Sample records for infrared radiative transfer

  1. Radiative Transfer in the Midwave Infrared Applicable to Full Spectrum Atmospheric

    E-Print Network [OSTI]

    Kerekes, John

    of the radiative effects in the MWIR is needed. The MWIR is characterized by a unique combination of reduced solar conditions are stressing (e.g., high moisture, heavy aerosol/particulate loading, partial cloud cover, lowRadiative Transfer in the Midwave Infrared Applicable to Full Spectrum Atmospheric Characterization

  2. Influence of Infrared Radiation on Attic Heat Transfer

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01T23:59:59.000Z

    An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat...

  3. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09T23:59:59.000Z

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  4. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  5. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01T23:59:59.000Z

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: • Direct normal shortwave (solar beam) • Diffuse horizontal shortwave (sky) • Global horizontal shortwave (total hemispheric) • Upwelling shortwave (reflected) • Downwelling longwave (atmospheric infrared) • Upwelling longwave (surface infrared)

  6. Radiative transfer in molecular lines

    E-Print Network [OSTI]

    A. Asensio Ramos; J. Trujillo Bueno; J. Cernicharo

    2001-02-15T23:59:59.000Z

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  7. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,

  8. Giant radiation heat transfer through the micron gaps

    E-Print Network [OSTI]

    Nefedov, Igor

    2011-01-01T23:59:59.000Z

    Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.

  9. Infrared absorption spectra, radiative efficiencies, and global warming potentials

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Infrared absorption spectra, radiative efficiencies, and global warming potentials of newly.mdpi.com/journal/atmosphere Article Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly of 600­1730 cm-1 . These spectra are then used to calculate the radiative efficiencies and global warming

  10. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  11. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1998-01-01T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  12. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  13. Radiative heat transfer between dielectric bodies

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-16T23:59:59.000Z

    The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

  14. Radiative transfer for the FIRST era

    E-Print Network [OSTI]

    J. Trujillo Bueno

    2001-02-15T23:59:59.000Z

    This paper presents a brief overview of some recent advances in numerical radiative transfer, which may help the molecular astrophysics community to achieve new breakthroughs in the interpretation of spectro-(polarimetric) observations.

  15. TeV Blazars and Cosmic Infrared Background Radiation

    E-Print Network [OSTI]

    F. A. Aharonian

    2001-12-13T23:59:59.000Z

    The recent developments in studies of TeV radiation from blazars are highlighted and the implications of these results for derivation of cosmologically important information about the cosmic infrared background radiation are discussed.

  16. Infrared absorption spectra, radiative efficiencies, and global warming potentials

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Infrared absorption spectra, radiative efficiencies, and global warming potentials absorption spectra, radiative efficiencies, and global warming potentials of perfluorocarbons: Comparison. (1995) and combined with atmospheric lifetimes from the literature to determine global warming

  17. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26T23:59:59.000Z

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  18. Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models 

    E-Print Network [OSTI]

    Wang, Chenxi

    2013-07-25T23:59:59.000Z

    observations and fast radiative transfer models (RTMs). In the first part, we develop two computationally efficient RTMs simulating satellite observations under cloudy-sky conditions in the visible/shortwave infrared (VIS/SWIR) and thermal inferred (IR...

  19. Debris Disk Radiative Transfer Simulation Tool (DDS)

    E-Print Network [OSTI]

    S. Wolf; L. A. Hillenbrand

    2005-06-17T23:59:59.000Z

    A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds

  20. accelerated radiative transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    influence of particle shape on the radiative forcing caused by a cloud composed of small ice 123 Journal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 556...

  1. RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI­MONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena

  2. RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS

    E-Print Network [OSTI]

    RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer

  3. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01T23:59:59.000Z

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  4. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect (OSTI)

    Jerry Y. Harrington

    2012-09-21T23:59:59.000Z

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  5. Small distance expansion for radiative heat transfer between curved objects

    E-Print Network [OSTI]

    Golyk, Vladyslav A.

    We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest-order ...

  6. Three-dimensional Radiative Transfer with Multilevel Atoms

    E-Print Network [OSTI]

    P. Fabiani Bendicho; J. Trujillo Bueno

    2007-10-29T23:59:59.000Z

    The efficient numerical solution of Non-LTE multilevel transfer problems requires the combination of highly convergent iterative schemes with fast and accurate formal solution methods of the radiative transfer (RT) equation. This contribution begins presenting a method for the formal solution of the RT equation in three-dimensional (3D) media with horizontal periodic boundary conditions. This formal solver is suitable for both, unpolarized and polarized 3D radiative transfer and it can be easily combined with the iterative schemes for solving non-LTE multilevel transfer problems that we have developed over the last few years. We demonstrate this by showing some schematic 3D multilevel calculations that illustrate the physical effects of horizontal radiative transfer. These Non-LTE calculations have been carried out with our code MUGA 3D, a 3D multilevel Non-LTE code based on the Gauss-Seidel iterative scheme that Trujillo Bueno and Fabiani Bendicho (1995) developed for RT applications.

  7. COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS

    SciTech Connect (OSTI)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2012-11-10T23:59:59.000Z

    We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.

  8. Enhanced radiative heat transfer between nanostructured gold plates

    E-Print Network [OSTI]

    R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-03-07T23:59:59.000Z

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  9. A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER

    SciTech Connect (OSTI)

    Rauscher, Emily [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2012-05-10T23:59:59.000Z

    We present a new version of our code for modeling the atmospheric circulation on gaseous exoplanets, now employing a 'double-gray' radiative transfer scheme, which self-consistently solves for fluxes and heating throughout the atmosphere, including the emerging (observable) infrared flux. We separate the radiation into infrared and optical components, each with its own absorption coefficient, and solve standard two-stream radiative transfer equations. We use a constant optical absorption coefficient, while the infrared coefficient can scale as a power law with pressure; however, for simplicity, the results shown in this paper use a constant infrared coefficient. Here we describe our new code in detail and demonstrate its utility by presenting a generic hot Jupiter model. We discuss issues related to modeling the deepest pressures of the atmosphere and describe our use of the diffusion approximation for radiative fluxes at high optical depths. In addition, we present new models using a simple form for magnetic drag on the atmosphere. We calculate emitted thermal phase curves and find that our drag-free model has the brightest region of the atmosphere offset by {approx}12 Degree-Sign from the substellar point and a minimum flux that is 17% of the maximum, while the model with the strongest magnetic drag has an offset of only {approx}2 Degree-Sign and a ratio of 13%. Finally, we calculate rates of numerical loss of kinetic energy at {approx}15% for every model except for our strong-drag model, where there is no measurable loss; we speculate that this is due to the much decreased wind speeds in that model.

  10. Modelling of Radiative Transfer in Light Sources

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    . . . . . . . . . . . . . . . 30 2.5.3 Temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . 32 2-X radiative transition that is responsible for the sulfur lamp's bright sun-like spectrum #12;Contents 1

  11. Journal of Quantitative Spectroscopy & Radiative Transfer ] (

    E-Print Network [OSTI]

    Gamache, Robert R.

    with the new set of molecular data is evaluated directly from vertical H2O concentration profiles. r 2004 Elsevier Ltd. All rights reserved. Keywords: Diode laser; Near-infrared spectrometer; Ab initio and carbon dioxide in the lower stratosphere [1]. Both sensors have been involved in several European

  12. Adaptive Ray Tracing for Radiative Transfer around Point Sources

    E-Print Network [OSTI]

    Tom Abel; Benjamin D. Wandelt

    2001-11-01T23:59:59.000Z

    We describe a novel adaptive ray tracing scheme to solve the equation of radiative transfer around point sources in hydrodynamical simulations. The angular resolution adapts to the local hydrodynamical resolution and hence is of use for adaptive meshes as well as adaptive smooth particle hydrodynamical simulations. Recursive creation of rays ensures ease of implementation. The multiple radial integrations needed to solve the time dependent radiative transfer are sped up significantly using a quad-tree once the rays are cast. Simplifications advantageous for methods with one radiation source are briefly discussed. The suggested method is easily generalized to speed up Monte Carlo radiative transfer techniques. In summary a nearly optimal use of long characteristics is presented and aspects of its implementation and comparison to other methods are given.

  13. OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION

    E-Print Network [OSTI]

    Morris, J.R.

    2010-01-01T23:59:59.000Z

    Absorption on Far-Infrared Generation IV. V. Comparison withIII CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY THE1970). CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY

  14. Numerical methods for multidimensional radiative transfer

    E-Print Network [OSTI]

    radiation plays a key role in various scientific applications, such as combustion physics, thermonuclear fusion and astrophysics. The equa- tion describing the transport of photons or neutrons through a medium

  15. Optical Properties of Saharan Dust and Asian Dust: Application to Radiative Transfer Simulations 

    E-Print Network [OSTI]

    Fang, Guangyang

    2012-07-16T23:59:59.000Z

    properties for radiative transfer simulations. Using a Rapid Radiative Transfer Model (RRTM), the radiative forcing of mineral dust was computed at both the top of the atmosphere and the surface. By analyzing samples from various in-situ measurements, we...

  16. RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA

    SciTech Connect (OSTI)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Hotokezaka, Kenta, E-mail: masaomi.tanaka@nao.ac.jp, E-mail: hotoke@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto (Japan)

    2013-10-01T23:59:59.000Z

    Mergers of binary neutron stars (NSs) are among the most promising gravitational wave (GW) sources. Next generation GW detectors are expected to detect signals from NS mergers within about 200 Mpc. The detection of electromagnetic wave (EM) counterparts is crucial to understanding the nature of GW sources. Among the possible EM emission from the NS merger, emission powered by radioactive r-process nuclei is one of the best targets for follow-up observations. However, predictions so far have not taken into account detailed r-process element abundances in the ejecta. We perform for the first time radiative transfer simulations of the NS merger ejecta including all the r-process elements from Ga to U. We show that the opacity of the NS merger ejecta is about ? = 10 cm{sup 2} g{sup –1}, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ?100. As a result, the emission is fainter and lasts longer than previously expected. The spectra are almost featureless due to the high expansion velocity and bound-bound transitions of many different r-process elements. We demonstrate that the emission is brighter for a higher mass ratio of the two NSs and a softer equation of state adopted in the merger simulations. Because of the red color of the emission, follow-up observations in red optical and near-infrared (NIR) wavelengths will be the most efficient. At 200 Mpc, the expected brightness of the emission is i = 22-25 AB mag, z = 21-23 AB mag, and 21-24 AB mag in the NIR JHK bands. Thus, observations with wide-field 4 m- and 8 m-class optical telescopes and wide-field NIR space telescopes are necessary. We also argue that the emission powered by radioactive energy can be detected in the afterglow of nearby short gamma-ray bursts.

  17. Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and intercomparison of cirrus retrievals from a-train instruments 

    E-Print Network [OSTI]

    Zhang, Zhibo

    2009-05-15T23:59:59.000Z

    This dissertation consists of three parts, each devoted to a particular issue of significant importance for satellite-based remote sensing of cirrus clouds. In the first part, we develop and present a fast infrared radiative transfer model...

  18. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated has been developed based on periodic excitation by Joule effect and infrared thermography measurement. It has been applied to measure heat transfer coefficients of water flowing in a round tube

  19. Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 384399

    E-Print Network [OSTI]

    Pilon, Laurent

    thickness, the single scattering albedo of the materials, and the incident pulse width have been developed inversion schemes accounting for anisotropic scattering. r 2006 Elsevier Ltd. All rights reserved. Keywords is the so-called radiative transfer equation (RTE). It expresses an energy balance in a unit solid angle d

  20. Infrared radiation of SF sub 6 and its application to gas-filled double-pane windows

    SciTech Connect (OSTI)

    Reilly, S.; Rubin, M. (Lawrence Berkeley Lab., CA (USA)); Tuntomo, A.; Tien, C.L. (California Univ., Irvine, CA (USA). Dept. of Mechanical Engineering)

    1990-01-01T23:59:59.000Z

    Interest in using sulfur hexafluoride (SF{sub 6}) as a gas-fill in multipane windows has raised questions concerning the calculation of heat transfer rates through such windows. The infrared absorption characteristics of this gas make the heat transfer analysis much more complicated. In order to account for the absorption effect, the authors measured the spectral absorptivity of several infrared-active bands of sulfur hexafluroide at low resolution and a temperature of 298 K. The authors correlated the spectral absorption data with Edwards exponential wide-band model and with the Elasser narrow-band model, and incorporated, the wide-band model into a one-dimensional, finite-element heat transfer model. The finite-element heat transfer model considered combined conduction and radiation effects in a double-pane window, and was used to evaluate the overall heat transfer coefficients of double-pane windows filled with SF{sub 6}, CO{sub 2}, or air. The numerical results show good agreement with the experimental results.

  1. All-electric detection of the Stokes parameters of infrared and terahertz radiation

    E-Print Network [OSTI]

    Fominov, Yakov

    All-electric detection of the Stokes parameters of infrared and terahertz radiation S.D. Ganichev to measure radiation ellipticity use polarizers-analyzers or ellipsometers. Here we report on an all-electric detection of the laser radiation polarization state describing by the Stokes parameters. The method is based

  2. Radiative Transfer Models for Gamma-Ray Bursts

    E-Print Network [OSTI]

    Vurm, Indrek

    2015-01-01T23:59:59.000Z

    We present global radiative transfer models for heated relativistic jets. The simulations include all relevant radiative processes, starting deep in the opaque zone and following the evolution of radiation to and beyond the photosphere of the jet. The transfer models are compared with three gamma-ray bursts GRB 990123, GRB 090902B, and GRB 130427A, which have well-measured and different spectra. The models provide good fits to the observed spectra in all three cases. The fits give estimates for the jet magnetization parameter $\\varepsilon_{\\rm B}$ and the Lorentz factor $\\Gamma$. In the small sample of three bursts, $\\varepsilon_{\\rm B}$ varies between 0.01 and 0.1, and $\\Gamma$ varies between 340 and 1200.

  3. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12T23:59:59.000Z

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  4. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09T23:59:59.000Z

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  5. Influence of Infrared Radiation on Attic Heat Transfer 

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01T23:59:59.000Z

    roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model...

  6. Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    the parallelization of the radiative heat transfer model introduced by Naraghi and Nunes of Manhattan College [8

  7. Radiative heat transfer in 2D Dirac materials

    E-Print Network [OSTI]

    Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

    2015-02-02T23:59:59.000Z

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  8. Application of three-dimensional solar radiative transfer to mountains Y. Chen,1,2

    E-Print Network [OSTI]

    Liou, K. N.

    Application of three-dimensional solar radiative transfer to mountains Y. Chen,1,2 A. Hall,1 and K November 2006. [1] We developed a three-dimensional radiative transfer model simulating solar fluxes over (2006), Application of three-dimensional solar radiative transfer to mountains, J. Geophys. Res., 111, D

  9. Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n

    E-Print Network [OSTI]

    Jacobsen, Steven D.

    Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n , Craig R contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat, radiative heat transfer was considered relatively unimportant in the mantle. Earlier experimental work

  10. Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also

  11. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  12. A High-Order-Accurate GPU-Based Radiative Transfer Equation Solver for Combustion and Propulsion Applications

    E-Print Network [OSTI]

    He, Xing; Lee, Euntaek; Wilcox, Lucas; Munipalli, Ramakanth; Pilon, Laurent

    2013-01-01T23:59:59.000Z

    of radiative transfer in combustion systems”, Int. J. Numer.c, “Radiation heat transfer in combustion systems”, Progressin Energy and Combustion Science, vol. 13, no. 2, pp. 97–

  13. Radiative transfer with scattering from closely-spaced spheres

    SciTech Connect (OSTI)

    Drolen, B.L.

    1986-01-01T23:59:59.000Z

    Many heat-transfer applications including fluidized and packed beds, microsphere insulations, and reactor fuel pellets require the analysis of radiative transfer in packed-sphere systems. The radiative properties of surface deposits such as paint and soot layers, and of aerosols such as soot, may be determined by treating them as a collection of spheres. These properties are important for predicting heat transfer in furnaces and flames and for assessing atmospheric attenuation in nuclear-winter scenarios. For many applications when the particle size is larger than the wavelength, or when the volume fraction is small, scattering from individual spheres in the medium is independent of the influence of neighboring particles. Therefore the extinction characteristics of these systems are based on the properties of the discrete particles. This approach is shown to be in good agreement with published experimental data for a packed bed of spheres. When dependent scattering is important, effects caused by the proximity of the neighboring particles must be included. This model examines interference between the scattered waves from each of the particles in the medium. The particle centers correlate via a distribution function which represents the distribution of neighboring particles about a central particle.

  14. Impact of surface inhomogeneity on solar radiative transfer under overcast conditions

    E-Print Network [OSTI]

    Li, Zhanqing

    Impact of surface inhomogeneity on solar radiative transfer under overcast conditions Zhanqing Li1. Introduction [2] Solar radiative heating is the primary driving force of atmospheric and oceanic movements underlines the impact of surface inhomogeneity on the closure of SW radiative transfer. It also leads

  15. USE OF INFRARED RADIATION IN THE STUDY OF FISH BEHAVIOR

    E-Print Network [OSTI]

    , 000° K. (high -temperature tungsten lamp) . Relative emission from sun. #12;#12;The Eye of experimental facilities - ·^ Figure 4. Distribution of fingerling Pacific salmon (O^. kisutch) under ordinary room lighting 9 Figure 5. Distribution of fingerling Pacific salmon (O. kisutch) with infrared

  16. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17T23:59:59.000Z

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  17. Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc Plasma and Its

    E-Print Network [OSTI]

    Eagar, Thomas W.

    in the electric field of a charged particle, radiation is emitted. In terms of radiation intensity, electronB ) Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc ifinfraredradiation from an arc plasma can fie used for diagnostic purposes. Tire properties of IR radiation

  18. Incorporating the Effects of 3D Radiative Transfer in the Presence of Clouds into Two-Stream Multilayer Radiation Schemes

    E-Print Network [OSTI]

    Hogan, Robin

    Incorporating the Effects of 3D Radiative Transfer in the Presence of Clouds into Two. The 3D effect on shortwave cloud radiative forcing varies between around 225% and around 1100. Therefore, cumulus clouds are of particular im- portance when considering 3D radiative effects: although

  19. Fresnel Effect in Radiation Transfer in Biological Tissues Kyunghan Kim and Zhixiong Guo*

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Fresnel Effect in Radiation Transfer in Biological Tissues Kyunghan Kim and Zhixiong Guo* MAE Method (DOM) to incorporate Fresnel's boundary in laser radiation transport in biological tissues is calculated by the use of Snell's law and Fresnel's equation. The radiation fields, including the radiative

  20. COHERENT INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECOND LASER MODULATION OF THE ELECTRON BEAM*

    E-Print Network [OSTI]

    the energy of an ultra-short (~ 30 micron) slice of a stored electron bunch as they co-propagate throughCOHERENT INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECOND LASER MODULATION OF THE ELECTRON Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS

  1. Infrared luminescence for real time ionizing radiation detection

    SciTech Connect (OSTI)

    Veronese, Ivan, E-mail: ivan.veronese@unimi.it; Mattia, Cristina De; Cantone, Marie Claire [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Fasoli, Mauro; Chiodini, Norberto; Vedda, Anna [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Mones, Eleonora [Medical Physics Department, Azienda Ospedaliera Maggiore della Carità, Corso Mazzini 18, 28100 Novara (Italy)

    2014-08-11T23:59:59.000Z

    Radio-luminescence (RL) optical fiber sensors enable a remote, punctual, and real time detection of ionizing radiation. However, the employment of such systems for monitoring extended radiation fields with energies above the Cerenkov threshold is still challenging, since a spurious luminescence, namely, the “stem effect,” is also generated in the passive fiber portion exposed to radiation. Here, we present experimental measurements on Yb-doped silica optical fibers irradiated with photon fields of different energies and sizes. The results demonstrate that the RL of Yb{sup 3+}, displaying a sharp emission line at about 975?nm, is free from any spectral superposition with the spurious luminescence. This aspect, in addition with the suitable linearity, reproducibility, and sensitivity properties of the Yb-doped fibers, paves the way to their use in applications where an efficient stem effect removal is required.

  2. Near field radiative heat transfer between two nonlocal dielectrics

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  3. Polarization of far-infrared radiation from molecular clouds

    SciTech Connect (OSTI)

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.; Dragovan, M. (Chicago Univ., IL (USA) AT T Bell Laboratories, Murray Hill, NJ (USA))

    1989-10-01T23:59:59.000Z

    The paper reports measurements of the polarization of far-infrared emission from dust in nine molecular clouds. Detections were obtained in Mon R2, in the Kleinmann-Low (KL) nebula in Orion, and in Sgr A. Upper limits were set for six other clouds. A comparison of the 100 micron polarization of KL with that previously measured at 270 microns provides new evidence that the polarization is due to emission from magnetically aligned dust grains. Comparing the results for Orion with measurements at optical wavelengths, it is inferred that the magnetic field direction in the outer parts of the Orion cloud is the same as that in the dense core. This direction is nearly perpendicular to the ridge of molecular emission and is parallel to both the molecular outflow in KL and the axis of rotation of the cloud core. In Mon R2, the field direction which the measurements imply does not agree withthat derived from 0.9-2.2 micron polarimetry. The discrepancy is attributed to scattering in the near-infrared. In Orion and Sgr A, where comparisons are possible, the measurements are in good agreement with 10 micron polarization measurements. 55 refs.

  4. Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the ZonalGEF Method

    E-Print Network [OSTI]

    Yuen, Walter W.

    Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal­GEF Method Walter to analyze radiative heat transfer in high porosity insulation materials which have a large scattering for LI900, a material used in the insulation tile for the space shuttle. Comparisons are presented

  5. Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering, Straining, and Mode-Coupling

    E-Print Network [OSTI]

    Fannjiang, Albert

    Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering, Straining, and Mode and Applied Mathematics Vol. 61, No. 5, pp. 1545-1577 RADIATIVE TRANSFER OF SOUND WAVES IN A RANDOM FLOW the sound wave propagation in a random flow, whose mean flow is large compared with its fluctuation

  6. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model

    E-Print Network [OSTI]

    Liou, K. N.

    Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model of California, Los Angeles, Los Angeles, California B. H. KAHN Jet Propulsion Laboratory, California Institute radiative transfer model has been developed for application to cloudy satellite data assimilation

  7. RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    RADIATION HEAT TRANSFER IN TISSUE WELDING AND SOLDERING WITH ULTRAFAST LASERS Kyunghan Kim to incorporate transient radiation heat transfer in tissue welding and soldering with use of ultrafast lasers are performed between laser welding and laser soldering. The use of solder is found to substantially enhance

  8. A Coupled Model for Radiative Transfer: Doppler Effects, Equilibrium and Non-Equilibrium Diffusion Asymptotics

    E-Print Network [OSTI]

    Goudon, Thierry

    A Coupled Model for Radiative Transfer: Doppler Effects, Equilibrium and Non-Equilibrium Diffusion. The interaction terms take into account both scattering and absorption/emission phenomena, as well as Doppler-diffusion equations. Key words. Hydrodynamic limits. Diffusion approximation. Radiative transfer. Doppler correction

  9. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields

    E-Print Network [OSTI]

    Robert, Pincus

    A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud.-J. Morcrette, A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud, which computes fluxes at each level. [3] The description of clouds in current LSMs is quite simple: Most

  10. A FAST FORWARD SOLVER OF RADIATIVE TRANSFER HAO GAO AND HONGKAI ZHAO

    E-Print Network [OSTI]

    Soatto, Stefano

    finite difference schemes (FD), the finite element method (FEM) [17, 20], the finite volume method (FVM transport equation [4, 13] in the field of neutron transport [4], atmospheric radiative transfer [1], heat. Key words and phrases. radiative transfer equation (RTE), optical imaging, discrete ordinate method

  11. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams

  12. Method and apparatus for reducing radiation exposure through the use of infrared data transmission

    DOE Patents [OSTI]

    Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

  13. SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    E-Print Network [OSTI]

    Baes, Maarten

    2015-01-01T23:59:59.000Z

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...

