National Library of Energy BETA

Sample records for infrared energy radiated

  1. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  2. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  3. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  4. Transition undulator radiation as bright infrared sources

    SciTech Connect (OSTI)

    Kim, K.J.

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  5. Synchrotron radiation infrared microscopic study of non-bridging...

    Office of Scientific and Technical Information (OSTI)

    Title: Synchrotron radiation infrared microscopic study of non-bridging oxygen modes associated with laser-induced breakdown of fused silica Authors: Matthews, M J ; Carr, C W ; ...

  6. Radiant energy required for infrared neural stimulation

    SciTech Connect (OSTI)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.

  7. Radiant energy required for infrared neural stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Xiaodong; Rajguru, Suhrud; Young, Hunter; Xia, Nan; Stock, Stuart R.; Xiao, Xianghui; Richter, Claus-Peter

    2015-08-25

    Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography wasmore » used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.« less

  8. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  9. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  10. Infrared Radiation Filament And Metnod Of Manufacture

    DOE Patents [OSTI]

    Johnson, Edward A.

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  11. Infrared Debonding - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Infrared Debonding Y-12 National Security Complex Contact Y12 About This Technology Publications: PDF Document Publication Fact Sheet (302 KB) PDF Document Publication Presentation (370 KB) PDF Document Publication Patent (48 KB) <p align="left">&nbsp;</p> <p><em><span style="font-size: x-small;">Y-12 worker elevates object for positioning inside the IR

  12. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  13. Radiator Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New York State Energy Research & Development Authority estimates that 15 to 30 percent of the heat is wasted by overheating of steam buildings. Radiator Labs developed a ...

  14. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...

  15. Forward looking infrared | Open Energy Information

    Open Energy Info (EERE)

    looking infrared Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Forward looking infrared Author Wikipedia Published Publisher Not Provided, 2013...

  16. Tunable ultrasonic phononic crystal controlled by infrared radiation

    SciTech Connect (OSTI)

    Walker, Ezekiel; Neogi, Arup, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China); University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Reyes, Delfino [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Rojas, Miguel Mayorga [Universidad Autnoma del Estado de Mxico, Toluca 50120 (Mexico); Krokhin, Arkadii [University of North Texas, Department of Physics, Denton, Texas 76201 (United States); Wang, Zhiming, E-mail: zhmwang@gmail.com, E-mail: arup@unt.edu [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-10-06

    A tunable phononic crystal based ultrasonic filter was designed by stimulating the phase of the polymeric material embedded in a periodic structure using infrared radiation. The acoustic filter can be tuned remotely using thermal stimulation induced by the infrared radiation. The filter is composed of steel cylinder scatterers arranged periodically in a background of bulk poly (N-isopropylacrylamide) polymer hydrogel. The lattice structure creates forbidden bands for certain sets of mechanical waves that cause it to behave as an ultrasonic filter. Since the bandstructure is determined by not only the arrangement of the scatterers but also the physical properties of the materials composing the scatterers and background, modulating either the arrangement or physical properties will alter the effect of the crystal on propagating mechanical waves. Here, the physical properties of the filter are varied by inducing changes in the polymer hydrogel using an electromagnetic thermal stimulus. With particular focus on the k{sub 00}-wave, the transmission of ultrasonic wave changes by as much as 20 dBm, and band widths by 22% for select bands.

  17. Radiator Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer

  18. Tunable Surface Plasmon Infrared Modulator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industries Infrared Modulator IR Counter Measures Photonic Circuitry Metamaterials Chemical Sensing Variable Attenuation Patents and Patent Applications ID Number...

  19. Lesson 4 - Ionizing Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing

  20. Radiation augmentation energy storage system

    SciTech Connect (OSTI)

    Christe, K.O.

    1990-02-27

    This patent describes a method of converting radiation energy into chemical energy to produce a high-performance propellant. It comprises: photolytically converting oxygen to ozone; storing and stabilizing the ozone in liquid oxygen to form an ozone/liquid oxygen solution; and combusting the ozone/liquid oxygen solution with hydrogen.

  1. Infrared Thermography (IRT) Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrared Thermography (IRT) Working Group Infrared Thermography (IRT) Working Group Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_pvmc_mcwilliams.pdf (1.52 MB) More Documents & Publications US & Japan TG 4 Activities of QA Forum Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Energy Auditor - Single Family 2.0: Interpreting Infrared

  2. Non-destructive component separation using infrared radiant energy

    SciTech Connect (OSTI)

    Simandl, Ronald F.; Russell, Steven W.; Holt, Jerrid S.; Brown, John D.

    2011-03-01

    A method for separating a first component and a second component from one another at an adhesive bond interface between the first component and second component. Typically the method involves irradiating the first component with infrared radiation from a source that radiates substantially only short wavelengths until the adhesive bond is destabilized, and then separating the first component and the second component from one another. In some embodiments an assembly of components to be debonded is placed inside an enclosure and the assembly is illuminated from an IR source that is external to the enclosure. In some embodiments an assembly of components to be debonded is simultaneously irradiated by a multi-planar array of IR sources. Often the IR radiation is unidirectional. In some embodiments the IR radiation is narrow-band short wavelength infrared radiation.

  3. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  4. Fiber-Optic Environmental Radiation Dosimeter - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Fiber-Optic Environmental Radiation Dosimeter Radiation DetectorSensor Naval ...

  5. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  6. Solar Radiation Basics | Department of Energy

    Energy Savers [EERE]

    Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and ...

  7. Method of using infrared radiation for assembling a first component with a second component

    DOE Patents [OSTI]

    Sikka, Vinod K.; Whitson, Barry G.; Blue, Craig A.

    1999-01-01

    A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

  8. Method and apparatus for reducing radiation exposure through the use of infrared data transmission

    DOE Patents [OSTI]

    Austin, Frank S.; Hance, Albert B.

    1989-01-01

    A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

  9. Radiator Labs | Department of Energy

    Office of Environmental Management (EM)

    and resulting in lower energy consumption. This represents an achievable savings of more than 2 percent of all energy used to heat residential structures in the United States, ...

  10. Defense-in-Depth, How Department of Energy Implements Radiation...

    Energy Savers [EERE]

    Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Defense-in-Depth, How Department of Energy Implements Radiation Protection in ...

  11. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  12. Near-infrared radiation curable multilayer coating systems and methods for applying same

    SciTech Connect (OSTI)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  13. Category:Near Infrared Surveys | Open Energy Information

    Open Energy Info (EERE)

    Infrared Surveys Retrieved from "http:en.openei.orgwindex.php?titleCategory:NearInfraredSurveys&oldid794164" Feedback Contact needs updating Image needs updating...

  14. Category:Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    Infrared Retrieved from "http:en.openei.orgwindex.php?titleCategory:Long-WaveInfrared&oldid794161" Feedback Contact needs updating Image needs updating Reference...

  15. Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1980-01-01

    A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

  16. Infrared response of YBa sub 2 Cu sub 3 O sub 7-. delta. films to pulsed, broadband synchrotron radiation

    SciTech Connect (OSTI)

    Carr, G.L.; Quijada, M.; Tanner, D.B. . Dept. of Physics); Hirschmugl, C.J.; Williams, G.P. ); Etemad, S.; DeRosa, F.; Venkatesan, T. ); Dutta, B.; Hemmick, D.; Xi, X. . Dept. of Physics)

    1990-01-01

    We report studies of a thin high {Tc} film operating as a fast bolometric detector of infrared radiation. The film has a response of infrared radiation. The film has a response of several mV when exposed to a 1 W, 1 ns duration broadband infrared pulse. The decay after the pulse was about 4 ns. The temperature dependence of the response accurately tracked dR/dT. A thermal model, in which the film's temperature varies relative to the substrate, provides a good description of the response. We find no evidence for other (non-bolometric) response mechanisms for temperatures near or well below {Tc}. 13 refs., 4 figs.

