Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ON THE SIMULTANEOUS GENERATION OF HIGH-ENERGY EMISSION AND SUBMILLIMETER/INFRARED RADIATION FROM ACTIVE GALACTIC NUCLEI  

Science Conference Proceedings (OSTI)

For active galactic nuclei (AGNs), we study the role of the mechanism of quasi-linear diffusion (QLD) in producing the high-energy emission in the MeV-GeV domains strongly connected with the submillimeter/infrared radiation. Considering the kinetic equation governing the stationary regime of the QLD, we investigate the feedback of the diffusion on electrons. We show that this process leads to the distribution of particles by pitch angles, implying that the synchrotron mechanism is no longer prevented by energy losses. Examining a reasonable interval of physical parameters, we show that it is possible to produce MeV-GeV {gamma}-rays that are strongly correlated with submillimeter/infrared bands.

Osmanov, Z., E-mail: z.osmanov@iliauni.edu.g [Centre for Theoretical Astrophysics, ITP, Ilia State University, Kazbegi Str. 2a, 0160 Tbilisi (Georgia)

2010-09-20T23:59:59.000Z

2

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

3

Infrared Radiation Properties of CuO-ZnO-Based Sintered Material ...  

Science Conference Proceedings (OSTI)

Presentation Title, Infrared Radiation Properties of CuO-ZnO-Based Sintered Material Prepared for Energy-Saving Coating. Author(s), Chao Lian, Wei Wei, Hao...

4

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

5

Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations  

Science Conference Proceedings (OSTI)

State-of-the-art radiative transfer models can calculate outgoing infrared (IR) irradiance at the top of the atmosphere (F) to an accuracy suitable for climate modeling given the proper atmospheric profiles of temperature and absorbing gases and ...

Starley L. Thompson; Stephen G. Warren

1982-12-01T23:59:59.000Z

6

Overlap of Solar and Infrared Spectra and the Shortwave Radiative Effect of Methane  

Science Conference Proceedings (OSTI)

This paper focuses on two shortcomings of radiative transfer codes commonly used in climate models. The first aspect concerns the partitioning of solar versus infrared spectral energy. In most climate models, the solar spectrum comprises ...

J. Li; C. L. Curry; Z. Sun; F. Zhang

2010-07-01T23:59:59.000Z

7

Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France  

Science Conference Proceedings (OSTI)

The Land Surface Analysis Satellite Applications Facility (LSA SAF) project radiation fluxes, derived from the Meteosat Second Generation (MSG) geostationary satellite, were used in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) ...

D. Carrer; S. Lafont; J.-L. Roujean; J.-C. Calvet; C. Meurey; P. Le Moigne; I. F. Trigo

2012-04-01T23:59:59.000Z

8

Infrared Radiative Properties Of the Maritime Antarctic Atmosphere  

Science Conference Proceedings (OSTI)

The longwave radiation environment of the Antarctic Peninsula and Southern Ocean has been investigated using radiometric Fourier Transform Infrared (FTIR) measurements of atmospheric emission in conjunction with detailed radiative transfer ...

Dan Lubin

1994-01-01T23:59:59.000Z

9

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

10

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

11

A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation  

Science Conference Proceedings (OSTI)

A simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) ...

Yi Huang

2013-03-01T23:59:59.000Z

12

Radiative Properties of Cirrus Clouds in the Infrared Region  

Science Conference Proceedings (OSTI)

A multiple-scattering radiative transfer model is employed to evaluate the 11 ?m and the broad-band infrared (IR) fluxes, cooling rates and emittances in model cirrus clouds for a number of standard vertical atmospheric profiles of temperature ...

Graeme L. Stephens

1980-02-01T23:59:59.000Z

13

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

14

Infrared Radiation Filament And Metnod Of Manufacture  

SciTech Connect

An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

Johnson, Edward A. (Bedford, MA)

1998-11-17T23:59:59.000Z

15

The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths  

E-Print Network (OSTI)

New far-infrared and submillimeter data are used to solidify and to extend to long wavelengths the empirical calibration of the infrared spectral energy distribution (SED) of normal star-forming galaxies. As was found by Dale et al. (2001), a single parameter family, characterized by f_nu(60 microns)/f_nu(100 microns), is adequate to describe the range of normal galaxy spectral energy distributions observed by IRAS and ISO from 3 to 100 microns. However, predictions based on the first generation models at longer wavelengths (122 to 850 microns) are increasingly overluminous compared to the data for smaller f_nu(60 microns)/f_nu(100 microns), or alternatively, for weaker global interstellar radiation fields. After slightly modifying the far-infrared/submillimeter dust emissivity in those models as a function of the radiation field intensity to better match the long wavelength data, a suite of SEDs from 3 microns to 20 cm in wavelength is presented. Results from relevant applications are also discussed, including submillimeter-based photometric redshift indicators, the infrared energy budget and simple formulae for recovering the bolometric infrared luminosity, and dust mass estimates in galaxies. Regarding the latter, since galaxy infrared SEDs are not well-described by single blackbody curves, the usual methods of estimating dust masses can be grossly inadequate. The improved model presented herein is used to provide a more accurate relation between infrared luminosity and dust mass.

Daniel A. Dale; George Helou

2002-05-06T23:59:59.000Z

16

Infrared Debonding - Energy Innovation Portal  

Building Energy Efficiency; Electricity Transmission; ... Solar Thermal; Startup America; ... Benefits Materials or components are not damaged or abraded, ...

17

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Forward looking infrared Citation Wikipedia. Forward looking infrared...

18

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145F (62.78C) and 100F (36.78C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

19

Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

2012-10-09T23:59:59.000Z

20

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Satellite Determinations of the Relationship between Total Longwave Radiation Flux and Infrared Window Radiance  

Science Conference Proceedings (OSTI)

Nimbus-7 satellite observations are used to determine the relationship between the total longwave radiation flux and the radiance in the 10-12 ?m infrared window. The total longwave fluxes are obtained from the earth radiation budget (ERB) narrow-...

George Ohring; Arnold Gruber; Robert Ellingson

1984-03-01T23:59:59.000Z

22

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

23

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements  

Science Conference Proceedings (OSTI)

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ...

Jennifer M. Comstock; Kenneth Sassen

2001-10-01T23:59:59.000Z

24

An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration ...

Changyong Cao; Kenneth Jarva; Pubu Ciren

2007-02-01T23:59:59.000Z

25

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

26

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

27

Rf system for the NSLS coherent infrared radiation source  

Science Conference Proceedings (OSTI)

The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity, power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.

Broome, W.; Biscardi, R.; Keane, J.; Mortazavi, P.; Thomas, M.; Wang, J.M.

1995-05-01T23:59:59.000Z

28

Absorption Approximation with Scattering Effect for Infrared Radiation  

Science Conference Proceedings (OSTI)

A scheme that can handle cloud infrared scattering based on the absorption approximation is developed. In a two-stream mode, the new scheme produces more accurate results than those from the modified two-stream discrete ordinate method. For low ...

J. Li; Qiang Fu

2000-09-01T23:59:59.000Z

29

Structures, systems and methods for harvesting energy from electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

30

Structures, systems and methods for harvesting energy from electromagnetic radiation  

Science Conference Proceedings (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

31

Lesson 4 - Ionizing Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - Ionizing Radiation 4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing radiation Alpha particles Beta particles Gamma rays Radiation Decay chain Half-life Dose Radiation measurements Sources of radiation Average annual exposure Lesson 4 - Ionizing Radiation.pptx More Documents & Publications DOE-HDBK-1130-2008 DOE-HDBK-1130-2008 DOE-HDBK-1130-2007

32

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiator Labs Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

33

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

34

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

35

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

36

Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer  

Science Conference Proceedings (OSTI)

A systematic formulation of various radiative transfer parameterizations is presented, including the absorption approximation (AA), ?-two-stream approximation (D2S), ?-four-stream approximation (D4S), and ?-two- and four-stream combination ...

Qiang Fu; K. N. Liou; M. C. Cribb; T. P. Charlock; A. Grossman

1997-12-01T23:59:59.000Z

37

Apparatus for generating coherent infrared energy of selected wavelength  

SciTech Connect

A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

Stevens, Charles G. (Danville, CA)

1985-01-01T23:59:59.000Z

38

Method of using infrared radiation for assembling a first component with a second component  

DOE Patents (OSTI)

A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

39

Photochemical synthesis of disilane from silane with infrared laser radiation  

SciTech Connect

The authors report the clean and efficient conversion of silane to disilane by CO{sub 2} laser irradiation. The direct irradiation of pure silane at high pressures (from 75 to 1,700 Torr) converts silane to disilane with high selectivity and with efficient use of the absorbed laser radiation. Hydrogen is the only other major volatile product, and the production of solid products is minimal. The proposed mechanism of the photochemical reaction includes (1) collisionally enhanced absorption of the laser radiation by silane, (2) collisional deexcitation of the vibrationally excited silane, (3) concurrent decomposition to SiH{sub 2} and H{sub 2}, (4) production of vibrationally excited disilane by SiH{sub 2} insertion into a silane Si-H bond, (5) collisional quenching of the excited disilane, and (6) rapid cooling of the irradiated gas by thermal expansion. They support the proposed mechanism by additional experiments and model calculations.

Zavelovich, J. (Amoco Technology Co., Naperville, IL (USA)); Lyman, J.L. (Los Alamos National Lab., NM (USA))

1989-07-27T23:59:59.000Z

40

Method and apparatus for reducing radiation exposure through the use of infrared data transmission  

SciTech Connect

A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Generation of tunable coherent far-infrared radiation using atomic Rydberg states  

SciTech Connect

A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm/sup -1/ with a demonstrated tunability of .63 cm/sup -1/. The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy.

Bookless, W.

1980-12-01T23:59:59.000Z

42

Excess Infrared Radiation from a Massive DAZ White Dwarf: GD362 - a Debris Disk?  

E-Print Network (OSTI)

We report the discovery of excess K-band radiation from a massive DAZ white dwarf star, GD362. Combining infrared photometric and spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a debris disk. This would be only the second such system known, discovered 18 years after G29-38, the only single white dwarf currently known to be orbited by circumstellar dust. Both of these systems favor a model with accretion from a surrounding debris disk to explain the metal abundances observed in DAZ white dwarfs. Nevertheless, observations of more DAZs in the mid-infrared are required to test if this model can explain all DAZs.

Mukremin Kilic; Ted von Hippel; S. K. Leggett; D. E. Winget

2005-09-07T23:59:59.000Z

43

The Gastropod Fast Radiative Transfer Model for Advanced Infrared Sounders and Characterization of Its Errors for Radiance Assimilation  

Science Conference Proceedings (OSTI)

Principal aspects of the development of Gastropod, a fixed-pressure-grid fast radiative transfer model for the Atmospheric Infrared Sounder (AIRS), are described. Performance of the forward and gradient operators is characterized, and the impact ...