  14. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    by a heating lamp emitting in the visible and near infraredwith heating in a furnace at 400 o C. The infrared lamp was

  15. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect (OSTI)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir [Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791 (Iran, Islamic Republic of)

    2014-09-07T23:59:59.000Z

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  16. TESLA-FEL 2006-04 Far-Infrared Transition and Diffraction Radiation

    E-Print Network [OSTI]

    TESLA-FEL 2006-04 Far-Infrared Transition and Diffraction Radiation Part II: The THz Beamline at the VUV-FEL Linac Sara Casalbuoni1 , Bernhard Schmidt1 , Peter Schm¨user1,2 , Bernd Steffen1,2 1 Deutsches-Electron Laser (VUV-FEL) at DESY has recently been up- graded to a maximum electron energy of 700 MeV, allowing

  17. The Accuracy of Determining Three-Dimensional Radiative Transfer Effects in Cumulus Clouds Using Ground-Based Profiling Instruments

    E-Print Network [OSTI]

    Robert, Pincus

    The Accuracy of Determining Three-Dimensional Radiative Transfer Effects in Cumulus Clouds Using. Three-dimensional radiative transfer effects and why one might estimate them in two-dimensional clouds expensive independent column approximation is called the 3D radiative transfer effect. Assessing

  18. Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study

    E-Print Network [OSTI]

    Baum, Bryan A.

    , a parameterization of the bulk scattering properties is developed. The radiative properties of ice cloudsSpectral signature of ice clouds in the far-infrared region: Single-scattering calculations the spectral signature of ice clouds in the far-infrared (far-IR) spectral region from 100 to 667 cmÃ?1 (15

  19. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect (OSTI)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02T23:59:59.000Z

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  20. Journal of Quantitative Spectroscopy & Radiative Transfer 106 (2007) 325347

    E-Print Network [OSTI]

    , aerosol polarimetry sensor; ATSR, along track scanning radiometer; AVHRR, advanced very high resolution radiometer; CALIPSO, cloud-aerosol lidar and infrared pathfinder satellite observations; CLAMS, Chesapeake model; GEWEX, global energy and water cycle experiment; GHG, greenhouse gas; GOME, global ozone

  1. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23T23:59:59.000Z

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  2. Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Ilic, Ognjen

    It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

  3. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    E-Print Network [OSTI]

    Hamam, Rafif E.

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two ...

  4. Global oceanic rainfall estimation from AMSR-E data based on a radiative transfer model 

    E-Print Network [OSTI]

    Jin, Kyoung-Wook

    2006-04-12T23:59:59.000Z

    An improved physically-based rainfall algorithm was developed using AMSR-E data based on a radiative transfer model. In addition, error models were designed and embedded in the algorithm to assess retrieval errors ...

  5. Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases

    DOE Patents [OSTI]

    Kurnit, Norman A. (Santa Fe, NM)

    1980-01-01T23:59:59.000Z

    A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

  6. atmospheric radiative transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer through the Intergalactic Medium Astrophysics (arXiv) Summary: We use a probabilistic method to compute the propagation of an ionization front corresponding to the...

  7. Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem in a Heterogeneous Domain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -cooled reactor. It is typically made of many prismatic blocks of graphite in which are inserted the nuclear fuel in the homogenization of heat transfer in periodic porous media where the fluid part is made of long thin parallel in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the

  8. Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations

    E-Print Network [OSTI]

    Stramski, Dariusz

    Characterization of the solar light field within the ocean mesopelagic zone based on radiative light field Apparent optical properties Mesopelagic zone Radiative transfer modeling a b s t r a c t The solar light field within the ocean from the sea surface to the bottom of the mesopelagic zone

  9. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information squares regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT

  10. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5

  11. A Coupled AtmosphereOcean Radiative Transfer System Using the Analytic Four-Stream Approximation

    E-Print Network [OSTI]

    Liou, K. N.

    of the ocean. Shortwave radiation from the sun contributes most of the heat fluxes that penetrate the airA Coupled Atmosphere­Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation WEI-LIANG LEE AND K. N. LIOU Department of Atmospheric and Oceanic Sciences, University of California

  12. Author's personal copy Radiation transfer in photobiological carbon dioxide fixation and fuel

    E-Print Network [OSTI]

    Pilon, Laurent

    and fuel production by microalgae Laurent Pilon a,Ã, Halil Berberoglu b,1 , Razmig Kandilian a a Mechanical a c t Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer

  13. Radiative heat transfer in a parallelogram shaped cavity

    E-Print Network [OSTI]

    Dez, V Le

    2015-01-01T23:59:59.000Z

    An exact analytical description of the internal radiative field inside an emitting-absorbing gray semi-transparent medium enclosed in a two-dimensional parallelogram cavity is proposed. The expressions of the incident radiation and the radiative flux field are angularly and spatially discretized with a double Gauss quadrature, and the temperature field is obtained by using an iterative process. Some numerical solutions are tabulated and graphically presented as the benchmark solutions. Temperature and two components of the radiative flux are finally sketched on the whole domain. It is shown that the proposed method gives perfectly smooth results.

  14. Atmospheric radiative transfer parametrization for solar energy yield calculations on buildings

    E-Print Network [OSTI]

    Wagner, Jochen E

    2015-01-01T23:59:59.000Z

    In this paper the practical approach to evaluate the incoming solar radiation on buildings based on atmospheric composition and cloud cover is presented. The effects of absorption and scattering due to atmospheric composition is taken into account to calculate, using radiative transfer models, the net incoming solar radiation at surface level. A specific validation of the Alpine Region in Europe is presented with a special focus on the region of South Tyrol.

  15. The effect of the number of wavebands used in spectral radiation heat transfer calculations

    SciTech Connect (OSTI)

    Chang, S. L.; Golchert, B.; Petrick, M.

    2000-05-09T23:59:59.000Z

    A spectral radiation heat transfer model that conserves emitted and absorbed energy has been developed and used to model the combustion space of an industrial glass furnace. This comprehensive radiation heat transfer model coupled with a computational fluid dynamics (CFD) code was used to investigate the effect of spectral dependencies on the computed results. The results of this work clearly indicate the need for a spectral approach as opposed to a gray body approach since the gray body approach (one waveband) severely underestimates the energy emitted via radiation.

  16. Correlation, entropy, and information transfer in black hole radiation

    E-Print Network [OSTI]

    Baocheng Zhang; Qingyu Cai; Mingsheng Zhan; Li You

    2014-03-28T23:59:59.000Z

    Since the discovery of Hawking radiation, its consistency with quantum theory has been widely questioned. In the widely described picture, irrespective of what initial state a black hole starts with before collapsing, it eventually evolves into a thermal state of Hawking radiations after the black hole is exhausted. This scenario violates the principle of unitarity as required for quantum mechanics and leads to the acclaimed "information loss paradox". This paradox has become an obstacle or a reversed touchstone for any possible theory to unify the gravity and quantum mechanics. Based on the results from Hawking radiation as tunneling, we recently show that Hawking radiations can carry off all information about the collapsed matter in a black hole. After discovering the existence of information-carrying correlation, we show in great detail that entropy is conserved for Hawking radiation based on standard probability theory and statistics. We claim that information previously considered lost remains hidden inside Hawking radiation. More specifically, it is encoded into correlations between Hawking radiations. Our study thus establishes harmony between Harking radiation and the unitarity of quantum mechanics, which establishes the basis for a significant milestone towards resolving the long-standing information loss paradox. The paper provides a brief review of the exciting development on Hawking raidation. In addition to summarize our own work on this subject, we compare and address other related studies.

  17. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S., E-mail: mohammad.mirmoosa@aalto.fi; Nefedov, I. S., E-mail: igor.nefedov@aalto.fi; Simovski, C. R., E-mail: konstantin.simovski@aalto.fi [Department of Radio Science and Engineering, School of Electrical Engineering, Aalto University, P. O. Box 13000, 00076 Aalto (Finland); Rüting, F., E-mail: felix.ruting@uam.es [Departamento de Física Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, E-28049 (Spain)

    2014-06-21T23:59:59.000Z

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  18. Cosmic ray modulation of infra-red radiation in the atmosphere

    E-Print Network [OSTI]

    Aplin, K L

    2012-01-01T23:59:59.000Z

    Cosmic rays produce charged molecular clusters by ionisation as they pass through the lower atmosphere. Neutral molecular clusters such as dimers and complexes are expected to make a small contribution to the radiative balance, but atmospheric absorption by charged clusters has not hitherto been observed. In an atmospheric experiment, a filter radiometer tuned to the 9.15 um absorption band associated with infra-red absorption of charged molecular clusters was used to monitor changes immediately following events identified by a cosmic ray telescope sensitive to high energy (>400MeV) particles, principally muons. The change in longwave radiation in this absorption band due to charged molecular clusters is 7 mW^m-2. The integrated atmospheric energy change for each event is 2J, representing an amplification factor of 10^10 compared to the 2GeV energy of a typical tropospheric cosmic ray. This absorption is expected to occur continuously and globally.

  19. An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II: Horizontal Inhomogeneity

    E-Print Network [OSTI]

    Stephens, Graeme L.

    in downwelling radiative fluxes at the surface induced by changes in cloud cover and water vapor distributions. 1An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part II form 5 January 2005) ABSTRACT The role of horizontal inhomogeneity in radiative transfer through cloud

  20. Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography

    E-Print Network [OSTI]

    Gerardi, Craig Douglas

    2009-01-01T23:59:59.000Z

    A high-speed video and infrared thermography based technique has been used to obtain detailed and fundamental time- and space-resolved information on pool boiling heat transfer. The work is enabled by recent advances in ...

  1. Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 239248

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    method such as decomposition method, and it takes a CPU time that is proportional to the third power of ; Stabilized bi-conjugate gradient method (BiCGSTAB); Thermal radiation 1. Introduction It is important

  2. Radiative component and combined heat transfer in the thermal calculation of finned tube banks

    SciTech Connect (OSTI)

    Stehlik, P. [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering] [Technical Univ. of Brno (Czech Republic). Dept. of Process Engineering

    1999-01-01T23:59:59.000Z

    For more exact calculation of combined heat transfer in the case of finned tube banks (e.g., in the convective section of a furnace), the radiative heat transfer cannot be neglected. A new method for relatively simple calculation of total heat flux (convection + radiation + conduction in fins) is fully compatible with that for bare tube banks/bundles developed earlier. It is based on the method of radiative coefficients. However, the resulting value of heat flux must be corrected due to fin thickness and especially due to the fin radiative influence. For this purpose the so-called multiplicator of heat flux was introduced. The applicability of this methods has been demonstrated on a tubular fired heater convective section. A developed computer program based on the method has also been used for an analysis of the influence of selected parameters to show the share of radiation on the total heat flux.

  3. OUMBE, Armel, WALD, Lucien, BLANC, Philippe, and SCHROEDTER-HOMSCHEIDT, Marion. Exploitation of radiative transfer model for assessing solar radiation: the relative importance of atmospheric

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of radiative transfer model for assessing solar radiation: the relative importance of atmospheric constituents, Germany * Corresponding Author, armel.oumbe@ensmp.fr Abstract Solar radiation is modified in its way: solar radiation, atmospheric optics, satellite images, Heliosat method 1. Introduction A wealth

  4. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01T23:59:59.000Z

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  5. Journal of Quantitative Spectroscopy & Radiative Transfer 99 (2006) 341348

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    structure on non-LTE, non-diffusive radiation transport and X-ray production is discussed. r 2005 Elsevier Ltd. All rights reserved. Keywords: Z-pinch plasma; K-shell X-ray production and spectroscopy; Opacity tungsten wires [2]. Strong j  B forces implode the wire array, which generates nearly 2 MJ of X-rays in o

  6. PRECONDITIONED BI-CONJUGATE GRADIENT METHOD FOR RADIATIVE TRANSFER IN SPHERICAL MEDIA

    SciTech Connect (OSTI)

    Anusha, L. S.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Paletou, F.; Leger, L. [Laboratoire d'Astrophysique de Toulouse-Tarbes, Universite de Toulouse, CNRS, 14 Ave. E. Belin, 31400 Toulouse (France)

    2009-10-10T23:59:59.000Z

    A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is proposed for the solution of the radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of the Pre-BiCG method in some benchmark tests shows that the method is quite versatile, and can handle difficult problems that may arise in astrophysical radiative transfer theory.

  7. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  8. Re ectance comparison between SCIAMACHY and a radiative transfer code in the UV

    E-Print Network [OSTI]

    Tilstra, Gijsbert

    Kon i nk l i j k Neder l ands Meteoro l og i sch Inst i tuut Re#29;ectance comparison between SCIAMACHY and a radiative transfer code in the UV L.G. Tilstra, G. van Soest, M. de Graaf, J.R. Acarreta, P#21;2400 nm. We compare its re#29;ectance mea- surements in the UV with calculations by a polarised radiative

  9. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    SciTech Connect (OSTI)

    Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People's Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People's Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People's Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People's Republic of China (China)

    2013-01-01T23:59:59.000Z

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  10. ARM - Publications: Science Team Meeting Documents: ARM Radiative Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM In TheACloudStatus,Newatmospheric profilesModeling

  11. Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering and ModeCoupling

    E-Print Network [OSTI]

    Ryzhik, Lenya

    Radiative Transfer of Sound Waves in a Random Flow: Turbulent Scattering and Mode­Coupling Albert the sound wave propagation in a random flow, whose mean flow is large compared with its fluctuation and the turbulent scattering and mode­coupling of sound waves. We show that, because of the flow­straining term

  12. Four Numerical Approaches for Solving the Radiative Transfer Equation in Magnetized White-Dwarf Atmospheres

    E-Print Network [OSTI]

    Stefan Jordan; Holger Schmidt

    2003-02-04T23:59:59.000Z

    We compare four different methods to calculate radiative transfer through a magnetized stellar atmosphere, and apply them to the case of magnetic white dwarfs. All methods are numerically stable enough to allow determination of the magnetic field structure, but distinctions between faster, simplifying, methods, and elaborate, but more CPU-time consuming, methods, can be made.

  13. BTRAM: An Interactive Atmospheric Radiative Transfer Model I.M. Chapman1

    E-Print Network [OSTI]

    Naylor, David A.

    radiance incident on the spectrometer/radiometer. Computer simulations, known as radiative transfer models source of opacity at submillimetre wavelengths where many objects emit most of their energy. Although high altitude observatories (such as the James Clerk Maxwell Telescope (JCMT) in Hawaii and the Atacama

  14. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL

    E-Print Network [OSTI]

    Heinemann, Detlev

    CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT IN BRAZIL Enio B-970, SP, Brazil. Phone + 55 12 39456741, Fax + 55 12 39456810, fernando@dge.inpe.br. Samuel L. Abreu, Hans, Federal University of Santa Catarina -UFSC, Florianópolis, 88040-900, (SC), Brazil. Richard Perez

  15. An Efficient Approach for Optical Radiative Transfer Tomography using the Spherical Harmonics Discrete Ordinates Method

    E-Print Network [OSTI]

    Levis, Aviad; Aides, Amit; Davis, Anthony B

    2015-01-01T23:59:59.000Z

    This paper introduces a method to preform optical tomography, using 3D radiative transfer as the forward model. We use an iterative approach predicated on the Spherical Harmonics Discrete Ordinates Method (SHDOM) to solve the optimization problem in a scalable manner. We illustrate with an application in remote sensing of a cloudy atmosphere.

  16. Shape-independent limits to near-field radiative heat transfer

    E-Print Network [OSTI]

    Miller, Owen D; Rodriguez, Alejandro W

    2015-01-01T23:59:59.000Z

    We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\\chi$ can emit and absorb radiation at enhanced rates bounded by $|\\chi|^2 / \\operatorname{Im} \\chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and s...

  17. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01T23:59:59.000Z

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  18. A convective-radiative heat transfer model for gas core reactors

    SciTech Connect (OSTI)

    Chen, G.; Anghaie, S. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31T23:59:59.000Z

    A convective-radiative heat transfer model is developed and used to predict the temperature distribution in gaseous fuel nuclear reactor cores. The axisymmetric, thin layer Navier-Stokes equations with diffusive radiation source term are the basis for this modeling approach. An algebraic turbulence model is used to calculate the eddy viscosity. The Rosseland diffusion approximation is used to model the radiative heat transfer. A hybrid implicit-explicit numerical scheme with Gauss-Seidel iterative process and a highly stretched grid system near wall is employed to solve the governing equations. Several cases with different internal heat generation rates are modeled and analyzed. Results of the temperature distribution, wall heat flux and the associated Nusselt number are presented. The influence of the internal heat generation rate and the wall temperature on the radiative and convective wall heat fluxes are discussed. At gas and wall temperatures close to 3,500 K and 1,600 K, respectively, the radiative and convective heat transfer rates have similar values.

  19. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Alan P. Boss

    2008-12-12T23:59:59.000Z

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (theta) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  20. Effect of radiative heat transfer on the coagulation dynamics of combustion-generated particles

    SciTech Connect (OSTI)

    Mackowski, D.W. (Auburn Univ., AL (United States)); Tassopoulos, M.; Rosner, D.E. (Yale Univ., New Haven, CT (United States))

    1994-01-01T23:59:59.000Z

    We examine the influences of radiation heat transfer on the size and number density evolution of small coagulating particles. On a microscopic level, radiative emission and/or absorption by the particle will perturb the gas temperature field adjacent to each particle. As a result of thermophoretic particle transport, the nonequilibrium condition can alter the collision rates with neighboring particles. A simplified analysis of the thermophoretic coagulation mechanism suggests that net radiative cooling of the particles can lead to an accelerated growth of [mu]m-sized particles, whereas net radiative heating can act to essentially freeze coagulation rates. On the macroscopic level, the addition or removal of heat in the gas through radiative absorption emission by the particle cloud can also significantly alter, through thermophoretic transport, the local particle number density. Under certain cases these effects can augment the accelerated coagulation rates that occur under radiative cooling conditions. We also examine the particular situation of equilibrium between particle cloud radiative absorption and emission - which results in no net macroscopic effect on the gas. 30 refs., 9 figs.

  1. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect (OSTI)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D., E-mail: dlott@illinois.edu [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-10T23:59:59.000Z

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30?THz range. Hot spot generation was studied using relatively low intensity (?100?W cm{sup ?2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ?30?K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ?30??m) than when the LWIR wavelength was strongly absorbed (absorption depth ?5??m). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  2. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows 

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01T23:59:59.000Z

    will examine the radiance model and various step models in order to determine their appropriateness to the flight regime of the AOTV. The final area to be investigated will be the effect of nonequilibrium corrections on the radiative heat transfer models... of T and e T will be valid as long as there is a reasonable amount vNs of nitrogen molecules in the flow. Radiative Heat Transfer Models For this study, four radiative heat transfer models were examined. One of these models is an optically thin radiance...

  3. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-15T23:59:59.000Z

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  4. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

    2010-01-05T23:59:59.000Z

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  5. Time-dependent Radiation Transfer in the Internal Shock Model Scenario for Blazar Jets

    E-Print Network [OSTI]

    Manasvita Joshi; Markus Boettcher

    2010-11-13T23:59:59.000Z

    We describe the time-dependent radiation transfer in blazar jets, within the internal shock model. We assume that the central engine, which consists of a black hole and an accretion disk, spews out relativistic shells of plasma with different velocity, mass, and energy. We consider a single inelastic collision between a faster (inner) and a slower (outer) moving shell. We study the dynamics of the collision and evaluate the subsequent emission of radiation via the synchrotron and synchrotron self Compton (SSC) processes after the interaction between the two shells has begun. The collision results in the formation of a forward shock (FS) and a reverse shock (RS) that convert the ordered bulk kinetic energy of the shells into magnetic field energy and accelerate the particles, which then radiate. We assume a cylindrical geometry for the emission region of the jet. We treat the self-consistent radiative transfer by taking into account the inhomogeneity in the photon density throughout the region. In this paper, we focus on understanding the effects of varying relevant input parameters on the simulated spectral energy distribution (SED) and spectral variability patterns.

  6. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    E-Print Network [OSTI]

    Shen, G; Wang, J G; McCann, J F; McLaughlin, B M

    2015-01-01T23:59:59.000Z

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all ...

  7. Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)

    E-Print Network [OSTI]

    Delgado-Correal, Camilo; Castaño, Gabriel

    2012-01-01T23:59:59.000Z

    Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

  8. Modulation and amplification of radiative far field heat transfer : towards a simple radiative thermal transistor

    E-Print Network [OSTI]

    Joulain, Karl; Drevillon, Jeremie; Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see, that the more the material is reflective in the metallic state, the more switching effect is realized whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO2 that exhibits an insulator-metallic transition at 68{\\textdegree}C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. F...

  9. Parametric analysis of radiative-convective heat transfer around a circular cylinder in a cross flow using the finite volume radiation solution method

    SciTech Connect (OSTI)

    Lee, K.H.; Lee, J.S.; Choi, M. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering

    1996-02-09T23:59:59.000Z

    In the outside vapor deposition (OVD) process, silica particles are deposited by thermophoretic force on the surface of a cylinder. This process is associated with complex physical phenomena such as heat transfer between a torch and a cylinder, chemical reaction for silica particle formation, and particle deposition. Since the OVD process is carried out in a very high temperature environment, radiative heat transfer should be taken into consideration. Here, the radiative-convective heat transfer around a circular cylinder in a cross flow of a radiating gas has been numerically analyzed using the finite volume radiation solution method in a nonorthogonal coordinate system. The cross-flow Reynolds number based on the cylinder diameter is 40, and the fluid Prandtl number is assumed to be 0.7. The radiative heat transfer coupled with convection is reasonably predicted by the finite volume radiation solution method. Distributions of the local Nusselt number are investigated according to the variation of radiation parameters such as conduction-to-radiation parameter, optical thickness, scattering albedo, and cylinder wall emissivity.

  10. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01T23:59:59.000Z

    A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

  11. PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    2012-01-01T23:59:59.000Z

    in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

  12. Eurotherm Seminar N81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81-1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION

    E-Print Network [OSTI]

    Boyer, Edmond

    Eurotherm Seminar N°81 Reactive Heat Transfer in Porous Media, Ecole des Mines d'Albi, France June 4-6, 2007 ET81- 1 HEAT TRANSFER BY SIMULTANEOUS RADIATION-CONDUCTION AND CONVECTION IN A HIGH for the packed bed. The comparison between the radiative heat transfer and the exchanges by conduction and forced

  13. Three-dimensional Radiative Transfer Modeling of the Polarization of the Sun's Continuous Spectrum

    E-Print Network [OSTI]

    J. Trujillo Bueno; N. Shchukina

    2008-12-18T23:59:59.000Z

    Here we formulate and solve the 3D radiative transfer problem of the polarization of the solar continuous radiation. Our approach takes into account not only the anisotropy of the continuum radiation, but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. Interestingly, our radiative transfer modeling in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the empirical data, significantly better than that obtained via the use of 1D atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of "hidden" magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the continuum intensity, which we have calculated taking into account the scattering contribution to the continuum source function. The overall agreement with the observed center-limb variation turns out to be impressive, but we find a hint that the model's temperature gradients in the continuum forming layers could be slightly too steep, perhaps because all current simulations of solar surface convection and magnetoconvection compute the radiative flux divergence ignoring the fact that the effective polarizability is not completely negligible, especially in the downward-moving intergranular lane plasma.

  14. Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose

    SciTech Connect (OSTI)

    E. Skidmore; Billings, K.; Hubbard, M.

    2010-03-24T23:59:59.000Z

    A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses of 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.

  15. A fast method for Stokes profile synthesis -- Radiative transfer modeling for ZDI and Stokes profile inversion

    E-Print Network [OSTI]

    T. A. Carroll; M. Kopf; K. G. Strassmeier

    2008-07-24T23:59:59.000Z

    The major challenges for a fully polarized radiative transfer driven approach to Zeeman-Doppler imaging are still the enormous computational requirements. In every cycle of the iterative interplay between the forward process (spectral synthesis) and the inverse process (derivative based optimization) the Stokes profile synthesis requires several thousand evaluations of the polarized radiative transfer equation for a given stellar surface model. To cope with these computational demands and to allow for the incorporation of a full Stokes profile synthesis into Doppler- and Zeeman-Doppler imaging applications as well as into large scale solar Stokes profile inversions, we present a novel fast and accurate synthesis method for calculating local Stokes profiles. Our approach is based on artificial neural network models, which we use to approximate the complex non-linear mapping between the most important atmospheric parameters and the corresponding Stokes profiles. A number of specialized artificial neural networks, are used to model the functional relation between the model atmosphere, magnetic field strength, field inclination, and field azimuth, on one hand and the individual components (I,Q,U,V) of the Stokes profiles, on the other hand. We performed an extensive statistical evaluation and show that our new approach yields accurate local as well as disk-integrated Stokes profiles over a wide range of atmospheric conditions. The mean rms errors for the Stokes I and V profiles are well below 0.2% compared to the exact numerical solution. Errors for Stokes Q and U are in the range of 1%. Our approach does not only offer an accurate approximation to the LTE polarized radiative transfer it, moreover, accelerates the synthesis by a factor of more than 1000.