  17. Endoscopic Radiation Revolutionizes Cancer Treatment - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Endoscopic Radiation Revolutionizes Cancer Treatment Argonne National Laboratory Contact ANL About This Technology <p> <em>Conventional X-ray radiation and electron beam therapy: a comparison</em></p> <p> <em>Left: Conventional treatment depositing energy into tissue as a function of distance for three 250-kV X-ray beams; Right: Electron beam treatment depositing energy into tissue for a 3-MeV electron beam as a function of distance, with the zero

  18. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect (OSTI)

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  19. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, D.P.

    1998-05-12

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

  20. Method and apparatus for coherent imaging of infrared energy

    DOE Patents [OSTI]

    Hutchinson, Donald P.

    1998-01-01

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.

  1. Letter on Low-Level Radiation Research | Department of Energy

    Energy Savers [EERE]

    Low-Level Radiation Research Letter on Low-Level Radiation Research The Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Department regarding its perspective ...

  2. Occupational Radiation Exposures at the Department of Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Occupational Radiation Exposures at the Department of Energy Occupational Radiation Exposures at the Department of Energy Nimi Rao*, U.S. Department of Energy ; Derek Hagemeyer, Oak Ridge Institute for Science and Education Abstract: The DOE Radiation Exposure Monitoring System (REMS) project began in 1969 under the AEC and has undergone significant evolutions since inception. The system serves as the central repository for occupational radiation exposure records for all

  3. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  4. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  5. Solar Radiation Research Laboratory | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Since 1981, NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components, ...

  6. Focusing monochromators for high energy synchrotron radiation

    SciTech Connect (OSTI)

    Suortti, P. )

    1992-01-01

    Bent crystals are introduced as monochromators for high energy synchrotron radiation. The reflectivity of the crystal can be calculated reliably from a model where the bent crystal is approximated by a stack of lamellas, which have a gradually changing angle of reflection. The reflectivity curves of a 4 mm thick, asymmetrically cut ({chi}=9.5{degree}) Si(220) crystal are measured using 150 keV radiation and varying the bending radius from 25 to 140 m. The width of the reflectivity curve is up to 50 times the Darwin width of the reflection, and the maximum reflectivity exceeds 80%. The crystal is used as a monochromator in Compton scattering measurements. The source is on the focusing circle, so that the resolution is limited essentially by the detector/analyzer. A wide bandpass, sharply focused beam is attained when the source is outside the focusing circle in the transmission geometry. In a test experiment. 10{sup 12} photons on an area of 2 mm{sup 2} was observed. The energy band was about 4 keV centered at 40 keV. A powder diffraction pattern of a few reflections of interest was recorded by an intrinsic Ge detector, and this demonstrated that a structural transition can be followed at intervals of a few milliseconds.

  7. THE INFRARED SPECTRUM OF URANIUM HOLLOW CATHODE LAMPS FROM 850...

    Office of Scientific and Technical Information (OSTI)

    CATHODES; ELECTRODES; ELECTROMAGNETIC RADIATION; ELEMENTS; INFRARED RADIATION; INTEGRAL TRANSFORMATIONS; MEASURING INSTRUMENTS; METALS; RADIATIONS; SPECTRA; SPECTROMETERS; ...

  8. Preliminary analysis of ground-based microwave and infrared radiance observations during the Pilot Radiation OBservation Experiment

    SciTech Connect (OSTI)

    Westwater, E.R.; Han, Y.; Churnside, J.H.; Snider, J.B.

    1995-04-01

    During Phase Two of the Pilot Radiation OBservation Experiment (PROBE) held in Kavieng, Papua New Guinea, the National Oceanic and Atmospheric Administration`s Environmental Technology Laboratory (ETL) operated both microwave and infrared radiometers. Phase Two lasted from January 6 to February 28, 1993. The dramatic differences in the water vapor environment between the tropics and mid-latitudes were illustrated by Westwater et al. (1994) who presented PROBE data as well as additional data that were taken during the 1991 First ISCCP Regional Experiment (FIRE) 11 experiment in Coffeyville, Kansas. We present an analysis of microwave data and a preliminary analysis of infrared data obtained during PROBE.

  9. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy User Facility Atmospheric ... INCOMING SOLAR RADIATION Surface Instruments REFLECTED ... Unfortunately, many of these useful datasets reside with the ...

  10. DOE Radiation Records Contacts List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Records Contacts List DOE Radiation Records Contacts List March 2, 2016 DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site. DOE Radiation Records Contacts List (80.11 KB) More Documents & Publications A Basic Overview of the Energy Employees Occupational Illness Compensation Program DOE-STD-1095-2011 TEC Meeting Summaries - July 2001

  11. DOE Comments - Radiation Protection (Atomic Energy Act) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy - Radiation Protection (Atomic Energy Act) DOE Comments - Radiation Protection (Atomic Energy Act) 1. United States Department of Energy Comments on "Application of Protective Action Guides (PAGs) for Radiological Dispersal Devices (RDD) and Improvised Nuclear Device (IND) Incidents"; Notice (71 FR 174; January 3, 2006) (138.29 KB) 2. Department of Energy Comments on NCRP SC 64-23 Draft Report (241.23 KB) 3. DOE Comments on: "Uniform Federal Policy for Quality Assurance

  12. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Losses from Heating Equipment Reduce Radiation Losses from Heating Equipment This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces. PROCESS HEATING TIP SHEET #7 Reduce Radiation Losses from Heating Equipment (January 2006) (277.28 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  13. Japan Program: Radiation Effects Research Foundation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Program: Radiation Effects Research Foundation Japan Program: Radiation Effects Research Foundation Background: The Department of Energy, Office of Environment, Health, Safety and Security, Office of Health and Safety funds studies of the Japanese atomic bomb survivors at the Radiation Effects Research Foundation (RERF) in Hiroshima and Nagasaki, Japan. The RERF program is believed to have the longest history of any ongoing international research program. DOE and its predecessor agencies

  14. Infrared fluorescence studies of electronic-to-vibrational energy transfer in a Br2:NO system. Master's thesis

    SciTech Connect (OSTI)

    Hawks, M.R.

    1993-12-01

    Steady-state photolysis techniques were used to study electronic-to-vibrational energy transfer mechanisms from atomic bromine to nitric oxide. Molecular bromine was photodissociated by 488nm radiation to produce equal parts Br(2p(sub 1/2)) and Br(2p (sub 3/2)). Side fluorescence intensity from Br(2p (sub 1/2)) at 2.7 microns and from NO (v =1) and 2 around 5.3 microns measured as a function of bromine pressure and nitric oxide pressure. The branching ratio collisional transfer into the first and second states of NO was determined, and previously reported rates for quenching of NO by molecular bromine were verified. Nitric oxide, Bromine, E-V transfer, Infrared fluorescence, Photolysis.

  15. Occupational Radiation Exposure | Department of Energy

    Office of Environmental Management (EM)

    The Occupational Radiation Exposure Information page on this web page is intended to ... Other Related Sites: Provides links to other DOE and non-DOE web sites for information ...

  16. Radiation and ionization energy loss simulation for the GDH sum...

    Office of Scientific and Technical Information (OSTI)

    loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab Citation Details In-Document Search Title: Radiation and ionization energy loss simulation for the ...

  17. Infrared thermography

    SciTech Connect (OSTI)

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  18. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector

    SciTech Connect (OSTI)

    Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou; Nguyen, Jean; Hoglund, Linda; Fisher, Anita M.; Keo, Sam. A.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2015-12-28

    In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation. This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.

  19. DEPARTMENT OF ENERGY CITES WASHINGTON GROUP INTERNATIONAL, INC. FOR RADIATION

    Office of Environmental Management (EM)

    FLUOR B&W PORTSMOUTH, LLC FOR NUCLEAR SAFETY AND RADIATION PROTECTION VIOLATIONS January 30, 2015 - 4:14pm Share on emailShare on facebook NEWS MEDIA CONTACT * 202 586 4940 * DOENews@hq.doe.gov Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection Violations WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to Fluor B&W Portsmouth (FBP) for violations of the DOE's nuclear safety and

  20. Variable aperture collimator for high energy radiation

    DOE Patents [OSTI]

    Hill, Ronald A.