V. Sherlock; A. Collard; S. Hannon; R. Saunders

2003-12-01T23:59:59.000Z

44

Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations  

Science Conference Proceedings (OSTI)

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (...

Christopher J. Merchant; Pierre Le Borgne

2004-11-01T23:59:59.000Z

45

A Study of the Solar Radiation Effect on the 4.3-?m Channels of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Measurements of infrared radiation from the National Oceanic and Atmospheric Administration series of satellites are used to retrieve atmospheric temperature, moisture, and ozone. It is well known that the measurements from the 4.3-?m channels of ...

Larry M. McMillin; David S. Crosby

2000-10-01T23:59:59.000Z

46

Endoscopic Radiation Revolutionizes Cancer Treatment - Energy ...  

Conventional X-ray radiation and electron beam therapy: a comparison. Left: Conventional treatment depositing energy into tissue as a function of distance for three ...

47

Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign  

E-Print Network (OSTI)

Surface downward far-infrared (far-IR) spectra were collected from NASAs Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is known for its dry, cold, and dominantly clear atmosphere, which is optimal for studying the effects, that water vapor and cirrus clouds have on the far-IR. Comparisons with Line-By-Line Discrete Ordinants Radiative Transfer model, LBLDIS, show that FIRST observes the very fine spectral structure in the far-IR with differences as small as +/- 0.7% for both clear-sky and cloudy-sky simulations. Clear sky model analysis demonstrated the greatest sensitivity to atmospheric conditions is between 300 and 500 cm-1. The cloudy-sky simulations demonstrated that the far-IR radiation has minimal sensitivity to cloud particle effective radius, yet is very sensitive to cloud optical thickness at wavenumbers between 400 - 600 cm-1. In fact, cirrus optical thickness found to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but had little effect on the total far-IR radiative forcing. Furthermore, these far-IR measurements open a new window to understanding the radiative impacts of various atmospheric constituents such as water vapor and clouds, and to understanding and modeling the Earths climate and energy budget.

Baugher, Elizabeth

2011-12-01T23:59:59.000Z

48

Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases  

DOE Patents (OSTI)

A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

49

Definition: Solar radiation | Open Energy Information  

Open Energy Info (EERE)

radiation radiation Jump to: navigation, search Dictionary.png Solar radiation Electromagnetic energy emitted from the sun.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Solar radiant energy impinging on the earth in any given region or area. Also Known As Solar energy, Solar resource Related Terms Solar energy, Solar cell, Photovoltaics, PV array, PV module, Passive solar, Passive solar heating, energy, bioenergy References ↑ http://www.eere.energy.gov/basics/renewable_energy/solar_resources.html ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#S ↑ http://rredc.nrel.gov/solar/glossary/gloss_s.html Retrieved f LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rom "http://en.openei.org/w/index.php?title=Definition:Solar_radiation&oldid=502602"

50

Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations  

Science Conference Proceedings (OSTI)

Intersatellite radiance comparisons for the 19 infrared channels of the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 are performed with simultaneous nadir observations at the orbital intersections of the ...

Changyong Cao; Hui Xu; Jerry Sullivan; Larry McMillin; Pubu Ciren; Yu-Tai Hou

2005-04-01T23:59:59.000Z

51

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton dissociation of vinyl  

E-Print Network (OSTI)

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton the rovibra- tional energy distributions of fragmentsl formed in the infrared multiphoton dissociation (IRMPD energies of the frag- ment can be well characterized in terms of a Boltzmann distribution with a single

Zare, Richard N.

52

Radiation Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Management Act (Oklahoma) Radiation Management Act (Oklahoma) Radiation Management Act (Oklahoma) < Back Eligibility Utility Investor-Owned Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This Act establishes The Department of Environmental Quality as the designated official agency of the State of Oklahoma for all regulatory activities for the use of atomic energy and sources of radiation, except for the use of sources of radiation by diagnostic x-ray facilities. It also states rules for permits and fees related to the establishment of standards for safe levels of protection against radiation; the maintenance and submission of records; the determination, prevention and control of radiation hazards; the reporting of radiation accidents; the handling,

53

Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m  

Science Conference Proceedings (OSTI)

To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

Kimball B. A.; Lewin K.; Conley, M. M.

2012-04-01T23:59:59.000Z

54

A U. S. Department of Energy User Facility Atmospheric Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy User Facility Atmospheric Radiation Measurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

55

Method and apparatus for coherent imaging of infrared energy  

DOE Patents (OSTI)

A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

Hutchinson, D.P.

1998-05-12T23:59:59.000Z

56

National Solar Radiation Database | Open Energy Information  

Open Energy Info (EERE)

National Solar Radiation Database National Solar Radiation Database Jump to: navigation, search The National Solar Radiation Database, or NSRDB, describes the amount of solar energy which is available at any location in the United States. It is generated by the National Renewable Energy Laboratory, with the assistance of many collaborators.[1] Technical Overview Per its user's manual, "The NSRDB is a serially complete collection of hourly values of the three most common measurements of solar radiation (global horizontal, direct normal, and diffuse horizontal) over a period of time adequate to establish means and extremes, and at a sufficient number of locations to represent regional solar radiation climates."[2] There have been two releases of the NSRDB, each covering different time

57

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems Massachusetts Institute of Technology SolidEnergy Systems developed cutting-edge battery technologies to meet the world's growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has four times the energy density of a conventional lithium-ion battery. Learn More Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste nitrogen. The CANDO technology improves the efficiency of nitrogen treatment by lowering energy inputs and enabling energy recovery from waste nitrogen. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally

58

The Radiative Heating in Underexplored Bands Campaigns  

Science Conference Proceedings (OSTI)

Accurately accounting for radiative energy balance between the incoming solar and the outgoing infrared radiative fluxes is very important in modeling the Earth's climate. Water vapor absorption plays a critical role in the radiative heating rate ...

D. D. Turner; E. J. Mlawer

2010-07-01T23:59:59.000Z

59

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

60

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials that will fundamentally change the economics of gas storage in natural gas vehicles - supporting the gradual displacement of foreign oil. Learn More SolidEnergy...

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hollow core and other infrared waveguides for instrumentation in intense radiation environments.  

SciTech Connect

The purpose of this LDRD was to study the effect of steady-state neutron and gamma irradiation on the transmission of waveguides designed to operate well in the near- or mid-IR region of the electromagnetic spectrum. In this context, near-IR refers to the region between 1.3 {mu}m and about 2.4 {mu}m, and mid-IR between 3.0 {mu}m and 4.5 {mu}m. Such radiation environments could exist in nuclear power plants or nuclear weapons. Pulsed and steady-state radiation effects had been extensively studied on silica-based optical fibers because they have been the most readily available, most widely used in communications and sensing, and the least expensive. However, silica-based fibers do not transmit well beyond about 1.8 {mu}m and they are virtually opaque in the mid-IR. The mid-IR, as defined above, and beyond, is where vibrational spectroscopy is carried out. This type of sensing is one important application of infrared optical fibers.

Weiss, Jonathan David

2007-11-01T23:59:59.000Z

62

Definition: Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Long-Wave Infrared Jump to: navigation, search Dictionary.png Long-Wave Infrared Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features such as hot springs, fumaroles, and snow melt. LWIR can also be used to map the distribution of certain minerals related to hydrothermal alterations.[2] View on Wikipedia Wikipedia Definition References ↑ Katherine Young,Timothy Reber,Kermit Witherbee. 2012. Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei. In: Proceedings of the Thirty-Seventh Workshop on Geothermal

63

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

64

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesdi Systems Mesdi Systems University of Central Florida Mesdi Systems developed revolutionary equipment for manufacturing lithium-ion batteries, solar cells, and other high precision products that will improve their performance and lifetime with advanced coatings and quality control. Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal displays (LCD), quantum dots improve energy efficiency by up to 35 percent and in solar panels can increase efficiency up to 45 percent. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally designs and synthesizes high-performing nanomaterials for gas storage and

65

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navillum Nanotechnologies Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal displays (LCD), quantum dots improve energy efficiency by up to 35 percent and in solar panels can increase efficiency up to 45 percent. Learn More Mesdi Systems University of Central Florida Mesdi Systems developed revolutionary equipment for manufacturing lithium-ion batteries, solar cells, and other high precision products that will improve their performance and lifetime with advanced coatings and quality control. Learn More NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally designs and synthesizes high-performing nanomaterials for gas storage and

66

Oxide Multilayer Thermal Radiation Energy Reflection EBCs: Effect ...  

Science Conference Proceedings (OSTI)

Environmental barrier coatings (EBCs) with thermal radiation energy reflection have been developed recently. The EBCs utilize interaction between...

67

Sustainable Energy Science and Engineering Center Solar Radiation  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Radiation The objectives of this Lecture;Sustainable Energy Science and Engineering Center Atmospheric Effects on Incoming Solar Radiation of this energy is lost to space. The third process in the atmosphere that modifies incoming solar radiation

Krothapalli, Anjaneyulu

68

Observations of the Infrared Radiative Properties of the OceanImplications for the Measurement of Sea Surface Temperature via Satellite Remote Sensing  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) was used to measure the infrared radiative properties and the temperature of the Gulf of Mexico during a 5-day oceanographic cruise in January 1995. The ocean skin temperature was measured ...

William L. Smith; R. O. Knuteson; H. E. Revercomb; W. Feltz; N. R. Nalli; H. B. Howell; W. P. Menzel; Otis Brown; James Brown; Peter Minnett; Walter McKeown

1996-01-01T23:59:59.000Z

69

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earths Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

The Clouds and Earths Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith

2005-04-01T23:59:59.000Z

70

Radiative Energy Budget Estimates for the 1979 Southwest Summer Monsoon  

Science Conference Proceedings (OSTI)

Obsemations of temperature moisture, cloud amount, cloud height and soil-derived aerosols are incorporated into radiative transfer models to yield estimates of the tropospheric and surface radiative energy budgets for the summer Monsoon of 1979. ...

Steven A. Ackerman; Stephen K. Cox

1987-10-01T23:59:59.000Z

71

Cloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations  

Science Conference Proceedings (OSTI)

Three-dimensional global distributions of longwave radiative cooling for the summer of 1988 and the winter of 1989 are generated from radiative transfer calculations using European Centre for Medium-Range Weather Forecasts temperature and ...

Byung-Ju Sohn

1999-08-01T23:59:59.000Z

72

Observations and Modeling of Downward Radiative Fluxes (Solar and Infrared) in Urban/Rural Areas  

Science Conference Proceedings (OSTI)

Pollutants (gaseous and aerosol) contained in urban atmospheres alter radiative fluxes at the surface.Numerous radiative models have been developed, and while few experimental data are available, results areoften contradictory. We have taken ...

