Matsushita, Satoki [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Peck, Alison [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Yun, Min, E-mail: sliwak@mcmaster.ca, E-mail: wilson@physics.mcmaster.ca, E-mail: krips@iram.fr, E-mail: gpetitpa@cfa.harvard.edu, E-mail: d.iono@nao.ac.jp, E-mail: mika.juvela@helsinki.fi, E-mail: satoki@asiaa.sinica.edu.tw, E-mail: apeck@alma.cl, E-mail: myun@astro.umass.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

2013-11-10T23:59:59.000Z

467

Molecular Hydrogen in Infrared Cirrus  

E-Print Network [OSTI]

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

468

Adaptors for radiation detectors  

DOE Patents [OSTI]

Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

Livesay, Ronald Jason

2014-04-22T23:59:59.000Z

469

THE COSMIC NEAR INFRARED BACKGROUND. III. FLUCTUATIONS, REIONIZATION, AND THE EFFECTS OF MINIMUM MASS AND SELF-REGULATION  

SciTech Connect (OSTI)

Current observations suggest that the universe was reionized sometime before z {approx} 6. One way to observe this epoch of the universe is through the Near Infrared Background (NIRB), which contains information about galaxies which may be too faint to be observed individually. We calculate the angular power spectrum (C{sub l} ) of the NIRB fluctuations caused by the distribution of these galaxies. Assuming a complete subtraction of any post-reionization component, C{sub l} will be dominated by galaxies responsible for completing reionization (e.g., z {approx} 6). The shape of C{sub l} at high l is sensitive to the amount of nonlinear bias of dark matter halos hosting galaxies. As the nonlinear bias depends on the mass of these halos, we can use the shape of C{sub l} to infer typical masses of dark matter halos responsible for completing reionization. We extend our previous study by using a higher-resolution N-body simulation, which can resolve halos down to 10{sup 8} M{sub Sun }. We also include improved radiative transfer, which allows for the suppression of star formation in small-mass halos due to photoionization heating. As the nonlinear bias enhances the dark matter halo power spectrum on small scales, we find that C{sub l} is steeper for the case with a complete suppression of small sources or partial suppression of star formation in small halos (the minimum galaxy mass is M{sub min} = 10{sup 9} M{sub Sun} in ionized regions and M{sub min} = 10{sup 8} M{sub Sun} in neutral regions) than for the case in which these small halos were unsuppressed. In all cases, we do not see a turnover toward high l in the shape of l{sup 2} C{sub l} .

Fernandez, Elizabeth R. [Univ Paris-Sud, Institut d'Astrophysique Spatiale, UMR8617, 91405 Orsay Cedex (France); Iliev, Ilian T. [Astronomy Centre, Department of Physics and Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Komatsu, Eiichiro; Shapiro, Paul R., E-mail: Elizabeth.Fernandez@ias.u-psud.fr [Texas Cosmology Center and the Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States)

2012-05-01T23:59:59.000Z

470

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

471

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

472

Synchrotron Infrared Unveils a Mysterious Microbial Community  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

473

Synthesis and characterization of infrared quantum dots  

E-Print Network [OSTI]

This thesis focuses on the development of synthetic methods to create application ready quantum dots (QDs) in the infrared for biological imaging and optoelectronic devices. I concentrated primarily on controlling the size ...

Harris, Daniel Kelly

2014-01-01T23:59:59.000Z

474

Applying near-infrared spectroscopy (nirs)  

E-Print Network [OSTI]

investigated. A recently developed optical imaging technique called near-infrared spectroscopy (NIRS) shows promise for being an acceptable alternative to invasive imaging techniques. NIRS measures correlates of neural activity by assessing hemoglobin...

Wruck, Eric Michael

2005-08-29T23:59:59.000Z

475

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

476

Manipulator mounted transfer platform  

DOE Patents [OSTI]

A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

1990-01-01T23:59:59.000Z

477

Design considerations for a ceramic fabric radiator  

SciTech Connect (OSTI)

The design of an Advanced Ceramic Fabric (ACF) thermal management device for use in both interplanetary and near-earth space must consider several important aspects of the environment. First, the radiation field at various locations is dominated by a proton component which deposits its energy on the surface of the device. Second, the ACF materials, as well as pressure liner materials, must also be compatible with the working fluids selected for the system. Third, the fluid dynamics and heat transfer characteristics of this device should be adequately characterized. With the proper consideration of materials and operating conditions, the Bubble Membrane Radiator (BMR) may be utilized for several advanced space missions. 17 refs.

Pauley, K.A.; Webb, B.J. (Pacific Northwest Lab., Richland, WA (USA)); Klein, A.C. (Oregon State Univ., Corvallis, OR (USA). Dept. of Nuclear Engineering)

1990-04-01T23:59:59.000Z

478

NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical innovation within the global wind energy industry. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

479

Near-field heat transfer between gold nanoparticle arrays  

SciTech Connect (OSTI)

The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

2013-12-07T23:59:59.000Z

480

Investigation of tapered silver / silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation  

E-Print Network [OSTI]

of CO2 laser radiation Carlos M. Bledt*a , Daniel V. Kopp a , and James A. Harrington a a Dept Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan Jason M. Kriesel c c focuses on the theoretical and practical infrared radiation propagation properties of tapered silver