    1984-05-22

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated energy from emerging from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  1. High-energy radiation damage in zirconia: Modeling results

    SciTech Connect (OSTI)

    Zarkadoula, E.; Devanathan, R.; Weber, W. J.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.10.5?MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  2. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  3. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Evangelia; Devanathan, Ram; Weber, William J; Seaton, M; Todorov, I T; Nordlund, Kai; Dove, Martin T; Trachenko, Kostya

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  4. THE SPECTRAL ENERGY DISTRIBUTION OF THE CARINA NEBULA FROM FAR-INFRARED TO RADIO WAVELENGTHS

    SciTech Connect (OSTI)

    Salatino, M.; De Bernardis, P.; Masi, S. [Physics Department, Sapienza Universita di Roma, p.le Aldo Moro 2, I-00185 Roma (Italy); Polenta, G., E-mail: maria.salatino@roma1.infn.it [ASI Science Data Center, ESRIN, via G. Galilei, I-00044, Frascati (Italy)

    2012-03-20

    Multi-wavelength observations are necessary for understanding the physical properties of astrophysical sources. In this paper, we use observations in the far-infrared to radio range to derive the spectral energy distribution (SED) of the Carina nebula. To do this, we carefully subtract the irregularly varying diffuse emission from the Galactic plane, which can be of the order of 10% of the nebula flux at these wavelengths. We find that the far-infrared SED can be modeled as emission from a dust population with a single temperature T{sub d} = (34.5{sup +2.0}{sub -1.8}) K and with a spectral index of emissivity {alpha} = -1.37{sup +0.09}{sub -0.08}. We also find a total infrared luminosity of the nebula of (7.4{sup +2.5}{sub -1.4}) Multiplication-Sign 10{sup 6} L{sub Sun} and, assuming a single temperature of the dust, a mass of the dust of (9500{sup +4600}{sub -3500}) M{sub Sun }.

  5. Infrared floodlight

    DOE Patents [OSTI]

    Levin, Robert E.; English, George J.

    1986-08-05

    An infrared floodlight assembly designed particularly for security purposes and including a heat-conducting housing, a lens secured to the housing to provide a closure therefor, and a floodlight located within (and surrounded by) the housing. The floodlight combines the use of a tungsten halogen light source and dichroic hot and cold mirrors for directing substantially only infrared radiation toward the assembly's forward lens. Visible radiation is absorbed by the housing's interior wall(s) and, optionally, by a filter located between the floodlight and lens. An optional means may be used within the floodlight to reflect all forward radiation back toward the paraboloidal hot mirror or, alternatively, to reflect only visible radiation in this direction. The dichroic hot and cold mirrors preferably each comprise a glass substrate having multiple layers of titanium dioxide and silicon dioxide thereon.

  6. The ? infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification

    SciTech Connect (OSTI)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the ? infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review 'Dysonian SETI', the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the 'monocultural fallacy'. We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<10{sup 9} yr), and that many 'sustainability' counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  7. INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER

    SciTech Connect (OSTI)

    Wootton, A J

    2004-01-15

    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.

  8. Radiative energy loss in an anisotropic quark-gluon plasma

    SciTech Connect (OSTI)

    Roy, Pradip; Dutt-Mazumder, Abhee K.

    2011-04-15

    We calculate radiative energy loss of heavy and light quarks in an anisotropic medium (static) in a first-order opacity expansion. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter created in relativistic heavy-ion collisions. Significant dependency of the energy loss on the anisotropy parameter {xi} and the direction of propagation of the partons with respect to the anisotropy axis is found. It is shown that the introduction of early-time momentum-space anisotropy can enhance the fractional energy loss in the direction of the anisotropy, whereas it decreases when the parton propagates perpendicular to the direction of the anisotropy.

  9. Apparatus and method for transient thermal infrared emission spectrometry

    DOE Patents [OSTI]

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  10. Electronic effects in high-energy radiation damage in tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Duffy, Dorothy M.; Nordlund, Kai; Seaton, M. A.; Todorov, I. T.; Weber, William J.; Trachenko, Kostya

    2015-01-01

    Even though the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron–phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron–phonon coupling results in less damage production in themore » molten region and in faster relaxation of the damage at short times. We show these two effects lead to a significantly smaller amount of the final damage at longer times.« less

  11. Low-energy magnetic radiation: Deviations from GOE

    SciTech Connect (OSTI)

    Frauendorf, S.; Schwengner, R.; Wimmer, K.

    2014-10-15

    A pronounced spike at low energy in the strength function for magnetic radiation (LEMAR) is found by means of Shell Model calculations, which explains the experimentally observed enhancement of the dipole strength. LEMAR originates from statistical low-energy M1-transitions between many excited complex states. Re-coupling of the proton and neutron high-j orbitals generates the strong magnetic radiation. LEMAR is closely related to Magnetic Rotation. LEMAR is predicted for nuclides participating in the r-process of element synthesis and is expected to change the reaction rates. An exponential decrease of the strength function and a power law for the size distribution of the B(M1) values are found, which strongly deviate from the ones of the GOE of random matrices, which is commonly used to represent complex compound states.

  12. Variable-energy collimator for high-energy radiation

    DOE Patents [OSTI]

    Hill, R.A.

    1982-03-03

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated ;energy from emergine from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  13. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  14. FAQS Reference Guide -Radiation Protection | Department of Energy

    Energy Savers [EERE]

    Radiation Protection FAQS Reference Guide -Radiation Protection This reference guide has been developed to address the competency statements in the December 2003 edition of ...

  15. Potential Health Hazards of Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation (198.55 KB) More Documents & Publications Radioactive Materials Emergencies Course Presentation DOE-HDBK-1130-2008 DOE-HDBK-1130-2008

  16. SEAB Letter on Low-Level Radiation Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Department regarding its perspective on how DOE should pursue research on low-level radiation. SEAB recommends...

  17. Variable waveband infrared imager

    DOE Patents [OSTI]

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  18. Near infrared radio-luminescence of O{sub 2} loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments

    SciTech Connect (OSTI)

    Di Francesca, D.; Girard, S.; Boukenter, A.; Ouerdane, Y.; Agnello, S.; Gelardi, F. M.; Marcandella, C.; Paillet, P.

    2014-11-03

    We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O{sub 2} molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O{sub 2} loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O{sub 2} molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results show that the iRL is quite stable in doses of up to 1 MGy(SiO{sub 2}) and is linearly dependent on the dose-rate up to the maximum investigated dose-rate of ∼200 kGy(SiO{sub 2})/h. The temperature dependency of the iRL shows a decrease in efficiency above 200 °C, which is attributed to the non-radiative decay of the excited O{sub 2} molecules. The results obtained and the long-term stability of the O{sub 2}-loading treatment (no out-gassing effect) strongly suggest the applicability of these components to real-time remote dosimetry in environments characterized by high radiation doses and dose-rates.