Claude Estournel; Raoul Vehil; Daniel Guedalia; Jacques Fontan; Aim Druilhet

1983-01-01T23:59:59.000Z

73

Sustainable Energy Science and Engineering Center Solar Radiation  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Radiation The objectives of this section and Engineering Center Sun-Earth Relationships The solar constant, GSC is the energy from the sun, per unit time and Engineering Center Solar Radiation in the Atmosphere #12;Sustainable Energy Science and Engineering Center

Krothapalli, Anjaneyulu

74

Direct Detector for Terahertz Radiation - Energy ...  

Patent 7,420,225: Direct detector for terahertz radiation A direct detector for terahertz radiation comprises a grating-gated field-effect transistor ...

75

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

76

An infrared image of a dog, with warmest areas appearing the brightest.  

E-Print Network (OSTI)

sunlight, a roaring fire, a radiator or a warm sidewalk is infrared radiation. Although our eyes cannot see in space. Infrared astronomy is the art of measuring incredibly small values of thermal energy astronomers face the same problem when they try to detect heat from space. At room temperature

77

Hybrid Anode for Semiconductor Radiation Detectors - Energy ...  

The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the ...

78

Atomic Radiation (Illinois) | Open Energy Information  

Open Energy Info (EERE)

permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents. Policy Contact Contact...

79

Radiation (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation (North Dakota) Radiation (North Dakota) Radiation (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Environmental Regulations The Department of Health is the designated agency to receive registration applications and issue certificates necessary for the production, storage, processing, and disposal of radioactive wastes. The Industrial Commission of North Dakota is tasked with monitoring and enforcing provisions related

80

Radiation Energy Budget Studies Using Collocated AVHRR and ERBE Observations  

Science Conference Proceedings (OSTI)

Changes in the energy balance at the top of the atmosphere are specified as a function of atmospheric and surface properties using observations from the Advanced Very High Resolution Radiometer (AVURR) and the Earth Radiation budget Experiment (...

Steven A. Ackerman; Toshiro Inoue

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fiber-Optic Environmental Radiation Dosimeter - Energy ...  

Solar Thermal; Startup ... mm in diameter by 10 cm in length and is fiber-optic-coupled to a photodetec-tor that is remotely located away from the potential radiation ...

82

Operational Radiation Protection in High-Energy Physics Accelerators  

SciTech Connect

An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

2012-04-03T23:59:59.000Z

83

Energy Balance Models Incorporating Transport of Thermal and Latent Energy  

Science Conference Proceedings (OSTI)

Standard latitudinally resolved energy balance models describe conservation of energy on a sphere subject to solar heating, cooling by infrared radiation and diffusive redistribution of energy according to a Fourier type heat flow with flux ...

Brian P. Flannery

1984-02-01T23:59:59.000Z

84

Determination of beam energy at TESLA using radiative return events  

E-Print Network (OSTI)

Determination of beam energy at TESLA using radiative return events ARND HINZE DESY Zeuthen at TESLA. It was suggested to use this method to cross check and calibrate the magnet spectrometer used for measurement of the beam energy at TESLA. A preliminary assessment of the statistical and systematic errors

85

Countintg Extra Dimensions: Magnetic Cherenkov Radiation from High Energy Neutrinos  

E-Print Network (OSTI)

In theories which require a space of dimension d>4, there is a natural mechanism of suppressing neutrino masses: while Standard Model fields are confined to a 3-brane, right handed neutrinos live in the bulk. Due to Kaluza-Klein excitations, the effective magnetic moments of neutrinos are enhanced. The effective magnetic moment is a monotonically growing function of the energy of the neutrino: consequently, high energy neutrinos can emit observable amounts of magnetic Cherenkov radiation. By observing the energy dependence of the magnetic Cherenkov radiation, one may be able to determine the number of compactified dimensions.

G. Domokos; Andrea Erdas; S. Kovesi-Domokos

2002-12-30T23:59:59.000Z

86

THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

Using data from the mid-infrared to millimeter wavelengths for individual galaxies and for stacked ensembles at 0.5 tight correlation between star formation rate (SFR) and stellar mass (M {sub *}), and for starbursting galaxies that fall outside that relation. Exploiting the correlation of gas-to-dust mass with metallicity (M {sub gas}/M {sub dust}-Z), we use our measurements to constrain the gas content, CO-to-H{sub 2} conversion factors ({alpha}{sub CO}), and star formation efficiencies (SFE) of these distant galaxies. Using large statistical samples, we confirm that {alpha}{sub CO} and SFE are an order of magnitude higher and lower, respectively, in MS galaxies at high redshifts compared to the values of local galaxies with equivalently high infrared luminosities (L {sub IR} > 10{sup 12} L {sub Sun }). For galaxies within the MS, we show that the variations of specific star formation rates (sSFRs = SFR/M {sub *}) are driven by varying gas fractions. For relatively massive galaxies like those in our samples, we show that the hardness of the radiation field, (U), which is proportional to the dust-mass-weighted luminosity (L {sub IR}/M {sub dust}) and the primary parameter defining the shape of the IR spectral energy distribution (SED), is equivalent to SFE/Z. For MS galaxies with stellar mass log (M {sub *}/M {sub Sun }) {>=} 9.7 we measure this quantity, (U), showing that it does not depend significantly on either the stellar mass or the sSFR. This is explained as a simple consequence of the existing correlations between SFR-M {sub *}, M {sub *}-Z, and M {sub gas}-SFR. Instead, we show that (U) (or equally L {sub IR}/M {sub dust}) does evolve, with MS galaxies having harder radiation fields and thus warmer temperatures as redshift increases from z = 0 to 2, a trend that can also be understood based on the redshift evolution of the M {sub *}-Z and SFR-M {sub *} relations. These results motivate the construction of a universal set of SED templates for MS galaxies that are independent of their sSFR or M {sub *} but vary as a function of redshift with only one parameter, (U).

Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Daddi, E.; Bethermin, M.; Sargent, M.; Elbaz, D.; Pannella, M. [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Dickinson, M.; Kartaltepe, J. [NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Dannerbauer, H. [Institut fuer Astronophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Da Cunha, E.; Walter, F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Charmandaris, V. [Department of Physics and ICTP, University of Crete, GR-71003, Heraklion (Greece); Hwang, H. S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-11-20T23:59:59.000Z

87

Robot Reworked to Analyze Radiation in Japan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robot Reworked to Analyze Radiation in Japan Robot Reworked to Analyze Radiation in Japan Robot Reworked to Analyze Radiation in Japan April 14, 2011 - 2:30pm Addthis A technician at Idaho National Laboratory demonstrates the modified TALON robot. A technician at Idaho National Laboratory demonstrates the modified TALON robot. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Sensors on the TALON robots provide visual, radiological survey, and/or mapping data about areas that are not accessible to people because of too-high levels of radiation. Radiation-sensing packages have been sent for robots already in Japan. The Department of Energy has been working around the clock to provide whatever assistance we can to the Government of Japan as they work to bring

88

A Casimir approach for radiative self-energy  

E-Print Network (OSTI)

We apply a Casimir energy approach to evaluate the self-energy or one-photon radiative correction for an electron in a hydrogen orbital. This linking of the Lamb shift to the Casimir effect is obtained by treating the hydrogen orbital as a one-electron shell and including the probability of the electron being at a particular radius in that orbital and the probability that the electron will interact with a virtual photon of a given energy.

Allan Rosencwaig

2006-06-21T23:59:59.000Z

89

Radiative Effects on Turbulent Temperature Spectra and Budgets in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The effects of radiative energy transfer on turbulent temperature fields are studied, and preliminary estimates show the infrared radiative dissipation mechanism to be dominant. Spectral computations for the idealized homogeneous-isotropic case ...

M. Coantic; O. Simonin

1984-09-01T23:59:59.000Z

90

Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications  

E-Print Network (OSTI)

We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.30.1% with simultaneous ...

Lunt, Richard R.

91

Atomic Energy and Radiation Control Act (South Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Control Act (South Carolina) Radiation Control Act (South Carolina) Atomic Energy and Radiation Control Act (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Transportation Program Info Funding Source South Carolina Budget and Control Board State South Carolina Program Type Siting and Permitting Provider South Carolina Department of Commerce The Division of State Development within the Department of Commerce is responsible for the promotion and development of atomic energy in the state, and is authorized to enact relevant rules and regulations. The South Carolina Budget and Control Board may finance projects or lease lands for

92

United States Department of Energy Low Dose Radiation Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008 Dr. Antone L. Brooks tbrooks@tricity.wsu.edu September 2012 Review Draft i Contents Preface............................................................................................................................................. v Summary ........................................................................................................................................ vi Acronyms and Initialisms ............................................................................................................. vii Chapter 1 Introduction ................................................................................................................... 1

93

Dark radiation as a signature of dark energy  

E-Print Network (OSTI)

We propose a simple dark energy model with the following properties: the model predicts a late-time dark radiation component that is not ruled out by current observational data, but which produces a distinctive time-dependent equation of state w(z) for z volts.

Sourish Dutta; Stephen D. H. Hsu; David Reeb; Robert J. Scherrer

2009-02-26T23:59:59.000Z

94

Harrison Radiator Division's Energy Management, Reporting and Accounting System  

E-Print Network (OSTI)

Energy management is essential for obtaining the lowest possible product manufacturing cost. Many systems have been created over the years to manage the energy used in manufacturing. However, for a variety of reasons, most of them never reached their full potential. Harrison Radiator first installed an energy management system in 1973. Energy consumption was reduced 42% from 1973 through 1984. However, the gains the last couple of years have been small. In 1984, important changes were made to the system and energy reporting was added, resulting in 1985 energy consumption reduction of about 16%. This paper will briefly describe Harrison's successful energy management, reporting and accounting system. Examples of reports, available data, information flow and benefits will be covered, with special mention of all factors that lead to our system's success.

Goubeaux, R. J.

1986-06-01T23:59:59.000Z

95

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

V30, 581, 1975. El "Exxon Donor Solvent Coal Liquefactionfarth- est, along is the Exxon Donor Sol vent process, whichn t and Refined Coal, I and II Exxon Donor Solvent B. ZnClg-

Berdahl, Paul

2011-01-01T23:59:59.000Z

96

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

Hydrogen Requirement for Coal Slurry Reactor . . . . . . .Mass Transfer Resistances in Coal Liquefaction. . . . . . .ZnClp/MeOH Coal L i q u e f a c t i o n P r o c e s s D e s

Berdahl, Paul

2011-01-01T23:59:59.000Z

97

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

u r r y Reactor Theory. . . . . . . . . . . . . . . . . . .velocities. D. Slurry Reactor Theory General Slurry reactors

Berdahl, Paul

2011-01-01T23:59:59.000Z

98

Potential Health Hazards of Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation More Documents &...