  16. An Efficient Monte Carlo Algorithm for a Restricted Class of Scattering Problems in Radiation Transfer

    E-Print Network [OSTI]

    Alan M. Watson; William J. Henney

    2001-08-30T23:59:59.000Z

    We describe an efficient Monte Carlo algorithm for a restricted class of scattering problems in radiation transfer. This class includes many astrophysically interesting problems, including the scattering of ultraviolet and visible light by grains. The algorithm correctly accounts for multiply-scattered light. We describe the algorithm, present a number of important optimizations, and explicity show how the algorithm can be used to estimate quantities such as the emergent and mean intensity. We present two test cases, examine the importance of the optimizations, and show that this algorithm can be usefully applied to optically-thin problems, a regime sometimes considered limited to explicit single-scattering plus attenuation approximations.

  17. Analytical Green's function of the radiative transfer radiance for the infinite medium

    SciTech Connect (OSTI)

    Liemert, Andre; Kienle, Alwin [Institut fuer Lasertechnologien in der Medizin und Messtechnik, Helmholtzstrasse12, D-89081 Ulm (Germany)

    2011-03-15T23:59:59.000Z

    An analytical solution of the radiative transfer equation for the radiance caused by an isotropic source which is located in an infinitely extended medium was derived using the P{sub N} method. The results were compared with Monte Carlo simulations and excellent agreement was found. In addition, the radiance of the SP{sub N} approximation for the same geometry was derived. Comparison with Monte Carlo simulations showed that the SP{sub N} radiance, although being more exact than the radiance derived from diffusion theory, has relatively large errors in many relevant cases.

  18. Radiative heat transfer between two dielectric nanogratings in the scattering approach

    E-Print Network [OSTI]

    J. Lussange; R. Guérout; F. S. S. Rosa; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-06-01T23:59:59.000Z

    We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering approach. As a comparision with these exact results, we also evaluate the domain of validity of Derjaguin's Proximity Approximation (PA). We consider a system of two corrugated silica plates with various grating geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such a displacement.

  19. Multi--dimensional Cosmological Radiative Transfer with a Variable Eddington Tensor Formalism

    E-Print Network [OSTI]

    Nickolay Y. Gnedin; Tom Abel

    2001-06-15T23:59:59.000Z

    We present a new approach to numerically model continuum radiative transfer based on the Optically Thin Variable Eddington Tensor (OTVET) approximation. Our method insures the exact conservation of the photon number and flux (in the explicit formulation) and automatically switches from the optically thick to the optically thin regime. It scales as N logN with the number of hydrodynamic resolution elements and is independent of the number of sources of ionizing radiation (i.e. works equally fast for an arbitrary source function). We also describe an implementation of the algorithm in a Soften Lagrangian Hydrodynamic code (SLH) and a multi--frequency approach appropriate for hydrogen and helium continuum opacities. We present extensive tests of our method for single and multiple sources in homogeneous and inhomogeneous density distributions, as well as a realistic simulation of cosmological reionization.

  20. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    SciTech Connect (OSTI)

    Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

    2014-06-23T23:59:59.000Z

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  1. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31T23:59:59.000Z

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  2. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  3. Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances

    E-Print Network [OSTI]

    Shupe, Matthew

    climate is strongly influenced by an extensive and persistent pattern of cloud cover [Francis, 1997 properties can have significant effects on long- wave radiation, which dominates the radiation energy budgetRadiative and microphysical properties of Arctic stratus clouds from multiangle downwelling

  4. The dusty MOCASSIN: fully self-consistent 3D photoionisation and dust radiative transfer models

    E-Print Network [OSTI]

    B. Ercolano; M. J. Barlow; P. J. Storey

    2005-07-02T23:59:59.000Z

    We present the first 3D Monte Carlo (MC) photoionisation code to include a fully self-consistent treatment of dust radiative transfer (RT) within a photoionised region. This is the latest development (Version 2.0) of the gas-only photoionisation code MOCASSIN (Ercolano et al., 2003a), and employs a stochastic approach to the transport of radiation, allowing both the primary and secondary components of the radiation field to be treated self-consistently, whilst accounting for the scattering of radiation by dust grains mixed with the gas, as well as the absorption and emission of radiation by both the gas and the dust components. A set of rigorous benchmark tests have been carried out for dust-only spherically symmetric geometries and 2D disk configurations. MOCASSIN's results are found to be in agreement with those obtained by well established dust-only RT codes that employ various approaches to the solution of the RT problem. A model of the dust and of the photoionised gas components of the planetary nebula (PN) NGC 3918 is also presented as a means of testing the correct functioning of the RT procedures in a case where both gas and dust opacities are present. The two components are coupled via the heating of dust grains by the absorption of both UV continuum photons and resonance line photons emitted by the gas. The MOCASSIN results show agreement with those of a 1D dust and gas model of this nebula published previously, showing the reliability of the new code, which can be applied to a variety of astrophysical environments.

  5. Radiative charge transfer in cold and ultracold Sulfur atoms colliding with Protons

    E-Print Network [OSTI]

    G Shen; P C Stancil; J G Wang; J F McCann; B M McLaughlin

    2015-02-25T23:59:59.000Z

    Radiative decay processes at cold and ultra cold temperatures for Sulfur atoms colliding with protons are investigated. The MOLPRO quantum chemistry suite of codes was used to obtain accurate potential energies and transition dipole moments, as a function of internuclear distance, between low-lying states of the SH$^{+}$ molecular cation. A multi-reference configuration-interaction (MRCI) approximation together with the Davidson correction is used to determine the potential energy curves and transition dipole moments, between the states of interest, where the molecular orbitals (MO's) are obtained from state-averaged multi configuration-self-consistent field (MCSCF) calculations. The collision problem is solved approximately using an optical potential method to obtain radiative loss, and a fully two-channel quantum approach for radiative charge transfer. Cross sections and rate coefficients are determined for the first time for temperatures ranging from 10 $\\mu$ K up to 10,000 K. Results are obtained for all isotopes of Sulfur, colliding with H$^{+}$ and D$^{+}$ ions and comparison is made to a number of other collision systems.

  6. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars

    E-Print Network [OSTI]

    Lambert, Julien; Ryde, Nils; Faure, Alexandre

    2015-01-01T23:59:59.000Z

    Context: The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Result:. The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide va...

  7. A Realizability-Preserving Discontinuous Galerkin Method for the $M_1$ Model of Radiative Transfer

    SciTech Connect (OSTI)

    Frank, Martin [RWTH Aachen University; Olbrant, Edgar [RWTH Aachen University; Hauck, Cory D [ORNL

    2012-01-01T23:59:59.000Z

    The M{sub 1} model for radiative transfer coupled to a material energy equation in planar geometry is studied in this paper. For this model to be well-posed, its moment variables must fulfill certain realizability conditions. Our main focus is the design and implementation of an explicit Runge-Kutta discontinuous Galerkin method which, under a more restrictive CFL condition, guarantees the realizability of the moment variables and the positivity of the material temperature. An analytical proof for our realizability-preserving scheme, which also includes a slope-limiting technique, is provided and confirmed by various numerical examples. Among other things, we present accuracy tests showing convergence up to fourth-order, compare our results with an analytical solution in a Riemann problem, and consider a Marshak wave problem.

  8. Constraints on Blazar Jet Conditions During Gamma-Ray Flaring from Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, Margo F; Aller, Hugh D; Hovatta, Talvikki

    2013-01-01T23:59:59.000Z

    As part of a program to investigate jet flow conditions during GeV gamma-ray flares detected by Fermi, we are using UMRAO multi-frequency, centimeter-band total flux density and linear polarization monitoring observations to constrain radiative transfer models incorporating propagating shocks orientated at an arbitrary angle to the flow direction. We describe the characteristics of the model, illustrate how the data are used to constrain the models, and present results for three program sources with diverse characteristics: PKS 0420-01, OJ 287, and 1156+295. The modeling of the observed spectral behavior yields information on the sense, strength and orientation of the shocks producing the radio-band flaring; on the energy distribution of the radiating particles; and on the observer's viewing angle with respect to the jet independent of VLBI data. We present evidence that, while a random component dominates the jet magnetic field, a distinguishing feature of those radio events with an associated gamma-ray flar...

  9. An Analytical Model of Radiation-Induced Charge Transfer Inefficiency for CCD Detectors

    E-Print Network [OSTI]

    Short, Alexander; de Bruijne, Jos H J; Prod'homme, Thibaut

    2013-01-01T23:59:59.000Z

    The European Space Agency's Gaia mission is scheduled for launch in 2013. It will operate at L2 for 5 years, rotating slowly to scan the sky so that its two optical telescopes will repeatedly observe more than one billion stars. The resulting data set will be iteratively reduced to solve for the position, parallax and proper motion of every observed star. The focal plane contains 106 large area silicon CCDs continuously operating in a mode where the line transfer rate and the satellite rotation are in synchronisation. One of the greatest challenges facing the mission is radiation damage to the CCDs which will cause charge deferral and image shape distortion. This is particularly important because of the extreme accuracy requirements of the mission. Despite steps taken at hardware level to minimise the effects of radiation, the residual distortion will need to be calibrated during the pipeline data processing. Due to the volume and inhomogeneity of data involved, this requires a model which describes the effec...

  10. Radiation heat transfer in multitube, alkaline-metal thermal-to-electric converter

    SciTech Connect (OSTI)

    Tournier, J.M.P.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-02-01T23:59:59.000Z

    Vapor anode, multitube Alkali-Metal Thermal-to-Electric Converters (AMTECs) are being considered for a number of space missions, such as the NASA Pluto/Express (PX) and Europa missions, scheduled for the years 2004 and 2005, respectively. These static converters can achieve a high fraction of Carnot efficiency at relatively low operating temperatures. An optimized cell can potentially provide a conversion efficiency between 20 and 30 percent, when operated at a hot-side temperature of 1000--1200 K and a cold-side temperature of 550--650 K. A comprehensive modeling and testing program of vapor anode, multitube AMTEC cells has been underway for more than three years at the Air Force Research Laboratory`s Power and Thermal Group (AFRL/VSDVP), jointly with the University of New Mexico`s Institute for Space and Nuclear Power Studies. The objective of this program is to demonstrate the readiness of AMTECs for flight on future US Air Force space missions. A fast, integrated AMTEC Performance and Evaluation Analysis Model (APEAM) has been developed to support ongoing vacuum tests at AFRL and perform analyses and investigate potential design changes to improve the PX-cell performance. This model consists of three major components (Tournier and El-Genk 1998a, b): (a) a sodium vapor pressure loss model, which describes continuum, transition and free-molecule flow regimes in the low-pressure cavity of the cell; (b) an electrochemical and electrical circuit model; and (c) a radiation/conduction heat transfer model, for calculating parasitic heat losses. This Technical Note describes the methodology used to calculate the radiation view factors within the enclosure of the PX-cells, and the numerical procedure developed in this work to determine the radiation heat transport and temperatures within the cell cavity.

  11. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C., E-mail: pela@dark-cosmology.d, E-mail: jslarsen@astro.ku.d [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100, Copenhagen Oe (Denmark)

    2009-10-20T23:59:59.000Z

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  12. Infrared floodlight

    DOE Patents [OSTI]

    Levin, Robert E. (S. Hamilton, MA); English, George J. (Reading, MA)

    1986-08-05T23:59:59.000Z

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  13. Ly{alpha} RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT

    SciTech Connect (OSTI)

    Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100, Copenhagen Oe (Denmark); Razoumov, Alexei O. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary's University, Halifax, NS, B3H3C3 (Canada); Sommer-Larsen, Jesper [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstrasse 2, D-85748 Garching (Germany)], E-mail: pela@dark-cosmology.dk, E-mail: razoumov@ap.smu.ca, E-mail: jslarsen@astro.ku.dk

    2009-05-01T23:59:59.000Z

    A numerical code for solving various Ly{alpha} radiative transfer (RT) problems is presented. The code is suitable for an arbitrary, three-dimensional distribution of Ly{alpha} emissivity, gas temperature, density, and velocity field. Capable of handling Ly{alpha} RT in an adaptively refined grid-based structure, it enables detailed investigation of the effects of clumpiness of the interstellar (or intergalactic) medium. The code is tested against various geometrically and physically idealized configurations for which analytical solutions exist, and subsequently applied to three different simulated high-resolution 'Lyman-break galaxies', extracted from high-resolution cosmological simulations at redshift z = 3.6. Proper treatment of the Ly{alpha} scattering reveals a diversity of surface brightness (SB) and line profiles. Specifically, for a given galaxy the maximum observed SB can vary by an order of magnitude, and the total flux by a factor of 3-6, depending on the viewing angle. This may provide an explanation for differences in observed properties of high-redshift galaxies, and in particular a possible physical link between Lyman-break galaxies and regular Ly{alpha} emitters.

  14. HELIOS-K: An Ultrafast, Open-source Opacity Calculator for Radiative Transfer

    E-Print Network [OSTI]

    Grimm, Simon L

    2015-01-01T23:59:59.000Z

    We present an ultrafast opacity calculator for application to exoplanetary atmospheres, which we name HELIOS-K. It takes a line list as an input, computes the shape of each spectral line (e.g., a Voigt profile) and provides an option for grouping an enormous number of lines into a manageable number of bins. We implement a combination of Algorithm 916 and Gauss-Hermite quadrature to compute the Voigt profile, write the code in CUDA and optimise the computation for graphics processing units (GPUs). We use the k-distribution method to reduce $\\sim 10^5$ to $10^8$ lines to $\\sim 10$ to $10^4$ wavenumber bins, which may then be used for radiative transfer, atmospheric retrieval and general circulation models. We demonstrate that the resampling of the k-distribution function, within each bin, is an insignificant source of error across a broad range of wavenumbers and column masses. By contrast, the choice of line-wing cutoff for the Voigt profile is a significant source of error and affects the value of the compute...

  15. The evolved circumbinary disk of AC Her: a radiative transfer, interferometric and mineralogical study

    E-Print Network [OSTI]

    Hillen, M; Menu, J; Van Winckel, H; Min, M; Mulders, G D

    2015-01-01T23:59:59.000Z

    We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous as well as of the crystalline dust. We present very high-quality mid-IR interferometric data that were obtained with MIDI/VLTI. We analyse the MIDI data and the full SED, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69~$\\mu$m band and the 11.3~$\\mu$m signatures in the interferometric data. All the data are well fitted. The inclination and position angle of the disk are well determined at i=50+-8 and PA=305+-10. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. Significant grain growth has occurred, with mm-sized ...

  16. The use of high-performance computing to solve participating media radiative heat transfer problems-results of an NSF workshop

    SciTech Connect (OSTI)

    Gritzo, L.A.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (United States); Tong, T.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering

    1995-01-11T23:59:59.000Z

    Radiation in participating media is an important transport mechanism in many physical systems. The simulation of complex radiative transfer has not effectively exploited high-performance computing capabilities. In response to this need, a workshop attended by members active in the high-performance computing community, members active in the radiative transfer community, and members from closely related fields was held to identify how high-performance computing can be used effectively to solve the transport equation and advance the state-of-the-art in simulating radiative heat transfer. This workshop was held on March 29-30, 1994 in Albuquerque, New Mexico and was conducted by Sandia National Laboratories. The objectives of this workshop were to provide a vehicle to stimulate interest and new research directions within the two communities to exploit the advantages of high-performance computing for solving complex radiative heat transfer problems that are otherwise intractable.

  17. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter

  18. Infrared Inspection Techniques 

    E-Print Network [OSTI]

    Hill, A. B.; Bevers, D. V.

    1979-01-01T23:59:59.000Z

    Infrared scanning equipment has been used at Amoco's Texas City refinery since 1971 as an inspection tool. A camera scans the field of view and focuses the infrared radiation on a detector which converts the infrared signal to an electrical signal...

  19. Infrared Inspection Techniques

    E-Print Network [OSTI]

    Hill, A. B.; Bevers, D. V.

    1979-01-01T23:59:59.000Z

    Infrared scanning equipment has been used at Amoco's Texas City refinery since 1971 as an inspection tool. A camera scans the field of view and focuses the infrared radiation on a detector which converts the infrared signal to an electrical signal...

  20. Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique

    E-Print Network [OSTI]

    McCauley, Alexander P; Krüger, Matthias; Johnson, Steven G

    2011-01-01T23:59:59.000Z

    We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \\emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.

  1. Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    E-Print Network [OSTI]

    Moncada-Villa, Edwin; Garcia-Vidal, Francisco J; Garcia-Martin, Antonio; Cuevas, Juan Carlos

    2015-01-01T23:59:59.000Z

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semicond...

  2. PPPL3301, Preprint: May 1998, UC426 Design Study of a Visible/Infrared Periscope for Intense Radiation

    E-Print Network [OSTI]

    PPPL­3301, Preprint: May 1998, UC­426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

  3. PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense Radiation

    E-Print Network [OSTI]

    PPPL-3301, Preprint: May 1998, UC-426 Design Study of a Visible/Infrared Periscope for Intense projected heating of the reflective optics themselves to several hundred degrees Celsius. Tests of beryllium regions during operation and infrared measurement of the surface temperature of the first wall structures

  4. Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign 

    E-Print Network [OSTI]

    Baugher, Elizabeth

    2012-02-14T23:59:59.000Z

    Surface downward far-infrared (far-IR) spectra were collected from NASA’s Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is known...

  5. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    E-Print Network [OSTI]

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01T23:59:59.000Z

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  6. StaRMAP - A second order staggered grid method for spherical harmonics moment equations of radiative transfer

    E-Print Network [OSTI]

    Benjamin Seibold; Martin Frank

    2014-06-12T23:59:59.000Z

    We present a simple method to solve spherical harmonics moment systems, such as the the time-dependent $P_N$ and $SP_N$ equations, of radiative transfer. The method, which works for arbitrary moment order $N$, makes use of the specific coupling between the moments in the $P_N$ equations. This coupling naturally induces staggered grids in space and time, which in turn give rise to a canonical, second-order accurate finite difference scheme. While the scheme does not possess TVD or realizability limiters, its simplicity allows for a very efficient implementation in Matlab. We present several test cases, some of which demonstrate that the code solves problems with ten million degrees of freedom in space, angle, and time within a few seconds. The code for the numerical scheme, called StaRMAP (Staggered grid Radiation Moment Approximation), along with files for all presented test cases, can be downloaded so that all results can be reproduced by the reader.

  7. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  8. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  9. Study of heat transfer in attics with a small scale simulator

    E-Print Network [OSTI]

    Katipamula, Srinivas

    1985-01-01T23:59:59.000Z

    University Chairman of Advisory Committee: W. D. Turner An experimental study concerned with different modes of heat. transfer in fibrous and cellulose insulating material is presented. A series of experiments was conducted using an attic simulator... to deter- mine the effects of ventilation on attic heat transfer. and the effect of infrared radiation on the thcrn&al conductivity of th& insulation sys- tem and on attic heat transfer. All the tests were perl'ormed at, steady state conditions...

  10. INFRARED RADIATIVE COOLING

    E-Print Network [OSTI]

    Berdahl, Paul

    2011-01-01T23:59:59.000Z

    Hydrogen Requirement for Coal Slurry Reactor . . . . . . .Flow of Gas-Liquid and Gas-Coal Slurry Mixtures in V e r t ivelocity for 1 f t /min coal slurry flow in a reactor of 1 f

  11. INFRARED RADIATIVE COOLING

    E-Print Network [OSTI]

    Berdahl, Paul

    2011-01-01T23:59:59.000Z

    n a s u l f u r dioxide scrubber. Application to ZnClg/ MeOHTo f=0.50 Symbols x C 4 scrubber) Molar flow y f=0.75 H n -can be made to include the scrubber in the f i n a l design.

  12. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II: Ionization structure of helium at periastron

    E-Print Network [OSTI]

    Clementel, Nicola; Kruip, Chael J H; Paardekooper, Jan-Pieter

    2015-01-01T23:59:59.000Z

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-year orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric ($e \\sim 0.9$) binary orbit. The secondary star ($\\eta_{\\mathrm{B}}$) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of $\\eta$ Car's interacting winds at periastron. Using the SimpleX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the $\\eta$ Car system for two different primary star mass-loss rates ($\\dot{M}_{\\eta_{\\mathrm{A}}}$). Using previous results from simulations at ap...

  13. Optical characterization of free electron concentration in heteroepitaxial InN layers using Fourier transform infrared spectroscopy and a 2 Multiplication-Sign 2 transfer-matrix algebra

    SciTech Connect (OSTI)

    Katsidis, C. C. [Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 71003 Heraklion-Crete (Greece); Ajagunna, A. O.; Georgakilas, A. [Microelectronics Research Group, IESL, FORTH, P.O. Box 1385, 71110 Heraklion-Crete (Greece); Physics Department, University of Crete, P.O. Box 2208, 71003 Heraklion-Crete (Greece)

    2013-02-21T23:59:59.000Z

    Fourier Transform Infrared (FTIR) reflectance spectroscopy has been implemented as a non-destructive, non-invasive, tool for the optical characterization of a set of c-plane InN single heteroepitaxial layers spanning a wide range of thicknesses (30-2000 nm). The c-plane (0001) InN epilayers were grown by plasma-assisted molecular beam epitaxy (PAMBE) on GaN(0001) buffer layers which had been grown on Al{sub 2}O{sub 3}(0001) substrates. It is shown that for arbitrary multilayers with homogeneous anisotropic layers having their principal axes coincident with the laboratory coordinates, a 2 Multiplication-Sign 2 matrix algebra based on a general transfer-matrix method (GTMM) is adequate to interpret their optical response. Analysis of optical reflectance in the far and mid infrared spectral range has been found capable to discriminate between the bulk, the surface and interface contributions of free carriers in the InN epilayers revealing the existence of electron accumulation layers with carrier concentrations in mid 10{sup 19} cm{sup -3} at both the InN surface and the InN/GaN interface. The spectra could be fitted with a three-layer model, determining the different electron concentration and mobility values of the bulk and of the surface and the interface electron accumulation layers in the InN films. The variation of these values with increasing InN thickness could be also sensitively detected by the optical measurements. The comparison between the optically determined drift mobility and the Hall mobility of the thickest sample reveals a value of r{sub H} = 1.49 for the Hall factor of InN at a carrier concentration of 1.11 Multiplication-Sign 10{sup 19} cm{sup -3} at 300 Degree-Sign {Kappa}.

  14. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect (OSTI)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  15. Radiative transfer within non Beerian porous media with semitransparent and opaque phases in non equilibrium;

    E-Print Network [OSTI]

    Boyer, Edmond

    equilibrium; Application to reflooding of a nuclear reactor. Miloud Chahlafia,b,c , Fabien Belleta,b , Florian Transfer 55, 13-14 (2012) 3666-3676" DOI : 10.1016/j.ijheatmasstransfer.2012.02.067 #12;nuclear reactor flux Indexes - At the calculation point -+ Dimensionless 3 hal-00680676,version1-19Mar2012 #12;-(j) jth

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2014-01-01T23:59:59.000Z

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D ? PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more »We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  17. Order Reduction of the Radiative Heat Transfer Model for the Simulation of Plasma Arcs

    E-Print Network [OSTI]

    Fagiano, Lorenzo

    2015-01-01T23:59:59.000Z

    An approach to derive low-complexity models describing thermal radiation for the sake of simulating the behavior of electric arcs in switchgear systems is presented. The idea is to approximate the (high dimensional) full-order equations, modeling the propagation of the radiated intensity in space, with a model of much lower dimension, whose parameters are identified by means of nonlinear system identification techniques. The low-order model preserves the main structural aspects of the full-order one, and its parameters can be straightforwardly used in arc simulation tools based on computational fluid dynamics. In particular, the model parameters can be used together with the common approaches to resolve radiation in magnetohydrodynamic simulations, including the discrete-ordinate method, the P-N methods and photohydrodynamics. The proposed order reduction approach is able to systematically compute the partitioning of the electromagnetic spectrum in frequency bands, and the related absorption coefficients, tha...

  18. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11T23:59:59.000Z

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  19. Multigroup half space moment approximations to the radiative heat transfer equations q

    E-Print Network [OSTI]

    Coudière, Yves

    cooling) over astrophysics to combustion (e.g., in gas turbine combustion chambers). Since radiative heat into direction l 2 ½À1; 1. Furthermore, T ðx; tÞ is the material temperature. The heat conductivity is denoted with the following boundary conditions. For the material temper

  20. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions

    E-Print Network [OSTI]

    Myneni, Ranga B.

    is investigated with 1-km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to different coarse into biogeophysical (energy and water exchanges) and biogeochemical (carbon and volatile organic compound exchanges. Vegetation leaf area index governs net radiation and its expenditure (energy balance), net primary production

  1. PARALLEL COMPUTATIONS OF RADIATIVE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD

    E-Print Network [OSTI]

    Utah, University of

    of the important radiatively active species (CO2, H2O, soot) and temperature, which are calculated on the spatially increasingly tractable. Issues relating to the use of high-performance computing in participating media heat properties. First we summarize previous applications of spatial decomposition strategies to finite

  2. Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels

    E-Print Network [OSTI]

    Ko, Min Seok

    2009-05-15T23:59:59.000Z

    ? =0.1, 0.2, and 0.4) and scattering albedo ( ?=0, 0.25, 0.5, 0.75 and 1). Variation of thermophysical properties with temperature was considered in this study. In this work consideration was given only to cooling. Effects of those radiative...