  19. Reporting Occupational Radiation Exposure Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting Occupational Radiation Exposure Data Reporting Occupational Radiation Exposure Data IMPORTANT NOTICE: Due to increasing security concerns for the protection of Personnally Identifiable Information (PII), AU-23 has issued a policy statement regarding the submission of radiation exposure records to REMS. This policy should be implemented immediately by all organizations reporting radiation exposure records to REMS in accordance with the REMS Reporting Guide. DOE sites are required to

  20. Order Module--RADIATION PROTECTION PROGRAMS GUIDE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RADIATION PROTECTION PROGRAMS GUIDE Order Module--RADIATION PROTECTION PROGRAMS GUIDE The familiar level of this module is designed to provide the basic information related to DOE G 441.1-1C, Radiation Protection Programs Guide, as required in DOE-STD-1174-2003, Radiation Protection Functional Area Qualification Standard, December 2003. Completion of this module also meets certain requirements associated with the DOE Facility Representative Program and the DOE Intern Program. The information

  1. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    SciTech Connect (OSTI)

    Lunt, Richard R; Bulovic, Vladimir

    2011-03-14

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65% . Subsequent incorporation of near-infrared distributed-Bragg-reflector mirrors leads to an increase in the efficiency to 1.7±0.1% , approaching the 2.4±0.2% efficiency of the opaque cell, while maintaining high visible-transparency of >55% . Finally, we demonstrate that a series-integrated array of these transparent cells is capable of powering electronic devices under near-ambient lighting. This architecture suggests strategies for high-efficiency power-generating windows and highlights an application uniquely benefiting from excitonic electronics.

  2. Infrared curing simulations of liquid composites molding

    SciTech Connect (OSTI)

    Nakouzi, S.; Pancrace, J.; Schmidt, F. M.; Le Maoult, Y.; Berthet, F. [Universite de Toulouse (France); INSA, UPS, Mines Albi, ISAE, ICA - Institut Clement Ader, Campus Jarlard, F-81013 Albi cedex 09 (France); Ecole des Mines Albi, Campus Jarlard, F-81013 Albi (France)

    2011-05-04

    Infrared radiation is an effective energy source to cure thermosetting polymers. Its usage is expected to reduce curing time in comparison with thermal heating and mold thermally regulated. In addition, because of the polymerization mechanism and instant on-off control of this power, an improvement in the final properties of the material is also expected. In this paper, we studied the infrared interaction with carbon (or glass) fibers reinforced epoxy matrix, where Liquid resin infusion (LRI) is used to manufacture the composite. Temperature of the composite is a key parameter that affects its mechanical properties and is controlled by the infrared emitters and the exothermic heat released from the polymerization. Radiative heat flux is computed using the in-lab developed software RAYHEAT. Then, the heat flux (or absorbed energy for glass fibers) is exported to the finite element based program COMSOLMULTIPHYSICS where heat balance equation is solved. This equation is coupled with the exothermic heat released during the curing process in order to predict the composite temperature versus time and degree of cure. Numerical simulations will be performed on planar parts (sheet shape) as well as curvilinear shapes. Experimental validations of the infrared curing carbon (glass)-epoxy composite system are presented in this paper Sheet surface temperature distribution are measured thanks to infrared camera. Kinetic parameters were estimated from differential scanning calorimeter (DSC) experimental data.

  3. Energy levels and far-infrared spectra of oval-shaped nanorings

    SciTech Connect (OSTI)

    Gutirrez, W.; Garca, L. F.; Mikhailov, I. D.

    2014-05-15

    The evolution of the Aharonov-Bohm oscillation of low-lying states and far infrared spectrum associated to variation of the path curvature for electron motion along nanorings with centerlines in a form of a set of Cassini ovals, whose shape is changed continuously from a single elongated loop to two separated loops is theoretically investigated.

  4. CRAD, NNSA - Radiation Protection (RP) | Department of Energy

    Office of Environmental Management (EM)

    Radiation Protection (RP) CRAD, NNSA - Radiation Protection (RP) CRAD for Radiation Protection (RP). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs. CRADs consist of a Performance Objective that identifies the expectation(s) or requirement(s) to be verified, which reflect the complete scope of the assessment; Criteria that provide specifics by which the performance objectives are

  5. Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION The familiar level of this module is designed to provide the basic information to meet the requirements that are related to 10 CFR 835, "Occupational Radiation Protection," in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1146-2007, General Technical Base DOE-STD-1138-2007, Industrial Hygiene

  6. U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area | Department of Energy Radiation Monitoring Data from Fukushima Area U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima Area March 22, 2011 - 12:00am Addthis Today the U.S. Department of Energy released data recorded from its Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. The information has also been shared with the government of Japan as part of the United States' ongoing efforts to support

  7. Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics J. Simmons, O. Lie-Svendsen, and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska The Arctic is a key element in determining the radiation budget of the earth. Within the polar regions, the net radiation (incoming solar radiation minus outgoing infrared radiation) is negative. To understand the role this energy deficit plays in the overall radiation budget, one must examine the

  8. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  9. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  10. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of Energy's efforts to better understand and predict Earth's climate in order to develop sustainable solutions to the nation's energy and environmental challenges. ARM was the first climate research program to deploy a comprehensive suite of cutting-edge instrumentation to continually measure cloud and aerosol properties and

  11. Lateral transport and far-infrared radiation of electrons in In{sub x}Ga{sub 1-x}As/GaAs heterostructures with the double tunnel-coupled quantum wells in a high electric field

    SciTech Connect (OSTI)

    Baidus, N. V.; Belevskii, P. A.; Biriukov, A. A.; Vainberg, V. V.; Vinoslavskii, M. N.; Ikonnikov, A. V.; Zvonkov, B. N.; Pylypchuk, A. S.; Poroshin, V. N.

    2010-11-15

    It is shown that the far-infrared radiation of electrons in the selectively doped heterostructures with double tunnel-coupled quantum wells in high lateral electric fields strongly depends on the level of doping of the wells. At a high impurity concentration in a narrow well, higher than (1-2) x 10{sup 11} cm{sup -2}, the radiation is caused only by indirect intrasubband electron transitions. At a lower concentration, along with the indirect transitions, the direct intersubband transitions also contribute to the radiation. These transitions become possible in high electric fields due to the real-space electron transfer between the quantum wells.

  12. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    DOE R&D Accomplishments [OSTI]

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  13. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  14. US Department of Energy standardized radiation safety training

    SciTech Connect (OSTI)

    Trinoskey, P.A.

    1997-02-01

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  15. RadTracker: Optical Imaging of High Energy Radiation Tracks

    SciTech Connect (OSTI)

    Vernon, S P; Lowry, M E; Comaskey, B J; Heebner, J E; Kallman, J S; Richards, J B

    2007-03-02

    This project examined the possibility of extending the recently demonstrated radoptic detection approach to gamma imaging. Model simulations of the light scattering process predicted that expected signal levels were small and likely below the detection limit of large area, room-temperature detectors. A series of experiments using pulsed x-ray excitation, modulated gamma excitation and optical pump-probe methods confirmed those theoretical predictions. At present the technique does not appear to provide a viable approach to volumetric radiation detection; however, in principal, orders of magnitude improvement in the SNR can result by using designer materials to concentrate and localize the radiation-absorption induced charge, simultaneously confining the optical mode to increase 'fill' factor and overlap of the probe beam with the affected regions, and employing high speed gated imaging detectors to measure the scattered signal.

  16. Direct Detector for Terahertz Radiation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Current's Energy Unit Calculator Direct Current's Energy Unit Calculator June 23, 2016 - 4:40pm Addthis This interactive map is not viewable in your browser. Please view it in a modern browser. Data, Methodology and Sources can be found here. Map by Daniel Wood. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Learn More Check out Direct Current, Episode 2 to learn hear our story about our newly proposed energy units. Want to learn more

  17. Radiative return capabilities of a high-energy, high-luminositye+e-collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  18. Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-11-29

    A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.

  19. Infra-red signature neutron detector

    DOE Patents [OSTI]

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  20. Changes induced in a ZnS:Cr-based electroluminescent waveguide structure by intrinsic near-infrared laser radiation

    SciTech Connect (OSTI)

    Vlasenko, N. A. Oleksenko, P. F.; Mukhlyo, M. A.; Veligura, L. I.