99

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 ?m to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

100

Thermal And-Or Near Infrared At Coso Geothermal Area (2009) | Open Energy  

Open Energy Info (EERE)

And-Or Near Infrared At Coso Geothermal Area (2009) And-Or Near Infrared At Coso Geothermal Area (2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2009) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2009 Usefulness useful DOE-funding Unknown Exploration Basis Determine the importance of elevation and temperature inversions using thermal infrared satellite images Notes Examples of nighttime temperature inversions are shown in thermal infrared satellite images collected over the Coso geothermal field in eastern California. Temperature-elevation plots show the normal trend of temperature decrease with elevation, on which temperature inversions appear

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Variational Method for Computing Surface Heat Fluxes from ARM Surface Energy and Radiation Balance Systems  

Science Conference Proceedings (OSTI)

A variational method is developed to compute surface fluxes of sensible and latent heat from observed wind, temperature, humidity, and surface energy and radiation budget by the surface energy and radiation balance systems (SERBS). In comparison ...

Qin Xu; Chong-Jian Qiu

1997-01-01T23:59:59.000Z

102

Radiation Monitoring Data from Fukushima Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today, the Department provided the following update on the information gathered by the AMS. This data that was collected and analyzed jointly with the Government of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). 051311jointdoegojamstraindatafinalv2-110516163951-phpapp01.pptx 050611jointdoegojamsdatav3-110506164802-phpapp02.pptx 042111amsdataapril21v1-110422102404-phpapp02.pptx 041811amsdataapril18v1-110418170107-phpapp02.pptx 040711amsdataapril7v3-110407170243-phpapp02.pptx

103

Radiation Monitoring Data from Fukushima Area | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area In March, 2011 the U.S. Department of Energy released data recorded from its Aerial Measuring System as well as ground detectors deployed along with its Consequence Management Response Teams. Today, the Department provided the following update on the information gathered by the AMS. This data that was collected and analyzed jointly with the Government of Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT). 051311jointdoegojamstraindatafinalv2-110516163951-phpapp01.pptx 050611jointdoegojamsdatav3-110506164802-phpapp02.pptx 042111amsdataapril21v1-110422102404-phpapp02.pptx 041811amsdataapril18v1-110418170107-phpapp02.pptx 040711amsdataapril7v3-110407170243-phpapp02.pptx

104

Long-Wave Infrared At Coso Geothermal Area (1968-1971) | Open Energy  

Open Energy Info (EERE)

Long-Wave Infrared At Coso Geothermal Area (1968-1971) Long-Wave Infrared At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Long-Wave Infrared At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Long-Wave Infrared Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes 8- to 14-micrometer IR imagery has value in delineating the typical arcuate structural patterns References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Long-Wave_Infrared_At_Coso_Geothermal_Area_(1968-1971)&oldid=473747"

105

Energy dispersive spectroscopy using synchrotron radiation: intensity considerations  

SciTech Connect

Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity. 13 refs., 7 figs.

Skelton, E.F.; Elam, W.T.; Qadri, S.B.; Webb, A.W.; Schiferl, D.

1985-01-01T23:59:59.000Z

106

Cloud Cover over the South Pole from Visual Observations, Satellite Retrievals, and Surface-Based Infrared Radiation Measurements  

Science Conference Proceedings (OSTI)

Estimates of cloud cover over the South Pole are presented from five different data sources: routine visual observations (19572004; Cvis), surface-based spectral infrared (IR) data (2001; CPAERI), surface-based broadband IR data (19942003; Cpyr)...

Michael S. Town; Von P. Walden; Stephen G. Warren

2007-02-01T23:59:59.000Z

107

Thermal And-Or Near Infrared At Alum Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Alum_Area_(DOE_GTP)&oldid=402991" Categories: Exploration Activities

108

Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere  

Science Conference Proceedings (OSTI)

The effects of dust on the radiative energy budget at the top of the atmosphere were investigated using model calculations and measurements from the Earth Radiation Budget Experiment (ERBE). Estimates of the dust optical depth were made from ...

Steven A. Ackerman; Hyosang Chung

1992-02-01T23:59:59.000Z

109

Feedbacks between Eddy Heat Fluxes and Radiative Heating in an Energy-Balance Model  

Science Conference Proceedings (OSTI)

The response of midlatitude temperature structure to changes in radiative forcing is examined in an analytical energy-balance model that includes parameterized eddy heat fluxes and linear radiative heating. The characteristics of heat-...

Lee E. Branscome; Enda O'Brien

1988-02-01T23:59:59.000Z

110

The Earths Clear-Sky Radiation Budget and Water Vapor Absorption in the Far Infrared  

Science Conference Proceedings (OSTI)

Detailed observational data are used to simulate the sensitivity of clear-sky outgoing longwave radiation (OLR) to water vapor perturbations in order to investigate the effect of uncertainties in water vapor measurements and spectroscopic ...

Ashok Sinha; John E. Harries

1997-07-01T23:59:59.000Z

111

Thermal And-Or Near Infrared At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

2007) 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. Field measurements

112

Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator.  

E-Print Network (OSTI)

. 1 Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared. The light from a flashlight can be considered as the emission of many photons of the same frequency

Kioussis, Nicholas

113

Azimuthal variation of radiation of seismic energy from cast blasts  

SciTech Connect

As part of a series of seismic experiments designed to improve the understanding of the impact of mining blasts on verifying a Comprehensive Test Ban Treaty, a sixteen station network of three-component seismic sensors were deployed around a large cast shot in the Black Thunder Mine. The seismic stations were placed, where possible, at a range of 2.5 kilometers with a constant inter-station spacing of 22.5 degrees. All of the data were recorded with the seismometers oriented such that the radial component pointed to the middle point of the approximately 2 kilometer long shot. High quality data were recorded at each station. Data were scaled to a range of 2.5 kilometers and the sum of the absolute value of the vertical, radial, and transverse channels computed. These observations were used to construct radiation patterns of the seismic energy propagating from the cast shot. It is obvious that cast shots do not radiate seismic energy isotropically. Most of the vertical motion occurs behind the highwall while radial and transverse components of motion are enhanced in directions parallel to the highwall. These findings have implications for local (0.1 to 15 kilometer range) and possibly for regional (100 to 2,000 kilometer range) seismic observations of cast blasting. Locally, it could be argued that peak particle velocities could be scaled not only by range but also by azimuthal direction from the shot. This result implies that long term planning of pit orientation relative to sensitive structures could mitigate problems with vibration levels from future blasting operations. Regionally, the local radiation pattern may be important in determining the magnitude of large scale cast blasts. Improving the transparency of mining operations to international seismic monitoring systems may be possible with similar considerations.

Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Martin, R.L. [Thunder Basin Coal Co., Wright, WY (United States)

1996-12-31T23:59:59.000Z

114

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents (OSTI)

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

115

Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy  

SciTech Connect

We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

116

Energy of gravitational radiation in plane-symmetric space-times  

E-Print Network (OSTI)

Gravitational radiation in plane-symmetric space-times can be encoded in a complex potential, satisfying a non-linear wave equation. An effective energy tensor for the radiation is given, taking a scalar-field form in terms of the potential, entering the field equations in the same way as the matter energy tensor. It reduces to the Isaacson energy tensor in the linearized, high-frequency approximation. An energy conservation equation is derived for a quasi-local energy, essentially the Hawking energy. A transverse pressure exerted by interacting low-frequency gravitational radiation is predicted.

Sean A. Hayward

2008-05-19T23:59:59.000Z

117

Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo  

Science Conference Proceedings (OSTI)

We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport ... Keywords: Implicit Monte Carlo, Thermal radiation transport, Three-temperature model

T. M. Evans; J. D. Densmore

2007-08-01T23:59:59.000Z

118

Radiative polarization in high-energy storage rings  

SciTech Connect

Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. I present a general formalism for calculating depolarizing resonances, which as been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, I am able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs.

Mane, S.R.

1989-03-01T23:59:59.000Z

119

Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997  

DOE R&D Accomplishments (OSTI)

This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

Lamb, W. E. Jr.

1981-12-00T23:59:59.000Z

120

Lateral transport and far-infrared radiation of electrons in In{sub x}Ga{sub 1-x}As/GaAs heterostructures with the double tunnel-coupled quantum wells in a high electric field  

Science Conference Proceedings (OSTI)

It is shown that the far-infrared radiation of electrons in the selectively doped heterostructures with double tunnel-coupled quantum wells in high lateral electric fields strongly depends on the level of doping of the wells. At a high impurity concentration in a narrow well, higher than (1-2) x 10{sup 11} cm{sup -2}, the radiation is caused only by indirect intrasubband electron transitions. At a lower concentration, along with the indirect transitions, the direct intersubband transitions also contribute to the radiation. These transitions become possible in high electric fields due to the real-space electron transfer between the quantum wells.

Baidus, N. V. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Belevskii, P. A. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Biriukov, A. A. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Vainberg, V. V.; Vinoslavskii, M. N. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Ikonnikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Zvonkov, B. N. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Pylypchuk, A. S.; Poroshin, V. N., E-mail: poroshin@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

P. Huang; Yong-Chang Huang

2012-12-30T23:59:59.000Z

122

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

Huang, P

2013-01-01T23:59:59.000Z

123

Infra-Red Process for Colour Fixation on Fabrics  

E-Print Network (OSTI)

Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for color fixation on fabrics. Shorter production cycles and energy saving are the main results.

Biau, D.; Raymond, D. J.

1983-01-01T23:59:59.000Z

124

Infra-red signature neutron detector  

SciTech Connect

A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generating a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

125

FAQS Qualification Card - Radiation Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Protection Radiation Protection FAQS Qualification Card - Radiation Protection A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-RadiationProtection.docx Description Radiation Protection Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Radiation Protection

126

Radiative Energy Budget in the Cloudy and Hazy Arctic  

Science Conference Proceedings (OSTI)

A radiation model is constructed that includes radiative interactions with atmospheric gases as well as parameterized treatments of scattering and absorption/emission by cloud droplets and haze particles. A unified treatment of solar and ...

Si-Chee Tsay; Knut Stamnes; Kolf Jayaweera

1989-04-01T23:59:59.000Z

127

SRNL Deploys Innovative Radiation Mapping Device | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device SRNL Deploys Innovative Radiation Mapping Device November 3, 2011 - 12:00pm Addthis The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. The Savannah River National Laboratory completed successful deployments of the RadBall, a gamma radiation-mapping device. AIKEN, S.C. - The Savannah River National Laboratory (SRNL), EM's national lab, has made strides with remote technology designed to reduce worker exposure while measuring radiation in contaminated areas. uilding on a successful collaboration with the United Kingdom's National Nuclear Laboratory, SRNL completed successful deployments of RadBall, a gamma radiation-mapping device, after testing the technology. The device

128

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature  

E-Print Network (OSTI)

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We

129

Tunable infrared source employing Raman mixing  

SciTech Connect

A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

1980-01-01T23:59:59.000Z

130

Photoluminescent Energy Transfer from Poly(phenyleneethynylene)s to Near-Infrared Emitting Fluorophores  

E-Print Network (OSTI)

Photoluminescent energy transfer was investigated in conjugated polymer-fluorophore blended thin films. A pentiptycene-containing poly(phenyleneethynylene) was used as the energy donor, and 13 fluorophores were used as ...