Note: This page contains sample records for the topic "infrared radiative transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Radiative corrections to lepton-lepton scattering Physik-Department T39, Technische Universitat Munchen, D-85747 Garching, Germany  

E-Print Network [OSTI]

the tree diagrams and the one-loop diagrams. Infrared finiteness of these virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off . We evaluate discrepancies for the ratio of the proton electric and magnetic form factors Gp E/Gp M as determined

Weise, Wolfram

482

Radiation from relativistic jets in blazars and the efficient dissipation of their bulk energy via photon breeding  

Science Journals Connector (OSTI)

......radiation at the scale of about 100 Schwarzschild radii and the infrared radiation from...and R S= 2GM/c 2 is the black hole Schwarzschild radius. The dimensionless maximal temperature...injection spectrum to be bounded and to mirror (relative to m e c 2) the spectrum......

Boris E. Stern; Juri Poutanen

2008-02-01T23:59:59.000Z

483

High-pressure phase transition and behavior of protons in brucite Mg(OH)2: a high-pressure–temperature study using IR synchrotron radiation  

Science Journals Connector (OSTI)

?Infrared absorption spectra of brucite Mg (OH)2...were measured under high pressure and high temperature from 0.1?MPa 25?°C to 16?GPa 360?°C using infrared synchrotron radiation at BL43IR of Spring-8 and a high-...

K. Shinoda; M. Yamakata; T. Nanba; H. Kimura…

2002-07-01T23:59:59.000Z

484

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG  

E-Print Network [OSTI]

Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

Paris-Sud XI, Université de

485

Characteristic evaluation of a near-infrared Fabry-Perot filter for the InfraRed Imaging Magnetograph (IRIM)  

E-Print Network [OSTI]

Characteristic evaluation of a near-infrared Fabry-P´erot filter for the InfraRed Imaging solar two-dimensional narrow-band spectro-polarimeter working in the near infrared from 1.0 µm to 1.7 µm, this paper outlines a set of methods to evaluate the near infrared Fabry-P´erot etalon. Two

486

Polarization transfer NMR imaging  

DOE Patents [OSTI]

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

487

On the Classical Radiation of Accelerated Electrons  

Science Journals Connector (OSTI)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary charge-current distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direction of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

Julian Schwinger

1949-06-15T23:59:59.000Z

488

Nuclear radiation electronic gear  

Science Journals Connector (OSTI)

Nuclear radiation electronic gear ... Examines the line of nuclear radiation instrumentation offered by Nuclear-Chicago Corporation and Victoreen Instrument Company. ... Nuclear / Radiochemistry ...

S. Z. Lewin

1961-01-01T23:59:59.000Z

489

Radiation Control (Virginia)  

Broader source: Energy.gov [DOE]

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

490

Far-infrared nonlinear optics. II. ?(3) contributions from the dynamics of free carriers in semiconductors  

Science Journals Connector (OSTI)

We report the first bulk frequency tripling in the far-infrared. The experiments are carried out at 20 cm-1 in the doped semiconductors Ge, Si, and GaAs. Good power conversion efficiency is obtained (10-3). Our arrangement allows an absolute determination of the nonlinear susceptibility ?(3)(3?,?,?,?). We show that in the far-infrared, ?(3) is dominated by free-carrier contributions. Hence, our measurement gives new insight into nonlinear transport properties such as the momentum dependence of the effective mass and of the relaxation time. Furthermore strong changes of ?(3) (as well as of the absorption) are found to occur at high laser intensity above 100 kW/cm2, which we attribute to carrier heating and hot carrier transfer into higher energy-band minima.

A. Mayer and F. Keilmann

1986-05-15T23:59:59.000Z

491

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect (OSTI)

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

492

Follow-Up Near-infrared Spectroscopy of Ultraluminous Infrared Galaxies observed by ISO  

E-Print Network [OSTI]

We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qualitatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.

H. Dannerbauer; D. Rigopoulou; D. Lutz; R. Genzel; E. Sturm; A. F. M. Moorwood

2005-08-17T23:59:59.000Z

493

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

494

Technology Transfer Reporting Form  

Broader source: Energy.gov (indexed) [DOE]

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

495

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

496

Transfer and Archive Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Management Please remove ALL data from /house! Do you still have data in /house/homedirs? Do you know if you have data in /house/homedirs? Please check now and make a plan for moving that data to the archiver or one of the NERSC file systems (for more information on these filesystems go to File storage and I/O). Moving data from house to DnA The DnA file system is primarily for finished projects, data that is ready to be archived, or data that is shared between groups. It is mounted read-only on the cluster, but you can write to directories on this file system in a few ways: Data Transfer Nodes until December 1, 2013 (examples here) xfer queue on the Genepool cluster until December 1, 2013 (examples here) Moving data from house to Projectb Projectb is where compute jobs run and output both intermediate files as

497

Frame Heat Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

498

Working with SRNL - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2014 SRNL Research and Technology Recognition Reception Click to view the 2014...

499

Education and Research Transfer Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring and donating education-related Federal equipment to the education and non-profit science and research sectors. Skip Navigation Links Home Newsroom About INL Careers...

500

Phase-Transfer-Catalyzed Oxidations  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) offers many excellent opportunities for conducting oxidation reactions using inexpensive primary oxidants such as oxygen, sodium hypochlorite, hydrogen peroxide, electrooxidation...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z