    2013-08-15

    The causes of changes that occur in a thin-film electroluminescent metal-insulator-semiconductor-insulator-metal waveguide structure based on ZnS:Cr (Cr concentration of {approx}4 Multiplication-Sign 10{sup 20} cm{sup -3}) upon lasing ({lambda} Almost-Equal-To 2.6 {mu}m) and that induce lasing cessation are studied. It is established that lasing ceases because of light-scattering inhomogeneities formed in the structure and, hence, optical losses enhance. The origin of the inhomogeneities and the causes of their formation are clarified by studying the surface topology and the crystal structure of constituent layers of the samples before and after lasing. The studies are performed by means of atomic force microscopy and X-ray radiography. It is shown that a substantial increase in the sizes of grains on the surface of the structure is the manifestation of changes induced in the ZnS:Cr film by recrystallization. Recrystallization is initiated by local heating by absorbed laser radiation in existing Cr clusters and quickened by a strong electric field (>1 MV cm{sup -1}). The changes observed in the ZnS:Cr film are as follows: the textured growth of ZnS crystallites, an increase in the content of Cr clusters, and the appearance of some CrS and a rather high ZnO content. Some ways for improving the stability of lasing in the ZnS:Cr-based waveguide structures are proposed.

  1. A new ab initio potential energy surface and infrared spectra for the Ar–CS{sub 2} complex

    SciTech Connect (OSTI)

    Yuan, Ting; Sun, Xueli; Hu, Yi; Zhu, Hua

    2014-09-14

    We report a new three-dimensional potential energy surface for Ar–CS{sub 2} involving the Q{sub 3} normal mode for the υ{sub 3} antisymmetric stretching vibration of the CS{sub 2} molecule. The potential energies were calculated using the supermolecular method at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples, using augmented correlation-consistent quadruple-zeta basis set plus midpoint bond functions. Two vibrationally averaged potentials with CS{sub 2} at both the ground (υ = 0) and the first excited (υ = 1)υ{sub 3} vibrational states were generated from the integration of the three-dimensional potential over the Q{sub 3} coordinate. Each potential was found to have a T-shaped global minimum and two equivalent linear local minima. The radial discrete variable representation /angular finite basis representation method and the Lanczos algorithm were applied to calculate the rovibrational energy levels. The calculated band origin shift of the complex (0.0622 cm{sup −1}) is very close to the observed one (0.0671 cm{sup −1}). The predicted infrared spectra and spectroscopic parameters based on the two averaged potentials are in excellent agreement with the available experimental data.

  2. Improved energy efficiency by use of the new ultraviolet light radiation paint curing process

    SciTech Connect (OSTI)

    Grosset, A.M.; Su, W.-F.A.

    1984-08-01

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures is more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. The replacement of a conventional natural gas fired oven by an ultraviolet radiation curing line for paint curing could save quadrillions of joules per year for each finishing line. In this program sponsored by the U.S. Department of Energy, Office of Industrial Programs, two photoinduced polymerizations, via free radical or cationic mechanisms, were considered in the formulation of UV curable paints. The spectral output of radiation sources was chosen so as to complement the absorption spectra of pigments and photoactive agents; thus highly pigmented thick films could be cured fully by UV radiation. One coat enamels, topcoats, and primers have been developed which can be applied on three dimensional objects by spraying and can be cured by passing through a tunnel containing UV lamps.

  3. INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF SEYFERT GALAXIES: SPITZER SPACE TELESCOPE OBSERVATIONS OF THE 12 {mu}m SAMPLE OF ACTIVE GALAXIES

    SciTech Connect (OSTI)

    Gallimore, J. F.; Yzaguirre, A.; Jakoboski, J.; Stevenosky, M. J.; Axon, D. J.; O'Dea, C. P.; Robinson, A.; Baum, S. A.; Buchanan, C. L.; Elitzur, M.; Elvis, M.

    2010-03-01

    The mid-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 {mu}m sample are presented. The data were collected using all three instruments, Infrared Array Camera (IRAC), Infrared Spectrograph (IRS), and Multiband Imaging Photometer for Spitzer (MIPS), aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20'' diameter circular apertures. The MIPS data were obtained in SED mode, providing very low-resolution spectroscopy (R {approx} 20) between {approx}55 and 90 {mu}m in a larger, 20'' x 30'' synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 {mu}m and 18 {mu}m emission and absorption strengths; IRAC magnitudes; and mid-far-infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLRs, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes within the 12 {mu}m sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER, and H II galaxies, appear to be dominated by star formation, as evidenced by blue IRAC colors, strong polycyclic aromatic hydrocarbon emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.

  4. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect (OSTI)

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%3% of the turbulent kinetic energy density of the turbulent layer.

  5. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  6. Human radiation experiments associated with the US Department of Energy and its predecessors

    SciTech Connect (OSTI)

    1995-07-01

    This document contains a listing, description, and selected references for documented human radiation experiments sponsored, supported, or performed by the US Department of Energy (DOE) or its predecessors, including the US Energy Research and Development Administration (ERDA), the US Atomic Energy Commission (AEC), the Manhattan Engineer District (MED), and the Off ice of Scientific Research and Development (OSRD). The list represents work completed by DOE`s Off ice of Human Radiation Experiments (OHRE) through June 1995. The experiment list is available on the Internet via a Home Page on the World Wide Web (http://www.ohre.doe.gov). The Home Page also includes the full text of Human Radiation Experiments. The Department of Energy Roadmap to the Story and the Records (DOE/EH-0445), published in February 1995, to which this publication is a supplement. This list includes experiments released at Secretary O`Leary`s June 1994 press conference, as well as additional studies identified during the 12 months that followed. Cross-references are provided for experiments originally released at the press conference; for experiments released as part of The DOE Roadmap; and for experiments published in the 1986 congressional report entitled American Nuclear Guinea Pigs: Three Decades of Radiation Experiments on US Citizens. An appendix of radiation terms is also provided.

  7. Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

    SciTech Connect (OSTI)

    Nikolić, Hrvoje

    2015-04-02

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentum is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.

  8. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    SciTech Connect (OSTI)

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping; Lu, Hai -Jiang; Zhu, Peng -Jia; Jiang, Feng -Jian

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed for $^{12}C$ elastic scattering simulation. The relative momentum ratio $\\frac{\\Delta p}{p}$ and $^{12}C$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $^{12}C$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.

  9. Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping; Lu, Hai -Jiang; Zhu, Peng -Jia; Jiang, Feng -Jian

    2015-07-17

    The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less

  10. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect (OSTI)

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  11. Radiation and spin separation of high energy positrons by bent crystal

    SciTech Connect (OSTI)

    Bashmakov, Y.A.

    1995-09-01

    The channeling of ultrahigh energy positrons both in bent and straight crystals can serve as an effective source of hard photons. The presence in the channel of the strong inhomogeneous electrical field gives rise to a number of interesting peculiarities of the motion of the channeling particles. The radiative separation of particles depending on spin orientation with respect to the plane of motion and radiative polarization can make it possible to obtain by means of bent crystals a positron beam with a degree of polarization about 10 to 20{percent}. Because of availability of the ultrahigh energy positron beams such experiments can be carried out nowadays. {copyright} {ital 1995 American Institute of Physics.}

  12. Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has issued a Preliminary Notice of Violation to Battelle Energy Alliance, LLC.

  13. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  14. Modification of the U.S. Department of Energy`s (DOE) sytem of radiation protection requirements and guidance

    SciTech Connect (OSTI)

    O`Connell, P.V.; Rabovsky, J.L.; Zobel, S.G.