Swager, Timothy Manning

131

The European Solar Radiation Atlas 1 Page J., M. Albuisson, L. Wald, 2001. The European solar radiation atlas: a valuable digital tool. Solar Energy,  

E-Print Network (OSTI)

radiation atlas: a valuable digital tool. Solar Energy, 71, 81-83, 2001.1 The European Solar Radiation Atlas Author manuscript, published in "Solar Energy 71, 1 (2001) 81-83" DOI : 10.1016/S0038-092X(00)00157-2 #12 provided address the four most widely developed solar energy applications using simplified design methods

Paris-Sud XI, Université de

132

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION The familiar level of this module is designed to provide the basic information to meet the requirements that are related to 10 CFR 835, "Occupational Radiation Protection," in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1146-2007, General Technical Base DOE-STD-1138-2007, Industrial Hygiene DOE-STD-1183-2007, Nuclear Safety Specialist DOE-STD-1174-2003, Radiation Protection DOE-STD-1175-2006, Senior Technical Safety Manager DOE-STD-1178-2004, Technical Program Manager DOE-STD-1155-2002, Transportation and Traffic Management DOE Order Self Study Modules - 10 CFR 835 Occupational Radiation Protection

133

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

Science Conference Proceedings (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

134

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

135

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Biehs, Svend-Age

2011-01-01T23:59:59.000Z

136

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

137

Order Module--RADIATION PROTECTION PROGRAMS GUIDE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIATION PROTECTION PROGRAMS GUIDE RADIATION PROTECTION PROGRAMS GUIDE Order Module--RADIATION PROTECTION PROGRAMS GUIDE The familiar level of this module is designed to provide the basic information related to DOE G 441.1-1C, Radiation Protection Programs Guide, as required in DOE-STD-1174-2003, Radiation Protection Functional Area Qualification Standard, December 2003. Completion of this module also meets certain requirements associated with the DOE Facility Representative Program and the DOE Intern Program. The information contained in this module addresses specific requirements and as such does not include the entire text of the source document. Before continuing, you should obtain a copy of the Order. Copies of the DOE Directives are available at http://www.directives.doe.gov/ or through the course manager. In March

138

Texas Radiation Control Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Control Act (Texas) Radiation Control Act (Texas) Texas Radiation Control Act (Texas) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality It is the policy of the state to institute and maintain a regulatory program for radiation sources that is compatible with federal standards and regulatory programs, and, to the degree possible, compatible with other states' systems. The program permits the development and use of sources of radiation for peaceful purposes consistent with public health and safety and environmental protection. This legislation contains provisions for the

139

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect Melvyn Folkard Gray Cancer Institute Why This Project The aim of this project is to determine the effects of low radiation doses using a machine that makes it possible to radiate one cell at a time. Our soft X-ray microprobe can irradiate individual cells, or locations within cells with defined doses and with sub-micron precision. We can use low doses approaching that of a single electron track, which is of relevance to environmental level exposures. Much of our work is concentrating on irradiating specified individual cells within cell populations to identify "bystander responses" where non-radiated cells respond to signals from nearby radiated cells. Higher energy x-rays are being generated to extend

140

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

142

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

143

Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package  

DOE Green Energy (OSTI)

The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

None

1980-01-01T23:59:59.000Z

144

Compilation of radiation damage test data materials used around high-energy accelerators  

E-Print Network (OSTI)

For pt.II see CERN report 79-08 (1979). This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins.

Beynel, Paul; Schnbacher, Helmut

1982-01-01T23:59:59.000Z

145

Energy and Radiation-Aware Base Station Placement in Eco-Sustainable LTE Networks  

Science Conference Proceedings (OSTI)

Existing cellular network planning is mainly performance-oriented and often neglects the energy consumption and radiation concerns, which have direct impacts not only on the environment but also on the network operators long-term profitability. This ... Keywords: Deployment, Radiation, Optimization, Green Wireless network

Bin Lin; Yuxin Tian; Rongxi He; Lin Lin

2012-10-01T23:59:59.000Z

146

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate. 3 figs.

Kopp, M.K.

1986-12-17T23:59:59.000Z

147

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

Kopp, Manfred K. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

148

Does Unruh radiation accelerate the universe? A novel approach to dark energy  

E-Print Network (OSTI)

In braneworld scenario, the brane accelerates in the bulk, and hence it perceives a thermal bulk filled with Unruh radiation. We put forward that there may be an energy exchange between Unruh radiation in the bulk and the dark matter confined to the brane, which accelerates the universe.

Hongsheng Zhang; Zong-Hong Zhu

2006-07-24T23:59:59.000Z

149

On the Variability of the Global Net Radiative Energy Balance of the Nonequilibrium Earth  

Science Conference Proceedings (OSTI)

Recent observations and model studies of the earths radiative energy balance have focused attention on the earths top of atmosphere (TOA) energy balance. This is the balance between the shortwave energy absorbed by the earth, which is ...

John E. Harries; Claudio Belotti

2010-03-01T23:59:59.000Z

150

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS  

E-Print Network (OSTI)

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

151

Deep Valley Radiation and Surface Energy Budget Microclimates. Part I: Radiation  

Science Conference Proceedings (OSTI)

Solar and longwave radiation data are presented for five sites in Colorado's 650 m deep semiarid Brush Creek Valley (3932?N, 10824?W) during September 1984.

C. David Whiteman; K. Jerry Allwine; Leo J. Fritschen; Montie M. Orgill; James R. Simpson

1989-06-01T23:59:59.000Z

152

A Gray-Radiation Aquaplanet Moist GCM. Part II: Energy Transports in Altered Climates  

Science Conference Proceedings (OSTI)

A simplified moist general circulation model is used to study changes in the meridional transport of moist static energy by the atmosphere as the water vapor content is increased. The key assumptions of the model are gray radiation, with water ...

Dargan M. W. Frierson; Isaac M. Held; Pablo Zurita-Gotor

2007-05-01T23:59:59.000Z

153

Incorporation of scattered radiation into dual?energy radiologic theory and application to mammography  

Science Conference Proceedings (OSTI)

A previous analysis of dual?energy imaging is extended to incorporate scattered radiation. The analysis is general and can include polyenergetic beams and nonideal detectors. In the dual?material basis plane

Paul C. Johns

1994-01-01T23:59:59.000Z

154

Estimation of Surface Radiation and Energy Flux Densities from Single-Level Weather Data  

Science Conference Proceedings (OSTI)

A scheme is proposed that relates surface flux densities of sensible heat, latent heat, and momentum to routine weather data. The scheme contains parameterizations concerning the radiation components and the surface energy flux densities. The ...

Wim C. de Rooy; A. A. M. Holtslag

1999-05-01T23:59:59.000Z

155

Energy Balance Partitioning and Net Radiation Controls on Soil MoisturePrecipitation Feedbacks  

Science Conference Proceedings (OSTI)

A series of model runs using the University of Oklahomas Advanced Regional Prediction System (ARPS) were conducted to investigate the relative impacts of energy balance partitioning and net radiation on soil moistureprecipitation feedbacks in ...

Aubrey R. Jones; Nathaniel A. Brunsell

2009-01-01T23:59:59.000Z

156

Quality Services: Radiation (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation (New York) Radiation (New York) Quality Services: Radiation (New York) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish standards for protection against ionizing radiation resulting from the disposal and discharge of radioactive material to the environment. The regulations apply to any person who disposes of or discharges licensed material within the State, or whose loss of control of licensed material may result in the disposal or discharge of such material within the State. The disposal of radioactive tailings or wastes produced by the extraction or concentration of uranium or thorium for any ore

157

Georgia Radiation Control Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Radiation Control Act (Georgia) Georgia Radiation Control Act (Georgia) Georgia Radiation Control Act (Georgia) < Back Eligibility Commercial Construction Industrial Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a regulatory program for radioactive material waste sources. The act provides that all facilities or sites for the concentration, storage or burial of radioactive waste must be constructed and operate pursuant to a permit issued by the Director of the Environmental Protection Division (EPD). The director may specify in the

158

Surface Energy and Radiation Balance Systems: General Description and Improvements  

Science Conference Proceedings (OSTI)

Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to ...

Leo J. Fritschen; James R. Simpson

1989-07-01T23:59:59.000Z

159

Preprint typeset using L ATEX style emulateapj ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS  

E-Print Network (OSTI)

Using measured X-ray luminosities to 17 Gamma-Ray Bursts (GRBs) during the afterglow phase and accounting for radiative losses, we calculate the kinetic energy of these bursts and investigate its relation to other GRB properties. We then use the observed radiated energy during the prompt phase to determine the radiative efficiency of these bursts, and explore how the efficiency relates to other GRB observables. We find that the kinetic energy in the afterglow phase is directly correlated with the radiated energy, total energy as well as possibly the jet opening angle and spectral peak energy. More importantly, we find the intriguing fact that the efficiency is correlated with the radiated energy, and mildly with the total energy, jet opening angle and spectral peak energy. XRF020903 also seems to follow the trends we find for our GRB sample. We discuss the implications of these results for the GRB radiation and jet models. 1.

Nicole M. Lloyd-ronning; Bing Zhang

2008-01-01T23:59:59.000Z

160

On an Improvement of the Planck radiation Energy Distribution  

E-Print Network (OSTI)

The probability distribution function for thermodynamics and econophysics is obtained by solving an equilibrium equation. This approach is different from the common one of optimizing the entropy of the system or obtaining the state of maximum probability, which usually obtains as a result the Boltzmann distribution. The Gamma distribution is proposed as a better equation to describe the blackbody radiation in substitution of Planck's radiation equation. Also, a new form of entropy is proposed, that maintains the correct relation with the Clausius' formula.

Diego Saa

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Class of Radiation Detection Materials - Energy Innovation ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and ... Technology Marketing Summary Sandia National Laboratories has created a new class of scintillators with ...

162

Nano-Mechanical Infrared Detectors  

SciTech Connect

Infrared radiation (IR) is electromagnetic radiation with wavelengths between 0.7 m and 100 m. It extends from visible light to THz waves. Because fundamentally different phenomena can be observed within the IR region, four sub-bands are usually distinguished: near-IR (NIR), mid-wave-IR (MWIR), long-wave-IR (LWIR) and very long-wave-IR (VLWIR). Although somewhat different definitions exist in literature, wavelengths from 0.7 m to 2.5 m belong to NIR, from 2.5 m to 8 m belong to MWIR, from 8 m to 14 m belong to LWIR and wavelengths above 14 m belong to VLWIR. The IR photon energies range from 1.77 eV for 0.7 m photons to 0.0124 eV for 100 m photons. The significance and practical applications of IR detectors are related to two distinct phenomena: emission of electromagnetic waves by all objects at T > 0 K and interaction of electromagnetic waves with vibrational modes of molecular bonds. Thermal imaging and molecular spectroscopy are, respectively, the two major fields that critically depend on the ability to detect IR radiation.

Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott [Oak Ridge National Laboratory (ORNL); Hunt, Rodney Dale [ORNL; Datskos, Panos G [ORNL

2011-01-01T23:59:59.000Z

163

Non-contact pumping of light emitters via non-radiative energy transfer  

DOE Patents (OSTI)

A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

2010-01-05T23:59:59.000Z

164

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

165

On An Improvement Of The Planck Radiation Energy Distribution  

E-Print Network (OSTI)

Copyright c?2006 The probability distribution function for thermodynamics and econophysics is obtained by solving an equilibrium equation. This approach is different from the common one of optimizing the entropy of the system or obtaining the state of maximum probability, which usually obtains as a result the Boltzmann distribution. The Gamma distribution is proposed as a better equation to describe the blackbody radiation in substitution of Plancks radiation equation. Also, a new form of entropy is proposed, that maintains the correct relation with the Clausius formula.

Diego Sa

2006-01-01T23:59:59.000Z

166

Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality  

Science Conference Proceedings (OSTI)

Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. Methods: In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose. Results: The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in monochromatic images, the optimal energy was lower than that when minimizing noise level. When the total radiation dose was equally distributed between low and high energy in dual-energy scans, for minimum noise, the optimal energies were 68, 71, 74, and 77 keV for small, medium, large, and extra-large (xlarge) phantoms, respectively; for maximum iodine CNR, the optimal energies were 66, 68, 70, 72 keV. With the optimal monochromatic energy, the noise level was similar to and the CNR was better than that in a single-energy scan at 120 kV for the same radiation dose. Compared to an 80 kV scan, however, the iodine CNR in monochromatic images was lower for the small, medium, and large phantoms. Conclusions: In dual-source dual-energy CT, optimal virtual monochromatic energy depends on patient size, dose partitioning, and the image quality metric optimized. With the optimal monochromatic energy, the noise level was similar to and the iodine CNR was better than that in 120 kV images for the same radiation dose. Compared to single-energy 80 kV images, the iodine CNR in virtual monochromatic images was lower for small to large phantom sizes.

Yu Lifeng; Christner, Jodie A.; Leng Shuai; Wang Jia; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

2011-12-15T23:59:59.000Z

167

A Study of CloudGenerated Radiative Heating and Its Generation of Available Potential Energy. Part I: Theoretical Background  

Science Conference Proceedings (OSTI)

The theory is presented of the effect of radiative heating and cooling by clouds on the available potential energy (APE). This provides a measure of the influence of clouds on the general circulation. Absorption and scattering of solar radiation ...

R. Stuhlmann; G. L. Smith

1988-12-01T23:59:59.000Z

168

Central U.S. Atmospheric Water and Energy Budgets Adjusted for Diurnal Sampling Biases Using Top-of-Atmosphere Radiation  

Science Conference Proceedings (OSTI)

The water and energy budgets of the atmospheric column over the Mississippi River basin are estimated using 18 yr (197693) of twice-daily radiosonde observations, top-of-atmosphere net radiation estimates from the Earth Radiation Budget ...

Hideki Kanamaru; Guido D. Salvucci; Dara Entekhabi

2004-06-01T23:59:59.000Z

169

LCnote LCPHSM2005001 Determination of beam energy at TESLA using radiative  

E-Print Network (OSTI)

LCPHSM2005001 Determination of beam energy at TESLA using radiative return events ARND HINZE DESY Zeuthen at TESLA. It was suggested to use this method to cross check and calibrate the magnet spectrometer used for measurement of the beam energy at TESLA. A preliminary assessment of the statistical and systematic errors

170

The energy distribution of atoms in the field of thermal radiation  

E-Print Network (OSTI)

Using the principle of detailed balance and the assumption on the absorption cross-section consistent with available astrophysical data, we obtain the energy distribution of atoms in the field of thermal blackbody radiation and show that this distribution diverges from the Boltzmann law. There is an inversion of the high energy level population at sufficiently high temperatures.

F. V. Prigara

2003-11-24T23:59:59.000Z

171

Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models  

DOE Green Energy (OSTI)

This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

Gleckler, P.J. [Lawrence Livermore National Lab., CA (United States); Randall, D.A. [Colorado State Univ., Fort Collins, CO (United States); Boer, G. [Canadian Climate Centre, Victoria (Canada)

1994-03-01T23:59:59.000Z

172

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in the Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

2013-09-01T23:59:59.000Z

173

Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique  

Science Conference Proceedings (OSTI)

Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed quality, and can also be used to monitor the degree of grain maturity, grain damage, the fate of organic contaminants and the effect of chemical treatment on plant and grain seeds.

P Yu

2011-12-31T23:59:59.000Z

174

Low Dose Radiation Research Program: Modeling Energy Deposition...  

NLE Websites -- All DOE Office Websites (Extended Search)

to accurately simulate the production of damage clusters in the cellular medium. Electron interaction cross-sections used in MC codes are generally derived from "high-energy"...

175

Low Dose Radiation Research Program: Modeling Energy Deposition...  

NLE Websites -- All DOE Office Websites (Extended Search)

physical parameters employed in these codes faces even greater challenges. Electron interaction crosssections used in MC codes are generally derived from "high-energy"...

176

Electromagnetic radiation, motion of a particle and energy-mass relation  

E-Print Network (OSTI)

Equation of motion of an uncharged arbitrarily shaped dust particle under the effects of (stellar) electromagnetic radiation and thermal emission is derived. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Relations between energy and mass of the incoming and outgoing radiation are obtained, together with relations between radiation energy and mass of the particle. The role of the diffraction nicely fits the relativistic formulation of the momentum of the outgoing radiation. The inequality 0 radiation pressure, integrated over stellar spectrum). The condition for the P-R effect is $\\vec{p}'_{o}$ = (1 - $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$) $\\vec{p}'_{i}$, where $\\vec{p}'_{i}$ and $\\vec{p}'_{o}$ are incoming and outgoing radiation momenta (per unit time) measured in the proper frame of reference of the particle. The case of "perfectly absorbing spherical dust particle", within geometrical optics approximation, corresponds to the condition $\\vec{p}'_{o}$ = 0.5 $\\vec{p}'_{i}$. As for arbitrarily shaped dust particle, the condition 0 radiation pressure components. The condition can add a new information to the results obtained from observations, measurements and numerical calculations of the optical properties of the particle.

J. Klacka

2008-07-18T23:59:59.000Z

177

Current Issues in Terrestrial Solar Radiation Instrumentation for Energy, Climate and Space Applications Preprint prepared for New RAD '99  

DOE Green Energy (OSTI)

Reductions of uncertainty in terrestrial solar radiation measurements are needed to validate the Earth's radiation balance derived from satellite data. Characterization of solar energy resources for renewable technologies requires greater time and spatial resolution for economical technology deployment. Solar radiation measurement research at the National Renewable Energy Laboratory addresses calibrations, operational characteristics, and corrections for terrestrial solar radiation measurements. We describe progress in measurements of broadband diffuse-sky radiation, and characterization of field instrument thermal offsets and spectral irradiance. The need and prospects for absolute references for diffuse and long-wave terrestrial solar radiation measurements are discussed. Reductions in uncertainty of broadband irradiance measurements from tens of watts per square meter to a few (one to two) watts per square meter are reported, which reduce time and labor to quantify and identify trends in artificial optical radiation sources, terrestrial solar radiation, and the Earth's radiation budget.

Stoffel, T. L.; Reda, I.; Myers, D. R.; Renne, D.; Wilcox, S. W.; Treadwell, J.

1999-10-20T23:59:59.000Z

178

Preliminary Analysis of Surface Radiation Measurement Data Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

primary radiation flux measurements at the SGP extended facilities are obtained from the Solar Infrared Radiation Station (SIRS). In this study, we examine the radiation...

179

Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory  

DOE Green Energy (OSTI)

This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

Wilcox, S. M.; Myers, D. R.

2008-12-01T23:59:59.000Z

180

Human radiation experiments associated with the US Department of Energy and its predecessors  

Science Conference Proceedings (OSTI)

This document contains a listing, description, and selected references for documented human radiation experiments sponsored, supported, or performed by the US Department of Energy (DOE) or its predecessors, including the US Energy Research and Development Administration (ERDA), the US Atomic Energy Commission (AEC), the Manhattan Engineer District (MED), and the Off ice of Scientific Research and Development (OSRD). The list represents work completed by DOE`s Off ice of Human Radiation Experiments (OHRE) through June 1995. The experiment list is available on the Internet via a Home Page on the World Wide Web (http://www.ohre.doe.gov). The Home Page also includes the full text of Human Radiation Experiments. The Department of Energy Roadmap to the Story and the Records (DOE/EH-0445), published in February 1995, to which this publication is a supplement. This list includes experiments released at Secretary O`Leary`s June 1994 press conference, as well as additional studies identified during the 12 months that followed. Cross-references are provided for experiments originally released at the press conference; for experiments released as part of The DOE Roadmap; and for experiments published in the 1986 congressional report entitled American Nuclear Guinea Pigs: Three Decades of Radiation Experiments on US Citizens. An appendix of radiation terms is also provided.

None

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

3.1 $?$m H$_{2}$O Ice Absorption in LINER-Type Ultraluminous Infrared Galaxies with Cool Far-Infrared Colors: the Centrally-Concentrated Nature of Their Deeply Buried Energy Sources  

E-Print Network (OSTI)

Ground-based 2.8--4.1 $\\mu$m slit spectra of the nuclei of seven ultraluminous infrared galaxies (ULIRGs) that are classified optically as LINERs and have cool far-infrared colors are presented. All the nuclei show 3.3 $\\mu$m polycyclic aromatic hydrocarbon (PAH) emission, with equivalent widths that are systematically lower than those in starburst galaxies. Strong 3.1 $\\mu$m H$_{2}$O ice absorption, with optical depth greater than 0.6, is also detected in five nuclei, and 3.4 $\\mu$m carbonaceous dust absorption is detected clearly in one of the five nuclei. It is quantitatively demonstrated that the large optical depths of the H$_{2}$O ice absorption in the five sources, and the 3.4 $\\mu$m absorption in one source, are incompatible with a geometry in which the energy sources are spatially mixed with dust and molecular gas, as is expected for a typical starburst, but instead require that a large amount of nuclear dust (including ice-covered grains) and molecular gas be distributed in a screen in front of the 3--4 $\\mu$m continuum-emitting sources. This geometrical requirement can naturally be met if the energy sources are more centrally concentrated than the nuclear dust and molecular gas. The low equivalent widths of the PAH emission compared to starbursts and the central concentration of the nuclear energy sources in these five ULIRGs are best explained by the presence of energetically important active galactic nuclei deeply buried in dust and molecular gas.