  3. Radiative transfer in the earth's atmosphere-ocean system using Monte Carlo techniques

    E-Print Network [OSTI]

    Bradley, Paul Andrew

    1987-01-01T23:59:59.000Z

    TRANSFER PROBLEM MONTE CARLO METHOD Assumptions of the Model Photon Pathlength Emulation Techniques Sampling Scattering Functions: Angles and Probabilities Emulation of an Interface Computing the Radiance by Statistical Estimation Determination... of Direction Cosines After Scattering Flux Estimation into Detectors Determination of a New Scattering Point Photon Trajectories Direct Flux and Radiance From the Ocean Bottonr Accounting for Multiple Orders of Scattering With the Bottom Computation...

  4. Codes for optically thick and hot photoionized media - Radiative transfer and new developments

    E-Print Network [OSTI]

    Anne-Marie Dumont; Suzy Collin

    2001-03-20T23:59:59.000Z

    We describe a code designed for hot media {(T $\\ge$} a few 10$^4$ K), optically thick to Compton scattering. It computes the structure of a plane-parallel slab of gas in thermal and ionization equilibrium, illuminated on one side or on both sides by a given spectrum. This code has been presented in a previous paper (Dumont, Abrassart & Collin 2000), where several aspects were already discussed. So we focus here mainly on the recent developments. Presently the code solves the transfer of the continuum with the Accelerated Lambda Iteration method (ALI) and that of the lines in a two stream Eddington approximation, without using the local escape probability formalism to approximate the line transfer. This transfer code is coupled with a Monte Carlo code which allows to take into account direct and inverse Compton diffusions, and to compute the spectrum emitted up to MeV energies, in any geometry. The influence of a few physical parameters is shown, and the importance of the density and pressure distribution (constant density, pressure equilibrium, or hydrostatic equilibrium) is stressed. Recent improvements in the treatment of the atomic data are described, and foreseen developments are mentioned.

  5. International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and

    E-Print Network [OSTI]

    Jaehne, Bernd

    2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

  6. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-12-01T23:59:59.000Z

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more »allowing for more realistic representation of cloud radiation interactions in large-scale models.« less

  7. The radiative heat transfer between a rotating nanoparticle and a plane surface

    E-Print Network [OSTI]

    Vahid Ameri; Mehdi Shafei Aporvari; Fardin Kheirandish

    2015-06-03T23:59:59.000Z

    Based on a microscopic approach, we propose a Lagrangian for the combined system of a rotating dielectric nanoparticle above a plane surface in the presence of electromagnetic vacuum fluctuations. In the framework of canonical quantization, the electromagnetic vacuum field is quantized in the presence of dielectric fields describing the nanoparticle and a semi-infinite dielectric with planar interface. The radiative heat power absorbed by the rotating nanoparticle is obtained and the result is in agreement with previous results when the the rotational frequency of the nanoparticle is zero or much smaller than the relaxation frequency of the dielectrics. The well known near field effect is reexamined and discussed in terms of the rotational frequency. The radiative heat power absorbed by the nanoparticle for well-known peak frequencies, is plotted in terms of the rotational frequency showing an interesting effect resembling a phase transition around a critical frequency, determined by the relaxation frequency of the dielectrics.

  8. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong [Brookhaven National Laboratory (BNL), Upton, NY (United States); Liu, Yangang [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-12-01T23:59:59.000Z

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  9. Microwave emissivity of fresh water ice--Lake ice and Antarctic ice pack--Radiative transfer simulations versus satellite radiances

    E-Print Network [OSTI]

    Mills, Peter

    2012-01-01T23:59:59.000Z

    Microwave emissivity models of sea ice are poorly validated empirically. Typical validation studies involve using averaged or stereotyped profiles of ice parameters against averaged radiance measurements. Measurement sites are rarely matched and even less often point-by-point. Because of saline content, complex permittivity of sea ice is highly variable and difficult to predict. Therefore, to check the validity of a typical, plane-parallel, radiative-transfer-based ice emissivity model, we apply it to fresh water ice instead of salt-water ice. Radiance simulations for lake ice are compared with measurements over Lake Superior from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E). AMSR-E measurements are also collected over Antarctic icepack. For each pixel, a thermodynamic model is driven by four years of European Center for Medium Range Weather Forecasts (ECMWF) reanalysis data and the resulting temperature profiles used to drive the emissivity model. The results suggest that the relatively simple ...

  10. Semi-Analytic Solutions to the Radiative Transfer Equations via Heterogeneous Computing 

    E-Print Network [OSTI]

    Holladay, Daniel Alphin

    2014-12-10T23:59:59.000Z

    to compute reaction rates for many different thermonuclear processes such as inertial confinement fusion. There are several large scale computer codes such as xRage developed at Los Alamos National Laboratory (LANL), KULL developed at Lawrence Livermore Na... spherical radiation source with A = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii 1. INTRODUCTION If fusion energy is to be harnessed on earth, a thorough understanding of the regime called high energy density physics must...

  11. Semi-Analytic Solutions to the Radiative Transfer Equations via Heterogeneous Computing

    E-Print Network [OSTI]

    Holladay, Daniel Alphin

    2014-12-10T23:59:59.000Z

    to compute reaction rates for many different thermonuclear processes such as inertial confinement fusion. There are several large scale computer codes such as xRage developed at Los Alamos National Laboratory (LANL), KULL developed at Lawrence Livermore Na... spherical radiation source with A = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii 1. INTRODUCTION If fusion energy is to be harnessed on earth, a thorough understanding of the regime called high energy density physics must...

  12. Simulation of Infrared Laser Heating of Silica Using Heat Conduction and Multifrequency Radiation Diffusion Equations Adapted for Homogeneous Refractive Lossy Media

    SciTech Connect (OSTI)

    Shestakov, A I; Matthews, M J; Vignes, R M; Stolken, J S

    2010-10-28T23:59:59.000Z

    Localized, transient heating of materials using micro-scale, highly absorbing laser light has been used in many industries to anneal, melt and ablate material with high precision. Accurate modeling of the relative contributions of conductive, convective and radiative losses as a function of laser parameters is essential to optimizing micro-scale laser processing of materials. In bulk semi-transparent materials such as silicate glass melts, radiation transport is known to play a significantly larger role as the temperature increases. Conventionally, radiation is treated in the frequency-averaged diffusive limit (Rosseland approximation). However, the role and proper treatment of radiative processes under rapidly heated, high thermal gradient conditions, often created through laser-matter interactions, is at present not clear. Starting from the radiation transport equation for homogeneous, refractive lossy media, they derive the corresponding time-dependent multi-frequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The radiation equations are coupled to a diffusion equation for the matter temperature. They are interested in modeling infrared laser heating of silica over sub-millimeter length scales, and at possibly rapid rates. Hence, in contrast to related work, they retain the temporal derivative of the radiation field. They derive boundary conditions at a planar air-silica interface taking account of reflectivities obtained from the Fresnel relations that include absorption. The effect of a temperature-dependent absorption index is explored through construction of a multi-phonon dielectric function that includes mode dispersion. The spectral dimension is discretized into a finite number of intervals yielding a system of multigroup diffusion equations. Simulations are presented. To demonstrate the bulk heat loss due to radiation and the effect of the radiation's temporal derivative, they model cooling of a silica slab, initially at 2500 K, for 10 s. Retaining the derivative enables correctly modeling the loss of photons initially present in the slab. Other simulations model irradiating silica discs (of approximately 5 mm radii and thickness) with a CO2 laser: {lambda} = 10.59 and 4.6 um, Gaussian profile, r{sub 0} = 0.5 mm for 1/e decay. By surrounding the disks in room-temperature air, they make use of the boundary conditions described above.

  13. Validation of the Poisson Stochastic Radiative Transfer Model Against Cloud Cascade Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps toValidatingCloudPoisson Stochastic Radiative

  14. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-01-01T23:59:59.000Z

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore »the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  15. 3D Lya radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lya emission in high-z starbursts

    E-Print Network [OSTI]

    Schaerer, Daniel

    2008-01-01T23:59:59.000Z

    Using our 3D Lya radiation transfer code, we compute the radiation transfer of Lya and UV continuum photons including dust. Observational constraints on the neutral gas (column density, kinematics, etc.) are taken from other analysis of this object. RESULTS: The observed Lya profile of MS 1512--cB58 is reproduced for the first time taking radiation transfer and all observational constraints into account. The observed absorption profile is found to result naturally from the observed amount of dust and the relatively high HI column density. Radiation transfer effects and suppresion by dust transform a strong intrinsic Lya emission with EW(Lya)>~ 60 Ang into the observed faint superposed Lya emission peak. We propose that the vast majority of LBGs have intrinsically EW(Lya)~60-80 Ang or larger, and that the main physical parameter responsible for the observed variety of Lya strengths and profiles in LBGs is N_H and the accompanying variation of the dust content. Observed EW(Lya) distributions, Lya luminosity fun...

  16. Astrophysical S factor for the radiative capture (12)N(p,gamma)(13)O determined from the (14)N((12)N,(13)O)(13)C proton transfer reaction

    E-Print Network [OSTI]

    Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, Carl A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.; Zhai, Y.; Carstoiu, F.; Burjan, V.; Kroha, V.

    2009-01-01T23:59:59.000Z

    The cross section of the radiative proton capture reaction on the drip line nucleus (12)N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the (14)N((12)N,(13)O)(13)C proton transfer reaction at 12 Me...

  17. On the use of a nascent delta function in radiative-transfer calculations for multi-layer media subject to Fresnel boundary

    E-Print Network [OSTI]

    Siewert, Charles E.

    subject to Fresnel boundary and interface conditions R.D.M. Garcia a,Ã, C.E. Siewert b a Instituto de: Radiative transfer Nascent delta function Fresnel conditions Discrete-ordinates method a b s t r a c in a plane-parallel, multi-layer medium subject to Fresnel boundary and interface conditions. As a result

  18. Infrared Thermometer (IRT) Handbook

    SciTech Connect (OSTI)

    VR Morris

    2006-10-30T23:59:59.000Z

    The Infrared Thermometer (IRT) is a ground-based radiation pyrometer that provides measurements of the equivalent blackbody brightness temperature of the scene in its field of view. The downwelling version has a narrow field of view for measuring sky temperature and for detecting clouds. The upwelling version has a wide field of view for measuring the narrowband radiating temperature of the ground surface.

  19. Nanowire-based frequency-selective capacitive photodetector for resonant detection of infrared radiation at room temperature

    SciTech Connect (OSTI)

    Bandyopadhyay, Saumil, E-mail: saumilb@mit.edu [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2014-07-14T23:59:59.000Z

    Characteristics of a capacitive infrared photodetector that works at room temperature by registering a change in capacitance upon illumination are reported. If used in an ideal resonant inductor-resistor-capacitor circuit, it can exhibit zero dark current, zero standby power dissipation, infinite detectivity, and infinite light-to-dark contrast ratio. It is also made frequency-selective by employing semiconductor nanowires that selectively absorb photons of energies close to the nanowire's bandgap. Based on measured parameters, the normalized detectivity is estimated to be ?3?×?10{sup 7} Jones for 1.6??m IR wavelength at room temperature.

  20. Coherent Radiation in Gamma-Ray Bursts and Relativistic Collisionless Shocks

    E-Print Network [OSTI]

    Kunihito Ioka

    2005-10-27T23:59:59.000Z

    We suggest that coherent radiation may occur in relativistic collisionless shocks via two-stream Weibel instabilities. The coherence amplifies the radiation power by many orders [$\\sim 10^{12}$ in Gamma-Ray Bursts (GRBs)] and particles cool very fast before being randomized. We imply (1) GRBs accompany strong infrared emission, (2) protons efficiently transfer energy to electrons and (3) prompt GRBs might be the upscattered coherent radiation.

  1. Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign

    E-Print Network [OSTI]

    Baugher, Elizabeth

    2012-02-14T23:59:59.000Z

    to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but had little effect on the total far-IR radiative forcing. Furthermore, these far...

  2. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  3. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  4. Proceedings of the 7th International Symposium on Radiative Transfer, RAD-13 June 28, 2013, Kuadasi, Turkey

    E-Print Network [OSTI]

    , Kuadasi, Turkey RAD-13-040 SPECTRAL RADIATIVE PROPERTIES OF THREE-DIMENSIONALLY ORDERED MACROPOROUS CERIA

  5. Proceedings of the 7th International Symposium on Radiative Transfer, RAD-13 June 2-8, 2013, Kuadasi, Turkey

    E-Print Network [OSTI]

    which should be as simple as possible to be implemented in the combined heat transfer model. In general as a component of the multidimensional combined heat transfer model for soft thermal treatment of superficial

  6. Chaotic fluctuation of temperature on environmental interface exchanging energy by visible and infrared radiation, convection and conduction

    E-Print Network [OSTI]

    D. T. Miahilovi?; D. Kapor; M. Budin?evi?

    2007-02-02T23:59:59.000Z

    The concept of environmental interface is defined and analyzed from the point of view of the possible source of non-standard behaviour. The energy balance equation is written for the interface where all kinds of energy transfer occur. It is shown that under certain conditions, the discrete version of the equation for the temperature time rate turns in to the well-known logistic equation and the conditions for chaotic behaviour are studied. They are determined by the Lyapunov exponent. The realistic situation when the coefficients of the equation vary with time, is studied for the Earth-environment general system.

  7. Infrared Emission from AGN

    E-Print Network [OSTI]

    D. B. Sanders

    1999-03-30T23:59:59.000Z

    Infrared observations of complete samples of active galactic nuclei (AGN) have shown that a substantial fraction of their bolometric luminosity is emitted at wavelengths ~8-1000microns. In radio-loud and Blazar-like objects much of this emission appears to be direct non-thermal synchrotron radiation. However, in the much larger numbers of radio-quiet AGN it is now clear that thermal dust emission is responsible for the bulk of radiation from the near-infrared through submillimeter wavelengths. Luminous infrared-selected AGN are often surrounded by powerful nuclear starbursts, both of which appear to be fueled by enormous supplies of molecular gas and dust funneled into the nuclear region during the strong interaction/merger of gas rich disks. All-sky surveys in the infrared show that luminous infrared AGN are at least as numerous as optically-selected AGN of comparable bolometric luminosity, suggesting that AGN may spend a substantial fraction of their lifetime in a dust-enshrouded phase. The space density of luminous infrared AGN at high redshift may be sufficient to account for much of the X-Ray background, and for a substantial fraction of the far-infrared background as well. These objects plausibly represent a major epoch in the formation of spheroids and massive black holes (MBH).

  8. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-11-29T23:59:59.000Z

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  9. Infra-red signature neutron detector

    DOE Patents [OSTI]

    Bell, Zane William (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn Allen (Oak Ridge, TN) [Oak Ridge, TN

    2009-10-13T23:59:59.000Z

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  10. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    E-Print Network [OSTI]

    Kitzmann, D; Rauer, H

    2013-01-01T23:59:59.000Z

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  11. The effects of small ice crystals on the infrared radiative properties of cirrus clouds. Semiannual status report, 1 October 1989-31 March 1990

    SciTech Connect (OSTI)

    Takano, Y.; Liou, K.N.; Asano, S.; Heymsfield, A.; Minnis, P.

    1990-04-01T23:59:59.000Z

    To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds must be available. Recent aircraft observations (Platt et al.) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4.

  12. Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation

    SciTech Connect (OSTI)

    Vlasenko, N. A., E-mail: vlasenko@isp.kiev.ua; Oleksenko, P. F.; Mukhlyo, M. A.; Veligura, L. I. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)] [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

    2013-08-15T23:59:59.000Z

    The causes of changes that occur in a thin-film electroluminescent metal-insulator-semiconductor-insulator-metal waveguide structure based on ZnS:Cr (Cr concentration of {approx}4 Multiplication-Sign 10{sup 20} cm{sup -3}) upon lasing ({lambda} Almost-Equal-To 2.6 {mu}m) and that induce lasing cessation are studied. It is established that lasing ceases because of light-scattering inhomogeneities formed in the structure and, hence, optical losses enhance. The origin of the inhomogeneities and the causes of their formation are clarified by studying the surface topology and the crystal structure of constituent layers of the samples before and after lasing. The studies are performed by means of atomic force microscopy and X-ray radiography. It is shown that a substantial increase in the sizes of grains on the surface of the structure is the manifestation of changes induced in the ZnS:Cr film by recrystallization. Recrystallization is initiated by local heating by absorbed laser radiation in existing Cr clusters and quickened by a strong electric field (>1 MV cm{sup -1}). The changes observed in the ZnS:Cr film are as follows: the textured growth of ZnS crystallites, an increase in the content of Cr clusters, and the appearance of some CrS and a rather high ZnO content. Some ways for improving the stability of lasing in the ZnS:Cr-based waveguide structures are proposed.

  13. Hydrogen H$?$ line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer

    E-Print Network [OSTI]

    Jiri Stepan; Petr Heinzel; Sylvie Sahal-Brechot

    2007-01-22T23:59:59.000Z

    Context. We present a theoretical review of the effect of impact polarization of a hydrogen H$\\alpha$ line due to an expected proton beam bombardment in solar flares. Aims. Several observations indicate the presence of the linear polarization of the hydrogen H$\\alpha$ line observed near the solar limb above 5% and preferentially in the radial direction. We theoretically review the problem of deceleration of the beam originating in the coronal reconnection site due to its interaction with the chromospheric plasma, and describe the formalism of the density matrix used in our description of the atomic processes and the treatment of collisional rates. Methods. We solve the self-consistent NLTE radiation transfer problem for the particular semiempirical chromosphere models for both intensity and linear polarization components of the radiation field. Results. In contrast to recent calculations, our results show that the energy distribution of the proton beam at H$\\alpha$ formation levels and depolarizing collisions by background electrons and protons cause a significant reduction of the effect below 0.1%. The radiation transfer solution shows that tangential resonance-scattering polarization dominates over the impact polarization effect in all considered models. Conclusions. In the models studied, proton beams are unlikely to be a satisfying explanation for the observed linear polarization of the H$\\alpha$ line.

  14. Satellite Infrared Soundings From NOAA Spacecraft

    E-Print Network [OSTI]

    NOAA Tec / Satellite Infrared Soundings From NOAA Spacecraft #12;U.S. DEPARTMENT OF COMMERCE Infrared Soundings From NOAA Spacecraft L. M. McMillin D. Q. Wark J. M. Siomkajlo P. G. Abel A. Werbowetzki. E. Bittner C. M. Hayden #12;UDC 551.507.362.2:551.508.2:551.501.7:535-1 Physics Infrared radiation

  15. HYDRODYNAMIC AND RADIATIVE MODELING OF TEMPORAL H{alpha} EMISSION V/R VARIATIONS CAUSED BY DISCONTINUOUS MASS TRANSFER IN BINARIES

    SciTech Connect (OSTI)

    Chadima, Pavel; Harmanec, Petr; Wolf, Marek [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Firt, Roman [Mathematical Institute, University of Bayreuth, D-95447 Bayreuth (Germany); Ruzdjak, Domagoj; Bozic, Hrvoje [Hvar Observatory, Faculty of Geodesy, University of Zagreb, 10000 Zagreb (Croatia); Koubsky, Pavel, E-mail: pavel.chadima@gmail.com [Astronomical Institute of the Academy of Sciences, CZ-251 65 Ondrejov (Czech Republic)

    2011-07-15T23:59:59.000Z

    H{alpha} emission V/R variations caused by discontinuous mass transfer in interacting binaries with a rapidly rotating accreting star are modeled qualitatively for the first time. The program ZEUS-MP was used to create a non-linear three-dimensional hydrodynamical model of a development of a blob of gaseous material injected into an orbit around a star. It resulted in the formation of an elongated disk with a slow prograde revolution. The LTE radiative transfer program SHELLSPEC was used to calculate the H{alpha} profiles originating in the disk for several phases of its revolution. The profiles have the form of a double emission and exhibit V/R and radial velocity variations. However, these variations should be a temporal phenomenon since imposing a viscosity in the given model would lead to a circularization of the disk and fading-out of the given variations.

  16. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm

    E-Print Network [OSTI]

    Gallet, J.-C.; Domine, F.; Zender, C. S; Picard, G.

    2009-01-01T23:59:59.000Z

    Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared

  17. 2D radiative modelling of He I spectral lines formed in solar prominences

    E-Print Network [OSTI]

    L. Leger; F. Paletou

    2008-07-11T23:59:59.000Z

    We present preliminary results of 2D radiative modelling of He I lines in solar prominences, using a new numerical code developed by us (Leger, Chevallier and Paletou 2007). It treats self-consistently the radiation transfer and the non-LTE statistical equilibrium of H and, in a second stage, the one of He using a detailed atomic model. Preliminary comparisons with new visible plus near-infrared observations made at high spectral resolution with THeMIS are very satisfactory.

  18. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, Thomas J. (Alamo, CA)

    1997-01-01T23:59:59.000Z

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  19. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, T.J.

    1997-01-21T23:59:59.000Z

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  20. DESCRIPTION OF A SPECTRAL ATMOSPHERIC RADIATION MONITORING NETWORK

    E-Print Network [OSTI]

    Martin, M.

    2011-01-01T23:59:59.000Z

    spectral atmospheric radiation data. The large cylindricalexisting integrated net radiation data is of impor- tance,infrared radiation intensities. The data is permanently

  1. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03T23:59:59.000Z

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources’ vulnerability to climate change and air pollution.

  2. Computational and experimental research on infrared trace by human being contact

    SciTech Connect (OSTI)

    Xiong Zonglong; Yang Kuntao; Ding Wenxiu; Zhang Nanyangsheng; Zheng Wenheng

    2010-06-20T23:59:59.000Z

    The indoor detection of the human body's thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph's contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

  3. Electron-Transfer from H-2 and Ar to Stored Multiply Charged Argon Ions Produced by Synchrotron Radiation 

    E-Print Network [OSTI]

    Kravis, S. D.; Church, David A.; Johnson, B. M.; Meron, M.; Jones, K. W.; Levin, J. C.; Sellin, I. A.; Azuma, Y.; Berrahmansour, N.; Berry, H. G.; Druetta, M.

    1992-01-01T23:59:59.000Z

    -shell photoionization of Ar atoms, using broadband synchrotron x-ray radiation. K-electron removal resulted in vacancy cascading, yielding a distribution of argon-ion charge states peaked near Ar4+. The stored ion gas had an initial temperature near 480 K. The basic...

  4. Electron-Transfer from H-2 and Ar to Stored Multiply Charged Argon Ions Produced by Synchrotron Radiation

    E-Print Network [OSTI]

    Kravis, S. D.; Church, David A.; Johnson, B. M.; Meron, M.; Jones, K. W.; Levin, J. C.; Sellin, I. A.; Azuma, Y.; Berrahmansour, N.; Berry, H. G.; Druetta, M.

    1992-01-01T23:59:59.000Z

    -shell photoionization of Ar atoms, using broadband synchrotron x-ray radiation. K-electron removal resulted in vacancy cascading, yielding a distribution of argon-ion charge states peaked near Ar4+. The stored ion gas had an initial temperature near 480 K. The basic...

  5. Matching of Infrared Emitters with Textiles For Improved Energy Utilization 

    E-Print Network [OSTI]

    Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

    1994-01-01T23:59:59.000Z

    The successful utilization of infrared radiation is dependent on the spectral characteristics of the material being processed and on how well the spectral output of the infrared source matches those of the material being heated. Very little bas been...

  6. Matching of Infrared Emitters with Textiles For Improved Energy Utilization

    E-Print Network [OSTI]

    Carr, W. W.; Williamson, V. A.; Johnson, M. R.; Do, B. T.

    The successful utilization of infrared radiation is dependent on the spectral characteristics of the material being processed and on how well the spectral output of the infrared source matches those of the material being heated. Very little bas been...