    1996-06-01

    DOE has undertaken a major modification of its system of radiation protection guidance and requirements. The objectives of this modification are to (1) eliminate unnecessary and redundant requirements, (2) clearly delineate requirements from guidance, (3) codify all radiation protection requirements, and (4) move from a compliance based approach towards a performance based approach. To achieve these objectives DOE has (1) canceled DOE Order 5480.11, {open_quotes}Radiation Protection for DOE Workers,{close_quotes} DOE Order 5480.15, {open_quotes}Department of Energy Laboratory Accreditation Program (DOELAP) for Personnel Dosimetry,{close_quotes} and DOE Notice 5400.13, {open_quotes}Sealed Radioactive Source Accountability,{close_quotes} (2) converted the DOE Radiological Control (RadCon) Manual from mandatory to non mandatory status, and (3) issued DOE Notice 441.1 to maintain those requirements (not in 10 CFR 835) considered necessary for radiation protection of workers. DOE has initiated actions to (1) amend 10 CFR 835 (the Federal rule on occupational radiation protection in the DOE complex) to incorporate the requirements, or their equivalent, in DOE Notice 441.1, (2) issue a technical standard containing guidance on DOELAP, (3) reissue the DOE RadCon Manual as a non mandatory technical standard that reflects the amendments to 10 CFR 835, and (4) revise the implementation guides on radiation protection for consistency with 10 CFR 835 and the RadCon Manual. As a result of these modifications, the system of radiation protection in the DOE will become more comparable with the system of radiation protection used by commercial industry and with the system of protection applied to other areas of worker health and safety.

  15. radiation

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, United Kingdom, on the growing...

  16. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, T.J.

    1997-01-21

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

  17. Passive infrared bullet detection and tracking

    DOE Patents [OSTI]

    Karr, Thomas J.

    1997-01-01

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  18. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    SciTech Connect (OSTI)

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-08-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution {sigma}{sub torus}, and the average number of clouds along radial equatorial rays N{sub 0}. We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P{sub esc} {approx} 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L{sub bol}(AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L{sub bol}(AGN) {approx} 10{sup 43}-10{sup 47} erg s{sup -1}, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f{sub 2} {approx} 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f{sub 2} {approx} 0.9-1 at {approx}10{sup 43}-10{sup 44} erg s{sup -1}). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger {sigma}{sub torus}) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to

  19. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    SciTech Connect (OSTI)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  20. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect (OSTI)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  1. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  2. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel; Laser and Plasma Research Institute, Shahid Beheshti University, Tehran ; Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji; Department of Physics, GSS, Kyoto University, Kyoto ; Nagashima, Takeshi; Hangyo, Masanori; Institute of Laser Engineering, Osaka University, Osaka

    2013-05-13

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  3. radiation

    National Nuclear Security Administration (NNSA)

    27, 2015

    A U.S. Department of Energy National Nuclear Security Administration (NNSA) helicopter may be seen flying at low altitudes around...

  4. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  5. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  6. Boundary Layer The U.S. Department of Energy's Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol, and Precipitation in the Marine Boundary Layer The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring a 20-month field study on Graciosa Island in the Azores. Scientists involved in the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign are using the ARM Mobile Facility-a portable climate observatory-to study low-level clouds and aerosol in a marine environment. Collaborators from the Regional

  7. Energy loss of charm quarks in the quark-gluon plasma: Collisional vs radiative losses

    SciTech Connect (OSTI)

    Mustafa, Munshi G.

    2005-07-01

    In considering the collisional energy loss rates of heavy quarks from hard light parton interactions, we computed the total energy loss of a charm quark for a static medium. For the energy range E{approx}5-10 GeV of charm quark, it proved to be almost the same order as that of radiative ones estimated to a first-order opacity expansion. The collisional energy loss becomes much more important for lower energy charm quarks, and this feature could be very interesting for the phenomenology of hadrons spectra. Using such collisional energy loss rates, we estimate the momentum loss distribution employing a Fokker-Planck equation and the total energy loss of a charm quark for an expanding quark-gluon plasma under conditions resembling the energies presently available at the BNL Relativistic Heavy Ion Collider. The fractional collisional energy loss is found to be suppressed by a factor of 5 as compared to the static case and does not depend linearly on the system size. We also investigate the heavy to light hadrons D/{pi} ratio at moderately large (5-10 GeV/c) transverse momenta and comment on its enhancement.

  8. Features of the action of low-energy gamma radiation on the hydrogen permeability of certain materials

    SciTech Connect (OSTI)

    Tazhibaeva, I.L.; Bekman, I.N.; Rudenko, N.V.; Shestakov, V.P.

    1985-07-01

    This paper determines the diffusion coefficients, the constants of permeability, and solubility of hydrogen in palladium, nickel, and Armco iron under the action of low-energy gamma radiation. It was established that without radiation all of the kinetic diffusion curves of hydrogen in palladium and nickel straighten well in a functional scale. In armco iron, some deviations are observed.

  9. Studies of planetary boundary layer by infrared thermal imagery

    SciTech Connect (OSTI)

    Albina, Bogdan; Dimitriu, Dan Gheorghe Gurlui, Silviu Octavian; Cazacu, Marius Mihai; Timofte, Adrian

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  10. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  11. Solid state radiative heat pump

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  12. Review of Department of Energy research on human health effects of low doses of ionizing radiation

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Department of Energy research program on the human health effects of low-dose ionizing radiation consists of 16 projects conducted under the sponsorship of the Human Health and Assessments Division of the Office of Health and Environmental Research. Each of these projects was reviewed by the Committee with the project's principal investigators and associated scientific personnel and with the DOE staff and the associate directors of the national laboratories where appropriate. The principal objectives of this research program include the determination of the risks from exposure to external radiation and from internally deposited radionuclides and the use of this information in the development of standards to protect the health of nuclear workers at DOE and related facilities and of the population at large. 5 figs., 5 tabs.

  13. Radiation tolerance survey of selected silicon photomultipliers to high energy neutron irradiation

    SciTech Connect (OSTI)

    Barbosa, Fernando J.; McKisson, John E.; Qiang, Yi; Steinberger, William; Xi, Wenze; Zorn, Carl J.

    2012-11-01

    A key feature of silicon photomultipliers (SiPMs) that can hinder their wider use in medium and high energy physics applications is their relatively high sensitivity to high energy background radiation, with particular regard to high energy neutrons. Dosages of 1010 neq/cm2 can damage them severely. In this study, some standard versions along with some new formulations are irradiated with a high intensity 241AmBe source up to a total dose of 5 109 neq/cm2. Key parameters monitored include dark noise, photon detection efficiency (PDE), gain, and voltage breakdown. Only dark noise was found to change significantly for this range of dosage. Analysis of the data indicates that within each vendor's product line, the change in dark noise is very similar as a function of increasing dose. At present, the best strategy for alleviating the effects of radiation damage is to cool the devices to minimize the effects of increased dark noise with accumulated dose.

  14. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2016-06-14

    Here, we measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascademore » of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.« less

  15. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  16. A near-infrared 64-pixel superconducting nanowire single photon...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DETECTION; EFFICIENCY; NANOWIRES; NEAR INFRARED RADIATION; ...

  17. Human radiation experiments: The Department of Energy roadmap to the story and the records

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The role of the US Government in conducting or sponsoring human radiation experiments has become the subject of public debate. Questions have been raised about the purpose, extent, and health consequences of these studies, and about how subjects were selected. The extent to which subjects provided informed consent is also under scrutiny. To respond to these questions, the Clinton administration has directed the US Department of Energy (DOE), along with other Federal agencies, to retrieve and inventory all records that document human radiation experiments. Many such records are now publicly available and will permit an open accounting and understanding of what took place. This report summarizes the Department`s ongoing search for records about human radiation experiments. It is also a roadmap to the large universe of pertinent DOE information. DOE is working to instill greater openness--consistent with national security and other appropriate considerations--throughout its operations. A key aspect of this effort is opening DOE`s historical records to independent research and analysis.

  18. Infrared systems, SPIE proceedings. Vol. 256

    SciTech Connect (OSTI)

    Sanmann, E.E.

    1980-01-01

    The seminar focused on infrared systems sensor specifications, applications of infrared thermography in the analysis of induced surface currents due to incident electromagnetic radiation on complex shapes, advanced optical ceramics for sensor windows, digital processing in calibrated infrared imagery, and calibration. Papers were presented on nearby object radiometry, homing overlay experiment radiometric error terminology, design of radiometric calibration sources and spectroradiometers, and the Lockheed sensor test facility.