Masatoshi Imanishi; Philip R. Maloney

2003-02-04T23:59:59.000Z

182

CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: A{sub V} = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption R{sub V} = 3.1 plus a contribution from local dust with R{sub V} > 4.0 in the Carina molecular clouds that increases as A{sub V} increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L{sub bol} {approx}> 10{sup 4} L{sub sun} by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by {approx}50%. Correcting for incompleteness due to OB stars falling below the L{sub bol} cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gagne, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Babler, Brian L.; Meade, Marilyn R.; Townsend, Richard H. D. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Indebetouw, Remy; Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Robitaille, Thomas P., E-mail: povich@astro.psu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

183

Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion  

SciTech Connect

This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

Myers, D. R.

2012-01-01T23:59:59.000Z

184

Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation  

E-Print Network (OSTI)

By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.

Timothy H. Boyer

2002-10-30T23:59:59.000Z

185

ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1  

E-Print Network (OSTI)

ON THE KINETIC ENERGY AND RADIATIVE EFFICIENCY OF GAMMA-RAY BURSTS Nicole M. Lloyd-Ronning1 of 17 gamma-ray bursts (GRBs) during the afterglow phase and ac- counting for radiative losses, we the implications of these results for the GRB radiation and jet models. Subject headinggs: gamma rays: bursts

Zhang, Bing

186

Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system  

Science Conference Proceedings (OSTI)

A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

2013-02-12T23:59:59.000Z

187

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H. Churnside, and J. B....

188

INSTITUTE OF NUCLEAR ENERGY RADIATION ANNUAL REPORT 2003  

E-Print Network (OSTI)

of Environment and Public Works and the Greek Atomic Energy Commission). Taking into account that the nuclear fuel of the Experimental Nuclear Reactor suffices for a considerable number of years, the continuing with the pertroleum industry), R&D in issues of porous material - and especially nano-material ­ structure

189

U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Radiation Monitoring Data from Releases Radiation Monitoring Data from Fukushima Area U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima Area March 22, 2011 - 12:00am Addthis Today the U.S. Department of Energy released data recorded from its Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. The information has also been shared with the government of Japan as part of the United States' ongoing efforts to support Japan with the recovery and response effort. On March 15, 33 experts from the Department's National Nuclear Security Administration (NNSA) arrived in Japan along with more than 17,200 pounds of equipment. After initial deployments at U.S. consulates and military installations in Japan, these teams have utilized their unique skills,

190

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleevi?; Harry Boyer

2012-12-18T23:59:59.000Z

191

Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure  

E-Print Network (OSTI)

Radiation Pressure Acceleration relies on high intensity laser pulse interacting with solid target to obtain high maximum energy, quasimonoenergetic ion beams. Either extremely high power laser pulses or tight focusing of laser radiation is required. The latter would lead to the appearance of the maximum attainable ion energy, which is determined by the laser group velocity and is highly influenced by the transverse expansion of the target. Ion acceleration is only possible with target velocities less than the group velocity of the laser. The transverse expansion of the target makes it transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P

2013-01-01T23:59:59.000Z

192

Low-Temperature Calibration of Infrared Thermometers  

Science Conference Proceedings (OSTI)

A method was developed for calibrating infrared thermometers to properly measure target temperatures ranging from ?70 to 0C. Once calibrated for this range, the thermometer can then be used to measure the flux of thermal radiation from the sky. ...

B. A. Kimball; S. T. Mitchell

1984-12-01T23:59:59.000Z

193

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

194

A picosecond time-resolved electron energy spectrometer based on Cerenkov radiation  

Science Conference Proceedings (OSTI)

The energy spectrum of relativistic electrons is an important characterization of high intensity laser-matter interactions. We present a technique that utilizes Cerenkov radiation to measure the time-resolved energy distribution of electrons. Electrons escaping from targets irradiated by high-intensity laser pulses were measured, demonstrating the feasibility of such a novel diagnostic. Limitations on the time resolution of this diagnostic are also discussed.

Elberson, Lee N.; Hill, Wendell T. III [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); Ping, Yuan; Shepherd, Ronnie L.; Patel, Pravesh K.; Mackinnon, Andrew J. [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States)

2009-02-15T23:59:59.000Z

195

The energy distribution of atoms in the field of thermal blackbody radiation  

E-Print Network (OSTI)

Using the principle of detailed balance and the assumption on the absorption cross-section consistent with available astrophysical data, we obtain the energy distribution of atoms in the field of thermal blackbody radiation and show that this distribution diverges from the Boltzmann law.

F. V. Prigara

2002-02-06T23:59:59.000Z

196

Low-energy enhancement of magnetic dipole radiation  

E-Print Network (OSTI)

Magnetic dipole strength functions have been deduced from averages of a large number of $M1$ transition strengths calculated within the shell model for the nuclides $^{90}$Zr, $^{94}$Mo, $^{95}$Mo, and $^{96}$Mo. An enhancement of $M1$ strength toward low transition energy has been found for all nuclides considered. Large $M1$ strengths appear for transitions between close-lying states with configurations including proton as well as neutron high-$j$ orbits that re-couple their spins and add up their magnetic moments coherently. The $M1$ strength function deduced from the calculated $M1$ transition strengths is compatible with the low-energy enhancement found in ($^3$He,$^3$He') and $(d,p)$ experiments. The present work presents for the first time an explanation of the experimental findings.

R. Schwengner; S. Frauendorf; A. C. Larsen

2013-10-29T23:59:59.000Z

197

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Viqar Husain; Sanjeev S. Seahra; Eric J. Webster

2013-05-13T23:59:59.000Z

198

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Husain, Viqar; Webster, Eric J

2013-01-01T23:59:59.000Z

199

Modification of the U.S. Department of Energy`s (DOE) sytem of radiation protection requirements and guidance  

SciTech Connect

DOE has undertaken a major modification of its system of radiation protection guidance and requirements. The objectives of this modification are to (1) eliminate unnecessary and redundant requirements, (2) clearly delineate requirements from guidance, (3) codify all radiation protection requirements, and (4) move from a compliance based approach towards a performance based approach. To achieve these objectives DOE has (1) canceled DOE Order 5480.11, {open_quotes}Radiation Protection for DOE Workers,{close_quotes} DOE Order 5480.15, {open_quotes}Department of Energy Laboratory Accreditation Program (DOELAP) for Personnel Dosimetry,{close_quotes} and DOE Notice 5400.13, {open_quotes}Sealed Radioactive Source Accountability,{close_quotes} (2) converted the DOE Radiological Control (RadCon) Manual from mandatory to non mandatory status, and (3) issued DOE Notice 441.1 to maintain those requirements (not in 10 CFR 835) considered necessary for radiation protection of workers. DOE has initiated actions to (1) amend 10 CFR 835 (the Federal rule on occupational radiation protection in the DOE complex) to incorporate the requirements, or their equivalent, in DOE Notice 441.1, (2) issue a technical standard containing guidance on DOELAP, (3) reissue the DOE RadCon Manual as a non mandatory technical standard that reflects the amendments to 10 CFR 835, and (4) revise the implementation guides on radiation protection for consistency with 10 CFR 835 and the RadCon Manual. As a result of these modifications, the system of radiation protection in the DOE will become more comparable with the system of radiation protection used by commercial industry and with the system of protection applied to other areas of worker health and safety.

O`Connell, P.V.; Rabovsky, J.L.; Zobel, S.G. [Department of Energy, Germantown, MD (United States)

1996-06-01T23:59:59.000Z

200

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Land Surface Emissivity in the Vicinity Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the vicinity of the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Central Facility (CF) in North Central Oklahoma. The UW-Madison LSE model is part of the ARM best

202

Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature  

SciTech Connect

We conducted observations and modeling at a forest site to assess importance of biomass heat and biochemical energy storages for land-atmosphere interactions. We used the terrestrial ecosystem Fluxes And Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the calculated biomass energy storages. Effects of energy storages on flux exchanges and variations of radiative temperature were investigated by contrasting FAPIS simulations with and without the storages. We found that with the storages, FAPIS predictions agreed with measurements well; without them, FAPIS performance deteriorated for all surface energy fluxes. The biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 Wm-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Without-storage simulations produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with with-storage simulations. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the biomass energy storages act to dampen diurnal temperature range. Therefore, biomass heat and biochemical energy storages are an integral and substantial part of the surface energy budget and play a role in modulating land surface temperatures and must be considered in studies of land - atmosphere interactions and climate modeling.

Gu, Lianhong [ORNL; Meyers, T. P. [NOAA ATDD; Pallardy, Stephen G. [University of Missouri; Hanson, Paul J [ORNL; Yang, Bai [ORNL; Heuer, Mark [ATDD, NOAA; Hosman, K. P. [University of Missouri; Liu, Qing [ORNL; Riggs, Jeffery S [ORNL; Sluss, Daniel Wayne [ORNL; Wullschleger, Stan D [ORNL

2007-01-01T23:59:59.000Z

203

Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has issued a Preliminary Notice of Violation to Battelle Energy Alliance, LLC.

204

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

205

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

206

Observations of the Hubble Deep Field with the Infrared Space Observatory. V. Spectral Energy Distributions, Starburst Models and Star Formation History  

E-Print Network (OSTI)

We have modelled the spectral energy distributions of the 13 HDF galaxies reliably detected by ISO. For 2 galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far infrared luminosity and derive star formation rates for these galaxies of 8-1000 $\\phi M_{\\sun}$ per yr, where $\\phi$ takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the universe. Although uncertainties in the calibration, reliability of source detection, associations, and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least.

The ISO-HDF Consortium; :; Michael Rowan-Robinson

1997-07-02T23:59:59.000Z

207

Proton Recoil Energy and Angular Distribution of Neutron Radiative Beta Decay  

E-Print Network (OSTI)

We analyse the proton recoil energy and angular distribution of the radiative beta-decay of the neutron to leading order in the large baryon mass expansion by taking into account the contributions of the proton-photon correlations. We show that the account for the proton-photon correlations does not contradict the description of the radiative corrections to the lifetime of the neutron and the proton recoil energy spectrum of the neutron beta-decay in terms of the functions (\\alpha/\\pi) g_n(E_e) and (\\alpha/\\pi) f_n(E_e), where E_e is the electron energy. In addition we find that the contributions of the proton-photon correlations in the radiative beta-decay of the neutron to the proton recoil asymmetry C are of order 10^(-4). They make the contributions of the radiative corrections to the proton recoil asymmetry C symmetric with respect to a change A_0 B_0, where A_0 and B_0 are the correlation coefficients of the neutron beta-decay.