  7. Frequency selective infrared sensors

    SciTech Connect (OSTI)

    Davids, Paul; Peters, David W

    2014-11-25T23:59:59.000Z

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  8. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2013-05-28T23:59:59.000Z

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  9. Temperature dependence of non-radiative energy transfer in hybrid structures of InGaN/GaN nanorods and F8BT films

    SciTech Connect (OSTI)

    Smith, R. M.; Liu, B.; Bai, J.; Wang, T., E-mail: t.wang@sheffield.ac.uk [Department of Electrical and Electronic Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2014-10-27T23:59:59.000Z

    Hybrid organic/inorganic white light emitting structures have been fabricated based on a combination of high efficiency InGaN/GaN multiple quantum well (MQW) nanorod arrays and a yellow emitting co-polymer F8BT, leading to a minimised separation between them in order to achieve high efficiency non-radiative energy transfer (NRET). The NRET efficiency has been found 6.7 times higher at room temperature than at 7?K. This is attributed to the existence of strong exciton localization the InGaN MQWs, which can undergo thermally activated delocalization at high temperatures. The enhanced NRET efficiency is not only due to the delocalized MQW excitons, but also enhanced by the increased exciton diffusion at higher temperatures. This behaviour highlights the potential for high efficiency NRET in down-conversion hybrid white light emitting diodes operating at room temperature.

  10. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  11. The convergence of an explicit finite difference solution for transient heat transfer in solids with radiation at one boundary

    E-Print Network [OSTI]

    Patel, Bhagubhai Desaibhai

    1966-01-01T23:59:59.000Z

    ? FOR RADIATION NUMBER N + o 5 o MODULUS M = 4? USUAL PROCEDURE ~ S I NK' NTHI TA NODE I NO DE 2 NODE3 NODE4 NODE5 NODE6 0 ' oo0o n, 0100 0 ' 0200 n ~ c'300 0 ' 0400 0 ~ 0500 O, oeoo 0 ' 0700 Oe0800 0 ' 0900 Oe1000 n ~ 1100 Oe1200 Oo1300 0... of this method can be I'ound in the graphical method commonly known as the Schmidt method, but, Binder first developed it independently. During the peri, od in which these meth+de were developed the temperatures normally worked with were 'relatively lower...

  12. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    of the room heat transfer model in the free open-sourcea layer-by-layer heat transfer model that computes infrared

  13. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength

  14. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: Experimental and theoretical study for high and low LET radiation

    E-Print Network [OSTI]

    Rydberg, Bjorn; Cooper, Brian; Cooper, Priscilla K.; Holley, William; Chatterjee, Aloke

    2004-01-01T23:59:59.000Z

    S. Kim, and R. M. Myers. Radiation hybrid mapping: a somaticformulation of dual radiation action. Radiat. Res. 75: 471-High-Linear Energy Transfer Radiation in Human Fibroblasts.

  15. The Extreme Gamma-Ray Blazar S5 0716+714: Jet Conditions from Radio-Band Variability and Radiative Transfer Modeling

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Jorstad, S G; Marscher, A P; Bala, V; Hovatta, T

    2015-01-01T23:59:59.000Z

    As part of a program to identify the physical conditions in the jets of gamma-ray-flaring blazars detected by Fermi, including the role of shocks in the production of high-energy flaring, we obtained 4 years of 3-frequency, centimeter-band total flux density and linear polarization monitoring observations of the radio-bright blazar S5 0716+714 with the University of Michigan 26-m paraboloid. Light curves constructed from these data exhibit a series of rapid, high-amplitude, centimeter-band total flux density outbursts, and changes in the linear polarization consistent with the passage of shocks during the gamma-ray flaring. The observed spectral evolution of the radio-band flares, in combination with radiative transfer simulations incorporating propagating shocks, was used to constrain the shock and jet flow conditions in the parsec-scale regions of the jet. Eight forward-moving, transverse shocks with unusually-strong shock compression factors, a very fast Lorentz factor of the shocks of 77, a bulk Lorentz f...

  16. Near-infrared spectroscopy of HD the barrier to linearity

    E-Print Network [OSTI]

    Oka, Takeshi

    Near-infrared spectroscopy of HD 3 above the barrier to linearity BY JENNIFER L. GOTTFRIED, transitions of HC 3 above the barrier to linearity have been observed. A highly sensitive near-infrared-adiabatic and radiative corrections is revealed. Keywords: HD 3 ; near-infrared spectroscopy; barrier to linearity 1

  17. Molecular basis of infrared detection by Elena O. Gracheva1

    E-Print Network [OSTI]

    Newman, Eric A.

    , snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, ratherARTICLES Molecular basis of infrared detection by snakes Elena O. Gracheva1 *, Nicholas T. Ingolia2 system for detecting infrared radiation, enabling them to generate a `thermal image' of predators or prey

  18. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

    2011-12-06T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  19. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  20. attenuates gamma radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galactic interstellar radiation field, we calculate the attenuation of the very high energy gamma rays from the Galactic sources. The infra-red radiation background near the...

  1. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Gustavsen, Arild

    2009-01-01T23:59:59.000Z

    free convection. In: Heat Transfer and Turbulent Buoyantof convection heat transfer and develop correlations.and radiation heat transfer and develop correlations for

  2. Infrared Study of the Molecular Orientation in Ultrathin Films of Behenic Acid Methyl Ester: Comparison between

    E-Print Network [OSTI]

    Pezolet, Michel

    Infrared Study of the Molecular Orientation in Ultrathin Films of Behenic Acid Methyl Ester-Blodgett transfer. The presence in the infrared spectra of several bands due to the methylene wagging and twisting and infrared spectroscopy have been developed to study these films. Infrared spectroscopy is particularly

  3. Probing the Flare Atmospheres of M dwarfs Using Infrared Emission Lines

    E-Print Network [OSTI]

    Schmidt, Sarah J; Hawley, Suzanne L; Hilton, Eric J; Wisniewski, John P; Tofflemire, Benjamin M

    2011-01-01T23:59:59.000Z

    We present the results of a campaign to monitor active M dwarfs using infrared spectroscopy, supplemented with optical photometry and spectroscopy. We detected 16 flares during nearly 50 hours of observations on EV Lac, AD Leo, YZ CMi, and VB8. The three most energetic flares also showed infrared emission, including the first reported detections of P\\beta, P\\gamma, He I 10830\\AA and Br\\gamma during an M dwarf flare. The strongest flare (\\Delta u = 4.02 on EV Lac) showed emission from H\\gamma, H\\delta, He I 4471\\AA, and Ca II K in the UV/blue and P\\beta, P\\gamma, P\\delta, Br\\gamma, and He I 10830\\AA in the infrared. The weaker flares (\\Delta u = 1.68 on EV Lac and \\Delta U = 1.38 on YZ CMi) were only observed with photometry and infrared spectroscopy; both showed emission from P\\beta, P\\gamma, and He I 10830\\AA. The strongest infrared emission line, P\\beta, occurred in the active mid-M dwarfs with a duty cycle of ~3-4%. To examine the most energetic flare, we used the static NLTE radiative transfer code RH to ...

  4. Multivariate classification of infrared spectra of cell and tissue samples

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Thomas, Edward V. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  5. 1. Quart. Spectrosc. Radial. Trom~r. Vol. 11,pp.144-1462. Pqamon Press 1971. Printed in Great Britain NON-GREY RADIATIVE HEAT TRANSFER

    E-Print Network [OSTI]

    Siewert, Charles E.

    -grey heat transfer model is that of SIMMONS and FERZIGER(~)who used the normal modes(4) of the equation

  6. Infrared retina

    DOE Patents [OSTI]

    Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

    2011-12-06T23:59:59.000Z

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  7. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    SciTech Connect (OSTI)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara; Ginsburg, Adam; Bally, John [CASA, University of Colorado, UCB 389, University of Colorado, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shirley, Yancy L., E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-06-10T23:59:59.000Z

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular cloud clumps is generally applicable to other dust-continuum Galactic plane surveys.

  8. Far and mid infrared observations of two ultracompact H II regions and one compact CO clump

    E-Print Network [OSTI]

    R. P. Verma; S. K. Ghosh; B. Mookerjea; T. N. Rengarajan

    2002-11-19T23:59:59.000Z

    Two ultracompact H II regions (IRAS 19181+1349 and 20178+4046) and one compact molecular clump (20286+4105) have been observed at far infrared wavelengths using the TIFR 1 m balloon-borne telescope and at mid infrared wavelengths using ISO. Far infrared observations have been made simultaneously in two bands with effective wavelengths of ~ 150 and ~ 210 micron, using liquid 3He cooled bolometer arrays. ISO observations have been made in seven spectral bands using the ISOCAM instrument; four of these bands cover the emission from Polycyclic Aromatic Hydrocarbon (PAH) molecules. In addition, IRAS survey data for these sources in the four IRAS bands have been processed using the HIRES routine. In the high resolution mid infrared maps as well as far infrared maps multiple embedded energy sources have been resolved. There are structural similarities between the images in the mid infrared and the large scale maps in the far infrared bands, despite very different angular resolutions of the two. Dust temperature and optical depth (tau_150 um) maps have also been generated using the data from balloon-borne observations. Spectral energy distributions (SEDs) for these sources have been constructed by combining the data from all these observations. Radiation transfer calculations have been made to understand these SEDs. Parameters for the dust envelopes in these sources have been derived by fitting the observed SEDs. In particular, it has been found that radial density distribution for three sources is diffrent. Whereas in the case of IRAS 20178+4046, a steep distribution of the form r^-2 is favoured, for IRAS 20286+4105 it is r^-1 and for IRAS 19181+1349 it the uniform distribution (r^0). Line ratios for PAH bands have generally been found to be similar to those for other compact H II regions but different from general H II regions.

  9. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-18T23:59:59.000Z

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

  10. Power transfer through strongly coupled resonances

    E-Print Network [OSTI]

    Kurs, André

    2007-01-01T23:59:59.000Z

    Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

  11. Dusty Infrared Galaxies: Sources of the Cosmic Infrared Background

    E-Print Network [OSTI]

    Guilaine Lagache; Jean-Loup Puget; Herve Dole

    2005-07-12T23:59:59.000Z

    The discovery of the Cosmic Infrared Background (CIB) in 1996, together with recent cosmological surveys from the mid-infrared to the millimeter have revolutionized our view of star formation at high redshifts. It has become clear, in the last decade, that a population of galaxies that radiate most of their power in the far-infrared (the so-called ``infrared galaxies'') contributes an important part of the whole galaxy build-up in the Universe. Since 1996, detailed (and often painful) investigations of the high-redshift infrared galaxies have resulted in the spectacular progress covered in this review. We outline the nature of the sources of the CIB including their star-formation rate, stellar and total mass, morphology, metallicity and clustering properties. We discuss their contribution to the stellar content of the Universe and their origin in the framework of the hierarchical growth of structures. We finally discuss open questions for a scenario of their evolution up to the present-day galaxies.

  12. Ferroelectric infrared detector and method

    DOE Patents [OSTI]

    Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

    2010-03-30T23:59:59.000Z

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  13. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, Michael A. (East Windsor, NJ)

    1986-01-01T23:59:59.000Z

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  14. Spectroscopic Infrared Ellipsometry

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Spectroscopic Infrared Ellipsometry: Components, Calibration, and Application #12;CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Boer, Johannes Henricus Wilhelmus Gerardus den Spectroscopic Infrared in Dutch. ISBN 90 386 0017 8 Subject headings: spectroscopy ellipsometry infrared. #12;Spectroscopic

  15. Heat transfer pathways in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Bauman, F.; Jin, H.; Webster, T.

    2006-01-01T23:59:59.000Z

    is little radiative heat transfer and little impact on thereturn air extrac- tion and heat transfer to the plenum. ItUFAD is often used and heat transfer out of the room through

  16. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01T23:59:59.000Z

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  17. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

  18. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU

    SciTech Connect (OSTI)

    Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin [Institute of Astronomy and Astrophysics, Academia Sinica. P.O. Box 23-141, Taipei 10617, Taiwan (China); Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wisniewski, John [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Henning, Thomas; Brandner, Wolfgang [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 North A'ohoku Place, Hilo, HI 96720 (United States); Kudo, Tomoyuki [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Itoh, Yoichi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Hyogo 679-5313 (Japan); Momose, Munetake [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON (Canada); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson AZ 85721 (United States); Abe, Lyu, E-mail: hiro@asiaa.sinica.edu.tw [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, 28 Avenue Valrose, F-06108 Nice Cedex 2 (France); and others

    2013-08-01T23:59:59.000Z

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  19. Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    -dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical a combined transient heat transfer and Pennes bio-heat transfer model is developed to simulate the heat transfer models; and concluded that the Pennes model is still the most practical for fast prediction

  20. Temperature profile of the infrared image Heat exchange between

    E-Print Network [OSTI]

    Jaehne, Bernd

    T Temperature profile of the infrared image Heat exchange between atmosphere and ocean References coefficient of heat in water determine the heat transfer velocity: *t Infrared images of the water surface: a-Karls-Universität Heidelberg www.uni-heidelberg.de Active controlled flux technique (ACFT) Continuous heat flux Periodic heat

  1. A fourth-order symplectic finite-difference time-domain (FDTD) method for light scattering and a 3D Monte Carlo code for radiative transfer in scattering systems

    E-Print Network [OSTI]

    Zhai, Pengwang

    2009-06-02T23:59:59.000Z

    meter. 60 20 Geometry of a scattering event. . . . . . . . . . . . . . . . . . . . . . 63 21 An example of the atmosphere model used in the 3D Monte Carlo code for the vector radiative transfer systems. Inhomogeneous layers are divided into voxels... cases can be solved analytically. Several popular numerical methods include the T-matrix method [15, 16, 17, 18, 19], finite-element method [20, 21], finite-difference time-domain(FDTD)method[22,23,24,25,26,27,28,29,30,31,32], point-matching method [33...

  2. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01T23:59:59.000Z

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  3. Calibrating cosmological radiative transfer simulations with Lyman alpha forest data: Evidence for large spatial UV background fluctuations at z ~ 5.6 - 5.8 due to rare bright sources

    E-Print Network [OSTI]

    Chardin, Jonathan; Aubert, Dominique; Puchwein, Ewald

    2015-01-01T23:59:59.000Z

    We calibrate here cosmological radiative transfer simulation with ATON/RAMSES with a range of measurements of the Lyman alpha opacity from QSO absorption spectra. We find the Lyman alpha opacity to be very sensitive to the exact timing of hydrogen reionisation. Models reproducing the measured evolution of the mean photoionisation rate and average mean free path reach overlap at z ~ 7 and predict an accelerated evolution of the Lyman alpha opacity at z > 6 consistent with the rapidly evolving luminosity function of Lyman alpha emitters in this redshift range. Similar to "optically thin" simulations our full radiative transfer simulations fail, however, to reproduce the high-opacity tail of the Lyman alpha opacity PDF at z > 5. We argue that this is due to spatial UV fluctuations in the post-overlap phase of reionisation on substantially larger scales than predicted by our source model, where the ionising emissivity is dominated by large numbers of sub-L* galaxies. We further argue that this suggests a signific...

  4. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01T23:59:59.000Z

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  5. Infra-Red Process for Colour Fixation on Fabrics

    E-Print Network [OSTI]

    Biau, D.; Raymond, D. J.

    1983-01-01T23:59:59.000Z

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific...

  6. Apparatus and method for transient thermal infrared emission spectrometry

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1991-12-24T23:59:59.000Z

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  7. Infra-Red Process for Colour Fixation on Fabrics 

    E-Print Network [OSTI]

    Biau, D.; Raymond, D. J.

    1983-01-01T23:59:59.000Z

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific...

  8. Efficient natural defense mechanisms against Listeria monocytogenes in T and B cell-deficient allogeneic bone marrow radiation chimeras. Preactivated macrophages are the main effector cells in an early phase after bone marrow transfer

    SciTech Connect (OSTI)

    Roesler, J.; Groettrup, E.B.; Baccarini, M.; Lohmann-Mattes, M.L. (Fraunhofer-Institut ITA, Hannover (Germany, F.R.))

    1989-09-01T23:59:59.000Z

    Radiation chimeras in the early phase after bone marrow transplantation are a good model to study the efficiency of the body's nonspecific defense system represented by macrophages (M phi), polymorphonuclear cells (PMN), and NK cells. These cell types are present in large numbers in spleen and liver at that time, whereas the specific immune system represented by T and B cells is functionally deficient. We previously reported enhanced activities in vitro of M phi (and PMN) from recipient animals in an early phase after allogeneic bone marrow transfer. We here demonstrate that these activities result in enhanced spontaneous resistance against Listeria monocytogenes in vivo: CFU of L. monocytogenes in spleen and liver 48 h after infection were about 1 or 2 to 4 log steps less than in untreated control mice of donor or host haplotype. This enhanced resistance decreased over the 4-mo period after marrow transfer. Preactivated M phi were identified as the most important effector cells. Isolated from spleen and peritoneal cavity, they performed enhanced killing of phagocytosed Listeria. Such preactivated M phi occurred in recipient animals after transfer of allogeneic but not of syngeneic bone marrow. The precise mechanism of M phi activation in the allogeneic radiation chimera in the complete absence of any detectable T cell function is not clear at present. However, these preactivated M phi display an important protective effect against L. monocytogenes: chimeras could eliminate Listeria without acquisition of positive delayed-type sensitivity when infected with 10(3) bacteria. An inoculum of 5 . 10(3) L. monocytogenes resulted either in prolonged survival compared with normal mice of the recipient haplotype or in definitive survival accompanied by a positive delayed-type sensitivity.

  9. Selective radiative cooling with MgO and/or LiF layers

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-14T23:59:59.000Z

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  10. On the performance of infrared sensors in earth observations 

    E-Print Network [OSTI]

    Johnson, Luther Franklin

    1972-01-01T23:59:59.000Z

    systems is depen- dent upon the radiative properties of targets in addition to constraints imposed by system components . The unclas- sified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system... of unclassified infrared literature reveals in- frared systems applications in industry, medicine, and science. Indeed, any detection application is possible if a measurable variation in radiation is caused by the tar- get property of interest. Hudson [10] has...

  11. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in dust cloud flames: Origins of dust explosion

    E-Print Network [OSTI]

    Ivanov, Michael A Liberman M F

    2015-01-01T23:59:59.000Z

    We examines regimes of the hydrogen flames propagation and ignition of mixtures heated by the radiation emitted from the flame. The gaseous phase is assumed to be transparent for radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. Depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the unreacted mixture can be either the increase of the flame velocity for uniformly dispersed particles or ignition deflagration or detonation ahead of the flame via the Zel'dovich gradient mechanism in the...

  12. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  13. DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS

    SciTech Connect (OSTI)

    Abbas, M. M.; LeClair, A. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Woodard, E.; Young, M.; Stanbro, M. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kunde, V. G., E-mail: Mian.M.Abbas@nasa.gov, E-mail: Andre.C.LeClair@nasa.gov, E-mail: eaw0009@uah.edu, E-mail: mcs0001@uah.edu, E-mail: youngmm@uah.edu, E-mail: f.m.flasar@nasa.gov, E-mail: virgil.g.kunde@gsfc.nasa.gov [University of Maryland, College Park, MD 20742 (United States); Collaboration: and the Cassini/CIRS team

    2013-10-20T23:59:59.000Z

    This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup –1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup –1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ?{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ?1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ?4.9 × 10{sup –10} at atmospheric pressures of ?1 mbar.

  14. Infrared Surveys for AGN

    E-Print Network [OSTI]

    Harding E. Smith

    2002-03-06T23:59:59.000Z

    From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

  15. Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator.

    E-Print Network [OSTI]

    Kioussis, Nicholas

    . 1 Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared

  16. Interstellar Weather Vanes: GLIMPSE Mid-Infrared Stellar-Wind Bowshocks in M17 and RCW49

    E-Print Network [OSTI]

    Matthew S. Povich; Robert A. Benjamin; Barbara A. Whitney; Brian L. Babler; Remy Indebetouw; Marilyn R. Meade; Ed Churchwell

    2008-08-15T23:59:59.000Z

    We report the discovery of six infrared stellar-wind bowshocks in the Galactic massive star formation regions M17 and RCW49 from Spitzer GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) images. The InfraRed Array Camera (IRAC) on the Spitzer Space Telescope clearly resolves the arc-shaped emission produced by the bowshocks. We combine Two Micron All-Sky Survey (2MASS), Spitzer, MSX, and IRAS observations to obtain the spectral energy distributions (SEDs) of the bowshocks and their individual driving stars. We use the stellar SEDs to estimate the spectral types of the three newly-identified O stars in RCW49 and one previously undiscovered O star in M17. One of the bowshocks in RCW49 reveals the presence of a large-scale flow of gas escaping the H II region at a few 10^2 km/s. Radiation-transfer modeling of the steep rise in the SED of this bowshock toward longer mid-infrared wavelengths indicates that the emission is coming principally from dust heated by the star driving the shock. The other 5 bowshocks occur where the stellar winds of O stars sweep up dust in the expanding H II regions.

  17. Herbig stars' near-infrared excess: An origin in the protostellar disk's magnetically supported atmosphere

    SciTech Connect (OSTI)

    Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Benisty, M.; Dullemond, C. P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hirose, S., E-mail: neal.turner@jpl.nasa.gov [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan)

    2014-01-01T23:59:59.000Z

    Young stars with masses 2-8 times solar, the Herbig Ae and Be stars, often show a near-infrared excess too large to explain with a hydrostatically supported circumstellar disk of gas and dust. At the same time, the accretion flow carrying the circumstellar gas to the star is thought to be driven by magnetorotational turbulence, which, according to numerical MHD modeling, yields an extended low-density atmosphere supported by the magnetic fields. We demonstrate that the base of the atmosphere can be optically thick to the starlight and that the parts lying near 1 AU are tall enough to double the fraction of the stellar luminosity reprocessed into the near-infrared. We generate synthetic spectral energy distributions (SEDs) using Monte Carlo radiative transfer calculations with opacities for submicron silicate and carbonaceous grains. The synthetic SEDs closely follow the median Herbig SED constructed recently by Mulders and Dominik and, in particular, match the large near-infrared flux, provided the grains have a mass fraction close to interstellar near the disk's inner rim.

  18. aerosol radiative effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space-borne sensors use information from the ultraviolet (UV) to the visible and thermal infrared Christopher, Sundar A. 25 Black carbon radiative heating effects on cloud...

  19. Infrared curing simulations of liquid composites molding

    SciTech Connect (OSTI)

    Nakouzi, S.; Pancrace, J.; Schmidt, F. M.; Le Maoult, Y.; Berthet, F. [Universite de Toulouse (France); INSA, UPS, Mines Albi, ISAE, ICA - Institut Clement Ader, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Campus Jarlard, F-81013 Albi (France)

    2011-05-04T23:59:59.000Z

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  20. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  1. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect (OSTI)

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

    2014-02-24T23:59:59.000Z

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  2. ME 339 Heat Transfer ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 339­ Heat Transfer Page 1 ABET EC2000 syllabus ME 339 ­ Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives

  3. assessing radiation feedbacks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure, from both direct opticalUV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star...

  4. astrophysical radiation hydrodynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure, from both direct opticalUV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star...

  5. Infrared microscope inspection apparatus

    DOE Patents [OSTI]

    Forman, S.E.; Caunt, J.W.

    1985-02-26T23:59:59.000Z

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  6. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  7. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  8. Apparatus and method for transient thermal infrared spectrometry

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1991-12-03T23:59:59.000Z

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  9. Radiation Sources and Radioactive Materials (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

  10. A FAST MULTILEVEL ALGORITHM FOR THE SOLUTION OF NONLINEAR SYSTEMS OF CONDUCTIVERADIATIVE HEAT TRANSFER EQUATIONS \\Lambda

    E-Print Network [OSTI]

    ­differential equations that model steady­state combined conductive­radiative heat transfer. This system of equations­Brakhage algorithm. Key words. conductive­radiative heat transfer, multilevel algorithm, compact fixed point problems integro­differential equations that model steady­state combined conductive­radiative heat transfer

  11. asme heat transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of...

  12. Near infrared 3~~ overtone band of Hl Brian F. Ventrudo and Daniel T. Cassidy

    E-Print Network [OSTI]

    Oka, Takeshi

    Near infrared 3~~ overtone band of Hl Brian F. Ventrudo and Daniel T. Cassidy Department infrared spectrum of the 3vz overtone band (v2=3+0) of H; has been observed at 1.4 pm. The spectrum transitions. Short-external-cavity InCaAsP diodes were used as tunable near infrared radiation sources

  13. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors

    E-Print Network [OSTI]

    Rose, William I.

    Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared Infrared Radiation Sounder/2) sensor, whose data sets have a higher temporal resolution, are also analyzed ultraviolet and infrared satellite sensors, Geochem. Geophys. Geosyst., 5, Q04001, doi:10.1029/ 2003GC000654

  14. Non-destructive component separation using infrared radiant energy

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Russell, Steven W. (Knoxville, TN); Holt, Jerrid S. (Knoxville, TN); Brown, John D. (Harriman, TN)

    2011-03-01T23:59:59.000Z

    A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

  15. Constraining the Physical Conditions in the Jets of Gamma-Ray Flaring Blazars using Centimeter-Band Polarimetry and Radiative Transfer Simulations. I. Data and Models for 0420-014, OJ 287, and 1156+295

    E-Print Network [OSTI]

    Aller, M F; Aller, H D; Latimer, G E; Hovatta, T

    2014-01-01T23:59:59.000Z

    To investigate parsec-scale jet flow conditions during GeV gamma-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26-meter Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with gamma-ray flares in 0420-014, OJ 287, and 1156+295; these AGN exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3-4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good...

  16. SYNCHROTRON RADIATION SOURCES

    SciTech Connect (OSTI)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01T23:59:59.000Z

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  17. INFRARED SPECTRAL OBSERVATION OF EIGHT BL LAC OBJECTS FROM THE SPITZER INFRARED SPECTROGRAPH

    SciTech Connect (OSTI)

    Chen, P. S.; Shan, H. G., E-mail: iraspsc@yahoo.com.cn [National Astronomical Observatories/Yunnan Observatory and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2011-05-01T23:59:59.000Z

    The Spitzer Infrared Spectrograph (IRS) low-resolution spectra for eight BL Lac objects are presented in this paper. It can be seen that the infrared spectrum of S5 0716+714 shows in the IRS region many emission features that would be from a nearby galaxy. It is also shown that, except for the silicate absorptions around 10 {mu}m for some sources, emission lines in the infrared spectra for the other seven BL Lac objects are indeed very weak or absent. In addition, ignoring the silicate feature, all spectra can be well fitted by a power-law distribution indicative of the emission mechanism of the synchrotron radiation for these BL Lac objects in the IRS region.

  18. The Use of Infrared Scanning in the Food and Fiber Industry

    E-Print Network [OSTI]

    Kuhn, D. F.

    1980-01-01T23:59:59.000Z

    I " THE USE OF INFRARED SCANNING IN THE FOOD AND FIBER INDUSTRY Dale F. Kuhn Infrared Scanning Inc. Overland Park, Kansas During the nineteenth century came the discovery In the food and fiber industry two extremes that all objects... the fields ing can detect a malfunction before a critical of physics and optics, technologists can convert situation arises. this radiation to an electronic signal and manip- Infrared scanning serves as an excellent tOOl,1 ulate it to solve problems...

  19. Charge Transfer Between Neutral Atoms and Highly Ionized Species: Implications for ISO Observations

    E-Print Network [OSTI]

    G. J. Ferland; K. T. Korista; D. A. Verner; A. Dalgarno

    1997-03-17T23:59:59.000Z

    We estimate rate coefficients for charge transfer between neutral hydrogen and helium and moderate to highly ionized heavy elements. Although charge transfer does not have much influence on hot collisionally ionized plasmas, its effects on photoionized plasmas can be profound. We present several photoionization models which illustrate the significant effect of charge transfer on the far infrared lines detected by ISO.

  20. Search for bright stars with infrared excess

    SciTech Connect (OSTI)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24T23:59:59.000Z

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25?m (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}?m{sub 25}>0; where m{sub 12}?m{sub 25}?=??2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25?m, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  1. Reactive Aging of Films of Secondary Organic Material Studied by Infrared Spectroscopy

    E-Print Network [OSTI]

    with hydroxyl radicals and of -pinene with ozone in the Harvard Environmental Chamber (HEC). The infrared an important role in climate due to their efficacy in absorbing and scattering solar radiation

  2. Optical properties of silicon carbide for astrophysical applications I. New laboratory infrared reflectance spectra and optical constants

    E-Print Network [OSTI]

    Pitman, K M; Corman, A B; Speck, A K

    2008-01-01T23:59:59.000Z

    Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous d...

  3. Mid-infrared absorption properties of green wood Anna Dupleix Domingos De Sousa Meneses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL Mid-infrared absorption properties of green wood Anna Dupleix · Domingos De Sousa Meneses and the amount of energy absorbed by green wood under infrared (IR) radiation. This lack of knowledge is a potential barrier to the development of IR heating as an alternative to soaking as a means of warming logs

  4. Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source measurement, tube effects, CO2 infrared radiation 1. Introduction The knowledge of very high temperature for instance that the IR emission of the CO2 molecule remains predominant at temperatures as high as 4000 K [1

  5. Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides

    E-Print Network [OSTI]

    of mid-infrared and far-infrared (IR) radiation using second-order optical nonlinearities is attractive, large optical nonlinearities, large optical damage threshold, and mature fabrication tech- nology [3 Optical Society of America OCIS codes: (190.4975) Parametric processes; (230.4320) Nonlinear optical

  6. The design and construction of an infrared detector for use with a highway traffic survey system 

    E-Print Network [OSTI]

    Mundkowsky, William Fredrick

    1961-01-01T23:59:59.000Z

    to test the infrared detector system for parameter variations. The hot plate, which was used to simulate a mui'fler, had a surface area of nearly 30 sq. in. This radiating area could be Inzited to I sq. in. by placing a shield across the plate. Fig... The Optics Spectral Filtering Spatial Filtering Design Considerations Test Procedures and. Results 20 CONCLUSION APPENDIX I Basic infrared Radiation Laws APPENDIX II Baclqpound Rad. iation APPENDIX III Atmospheric Transmission...

  7. NNSA Transfers Responsibility for Radiation Detection System...

    National Nuclear Security Administration (NNSA)

    installation at the Port of Yangshan was completed in November 2011. Over a three year transition period, SLD and GACC worked toward enhancing GACC's capabilities and expertise...

  8. Posters Comparison of Stochastic Radiation Transfer Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations719 Posters

  9. Posters The Effects of Radiative Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations7197117313

  10. Infrared structure of e+e- --> 3 jets at NNLO

    E-Print Network [OSTI]

    A. Gehrmann-De Ridder; T. Gehrmann; E. W. N. Glover; G. Heinrich

    2008-11-25T23:59:59.000Z

    We describe the calculation of the next-to-next-to-leading order (NNLO) QCD corrections to three-jet production and related event shape observables in electron-positron annihilation. Infrared singularities due to double real radiation at tree level and single real radiation at one loop are subtracted from the full QCD matrix elements using antenna functions, which are then integrated analytically and added to the two loop contribution. Using this antenna subtraction method, we obtain numerically finite contributions from five-parton and four-parton processes, and observe an explicit analytic cancellation of infrared poles in the four-parton and three-parton contributions. All contributions are implemented in a flexible parton-level event generator programme, allowing the numerical computation of any infrared-safe observable related to three-jet final states to NNLO accuracy.

  11. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

    1993-03-02T23:59:59.000Z

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  12. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy K. (San Leandro, CA); Durbin, Philip F. (Livermore, CA); Dolan, Kenneth W. (Livermore, CA); Perkins, Dwight E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  13. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-01T23:59:59.000Z

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore »unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm?¹. The response time of the TRIR detection setup is ?40 ns, with a typical sensitivity of ?100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  14. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grills, David C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Farrington, Jaime A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Layne, Bobby H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Preses, Jack M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bernstein, Herbert J. [Dowling College, Shirley, NY (United States); Wishart, James F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-01T23:59:59.000Z

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm?¹. The response time of the TRIR detection setup is ?40 ns, with a typical sensitivity of ?100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  15. Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument

    SciTech Connect (OSTI)

    Kühne, P., E-mail: kuehne@huskers.unl.edu; Schubert, M., E-mail: schubert@engr.unl.edu; Hofmann, T., E-mail: thofmann@engr.unl.edu [Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Herzinger, C. M., E-mail: cherzinger@jawoollam.com; Woollam, J. A., E-mail: jwoollam@jawoollam.com [J. A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, Nebraska 68508-2243 (United States)

    2014-07-15T23:59:59.000Z

    We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup ?1} to 7000 cm{sup ?1} (0.1–210 THz or 0.4–870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

  16. Bridging conduction and radiation : investigating thermal transport in nanoscale gaps

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2015-01-01T23:59:59.000Z

    Near field radiation transfer between objects separated by small gaps is a widely studied field in heat transfer and has become more important than ever. Many technologies such as heat assisted magnetic recording, aerogels, ...

  17. Fourier Transform Infrared Spectroscopy

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    FTIR - 1 Fourier Transform Infrared Spectroscopy FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL FTIR DETERMINATION OF MTBE IN GASOLINE AND ETHANOL IN VODKA AND MOUTHWASH INTRODUCTION As a part has contained MTBE (methyl tert­butyl ether) as its primary oxygenate. However, there has been

  18. Parameterization of contrail radiative properties for climate studies

    E-Print Network [OSTI]

    Liou, K. N.

    the current and potential effect on global climate change. The line-shaped artificial clouds often visible radiation and absorb infrared radiation emitted from the Earth and atmosphere, and the effect on the global climate change requires a cloud model that statistically represents contrail radiative properties

  19. Heat Transfer between Graphene and Amorphous SiO2

    E-Print Network [OSTI]

    B. N. J. Persson; H. Ueba

    2010-07-22T23:59:59.000Z

    We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  20. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video

    E-Print Network [OSTI]

    Gerardi, Craig

    High-speed video and infrared thermometry were used to obtain time- and space-resolved information on bubble nucleation and heat transfer in pool boiling of water. The bubble departure diameter and frequency, growth and ...

  1. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  2. Bootstrap and momentum transfer dependence in small x evolution equations

    E-Print Network [OSTI]

    G. Chachamis; A. Sabio Vera; C. Salas

    2012-11-27T23:59:59.000Z

    Using Monte Carlo integration techniques, we investigate running coupling effects compatible with the high energy bootstrap condition to all orders in the strong coupling in evolution equations valid at small values of Bjorken x in deep inelastic scattering. A model for the running of the coupling with analytic behavior in the infrared region and compatible with power corrections to jet observables is used. As a difference to the fixed coupling case, where the momentum transfer acts as an effective strong cut-off of the diffusion to infrared scales, in our running coupling study the dependence on the momentum transfer is much milder.

  3. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

    1980-01-01T23:59:59.000Z

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  4. Infrared Maximally Abelian Gauge

    E-Print Network [OSTI]

    Tereza Mendes; Attilio Cucchieri; Antonio Mihara

    2006-11-01T23:59:59.000Z

    The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.

  5. Infrared problem and spatially local observables in electrodynamics

    E-Print Network [OSTI]

    Andrzej Herdegen

    2007-11-14T23:59:59.000Z

    An algebra previously proposed as an asymptotic field structure in electrodynamics is considered in respect of localization properties of fields. Fields are 'spatially local' -- localized in regions resulting as unions of two intersecting (solid) lightcones: a future- and a past-lightcone. This localization remains in concord with the usual idealizations connected with the scattering theory. Fields thus localized naturally include infrared characteristics normally placed at spacelike infinity and form a structure respecting Gauss law. When applied to the description of the radiation of an external classical current the model is free of 'infrared catastrophe'.

  6. MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP

    SciTech Connect (OSTI)

    Honda, M. [Department of Mathematics and Physics, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, Koen; Waters, L. B. F. M.; Dominik, C.; Mulders, G. D. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Fukagawa, M. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Min, M. [Astronomical Institute Utrecht, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Miyata, T.; Sako, S. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Sakon, I.; Onaka, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-20T23:59:59.000Z

    The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 {mu}m using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfer model and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 {mu}m, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23{sup +3}{sub -5} AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.

  7. Quantification of the Aerosol Direct Radiative Effect from Smoke over Clouds Using Passive Space-borne Spectrometry

    E-Print Network [OSTI]

    Tilstra, Gijsbert

    Quantification of the Aerosol Direct Radiative Effect from Smoke over Clouds Using Passive Space cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke to the aerosol direct radiative effect (DRE). AEROSOL DIRECT RADIATIVE EFFECT OVER CLOUDS A radiative forcing

  8. Quantification of the Aerosol Direct Radiative Effect from Smoke over Clouds using Passive Space-borne Spectrometry

    E-Print Network [OSTI]

    Graaf, Martin de

    Quantification of the Aerosol Direct Radiative Effect from Smoke over Clouds using Passive Space cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke to the aerosol direct radiative effect (DRE). AEROSOL DIRECT RADIATIVE EFFECT OVER CLOUDS A radiative forcing

  9. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28T23:59:59.000Z

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  10. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1986-01-01T23:59:59.000Z

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  11. Feedback-Driven Evolution of the Far-Infrared Spectral Energy Distributions of Luminous and Ultraluminous Infrared Galaxies

    E-Print Network [OSTI]

    Sukanya Chakrabarti; T. J. Cox; Lars Hernquist; Philip F. Hopkins; Brant Robertson; Tiziana Di Matteo

    2007-01-22T23:59:59.000Z

    We calculate infrared spectral energy distributions (SEDs) from simulations of major galaxy mergers and study the effect of AGN and starburst driven feedback on the evolution of the SED as a function of time. We use a self-consistent three-dimensional radiative equilibrium code to calculate the emergent SEDs and to make images. To facilitate a simple description of our findings, we describe our results in reference to an approximate analytic solution for the far-IR SED. We focus mainly on the luminous infrared galaxy (LIRG) and ultraluminous infrared galaxy (ULIRG) phases of evolution. We contrast the SEDs of simulations performed with AGN feedback to simulations performed with starburst driven wind feedback. We find that the feedback processes critically determine the evolution of the SED. Changing the source of illumination (whether stellar or AGN) has virtually no impact on the reprocessed far-infrared SED. We find that AGN feedback is particularly effective at dispersing gas and rapidly injecting energy into the ISM. The observational signature of such powerful feedback is a warm SED. In general, simulations performed with starburst driven winds have colder spectra and reprocess more of their emission into the infrared, resulting in higher infrared to bolometric luminosities compared to (otherwise equivalent) simulations performed with AGN feedback. We depict our results in IRAS bands, as well as in Spitzer's MIPS bands, and in Herschel's PACS bands.

  12. PROCESS PARAMETERS for INFRARED PROCESSING of FePt NANOPARTICLE FILMS

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL; Kadolkar, Puja [ORNL; Dinwiddie, Ralph Barton [ORNL; Ott, Ronald D [ORNL; Blue, Craig A [ORNL

    2007-01-01T23:59:59.000Z

    Pulse thermal processing (PTP) of FePt nanoparticle films was studied using a high density infrared (HDI) plasma arc lamp. FePt nanoparticle films on silicon substrates were processed using 0.25- second infrared (IR) pulses. The processing was aimed at reaching a peak target temperature for multiple pulses of 550 C. Numerical simulations of the heat transfer for the PTP were performed to determine the operating power levels for the plasma arc lamp. Infrared measurements were conducted to obtain experimental data for the surface temperature of the FePt nanofilm. Parameters needed for the heat-transfer model were identified based on the experimental temperature results. Following the model validation, several numerical simulations were performed to estimate the power levels. It was shown that the FePt nanoparticle films were successfully processed using the power levels provided by the heat-transfer analysis.

  13. An Infrared Spectral Library for Atmospheric Environmental Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

  14. Transferring Data at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

  15. Nanoscale spatially resolved infrared spectra from single microdroplets

    E-Print Network [OSTI]

    Müller, Thomas; Kulik, Andrzej J; Shimanovich, Ulyana; Mason, Thomas O; Knowles, Tuomas P J; Dietler, Giovanni

    2014-01-01T23:59:59.000Z

    Droplet microfluidics has emerged as a powerful platform allowing a large number of individual reactions to be carried out in spatially distinct microcompartments. Due to their small size, however, the spectroscopic characterisation of species encapsulated in such systems remains challenging. In this paper, we demonstrate the acquisition of infrared spectra from single microdroplets containing aggregation-prone proteins. To this effect, droplets are generated in a microfluidic flow-focussing device and subsequently deposited in a square array onto a ZnSe prism using a micro stamp. After drying, the solutes present in the droplets are illuminated locally by an infrared laser through the prism, and their thermal expansion upon absorption of infrared radiation is measured with an atomic force microscopy tip, granting nanoscale resolution. Using this approach, we resolve structural differences in the amide bands of the spectra of monomeric and aggregated lysozyme from single microdroplets with picolitre volume.

  16. Infrared Gupta-Bleuler Quantum Electrodynamics: Solvable Models And Perturbative Expansion

    E-Print Network [OSTI]

    Simone Zerella

    2014-11-10T23:59:59.000Z

    We study two Hamiltonian models, based on infrared approximations which render them solvable, in order to obtain an operator formulation of the soft-photon corrections to the scattering of a single electron, as given in Quantum Electrodynamics by the method of Feynman's diagrams. The first model is based on the same approximations of the Pauli-Fierz Hamiltonian, the second one stems from an expansion in powers of the four-momentum transfer, along the lines of Bloch and Nordsieck. For both models, the dynamics of the charge is accounted for by suitably chosen classical currents, interacting with the quantum e.m. potential. M\\"oller operators, preserving respectively the Hilbert scalar product, for the Coulomb-gauge formulation of the models, and an indefinite metric, for the formulation of the models in the Feynman-Gupta-Bleuler gauge, are obtained in the presence of an infrared cutoff, with the help of suitable renormalization counterterms. We show that the soft-photon corrections to the electron scattering under consideration are reproduced by suitable matrix elements of the M\\"oller operators pertaining to the model "of the Bloch-Nordsieck type", both in the FGB gauge and in the Coulomb gauge. Further, we prove that if one assumes that the charged particle is non relativistic and employs a dipole approximation, the resulting low-energy radiative corrections admit an operator formulation as well, in terms of the M\\"oller operators of the model "of Pauli-Fierz type", but lack the invariance property with respect to the gauge employed in their calculation. The reason why such a discrepancy occurs is finally traced back in full generality, also in connection with the Gupta-Bleuler formulation of non-relativistic models.

  17. Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging F Jamme1, 2 coupled to an infrared microscope allows imaging at the so-called diffraction limit. Thus, numerous infrared beamlines around the world have been developed for infrared chemical imaging. Infrared microscopes

  18. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  19. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect (OSTI)

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01T23:59:59.000Z

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  20. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27T23:59:59.000Z

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  1. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01T23:59:59.000Z

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  2. $\\alpha$ Centauri A in the far infrared

    E-Print Network [OSTI]

    Liseau, R; Olofsson, G; Bryden, G; Marshall, J P; Ardila, D; Aran, A Bayo; Danchi, W C; del Burgo, C; Eiroa, C; Ertel, S; Fridlund, M C W; Krivov, A V; Pilbratt, G L; Roberge, A; Thébault, P; Wiegert, J; White, G J

    2012-01-01T23:59:59.000Z

    Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. The region of the temperature reversal can be directly observed only in the far infrared and submm. We aim at the determination of the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star alpha Cen A. For the nearby binary system alpha Centauri, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate in the grid of GAIA/PHOENIX stellar model atmospheres and compute the corresponding model for the G2 V star alpha Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is co...

  3. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22T23:59:59.000Z

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  4. A Novel Spectroscopic Ellipsometer in the Infrared

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    A Novel Spectroscopic Ellipsometer in the Infrared Proefschrift ter verkrijging van de graad van-Charles A novel spectroscopic ellipsometer in the infrared / by Jean-Charles Cigal. ­ Eindhoven : Technische / infraroodspectroscopie / siliciumoxide / botweefsel Subject headings: ellipsometers / infrared spectroscopy / silicon

  5. Can infrared gravitons screen $?$?

    E-Print Network [OSTI]

    Jaume Garriga; Takahiro Tanaka

    2007-09-04T23:59:59.000Z

    It has been suggested that infrared gravitons in de Sitter space may lead to a secular screening of the effective cosmological constant. This seems to clash with the naive expectation that the curvature scalar should stay constant due to the Heisenberg equation of motion. Here, we show that the tadpole correction to the local expansion rate, which has been used in earlier analyses as an indicator of a decaying effective $\\Lambda$, is not gauge invariant. On the other hand, we construct a gauge invariant operator which measures the renormalized curvature scalar smeared over an arbitrary window function, and we find that there is no secular screening of this quantity (to any given order in perturbation theory).

  6. Lateral conduction infrared photodetector

    DOE Patents [OSTI]

    Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

    2011-09-20T23:59:59.000Z

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  7. Asymptotics of the Infrared

    E-Print Network [OSTI]

    P. R. Crompton

    2005-04-17T23:59:59.000Z

    We follow recent formulations of dimensionally reduced loop operators for quantum field theories and exact representations of probabilistic lattice dynamics to identify a new scheme for the evaluation of partition function zeroes, allowing for the explicit analysis of quantum critical phenomena. This new approach gives partition function zeroes from a factored quantum loop operator basis and, as we show, constitutes an effective mapping of the renormalization group $\\beta$-function onto the noncommuting local operator basis of a countably finite Hilbert space. The Vafa-Witten theorem for CP-violation and related complex action problems of Euclidean Field theories are discussed, following recent treatments, and are shown to be natural consequences of the analyticity of the limiting distribution of these zeroes, and properties of vacuum regimes governed by a dominant quantum fluctuation in the vicinity of a renormalization group equation fixed point in the infrared.

  8. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01T23:59:59.000Z

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  9. Synchrotron Infrared Unveils a Mysterious Microbial Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur...

  10. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberDecember 2000

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, October­December 2000 Multidimensional are optical tomographyof tissue, remote sensing of oceansand atmospheres, laser material processing radiative heat transfer in participat- ing media in recent years. However, the analysis of radiative heat

  11. Infrared Spectroscopy of Molecular Supernova Remnants

    E-Print Network [OSTI]

    William T. Reach; Jeonghee Rho

    2000-07-27T23:59:59.000Z

    We present Infrared Space Observatory spectroscopy of sites in the supernova remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds. Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3) and S(9) lines of H2 were detected for all three remnants. The observations require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3) pre-shock densities, with the moderate density shocks producing the ionic lines and the high density shock producing the molecular lines. No single shock model can account for all of the observed lines, even at the order of magnitude level. We find that the principal coolants of radiative supernova shocks in moderate-density gas are the far-infrared continuum from dust grains surviving the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron lines. The principal coolant of the high-density shocks is collisionally-excited H2 rotational and ro-vibrational line emission. We systematically examine the ground-state fine structure of all cosmically abundant elements, to explain the presence or lack of all atomic fine lines in our spectra in terms of the atomic structure, interstellar abundances, and a moderate-density, partially-ionized plasma. The [P II] line at 60.6 microns is the first known astronomical detection. There is one bright unidentified line in our spectra, at 74.26 microns. The presence of bright [Si II] and [Fe II] lines requires partial destruction of the dust. The required gas-phase abundance of Fe suggests 15-30% of the Fe-bearing grains were destroyed. The infrared continuum brightness requires ~1 Msun of dust survives the shock, suggesting about 1/3 of the dust mass was destroyed, in agreement with the depletion estimate and with theoretical models for dust destruction.

  12. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  13. Anisotropic radiation from accretion disc-coronae in active galactic nuclei

    E-Print Network [OSTI]

    Xu, Ya-Di

    2015-01-01T23:59:59.000Z

    In the unification scheme of active galactic nuclei (AGN), Seyfert 1s and Seyfert 2s are intrinsically same, but they are viewed at different angles. However, the Fe K\\alpha emission line luminosity of Seyfert 1s was found in average to be about twice of that of Seyfert 2s at given X-ray continuum luminosity in the previous work (Ricci et al. 2014). We construct an accretion disc-corona model, in which a fraction of energy dissipated in the disc is extracted to heat the corona above the disc. The radiation transfer equation containing Compton scattering processes is an integro-differential equation, which is solved numerically for the corona with a parallel plane geometry. We find that the specific intensity of X-ray radiation from the corona changes little with the viewing angle \\theta when \\theta is small (nearly face-on), and it is sensitive to \\theta if the viewing angle is large (\\theta> 40 degrees). The radiation from the cold disc, mostly in infrared/optical/UV bands, is almost proportional to cos\\thet...

  14. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect (OSTI)

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K. [Process Design and Engineering Cell, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research), G.B. Marg, Bhavnagar 364002, Gujarat (India)

    2010-08-15T23:59:59.000Z

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  15. Industrial Use of Infrared Inspections

    E-Print Network [OSTI]

    Duch, A. A.

    1979-01-01T23:59:59.000Z

    operating load. - Pinpointing of the exact location of the problems. - The inspections will locate problems which will, in most cases, go unnoticed using conventional techniques. An infrared inspection will locate problem areas in the plant electrica1...