  19. Infrared floodlight assembly

    DOE Patents [OSTI]

    Wierzbicki, Julian J.; Chakrabarti, Kirti B.

    1987-09-22

    An infrared floodlight assembly (10) including a cast aluminum outer housing (11) defining a central chamber (15) therein. A floodlight (14), having a tungsten halogen lamp as the light source, is spacedly positioned within a heat conducting member (43) within chamber (15) such that the floodlight is securedly positioned in an aligned manner relative to the assembly's filter (35) and lens (12) components. The invention also includes venting means (51) to allow air passage between the interior of the member (43) and the adjacent chamber (15), as well as engagement means (85) for engaging a rear surface of the floodlight (14) to retain it firmly against an internal flange of the member (43). A reflector (61), capable of being compressed to allow insertion or removal, is located within the heat conducting member's interior between the floodlight (14) and filter (35) to reflect infrared radiation toward the filter (35) and spaced lens (12).

  20. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    SciTech Connect (OSTI)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.

  1. A path to practical Solar Pumped Lasers via Radiative Energy Transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reusswig, Philip D.; Nechayev, Sergey; Scherer, Jennifer M.; Hwang, Gyu Weon; Bawendi, Moungi G.; Baldo, Marc. A.; Rotschild, Carmel

    2015-10-05

    The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CWmore » solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.« less

  2. Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal

    Broader source: Energy.gov [DOE]

    Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Linda Suttora*, U.S. Department of Energy ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has adopted an integrated protection system for the safety of radioactive waste disposal similar to the concept of a safety case that is used internationally. This approach has evolved and been continuously improved as a result of many years of experience managing low-level waste (LLW) and mixed LLW from on-going operations, decommissioning and environmental restoration activities at 29 sites around the United States. The integrated protection system is implemented using a defense-in-depth approach taking into account the combination of natural and engineered barriers, performance objectives, long-term risk assessments, maintenance of those assessments based on the most recent information to ascertain continued compliance, site-specific waste acceptance criteria based on the risk assessment and a commitment to continuous improvement. There is also a strong component of stakeholder involvement. The integrated protection system approach will be discussed to demonstrate the commitment to safety for US DOE disposal.

  3. Infrared retina

    DOE Patents [OSTI]

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  4. Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H{sup ?}) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors

    SciTech Connect (OSTI)

    Mandal, A.; Ghadi, H.; Mathur, K.L.; Basu, A.; Subrahmanyam, N.B.V.; Singh, P.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Abstract: Here we propose a carrier transport mechanism for low energy H{sup ?} ions implanted InAs/GaAs quantum dot infrared photodetectors supportive of the experimental results obtained. Dark current density suppression of up to four orders was observed in the implanted quantum dot infrared photodetectors, which further demonstrates that they are effectively operational. We concentrated on determining how defect-related material and structural changes attributed to implantation helped in dark current density reduction for InAs/GaAs quantum dot infrared photodetectors. This is the first study to report the electrical carrier transport mechanism of H{sup ?} ion-implanted InAs/GaAs quantum dot infrared photodetectors.

  5. Multivariate classification of infrared spectra of cell and tissue samples

    DOE Patents [OSTI]

    Haaland, David M.; Jones, Howland D. T.; Thomas, Edward V.

    1997-01-01

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  6. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  7. Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection Violations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to Fluor B&W Portsmouth (FBP) for violations of the DOE’s nuclear safety and radiation protection regulations, and has proposed a $243,750 civil penalty.

  8. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  9. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect (OSTI)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site

  10. Determination of Radiation Energy Response for Thermoluminescent Dosimeter TLD-100: Determination of Organ Dose in Diagnostic Radiology

    SciTech Connect (OSTI)

    Deda, Antoneta; Telhaj, Ervis

    2009-04-19

    TLD-100 (thermoluminescent dosimeter) cards (chips) were calibrated using X-rays with energies of 25-250 kV produced by a Cs-137 source. The energy responses of lithium fluoride crystals for different energies of X-rays were studied. QA/QC was then performed in the Albanian Ionizing Radiation Metrology Laboratory. Based on the QA/QC results, the chips were used to study the doses to different organs in diagnostic radiology. Organ dose was evaluated after calculation of e dose in air (Kair), using an ionizing chamber.

  11. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, Michael A.

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  12. Multi-channel infrared thermometer

    DOE Patents [OSTI]

    Ulrickson, M.A.

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.

  13. Ferroelectric infrared detector and method

    DOE Patents [OSTI]

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  14. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect (OSTI)

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  15. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect (OSTI)

    RF Kristensen; JF Beausang; DM DePoy

    2004-06-28

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  16. Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control

    SciTech Connect (OSTI)

    Ryan T. Kristensen; John F. Beausang; David M. DePoy

    2003-12-01

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  17. Monthly Energy Review - April 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - August 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - January 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - July 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - December 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - January 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - September 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - July 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - September 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - August 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - December 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - February 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - August 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - September 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - February 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - December 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - November 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - October 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - July 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - October 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - July 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - May 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - March 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - April 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - May 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - November 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - March 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - May 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - October 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - June 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - August 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - June 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - January 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - Janurary 2011

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - November 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - October 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - April 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Monthly Energy Review - November 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  15. Monthly Energy Review - August 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  16. Monthly Energy Review - February 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  17. Monthly Energy Review - June 2012

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  18. Monthly Energy Review - December 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  19. Monthly Energy Review - October 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  20. Monthly Energy Review - November 2011

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  1. Monthly Energy Review - July 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  2. Monthly Energy Review - September 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  3. Monthly Energy Review - May 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  4. Monthly Energy Review - February 2013

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  5. Monthly Energy Review - June 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  6. Monthly Energy Review - March 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  7. Monthly Energy Review - December 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  8. Monthly Energy Review - August 2015

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  9. Monthly Energy Review - April 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  10. Monthly Energy Review - March 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  11. Monthly Energy Review - December 2010

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  12. Monthly Energy Review - September 2014

    Gasoline and Diesel Fuel Update (EIA)

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  13. Monthly Energy Review - September 2012

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride-that are transparent to solar (short- wave) radiation but opaque to long-wave (infrared) radiation, thus...

  14. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect (OSTI)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  15. Effect of microstructure on the coupled electromagnetic-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates to infrared laser radiation

    SciTech Connect (OSTI)

    Brown, Judith A.; Zikry, M. A.

    2015-09-28

    The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, and crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.

  16. Radiation from Ag high energy density Z-pinch plasmas and applications to lasing

    SciTech Connect (OSTI)

    Weller, M. E. Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E.; Apruzese, J. P.; Giuliani, J. L.; Chuvatin, A. S.

    2014-03-15

    Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8?keV) observed on the Zebra generator so far and upwards of 30?kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.55.0?. With this, L-shell Ag as well as cold L{sub ?} and L{sub ?} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8?keV). Along with PCD signals, other signals, such as filtered XRD (>0.2?keV) and Si-diodes (SiD) (>9?keV), are analyzed covering a broad range of energies from a few eV to greater than 53?keV. The observation and analysis of cold L{sub ?} and L{sub ?} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6?cm{sup ?1} for various 3p???3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

  17. Infrared trace element detection system

    DOE Patents [OSTI]

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  18. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect (OSTI)

    Novokhatski, Alexander; /SLAC

    2012-03-29

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  19. FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    SciTech Connect (OSTI)

    Joe M. Aldrich

    2004-11-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

  20. Hybrid Radiator-Cooling System (ANL-IN-11-096) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Hybrid Radiator-Cooling System (ANL-IN-11-096) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Coolant radiators in highway trucks are designed to transfer maximum heat at a "design condition." The current standard design condition is a fully-loaded truck climbing up Baker Grade on the hottest summer day. The coolant system, including radiator, is sized to remove 100% of the required heat from the engine

  1. Principles of Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    into your home; shades can help to block this radiation. Newer windows have low-e coatings that block infrared radiation. Infrared radiation will also carry the heat of your...