  16. The SNAP near infrared detectors

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    it will detect Type Ia supernovæ between z = 1 and 1.7 andphotometry for all supernovæ. HgCdTe technology, with a cut-Keywords: Cosmology, Supernovae, Dark Energy, Near Infrared,

  17. Infrared Dry-peeling Technology for Tomatoes

    E-Print Network [OSTI]

    Infrared Dry-peeling Technology for Tomatoes Saves Energy Energy Efficiency Research Office PIER This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device, producing less wastewater and preserving product quality. Infrared drypeeling is expected to reduce

  18. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay of molecular monolayers depend on the structure and dynamics of the surface-attached molecules. New tools

  19. Outdoor Scene Synthesis in the Infrared Range for Remote Sensing Applications

    E-Print Network [OSTI]

    Boyer, Edmond

    Outdoor Scene Synthesis in the Infrared Range for Remote Sensing Applications Thierry Poglio Eric under remote sensing applications, like meteorology, farming, or military information are concerned. Yet. The solar forcing leads to an increase in temperature, while heat transfer due to strong cold wind decreases

  20. Infrared-to-blue frequency upconversion in a Pr3 -doped silicate fiber

    E-Print Network [OSTI]

    Infrared-to-blue frequency upconversion in a Pr3 -doped silicate fiber L. H. Acioli, A. S. L. Gomes by energy transfer between a pair of Pr3 ions in a silicate fiber. Emission in the blue and red regions that are characteristic of silicate fibers. In particular the red emission could be observed by the naked eye possibly due

  1. Temperature-Tuning of Near-Infrared Monodisperse Quantum Dot Solids at

    E-Print Network [OSTI]

    Hone, James

    include solar energy conversion as well as quantum communication. In quantum dot systems, the dot sizes photovoltaics, capturing the infrared spectrum, and also exhibiting possible multi- exciton generation.4. Incoherent Fo¨rster resonance energy transfer (FRET) 8­11 can occur between different-sized quantum dots

  2. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  3. High-power parametric conversion from near-infrared to short-wave infrared

    E-Print Network [OSTI]

    Dalang, Robert C.

    High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

  4. YET ANOTHER INFRARED ARCHIVE: RELEASE OF THE INFRARED TELESCOPE IN SPACE (IRTS) ARCHIVE DATA

    E-Print Network [OSTI]

    Yamamura, Issei

    1 YET ANOTHER INFRARED ARCHIVE: RELEASE OF THE INFRARED TELESCOPE IN SPACE (IRTS) ARCHIVE DATA I the near- and mid-infrared low resolu- tion spectral catalogues of point sources, and image maps in #12;ve wavelength bands in the far-infrared. The point source catalogues contains over 14 000 (near-infrared

  5. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF ULTRALUMINOUS INFRARED GALAXIES D. Farrah,1

    E-Print Network [OSTI]

    Galis, Frietson

    infrared emission. This initially provoked heated debate between a ``starburst'' camp and an ``activeHIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF ULTRALUMINOUS INFRARED GALAXIES D. Farrah,1 J. Bernard, 10Y37 m spectra of 53 ultraluminous infrared galaxies (ULIRGs), taken using the Infrared Spectrograph

  6. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  7. Radiation interchange modeling for active infrared proximity sensor design

    E-Print Network [OSTI]

    Piper, James Clarice

    1999-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Approved as to tyle and content by: Sohi Rastegar (Co-Chair of Committee) Rai er J. Fink (Co-Chair of Committee) Hsin-i Wu (Member) ay Kuo (Head of Department) May 1999 Major Subject: Biomedical... necessitating the use of multiple source elements, sensor elements, or both. DEDICATION I dedicate this thesis to my parents and my sisters, who have always supported me in all my endeavors, however foreign to their hearts. VI ACKNOWLEDGMENTS I would like...

  8. 12th North America Bangla Literature and Culture Convention 2010 (NABLCC10) EFFECT OF SOLAR RADIATION

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    scatters and burns part of the incoming particles. However, the visible and near-infrared solar radiation penetrate through the earth's atmosphere. Solar Radiation in the Atmosphere and Grrenhouse Effect The solar radiation entering its atmosphere through an energy cycle called the Greenhouse effect. Of the total solar

  9. MULTI-POINT RADIATION MONITOR

    SciTech Connect (OSTI)

    Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

    2006-05-12T23:59:59.000Z

    A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

  10. The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies

    E-Print Network [OSTI]

    Daniel A. Dale; George Helou; Alessandra Contursi; Nancy A. Silbermann; Sonali Kolhatkar

    2000-11-01T23:59:59.000Z

    We present a new phenomenological model for the spectral energy distribution of normal star-forming galaxies between 3 and 1100 microns. A sequence of realistic galaxy spectra are constructed from a family of dust emission curves assuming a power law distribution of dust mass over a wide range of interstellar radiation fields. For each interstellar radiation field heating intensity we combine emission curves for large and very small grains and aromatic feature carriers. The model is constrained by IRAS and ISOCAM broadband photometric and ISOPHOT spectrophotometric observations for our sample of 69 normal galaxies; the model reproduces well the empirical spectra and infrared color trends. These model spectra allow us to determine the infrared energy budget for normal galaxies, and in particular to translate far-infrared fluxes into total (bolometric) infrared fluxes. The 20 to 42 micron range appears to show the most significant growth in relative terms as the activity level increases, suggesting that the 20-42 micron continuum may be the best dust emission tracer of current star formation in galaxies. The redshift dependence of infrared color-color diagrams and the far-infrared to radio correlation for galaxies are also explored.

  11. Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. IV. Using color profiles to study stellar and dust content of galaxies

    E-Print Network [OSTI]

    Roelof S. de Jong

    1996-04-02T23:59:59.000Z

    The stellar and dust content of spiral galaxies as function of radius has been investigated using near-infrared and optical broadband surface photometry of 86 face-on spiral galaxies. Colors of galaxies correlate with the azimuthally averaged local surface brightness both within and among galaxies, with the lower surface brightness regions being bluer. The colors formed from different passband combinations correlate strongly indicating that they probably arise from the same physical process. A 3D radiative transfer model was developed to calculate the effect of dust absorption and scattering on the luminosity and color profiles of galaxies. Stellar synthesis models were used to investigate the effects of the star formation history and the metallicity on the broadband color profiles. Combining all optical and near-infrared data shows that the color gradients in this sample of face-on galaxies are best explained by a combined stellar age and metallicity gradient across the disk, with the outer regions being on average younger and of lower metallicity. Dust reddening probably plays only a minor role, as the dust models cannot produce reddening profiles that are compatible with the observations. The observed color differences implicate substantial M/L_lambda differences, both within galaxies and among galaxies. The variations are such that the ``missing light'' problem derived from rotation fitting becomes even worse. Late-type galaxies (T>=6) have lower metallicities and are often of younger average age than earlier types and have therefore an entirely different M/L_\\lambda in most passbands. The near-infrared passbands are recommended for studies where the M/L_\\lambda ratios should not vary too much.

  12. Near infrared detectors for SNAP

    SciTech Connect (OSTI)

    Schubnell, M.; Barron, N.; Bebek, C.; Brown, M.G.; Borysow, M.; Cole, D.; Figer, D.; Lorenzon, W.; Mostek, N.; Mufson, S.; Seshadri, S.; Smith, R.; Tarle, G.

    2006-05-23T23:59:59.000Z

    Large format (1k x 1k and 2k x 2k) near infrared detectors manufactured by Rockwell Scientific Center and Raytheon Vision Systems are characterized as part of the near infrared R&D effort for SNAP (the Super-Nova/Acceleration Probe). These are hybridized HgCdTe focal plane arrays with a sharp high wavelength cut-off at 1.7 um. This cut-off provides a sufficiently deep reach in redshift while it allows at the same time low dark current operation of the passively cooled detectors at 140 K. Here the baseline SNAP near infrared system is briefly described and the science driven requirements for the near infrared detectors are summarized. A few results obtained during the testing of engineering grade near infrared devices procured for the SNAP project are highlighted. In particular some recent measurements that target correlated noise between adjacent detector pixels due to capacitive coupling and the response uniformity within individual detector pixels are discussed.

  13. Germanium blocked impurity band far infrared detectors

    SciTech Connect (OSTI)

    Rossington, C.S.

    1988-04-01T23:59:59.000Z

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the ''Star Wars'' nuclear defense scheme proposed by the Reagan administration.

  14. Airborne infrared observations and analyses of a large forest fire

    SciTech Connect (OSTI)

    Stearns, J.R.; Zahniser, M.S.; Kolb, C.E.; Sanford, B.P.

    1986-08-01T23:59:59.000Z

    Extensive IR spatial images and spectral signatures were gathered from an active large brush and forest fire by the Flying Infrared Signatures Technology Aircraft of the U.S. Air Force Geophysics Laboratory. Infrared images give the apparent temperatures of actively burning and burned over regions and aid in identifying the type and intensity of the fire. Spectral signatures of hot regions from interferometer and spatial data can also be used to determine apparent fire temperatures. Gasesous combustion products in the fire plume are quantitatively identified by the IR absorption spectra at 1-cm/sup -1/ resolution using the hot fire emission as the radiation source. Concentrations of CO were measured at 50 times higher than ambient levels. The applicability of these techniques to gathering data relevant to important environmental and military problems, including atmospheric pollution from fires and possible short-term climatic effects due to fires ignited in a nuclear exchange, is discussed.

  15. Surface Power Radiative Cooling Tests

    SciTech Connect (OSTI)

    Vaughn, Jason; Schneider, Todd [Environmental Effects Branch, EM50, NASA Marshall Space Flight Center, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. {approx}5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  16. Genomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1

    E-Print Network [OSTI]

    of the radiobiological effects of high- linear energy transfer (LET) radiation is essential for radiation protectionGenomic instability and bystander effects induced by high-LET radiation Eric J Hall*,1 and Tom K, it has always been accepted that the deleterious effects of ionizing radiation, such as mutation

  17. ON THE SOLAR RADIATION BUDGET AND THE CLOUD ABSORPTION ANOMALY DEBATE

    E-Print Network [OSTI]

    Li, Zhanqing

    ON THE SOLAR RADIATION BUDGET AND THE CLOUD ABSORPTION ANOMALY DEBATE ZHANQING LI Department-of-the-art radiative transfer models. 1. Introduction Solar radiation is the ultimate source of energy for the planet of solar radiation, which is unfortunately still fraught with large uncertainties (Wild et al. 1995; Li et

  18. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  19. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  20. Infrared extrapolations for atomic nuclei

    E-Print Network [OSTI]

    R. J. Furnstahl; G. Hagen; T. Papenbrock; K. A. Wendt

    2014-08-01T23:59:59.000Z

    Harmonic oscillator model-space truncations introduce systematic errors to the calculation of binding energies and other observables. We identify the relevant infrared scaling variable and give values for this nucleus-dependent quantity. We consider isotopes of oxygen computed with the coupled-cluster method from chiral nucleon-nucleon interactions at next-to-next-to-leading order and show that the infrared component of the error is sufficiently understood to permit controlled extrapolations. By employing oscillator spaces with relatively large frequencies, well above the energy minimum, the ultraviolet corrections can be suppressed while infrared extrapolations over tens of MeVs are accurate for ground-state energies. However, robust uncertainty quantification for extrapolated quantities that fully accounts for systematic errors is not yet developed.

  1. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal.

  2. Lattice Simulations and Infrared Conformality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; Neil, Ethan T.; Schaich, David A.

    2011-09-01T23:59:59.000Z

    We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore »does work well for another theory expected to be infrared conformal.« less

  3. Infrared structure of pp $\\to$ 2 jets at NNLO: the gluon channel

    E-Print Network [OSTI]

    Joao Pires

    2012-09-27T23:59:59.000Z

    We use the antenna subtraction method to isolate the infrared singularities present in QCD scattering amplitudes at next-to-next-to-leading order. In particular, infrared singularities due to double-real radiation and real-virtual radiation are subtracted from the QCD matrix elements using antenna functions which are then integrated analytically and added to the double-virtual contribution. Here we consider two-jet production at NNLO at hadron colliders and construct subtraction terms for the double-real and real-virtual channels that describe the single and double unresolved configurations of the pure gluon scattering matrix elements. In all singular regions we show numerically that the subtraction terms correctly approximate the matrix elements and demonstrate that upon integration they contribute to the cancellation of all infrared poles when combined with one and two-loop matrix elements.

  4. Analysis of the High-Resolution Infrared Spectrum of Cyclopropane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the High-Resolution Infrared Spectrum of Cyclopropane. Analysis of the High-Resolution Infrared Spectrum of Cyclopropane. Abstract: The high resolution infrared spectrum of...

  5. Near-Infrared Laser Absorption of Poly(vinyl chloride) at Elevated Temperatures

    E-Print Network [OSTI]

    Van de Ven, James D.

    Near-Infrared Laser Absorption of Poly(vinyl chloride) at Elevated Temperatures James D. Van de Ven polymer, pigments, and fillers. Because of the complex phase transition that occurs when heating the charac- teristics of heating owing to the laser radiation. This paper discusses an experiment measuring

  6. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  7. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01T23:59:59.000Z

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  8. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18T23:59:59.000Z

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  9. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01T23:59:59.000Z

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  10. HIGEE Mass Transfer

    E-Print Network [OSTI]

    Mohr, R. J.; Fowler, R.

    HIGEE MASS TRANSFER R.J. Mohr and R. Fowler GLITSCH, INC. Dallas, Texas ABSTRACT Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily... transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight. INTRODUCTION HIGEE is probably one of the most interesting developments in mass transfer equipment made...

  11. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  12. Tunable transfer | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 29, 2013 Scientists gain first quantitative insights into electron transfer from minerals to microbes Scientists have gained the first quantitative insights into electron...

  13. Technology Transfer Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

  14. Bus transfer analysis

    SciTech Connect (OSTI)

    Weronick, R.; Hassan, I.D. [Raytheon Engineers and Constructors, Lyndhurst, NJ (United States)

    1996-11-01T23:59:59.000Z

    This paper discusses bus transfer schemes and the methodology used in modeling and analysis. Due to the unavailability of generic acceptance criteria, simulations were performed to analyze the actual fast bus transfer operations at four operating nuclear power generating stations. Sample simulation results illustrating the transient variations in motors currents and torques are included. The analyses were performed to ensure that motors and other rotating parts are not subjected to excessive or accumulated stresses caused by bus transfer operations. A summary of the experience gained in the process of performing this work and suggested bus transfer acceptance criteria are also presented.

  15. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  16. Quantitative nondestructive testing using Infrared Thermography

    E-Print Network [OSTI]

    Manohar, Arun

    2012-01-01T23:59:59.000Z

    steady, and selective heating scenarios. Infrared Physics &heating thermography and lock-in ther- mography to quantitative nondestructive evaluations. Infraredheating is very difficult to achieve in a practical scenario. The Infrared

  17. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  18. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18T23:59:59.000Z

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  19. May 15, 2000 / Vol. 25, No. 10 / OPTICS LETTERS 743 Mid-infrared differencefrequency generation in periodically

    E-Print Network [OSTI]

    Arie, Ady

    the optical prop- erties of PP KTP in the mid-IR range by DFG.8 KTP has a much higher damage threshold than LiMay 15, 2000 / Vol. 25, No. 10 / OPTICS LETTERS 743 Mid-infrared difference­frequency generation University, Tel Aviv 69978, Israel Received January 10, 2000 Tunable mid-infrared radiation 3.45 3.75 mm

  20. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  1. Infrared Catastrophe for Nelson's Model

    E-Print Network [OSTI]

    Masao Hirokawa

    2005-11-08T23:59:59.000Z

    We mathematically study the infrared catastrophe for the Hamiltonian of Nelson's model when it has the external potential in a general class. For the model, we prove the pull-through formula on ground states in operator theory first. Based on this formula, we show both non-existence of any ground state and divergence of the total number of soft bosons.

  2. Plasmonic lens enhanced mid-infrared quantum cascade detector

    SciTech Connect (OSTI)

    Harrer, Andreas, E-mail: andreas.harrer@tuwien.ac.at; Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, 1040 Vienna (Austria)

    2014-10-27T23:59:59.000Z

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  3. Optical properties of silicon carbide for astrophysical applications I. New laboratory infrared reflectance spectra and optical constants

    E-Print Network [OSTI]

    K. M. Pitman; A. M. Hofmeister; A. B. Corman; A. K. Speck

    2008-03-10T23:59:59.000Z

    Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous data to constrain abundances of these dust grains.

  4. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04T23:59:59.000Z

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  5. Using Infrared Sensors to Follow an Infrared Beam Scott Sobieski, Thomas Richards, David Peacock,

    E-Print Network [OSTI]

    Kay, Jennifer S.

    Using Infrared Sensors to Follow an Infrared Beam Scott Sobieski, Thomas Richards, David Peacock, Computer Science Department The second robot follows the infrared beam from the first robot. These sensors infrared sensors produce a value between 0 and 255 depending on their distance from the emitting beam

  6. YET ANOTHER INFRARED ARCHIVE: RELEASE OF THE INFRARED TELESCOPE IN SPACE (IRTS) ARCHIVE DATA

    E-Print Network [OSTI]

    Yamamura, Issei

    1 YET ANOTHER INFRARED ARCHIVE: RELEASE OF THE INFRARED TELESCOPE IN SPACE (IRTS) ARCHIVE DATA I from 1.4 to 700 µm. Presently the archive includes the near- and mid-infrared low resolu- tion spectral catalogues of point sources, and image maps in five wavelength bands in the far-infrared. The point source

  7. Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation for

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Comparison of Long-Wave Infrared Imaging and Visible/Near-Infrared Imaging of Vegetation using spectral imaging. This has been accom- plished with both visible/near-infrared (Vis/NIR) sunlight reflection and long-wave infrared (LWIR) thermal emission. During a 4-week period in summer 2011

  8. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  9. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30T23:59:59.000Z

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  10. 11th International Conference of Radiation Research

    SciTech Connect (OSTI)

    NONE

    1999-07-18T23:59:59.000Z

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  11. Chapter VIII Automated Overlay of Infrared

    E-Print Network [OSTI]

    Hopgood, Adrian

    166 Chapter VIII Automated Overlay of Infrared and Visual Medical Images G. Schaefer Aston written permission of IGI Global is prohibited. AbstrAct Medical infrared imaging captures the temperature a useful diagnostic visualisation for the clinician. #12;167 Automated Overlay of Infrared and Visual

  12. Infrared Catastrophe for Nelson's Model Masao Hirokawa

    E-Print Network [OSTI]

    Infrared Catastrophe for Nelson's Model Masao Hirokawa Department of Mathematics, Okayama University, 700­8530 Okayama, Japan Abstract We study the infrared catastrophe for Nelson's Hamiltonian general conditions. 1 Introduction The purpose of this study is to investigate the infrared catastrophe

  13. Highlights: Optical/NIR Spectroscopy of Ultraluminous Infrared Galaxies

    E-Print Network [OSTI]

    S. Veilleux

    1999-03-14T23:59:59.000Z

    This paper reviews the results from recent optical and near-infrared spectroscopic studies of ultraluminous infrared galaxies.

  14. Spectral response of localized surface plasmon in resonance with mid-infrared light

    SciTech Connect (OSTI)

    Kusa, Fumiya [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ashihara, Satoshi, E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-10-21T23:59:59.000Z

    We study spectral responses of localized surface plasmons (LSPs) in gold nanorods, which resonate at mid-infrared frequencies, by transmission spectroscopy and electromagnetic field analyses. The resonance linewidth is found to be linearly proportional to the resonance frequency, indicating that the dephasing due to Drude relaxation is suppressed and that the overall dephasing is dominated by radiative damping. Owing to the reduced radiative/non-radiative damping and large geometrical length of the nanorod, near-field intensity enhancement exceeds several hundred times. Nonetheless the resonance linewidth is comparable with or larger than the bandwidth of a 100-fs pulse, and therefore the enhanced near-field as short as 100-fs can be created upon pulsed excitation. The large enhancements with appropriate bandwidths make LSPs promising for enhanced nonlinear spectroscopies, coherent controls, and strong-field light-matter interactions in the mid-infrared range.

  15. The influence of stratus, stratocumulus, and altocumulus clouds on the spectral distribution of solar radiation over Antarctic waters 

    E-Print Network [OSTI]

    Pettett, James Eugene

    1973-01-01T23:59:59.000Z

    function of local solar time. 14 Stratus extinction of solar radiation in the infrared band, 700-2, 800 nm, as a function of local solar time. 15 Stratocumulus extinction of solar radiation in the infrared band, 700-2, 800 nm, as a function of local... solar time . . . ~ . . . . . ~ . ~ . ~ 53 16 Altocumulus extinction of Solar radiation in the infrared band, 700-2, 800 nm, as a function of local solar time 55 LIST OP TABLES Tab le Page Per cent of daily total flux contained in three spectral...

  16. Approved Module Information for CE2004, 2014/5 Module Title/Name: Transfer Processes Module Code: CE2004

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    * Fundamental processes of mass transfer * Design principles of heat exchangers * Fundamentals of radiant heat * a knowledge of the fundamentals and practical applications of radiative heat transfer * a knowledge of pipe solving * Study skills * Time management Indicative Module Content: Heat Transfer (Dr. John Brammer) Heat

  17. POSITION DESCRIPTION 2012 TRANSFER MENTOR

    E-Print Network [OSTI]

    POSITION DESCRIPTION 2012 TRANSFER MENTOR TRANSFER MENTOR AS A STAFF MEMBER Thank you for your interest in the Transfer Mentor position with Orientation and Transition Programs' (OTP) Transfer Mentoring Program. The Transfer Mentor (TM) is a member of the Orientation and Transition Programs' staff

  18. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31T23:59:59.000Z

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  19. Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: II. Real-body radiation

    E-Print Network [OSTI]

    Fisenko, Anatoliy I

    2015-01-01T23:59:59.000Z

    The general analytical expressions for the thermal radiative and thermodynamic properties of a real-body are obtained in a finite range of frequencies at different temperatures. The frequency dependence of the spectral emissivity is represented as a power series. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and total emissivity are expressed in terms of the polylogarithm functions. The general expressions for the thermal radiative and thermodynamic functions are applied for the study of thermal radiation of liquid and solid zirconium carbide. These functions are calculated using experimental data for the frequency dependence of the normal spectral emissivity in the visible-near infrared range at the melting (freezing) point. The gaps between the thermal radiative and thermodynamic functions of liquid and solid zirconium carbide are observed. The g...

  20. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  1. Heat transfer between elastic solids with randomly rough surfaces

    E-Print Network [OSTI]

    B. N. J. Persson; B. Lorenz; A. I. Volokitin

    2009-08-27T23:59:59.000Z

    We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

  2. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  3. Microscopic thermal diffusivity mapping using an infrared camera

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.

    1997-12-31T23:59:59.000Z

    Standard flash thermal diffusivity measurements utilize a single-point infrared detector to measure the average temperature rise of the sample surface after a heat pulse. The averaging of infrared radiation over the sample surface could smear out the microscopic thermal diffusivity variations in some specimens, especially in fiber-reinforced composite materials. A high-speed, high-sensitivity infrared camera was employed in this study of composite materials. With a special microscope attachment, the spatial resolution of the camera can reach 5.4 {micro}m. The images can then be processed to generate microscopic thermal diffusivity maps of the material. SRM 1462 stainless steel was tested to evaluate the accuracy of the system. Thermal diffusivity micrographs of carbon-carbon composites and SCS-6/borosilicate glass were generated. Thermal diffusivity values of the carbon fiber bundles parallel to the heat flow were found to be higher than the matrix material. A thermal coupling effect between SCS-6 fiber and matrix was observed. The thermal coupling and measured thermal diffusivity value of the fiber were also dependent upon the thickness of the specimen.

  4. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24T23:59:59.000Z

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  5. Generation and characterization of superradiant undulator radiation

    SciTech Connect (OSTI)

    Bocek, D.

    1997-06-01T23:59:59.000Z

    High-power, pulsed, coherent, far-infrared (FIR) radiation has many scientific applications, such as pump-probe studies of surfaces, liquids, and solids, studies of high-T{sub c} superconductors, biophysics, plasma diagnostics, and excitation of Rydberg atoms. Few sources of such FIR radiation currently exist. Superradiant undulator radiation produced at the SUNSHINE (Stanford UNiversity SHort INtense Electron-source) is such a FIR source. First proposed in the mm-wave spectral range by Motz, superradiant undulator radiation has been realized in the 45 {micro}m to 300 {micro}m spectral range by using sub-picosecond electron bunches produced by the SUNSHINE facility. The experimental setup and measurements of this FIR radiation are reported in this thesis. In addition, to being a useful FIR source, the superradiant undulator radiation produced at SUNSHINE is an object of research in itself. Measured superlinear growth of the radiated energy along the undulator demonstrates the self-amplification of radiation by the electron bunch. This superlinear growth is seen at 47 {micro}m to 70 {micro}m wavelengths. These wavelengths are an order of magnitude shorter than in previous self-amplification demonstrations.