  2. MODELING THE INFRARED EMISSION IN CYGNUS A

    SciTech Connect (OSTI)

    Privon, G. C.; Baum, S. A.; Noel-Storr, J.; O'Dea, C. P.; Axon, D. J.; Robinson, A.; Gallimore, J.

    2012-03-01

    We present new Spitzer IRS spectroscopy of Cygnus A, one of the most luminous radio sources in the local universe. Data on the inner 20'' are combined with new reductions of MIPS and IRAC photometry as well as data from the literature to form a radio through mid-infrared spectral energy distribution (SED). This SED is then modeled as a combination of torus reprocessed active galactic nucleus (AGN) radiation, dust enshrouded starburst, and a synchrotron jet. This combination of physically motivated components successfully reproduces the observed emission over almost 5 dex in frequency. The bolometric AGN luminosity is found to be 10{sup 12} L{sub Sun} (90% of L{sub IR}), with a clumpy AGN-heated dust medium extending to {approx}130 pc from the supermassive black hole. Evidence is seen for a break or cutoff in the core synchrotron emission. The associated population of relativistic electrons could in principle be responsible for some of the observed X-ray emission though the synchrotron self-Compton mechanism. The SED requires a cool dust component, consistent with dust-reprocessed radiation from ongoing star formation. Star formation contributes at least 6 Multiplication-Sign 10{sup 10} L{sub Sun} to the bolometric output of Cygnus A, corresponding to a star formation rate of {approx}10 M{sub Sun} yr{sup -1}.

  3. OSTIblog Articles in the radiation Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    radiation Topic OpenNet gets a new look by Rita Hohenbrink 02 Aug, 2012 in Products and Content 4331 Opennet1.jpg OpenNet gets a new look Read more about 4331 The newly ...

  4. Finite-size effects on the radiative energy loss of a fast parton...

    Office of Scientific and Technical Information (OSTI)

    This is done by introducing the concept of a radiation rate in the presence of finite-size effects. This effectively extends the finite-temperature approach of Arnold, Moore, and ...

  5. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  6. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2002-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  7. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2001-01-01

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  8. Rapid infrared heating of a surface

    DOE Patents [OSTI]

    Sikka, Vinod K.; Blue, Craig A.; Ohriner, Evan Keith

    2003-12-23

    High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

  9. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  10. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  11. Weatherization Radiates Energy Savings in Florida: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D&R International

    2001-10-10

    Florida demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  12. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  13. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    SciTech Connect (OSTI)

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.; Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay; Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  14. Uncooled infrared photon detector and multicolor infrared detection...

    Office of Scientific and Technical Information (OSTI)

    A multicolor infrared sensor includes a stack of frequency specific optomechanical ... lattice; strain; multicolor; infrared; sensor; stack; frequency; specific; ...

  15. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    SciTech Connect (OSTI)

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  16. Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source

    SciTech Connect (OSTI)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-01-01

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-driven EUV plasma source utilizing a solid Au target. By 10x demagnified imaging of the plasma a maximum pulse energy density of {approx}0.73 J/cm{sup 2} at a wavelength of 13.5 nm can be achieved in the image plane of the objective at a pulse duration of 8.8 ns. In this paper we present EUV photoetching rates measured for polymethyl methacrylate, polycarbonate, and polytetrafluoroethylene at various fluence levels. A linear dependence between etch depth and applied EUV pulse number could be observed without the necessity for any incubation pulses. By evaluating the slope of these data, etch rates were determined, revealing also a linear behavior for low fluences. A threshold energy density could not be observed. The slope of the linear etch regime as well as deviations from the linear trend at higher energy densities are discussed and compared to data known from deep UV laser ablation. Furthermore, the surface roughness of the structured polymers was measured by atomic force microscopy and compared to the nonirradiated polymer surface, indicating a rather smooth etch process (roughness increase of 20%-30%). The different shapes of the etch craters observed for the three polymers at high energy densities can be explained by the measured fluence dependence of the etch rates, having consequences for the proper use of polymer ablation for beam profiling of focused EUV radiation.

  17. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect (OSTI)

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  18. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  19. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  20. Poster — Thur Eve — 18: Cherenkov Emission By High-Energy Radiation Therapy Beams: A Characterization Study

    SciTech Connect (OSTI)

    Zlateva, Y.; El Naqa, I.; Quitoriano, N.

    2014-08-15

    We investigate Cherenkov emission (CE) by radiotherapy beams via radiation dose-versus-CE correlation analyses, CE detection optimization by means of a spectral shift towards the near-infrared (NIR) window of biological tissue, and comparison of CE to on-board MV imaging. Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissue-simulating phantom composed of water, Intralipid®, and beef blood; plastic phantom with solid water insert. The detector system comprises an optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated CCD. The NIR shift was carried out with CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm. CE and MV images were acquired with a CMOS camera and electronic portal imaging device. MC and experimental studies indicate a strong linear dose-CE correlation (Pearson coefficient > 0.99). CE by an 18-MeV beam was effectively NIR-shifted in water and a tissue-simulating phantom, exhibiting a significant increase at 650 nm for QD depths up to 10 mm. CE images exhibited relative contrast superior to MV images by a factor of 30. Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing and QDs can be used to improve CE detectability, potentially yielding image quality superior to MV imaging for the case of low-density-variability, low-optical-attenuation materials (ex: breast/oropharynx). Ongoing work involves microenvironment functionalization of QDs and application of multi-channel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals.

  1. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  2. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  3. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect (OSTI)

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100?eV and 1000?eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  4. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  5. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  6. Industrial applications of accelerator-based infrared sources: Analysis using infrared microspectroscopy

    SciTech Connect (OSTI)

    Bantignies, J.L.; Fuchs, G.; Wilhelm, C.; Carr, G.L.; Dumas, P.

    1997-09-01

    Infrared Microspectroscopy, using a globar source, is now widely employed in the industrial environment, for the analysis of various materials. Since synchrotron radiation is a much brighter source, an enhancement of an order of magnitude in lateral resolution can be achieved. Thus, the combination of IR microspectroscopy and synchrotron radiation provides a powerful tool enabling sample regions only few microns size to be studied. This opens up the potential for analyzing small particles. Some examples for hair, bitumen and polymer are presented.

  7. Department of Energy Cites Washington Group International, Inc. for Radiation Protection and Nuclear Safety Violations

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Washington Group International, Inc. (WGI) for a September 2010 incident that violated the...

  8. High-energy electrons from the muon decay in orbit: Radiative corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  9. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect (OSTI)

    Szafron, Robert; Czarnecki, Andrzej

    2015-05-19

    We determine the ?(?) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  10. Radiative Energy Balance in the Tropical Tropopause Layer: An Investigation with ARM Data

    SciTech Connect (OSTI)

    Fu, Qiang

    2013-10-22

    The overall objective of this project is to use the ARM observational data to improve our understanding of cloud-radiation effects in the tropical tropopause layer (TTL), which is crucial for improving the simulation and prediction of climate and climate change. In last four and half years, we have been concentrating on (i) performing the comparison of the ice cloud properties from the ground-based lidar observations with those from the satellite CALIPSO lidar observations at the ARM TWP sites; (ii) analyzing TTL cirrus and its relation to the tropical planetary waves; (iii) calculating the radiative heating rates using retrieved cloud microphysical properties by combining the ground-based lidar and radar observations at the ARM TWP sites and comparing the results with those using cloud properties retrieved from CloudSat and CALIPSO observations; (iv) comparing macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus clouds with small effective ice particle sizes; and (vi) evaluating the enhanced maximum warming in the tropical upper troposphere simulated by the GCMs. The main results of our research efforts are reported in the 12 referred journal publications that acknowledge the DOE Grant No. DE-FG02-09ER64769.