  6. A Theoretical Investigation Into Energy Transfer In Photosynthetic Open Quantum Systems

    E-Print Network [OSTI]

    Wilkins, David M

    2015-01-01T23:59:59.000Z

    This thesis looks at the electronic energy transfer in the Fenna-Matthews-Olson complex, in which evidence of long-lived coherence has been observed in 2-dimensional infrared experiments. I use three techniques: the numerically exact Hierarchical Equations of Motion, and the perturbative Redfield and Foerster theories, the latter of which ignores quantum coherence in the transfer. Both of the approximate methods perform very well - and while oscillations in site populations (a hallmark of coherence) are present in the exact transfer dynamics and absent in the dynamics of Foerster theory, the latter gives a reasonable prediction of transfer rates and steady-state populations, despite being incoherent - suggesting that coherence is not vital for the dynamics of transfer. Since Foerster theory is very inexpensive to run and performs so well, I then apply it to calculate the effects of static disorder in bacteriochlorophyll site energies and of a more structured spectral density. Ultimately, the energy transfer i...

  7. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29T23:59:59.000Z

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  8. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  9. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  10. Source storage and transfer cask: Users Guide

    SciTech Connect (OSTI)

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01T23:59:59.000Z

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

  11. hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution Pierre-Olivier Chapuis, Marine Laroche, Sebastian Volz, and Jean.ecp.fr We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi

  12. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  13. Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures

    SciTech Connect (OSTI)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Aleshkin, V. Ya.; Dubinov, A. A. [Institute for Physics of Microstructures of Russian Academy of Sciences, and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Department of Electrical, Electronics, and System Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-04-21T23:59:59.000Z

    We propose and theoretically substantiate the concept of terahertz and infrared photodetectors using the resonant radiative transitions between graphene layers (GLs) in double-GL structures. The calculated absorption spectrum and the spectral characteristics of the photodetector responsivity exhibit sharp resonant maxima at the photon energies in a wide range. The resonant maxima can be tuned by the applied voltage. We compare the photodetector responsivity with that of the GL p-i-n photodiodes and quantum-well infrared photodetectors. Weak temperature dependences of the photocurrent and dark current enable the effective operation of the proposed photodetector at room temperature.

  14. Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite 

    E-Print Network [OSTI]

    Henderson, Rodney Stuart

    1979-01-01T23:59:59.000Z

    and infrared spectrums. The SEM in- eludes a magnetometer, a solar x ? ray telescope, and an energetic 22 particle monitor. The TTC includes equipment for S-band trans- mission and reception (ir. reduced bandwidth) of VISSR data, S-band transmission... the visible and infrared spectrums. Radiation is received by the VISSR's primary optics via a 45 object-space scan mirror. The mirror is an elliptically shaped plane mirror which is tilted about its minor axis to obtain the north- south scan steps. West...

  15. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29T23:59:59.000Z

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  16. Infrared Emission of Normal Galaxies from 2.5 to 12 Microns: ISO Spectra, Near-Infrared Continuum and Mid-Infrared Emission Features

    E-Print Network [OSTI]

    Nanyao Lu; George Helou; Michael W. Werner; Harriet L. Dinerstein; Daniel A. Dale; Nancy A. Silbermann; Sangeeta Malhotra; Charles A. Beichman; Thomas H. Jarrett

    2003-01-23T23:59:59.000Z

    We present ISO-PHOT spectra of the regions 2.5-4.9um and 5.8-11.6um for a sample of 45 disk galaxies from the U.S. ISO Key Project on Normal Galaxies. The spectra can be decomposed into three spectral components: (1) continuum emission from stellar photospheres, which dominates the near-infrared (2.5- 4.9um; NIR) spectral region; (2) a weak NIR excess continuum, which has a color temperature of ~ 1000K, carries a luminosity of a few percent of the total far-infrared luminosity L(FIR), and most likely arises from the ISM; and (3) the well-known broad emission features at 6.2, 7.7, 8.6 and 11.3 um, which are generally attributed to aromatic carbon particles. These aromatic features in emission (AFEs) dominate the mid-infrared (5.8-11.6 um; MIR) part of the spectrum, and resemble the so-called Type-A spectra observed in many non-stellar sources and the diffuse ISM in our own Galaxy. The relative strengths of the AFEs vary by 15-25% among the galaxies. However, little correlation is seen between these variations and either IRAS 60um-to-100um flux density ratio R(60/100) or the FIR-to-blue luminosity ratio L(FIR)/L(B), suggesting that the observed variations are not a direct consequence of the radiation field differences among the galaxies. We demonstrate that the NIR excess continuum and AFE emission are correlated, suggesting that they are produced by similar mechanisms and similar (or the same) material. On the other hand, as the current star-formation activity increases, the overall strengths of the AFEs and the NIR excess continuum drop significantly with respect to that of the far-infrared emission from large dust grains. This is likely a consequence of the preferential destruction in intense radiation fields of the small carriers responsible for the NIR/AFE emission.

  17. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    64 Ni+ 64 Ni Strong entrance-channel dependence of fusion enhancement Beckerman et al., PRL 45, 1472 (1980), PRC 25, 837 (1982) Coupling of transfer channels, in addition to...

  18. ATS 351, Spring 2010 Energy & Radiation 60 points

    E-Print Network [OSTI]

    Rutledge, Steven

    energy per wave? Why? Shorter wavelengths carry more energy per wave. Therefore, the sun's radiationATS 351, Spring 2010 Lab #2 Energy & Radiation ­ 60 points Please show your work for calculations Question #1: Energy (11 points) Heat is a measure of the transfer of energy from a body with a higher

  19. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2005 - 2006 #12;2 #12;3 ANNUAL. Papazoglou #12;5 PREFACE The Institute has continued transferring know how from Nuclear Technology to other of the Institute page 34 7. Publications page 36 8. Research Projects page 72 #12;4 ORGANISATIONAL CHART 2006

  20. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  1. Proton Transfer in Nucleobases is Mediated by Water Kirill Khistyaev,

    E-Print Network [OSTI]

    Krylov, Anna I.

    Proton Transfer in Nucleobases is Mediated by Water Kirill Khistyaev, Amir Golan, Ksenia B. Bravaya, and facilitating efficient proton transport through ion channels and interfaces. This study investigates proton and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton

  2. InVited Feature Article Water Dynamics and Proton Transfer in Nafion Fuel Cell Membranes

    E-Print Network [OSTI]

    Fayer, Michael D.

    InVited Feature Article Water Dynamics and Proton Transfer in Nafion Fuel Cell Membranes David E is the most widely used polyelectrolyte membrane in fuel cells. Ultrafast infrared spectroscopy of the O but has since become the most commonly used membrane separator in polymer electrolyte membrane fuel cells

  3. Resources, framing, and transfer p. 1 Resources, framing, and transfer

    E-Print Network [OSTI]

    Hammer, David

    Resources, framing, and transfer p. 1 Resources, framing, and transfer David Hammer Departments. #12;Resources, framing, and transfer p. 2 Resources, framing, and transfer David Hammer, Andrew Elby of activating resources, a language with an explicitly manifold view of cognitive structure. In this chapter, we

  4. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  5. HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H and the sheet metal: This is ventilation by natural convection. The remaining conductive heat from the sheet or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers

  6. An evaluation of infrared microwindows for ozone retrievals using the Eureka Bruker 125HR Fourier transform spectrometer

    E-Print Network [OSTI]

    Strong, Kimberly

    made in the laboratory in 1839 by Sch¨onbein [1,2]. It is well known as an important component of our atmo- sphere, as it strongly absorbs solar ultraviolet (UV) radiation. Total ozone column measurementsDirect journal homepage: www.elsevier.com/locate/jqsrt Journal of Quantitative Spectroscopy & Radiative Transfer

  7. Stratospheric profiles of nitrogen dioxide observed by Optical Spectrograph and Infrared Imager System on the Odin satellite

    E-Print Network [OSTI]

    Chance, Kelly

    ,6 Kelly V. Chance,1 Thomas P. Kurosu,1 Donal Murtagh,7 Urban Frisk,8 Klaus Pfeilsticker,9 Hartmut Bo¨sch. The inclusion of multiple scattering in the radiative transfer model used in the inversion algorithm allows; 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 0394 Atmospheric

  8. RADIATIVE HEATING OF THE SOLAR CORONA

    SciTech Connect (OSTI)

    Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2011-10-20T23:59:59.000Z

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  9. Infrared regularization with vector mesons and baryons

    E-Print Network [OSTI]

    P. C. Bruns; Ulf-G. Meißner

    2008-08-23T23:59:59.000Z

    We extend the method of infrared regularization to spin-1 fields coupled to baryons. As an application, we discuss the axial form factor of the nucleon.

  10. A novel nanometric DNA thin film as a sensor for alpha radiation

    E-Print Network [OSTI]

    Cai, Long

    of Energy Science, Sungkyunkwan University, Suwon 440­746, Korea. The unexpected nuclear accidents have radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require be one of promising candidates for the development of online radiation sensors. T he Fukushima nuclear

  11. Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model

    E-Print Network [OSTI]

    Liu, Hongyu

    Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical. (2006), Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical

  12. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  13. Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

    E-Print Network [OSTI]

    Baum, Bryan A.

    of the net cloud radiative forc- ing of these clouds requires a global, diurnal climatology, which can most and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness

  14. Electric Dipole Radiation from Spinning Dust Grains

    E-Print Network [OSTI]

    B. T. Draine; A. Lazarian

    1998-02-18T23:59:59.000Z

    We discuss the rotational excitation of small interstellar grains and the resulting electric dipole radiation from spinning dust. Attention is given to excitation and damping of rotation by: collisions with neutrals; collisions with ions; plasma drag; emission of infrared radiation; emission of microwave radiation; photoelectric emission; and formation of H_2 on the grain surface. We introduce dimensionless functions F and G which allow direct comparison of the contributions of different mechanisms to rotational drag and excitation. Emissivities are estimated for dust in different phases of the interstellar medium, including diffuse HI, warm HI, low-density photoionized gas, and cold molecular gas. Spinning dust grains can explain much, and perhaps all, of the 14-50 GHz background component recently observed in CBR studies. It should be possible to detect rotational emission from small grains by ground-based observations of molecular clouds.

  15. Journal of Quantitative Spectroscopy & Radiative Transfer 7980 (2003) 11711188

    E-Print Network [OSTI]

    Baum, Bryan A.

    .elsevier.com/locate/jqsrt The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid and ice particles may be present. This is typically known as a "mixed-phase" cloud condition the bulk scattering properties of mixed-phase clouds by a linear weighting of the contributions of ice

  16. Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 473504

    E-Print Network [OSTI]

    Baum, Bryan A.

    , and the asymmetry parameter of the phase function for ice crystals smaller than 40 m. For particles larger than­13 m spectral region contains a wealth of information that is very useful for the retrieval of ice properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use

  17. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    transport in a machinable glass-ceramic”, Journal of Non-in soda-lime-silicate glasses by reaction with hydrogen”,1971. [16] I. Fanderlik, Glass Science and Technology, Vol.

  18. Monte Carlo radiative heat transfer simulation on a reconfigurable computer

    SciTech Connect (OSTI)

    Gokhale, M. (Maya); Ahrens, C. M. (Christine Marie); Frigo, J. (Janette); Minnich, R. G. (Ronald G.); Tripp J. L. (Justin L.)

    2004-01-01T23:59:59.000Z

    Recently, the appearance of very large (3-10M gate) FPGAs with embedded arithmetic units has opened the door to the possibility of floating point computation on these devices. While previous researchers have described peak performance or kernel matrix operations, there is as yet little experience with mapping an application-specific floating point pipeline onto FPGAs. In this work, we port a supercomputer application benchmark onto Xilinx Virtex II and II Pro FPGAs and compare performance with comparable microprocessor implementation. Our results show that this application-specific pipeline, with 12 multiply, 10 add/subtract, one divide, and two compare modules of single precision floating point data type, shows speedup of 1.6x-1.7x. We analyze the trade-offs between hardware and software 'sweet spots' to characterize the algorithms that will perform well on current and future FPGA architectures.

  19. Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 122129

    E-Print Network [OSTI]

    Zender, Charles

    and unaccounted-for solar energy sink in the atmosphere. We spectrally resolve, for the first time, all solar

  20. Radiative transfer and thermal performance levels in foam insulation boardstocks

    E-Print Network [OSTI]

    Moreno, John David

    1991-01-01T23:59:59.000Z

    The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

  1. Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220237

    E-Print Network [OSTI]

    Pilon, Laurent

    2006-01-01T23:59:59.000Z

    to the local time and length scales [1]. Of late, with the advent of ultra-short pulsed lasers, this assumption of the order of pico- and femto-seconds. Ultra-short pulsed lasers are used in a wide variety of applications particles from surfaces, optical data storage, optical ablation and ablation of polymers [2]. Ultra-short

  2. Uncertainty of microwave radiative transfer computations in rain

    E-Print Network [OSTI]

    Hong, Sung Wook

    2009-06-02T23:59:59.000Z

    of the vertical resolution effect on the BT. Secondly, a new temperature profile based on observations was absorbed in the Texas A&M University (TAMU) algorithm. The Precipitation Radar (PR) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI...

  3. Author's personal copy Radiative heat transfer in enhanced hydrogen

    E-Print Network [OSTI]

    Pilon, Laurent

    the physical mechanisms responsible for experimental observations that led to the definition of ``photo tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here

  4. Radiative Transfer, Satellite Retrieval Systems and 32 Years

    E-Print Network [OSTI]

    Kuligowski, Bob

    computer · DEC VAX systems driving Adage image processors #12;NOAA also using Gould SEL computers on the Gould to ingest the Mode AAA data for VAS multispectral imagery · I wrote code on the VAX to talk with the Gould and have the Gould extract an image sector from the ingest sector and pass it out to the VAX

  5. Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 10431059

    E-Print Network [OSTI]

    Chance, Kelly

    2008-01-01T23:59:59.000Z

    Laboratoire Inter-Universitaire des Syste`mes Atmosphe´riques, Faculte´ des Sciences et Technologie, 61 avenue Groupe de Spectrome´trie Mole´culaire et Atmosphe´rique, Universite´ de Reims-Champagne-Ardenne, 51062 91109, USA h Laboratoire de Physique Mole´culaire pour l'Atmosphe`re et l'Astrophysique, Universite

  6. Journal of Quantitative Spectroscopy & Radiative Transfer 100 (2006) 457469

    E-Print Network [OSTI]

    , College Station, TX 77843, USA b Remote sensing Division, Code 7232, Naval Research Laboratory, Washington

  7. EXPERIMENTAL MEASUREMENT OF RADIATION HEAT TRANSFER FROM COMPLEX

    E-Print Network [OSTI]

    ALLAN WILSON Bachelor of Science Oklahoma State University Stillwater, Oklahoma 2005 Submitted Allan, who taught me to set lofty goals and always give my best. And although your lives were not long

  8. Efficient wireless non-radiative mid-range energy transfer

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    -wire grid was deployed, seri- ous interest and effort was devoted (most notably by Nikola Tesla [1]) towards storage) justifies revisiting investigation of this issue. Today, we face a different challenge than Tesla

  9. Journal of Quantitative Spectroscopy & Radiative Transfer 101 (2006) 404410

    E-Print Network [OSTI]

    of monochromatic light impinging on any point of DS in directions confined to a small solid angle O (called, New York, NY 10025, USA Abstract We revisit the optical theorem relevant to the far-established fact which states that extinction is caused by the interference of the incident and the forward

  10. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    slabs. Moreover, the total heat input during furnace heatingperformed for the same heat input. The optical propertiesheating for the same total heat input. Similarly, Figure 7

  11. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Wang, Jin (Burr Ridge, IL)

    2011-07-26T23:59:59.000Z

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  12. Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 285296

    E-Print Network [OSTI]

    Fan, Tai-Hsi

    materials processing applications ranging from metallurgical slag foaming to batch foams in glass melting- cations. One example is glass foams formed on the surface of batch logs of raw materials during the glass the foams formed on the free surface of the molten glass that possess a structure of multiple layers

  13. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska:CDMValenciaLEDSGPDoha -CPFLCPowerISES-

  14. Present and Future Computing Requirements Radiative Transfer of Astrophysical Explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTINGQuantitativeComputational Cosmology

  15. Improvements to the SHDOM Radiative Transfer Modeling Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenITLaboratory in InductivelyImprovements to

  16. Bremsstrahlung Radiation as Coherent State in Thermal QED

    E-Print Network [OSTI]

    Enke Wang; Jun Xiao; Hanzhong Zhang

    2001-10-23T23:59:59.000Z

    Based on fully finite temperature field theory we investigate the radiation probability in the bremsstrahlung process in thermal QED. It turns out that the infrared divergences resulting from the emission and absorption of the real photons are canceled by the virtual photon exchange processes at finite temperature. The full quantum calculation results for soft photons radiation coincide completely with that obtained in the semi-classical approximation. In the framework of Thermofield Dynamics it is shown that the bremsstrahlung radiation in thermal QED is a coherent state, the quasiclassical behavior of the coherent state leads to above coincidence.

  17. Infrared fixed point in quantum Einstein gravity

    E-Print Network [OSTI]

    S. Nagy; J. Krizsan; K. Sailer

    2012-06-28T23:59:59.000Z

    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent $\

  18. A CATALOG OF GALACTIC INFRARED CARBON STARS

    SciTech Connect (OSTI)

    Chen, P. S. [National Astronomical Observatories/Yunnan Observatory and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China); Yang, X. H., E-mail: iraspsc@yahoo.com.cn, E-mail: yangxh@cqu.edu.cn [Department of Physics, Chongqing University, Chongqing 400044 (China)

    2012-02-15T23:59:59.000Z

    We collected almost all of the Galactic infrared carbon stars (IRCSs) from literature published up to the present to organize a catalog of 974 Galactic IRCSs in this paper. Some of their photometric properties in the near-, mid-, and far-infrared are discussed.

  19. Infrared Fiber Optics James A. Harrington

    E-Print Network [OSTI]

    1 Infrared Fiber Optics James A. Harrington Ceramic & Materials Engineering Rutgers University Piscataway, NJ 08854-8065 1. Introduction Infrared (IR) optical fibers may be defined as fiber optics IR fiber optics may logically be divided into three broad categories: glass, crystalline, and hollow

  20. A Green's function formalism of energy and momentum transfer in fluctuational electrodynamics

    E-Print Network [OSTI]

    Arvind Narayanaswamy; Yi Zheng

    2013-02-03T23:59:59.000Z

    Radiative energy and momentum transfer due to fluctuations of electromagnetic fields arising due to temperature difference between objects is described in terms of the cross-spectral densities of the electromagnetic fields. We derive relations between thermal non-equilibrium contributions to energy and momentum transfer and surface integrals of tangential components of the dyadic Green's functions of the vector Helmholtz equation. The expressions derived here are applicable to objects of arbitrary shapes, dielectric functions, as well as magnetic permeabilities. For the case of radiative transfer, we derive expressions for the generalized transmissivity and generalized conductance that are shown to obey reciprocity and agree with theory of black body radiative transfer in the appropriate limit.

  1. Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures

    E-Print Network [OSTI]

    Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith1 , Howdy and cold sides, respectively. Surface temperature maps were compiled using an infrared thermographic system

  2. The Use of Infrared Technology To Detect Heat Loss 

    E-Print Network [OSTI]

    Faulkner, K.

    1979-01-01T23:59:59.000Z

    Infrared refers to electro magnetic energy with a wave length longer than those of visible light. Researchers developed methods to quantify, focus and form real-time images to infrared energy. This spawned the development of infrared Thenrography...

  3. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    E-Print Network [OSTI]

    Warren, Clinton Gregory

    2010-01-01T23:59:59.000Z

    in response to heating cause by infrared light. In order to70 Heating and cooling of infrared source as measured withto detect the heating and cooling of the infrared source,

  4. Zachar and Naik Principles of Infrared Thermography and

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Zachar and Naik 1 Principles of Infrared Thermography and Application for Assessment details the principles of infrared thermography from the underlying theoretical considerations to the physical constraints involved with performing the test. Infrared (IR) thermography testing may be conducted

  5. FY 2006 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  6. Dissecting the Homunculus nebula around Eta Carinae with spatially resolved near-infrared spectroscopy

    E-Print Network [OSTI]

    Nathan Smith

    2002-11-27T23:59:59.000Z

    Near-infrared emission lines provide unique diagnostics of the geometry, structure, kinematics, and excitation of eta Carinae's circumstellar ejecta, and give clues to the nature of its wind. The infrared spectrum is a strong function of position in eta Car's nebula, with a mix of intrinsic and reflected emission. Molecular hydrogen traces cool gas and dust in the polar lobes, while [Fe II] blankets their inner surfaces. These lines reveal the back wall of the SE polar lobe for the first time, and give the clearest picture yet of the 3-D geometry. Additionally, collisionally-excited [Fe II] reveals the kinematic structure of a recently discovered `Little Homunculus' expanding inside the larger one. Equatorial gas in the `Fan', on the other hand, shows a spectrum indicating recombination and fluorescent pumping. Some equatorial ejecta glow in the He I 10830 line, showing evidence for material ejected in the 1890 outburst of eta Car. Closer to the star, the compact `Weigelt blobs' are marginally resolved, allowing their infrared spectrum to be separated from the star for the first time. In general, infrared spectra reveal a coherent, directional dependence of excitation in the Homunculus: polar ejecta are collisionally excited, whereas equatorial ejecta are dominated by fluorescence and normal photoexcitation. These are important clues to the geometry of the central star's UV radiation field. Reflected near-infrared emission lines also reveal interesting latitudinal dependence in the stellar wind.

  7. Towards an Understanding of the Mid-Infrared Surface Brightness of Normal Galaxies

    E-Print Network [OSTI]

    Daniel A. Dale; George Helou; Nancy A. Silbermann; Alessandra Contursi; Sangeeta Malhotra; Robert H. Rubin

    1999-08-09T23:59:59.000Z

    We report a mid-infrared color and surface brightness analysis of IC 10, NGC 1313, and NGC 6946, three of the nearby galaxies studied under the Infrared Space Observatory Key Project on Normal Galaxies. Images with < 9 arcsecond (170 pc) resolution of these nearly face-on, late-type galaxies were obtained using the LW2 (6.75 mu) and LW3 (15 mu) ISOCAM filters. Though their global I_nu(6.75 mu)/I_nu(15 mu) flux ratios are similar and typical of normal galaxies, they show distinct trends of this color ratio with mid-infrared surface brightness. We find that I_nu(6.75 mu)/I_nu(15 mu) ~< 1 only occurs for regions of intense heating activity where the continuum rises at 15 micron and where PAH destruction can play an important role. The shape of the color-surface brightness trend also appears to depend, to the second-order, on the hardness of the ionizing radiation. We discuss these findings in the context of a two-component model for the phases of the interstellar medium and suggest that star formation intensity is largely responsible for the mid-infrared surface brightness and colors within normal galaxies, whereas differences in dust column density are the primary drivers of variations in the mid-infrared surface brightness between the disks of normal galaxies.

  8. Radiation Pressure in Massive Star Formation

    E-Print Network [OSTI]

    Mark R. Krumholz; Richard I. Klein; Christopher F. McKee

    2005-10-14T23:59:59.000Z

    Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.

  9. Infrared spectroscopy of ionic clusters

    SciTech Connect (OSTI)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01T23:59:59.000Z

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  10. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2005-12-01T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

  11. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    J.S. Tang

    2004-09-23T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  12. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01T23:59:59.000Z

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  13. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07T23:59:59.000Z

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  14. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  15. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  16. Automated High-Pressure Titration System with In Situ Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure Titration System with In Situ Infrared Spectroscopic Detection. Automated High-Pressure Titration System with In Situ Infrared Spectroscopic Detection. Abstract: A...

  17. Analysis of Rotational Structure in the High-Resolution Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Structure in the High-Resolution Infrared Spectrum and Assignment of Vibrational Fundamentals of Analysis of Rotational Structure in the High-Resolution Infrared...

  18. Infrared Thermography (IRT) Working Group | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado...

  19. Detection of Low Volatility Organic Analytes on Soils Using Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Volatility Organic Analytes on Soils Using Infrared Reflection Spectroscopy. Detection of Low Volatility Organic Analytes on Soils Using Infrared Reflection Spectroscopy....

  20. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...