A. N. Ivanov; R. Hollwieser; N. I. Troitskaya; M. Wellenzohn

2013-06-19T23:59:59.000Z

208

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

209

Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses  

SciTech Connect

Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

Jahangiri, Fazel [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Department of Physics, GSS, Kyoto University, Kyoto (Japan); Nagashima, Takeshi; Hangyo, Masanori [Department of Physics, GSS, Kyoto University, Kyoto (Japan) [Department of Physics, GSS, Kyoto University, Kyoto (Japan); Institute of Laser Engineering, Osaka University, Osaka (Japan)

2013-05-13T23:59:59.000Z

210

Surface Forcing of the Infrared Cooling Profile over the Tibetan Plateau. Part I: Influence of Relative Longwave Radiative Heating at High Altitude  

Science Conference Proceedings (OSTI)

The role of the Tibetan Plateau on the behavior of the surface longwave radiation budget is examined, and the behavior of the vertical profile of longwave cooling over the plateau, including its diurnal variation, is quantified. The investigation ...

Eric A. Smith; Lei Shi

1992-05-01T23:59:59.000Z

211

Radiation Protection Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

212

Coherent Radiation in Gamma-Ray Bursts and Relativistic Collisionless Shocks  

E-Print Network (OSTI)

We suggest that coherent radiation may occur in relativistic collisionless shocks via two-stream Weibel instabilities. The coherence amplifies the radiation power by many orders [$\\sim 10^{12}$ in Gamma-Ray Bursts (GRBs)] and particles cool very fast before being randomized. We imply (1) GRBs accompany strong infrared emission, (2) protons efficiently transfer energy to electrons and (3) prompt GRBs might be the upscattered coherent radiation.

Kunihito Ioka

2005-08-23T23:59:59.000Z

213

INFRARED MODULATOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration. SAND # 2011-8914P TE HNOLOGY

214

Surface energy and radiation budgets in a steppe ecosystem in the Upper Columbia River Gorge  

SciTech Connect

Measurements of radiation and surface energy budget components are presented for a semiarid grassland-steppe ecosystem in the Upper Columbia River Gorge (45{degrees}45`25.6 inches N, 120{degrees}01`39.3 inches W, 190 m) for June 2-27, 1991. Over this period, the ratio of sensible to latent heat flux (the Bowen ratio) averaged 5.0, and mean daily surface energy balance totals were: net radiation, 9.23; ground heat flux, 1.25; latent heat flux, 1.32; and sensible heat flux, 6.66 MJ m{sup {minus}2} d{sup {minus}1}, where the mean daily nonradiative fluxes were directed away from the surface, and the mean daily radiative flux was directed toward the surface. On clear days, the site received from 0.71 to 0.76 of the theoretical extraterrestrial solar radiation. Albedo over the 26-d period varied from 0.17 to 0.21. Daily and daytime average values of the components are summarized, and a plot is presented of the 30-min average values of all components for the entire period.

Whiteman, C.D.; Allwine, K.J.; Bian, X.

1994-08-01T23:59:59.000Z

215

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutions: Gray Cancer Institute, PO BO Box100, Mount Vernon Hospital, Northwood, HA6 2JR, UK The Gray Cancer Institute (GCI) has pioneered the use of X-ray focussing techniques to develop systems for micro-irradiating individual cells and sub-cellular targets. Our prototype X-ray microprobe was developed alongside our existing charged-particle microbeam to address problems specific to low LET radiations, or where very precise targeting accuracy and dose delivery are required. This facility was optimised for focusing 278 eV CK X-rays; however there are a number of reasons for extending the

216

Design considerations for a thermophotovoltaic energy converter using heat pipe radiators  

DOE Green Energy (OSTI)

The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

Ashcroft, J.; DePoy, D. [Lockheed Martin Corp., Schenectady, NY (United States)

1997-06-01T23:59:59.000Z

217

Finite Duration and Energy Effects in Lorentz-Violating Vacuum Cerenkov Radiation  

E-Print Network (OSTI)

Vacuum Cerenkov radiation is possible in certain Lorentz-violating quantum field theories, when very energetic charges move faster than the phase speed of light. In the presence of a CPT-even, Lorentz-violating modification of the photon sector, the character of the Cerenkov process is controlled by the high-frequency behavior of the radiation spectrum. The development of the Cerenkov process can be markedly different, depending on whether the only limits on the emission of very energetic photons come from energy-momentum conservation or whether there are additional effects that cut off the spectrum at high frequencies. Moreover, since the high-frequency cutoff determines the total rate at which an emitting charge loses energy, it also controls all aspects of the emission that are related to the process's finite duration.

Brett Altschul

2007-09-27T23:59:59.000Z

218

Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared  

E-Print Network (OSTI)

We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of th...

da Cunha, Elisabete; Diaz-Santos, Tanio; Armus, Lee; Marshall, Jason A; Elbaz, David

2010-01-01T23:59:59.000Z

219

Purified and Porous Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Films For Pyroelectric Infrared Sensing and Energy Harvesting  

E-Print Network (OSTI)

Pruvost, and D. Guyomar. Energy harvesting based on EricssonS. Pruvost, and G. Sebald. Energy harvesting based on FE-FEinfrared sensing and energy harvesting A Navid, C S Lynch

Navid, Ashcon; Lynch, Christopher S.; Pilon, Laurent

2010-01-01T23:59:59.000Z

220

Generalization of radiative jet energy loss to non-zero magnetic mass  

E-Print Network (OSTI)

Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computation of radiative energy loss. With this goal, an energy loss formalism in a realistic finite size dynamical QCD medium was recently developed. While this formalism assumes zero magnetic mass - in accordance with the one-loop perturbative calculations - different non-perturbative approaches report a non-zero magnetic mass at RHIC and LHC. We here generalize the energy loss to consistently include a possibility for existence of non-zero magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss results. Our analysis indicates a fundamental constraint on magnetic to electric mass ratio.

Magdalena Djordjevic; Marko Djordjevic

2011-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Explicit-implicit difference scheme for the joint solution of the radiative transfer and energy equations by the splitting method  

Science Conference Proceedings (OSTI)

High-order accurate explicit and implicit conservative predictor-corrector schemes are presented for the radiative transfer and energy equations in the multigroup kinetic approximation solved together by applying the splitting method with respect to ... Keywords: difference splitting schemes, radiative transfer equations

N. Ya. Moiseev

2013-03-01T23:59:59.000Z

222

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument  

Science Conference Proceedings (OSTI)

Nine months of the Clouds and the Earth's Radiant Energy System (CERES)/Tropical Rainfall Measuring Mission (TRMM) broadband fluxes combined with the TRMM visible infrared scanner (VIRS) high-resolution imager measurements are used to estimate ...

Norman G. Loeb; Seiji Kato

2002-06-01T23:59:59.000Z

223

Infrared Debonding  

abraded, allowing for preservation or reuse IR heating is instantaneous and rapid, shortening schedules Uses less energy than conventional methods,

224

Evolution of Primordial Black Holes in a radiation and phantom energy environment  

E-Print Network (OSTI)

In this work we extend previous work on the evolution of a Primordial Black Hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the Generalized Second Law of thermodynamics is violated.

Daniel C. Guariento; J. E. Horvath; P. S. Custdio; J. A. de Freitas Pacheco

2007-11-22T23:59:59.000Z

225

Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration  

Science Conference Proceedings (OSTI)

Theoretical and computational studies of the ion energy scaling of the radiation pressure acceleration of an ultra-thin foil by short pulse intense laser irradiation are presented. To obtain a quasi-monoenergetic ion beam with an energy spread of less than 20%, two-dimensional particle-in-cell simulations show that the maximum energy of the quasi-monoenergetic ion beam is limited by self-induced transparency at the density minima caused by the Rayleigh-Taylor instability. For foils of optimal thickness, the time over which Rayleigh-Taylor instability fully develops and transparency occurs is almost independent of the laser amplitude. With a laser power of about one petawatt, quasi-monogenetic protons with 200 MeV and carbon ions with 100 MeV per nucleon can be obtained, suitable for particle therapy applications.

Liu Tungchang; Shao Xi; Liu Chuansheng; Su Jaojang; Dudnikova, Galina; Sagdeev, Roald Z. [University of Maryland, College Park, Maryland 20742 (United States); Eliasson, Bengt [University of Maryland, College Park, Maryland 20742 (United States); Ruhr-University Bochum, D-44780 Bochum (Germany); Tripathi, Vipin [Indian Institute of Technology, New Delhi 110016 (India)

2011-12-15T23:59:59.000Z

226

Ferroelectric infrared detector and method  

DOE Patents (OSTI)

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

227

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

228

Monoenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock  

DOE Green Energy (OSTI)

We report on the acceleration of impurity-free quasimononenergetic proton beams from an initially gaseous hydrogen target driven by an intense infrared ({lambda} = 10 {micro}m) laser. The front surface of the target was observed by optical probing to be driven forward by the radiation pressure of the laser. A proton beam of MeV energy was simultaneously recorded with narrow energy spread ({sigma}-4%), low normalized emittance (-8 nm), and negligible background. The scaling of proton energy with the ratio of intensity over density (I/n) confirms that the acceleration is due to the radiation pressure driven shock.

Palmer, C.A.; Pogorelsky, I.; Dover, N.P.; Babzien, M.; Dudnikova, G.I.; Ispiriyan, M.; Polyanskiy, M.N.; Schreiber, J.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

2011-11-01T23:59:59.000Z

229

Radiation tolerance survey of selected silicon photomultipliers to high energy neutron irradiation  

SciTech Connect

A key feature of silicon photomultipliers (SiPMs) that can hinder their wider use in medium and high energy physics applications is their relatively high sensitivity to high energy background radiation, with particular regard to high energy neutrons. Dosages of 1010 neq/cm2 can damage them severely. In this study, some standard versions along with some new formulations are irradiated with a high intensity 241AmBe source up to a total dose of 5 109 neq/cm2. Key parameters monitored include dark noise, photon detection efficiency (PDE), gain, and voltage breakdown. Only dark noise was found to change significantly for this range of dosage. Analysis of the data indicates that within each vendor's product line, the change in dark noise is very similar as a function of increasing dose. At present, the best strategy for alleviating the effects of radiation damage is to cool the devices to minimize the effects of increased dark noise with accumulated dose.

Barbosa, Fernando J. [JLAB; McKisson, John E. [JLAB; Qiang, Yi [JLAB; Steinberger, William [JLAB; Xi, Wenze [JLAB; Zorn, Carl J. [JLAB

2012-11-01T23:59:59.000Z

230

Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations  

Science Conference Proceedings (OSTI)

The calculation of infrared radiative fluxes and cooling rates using the two-stream equations is discussed. It is argued that at infrared wavelengths the two-stream equations are best viewed as an approximation to the differential radiance, the ...

J. M. Edwards

1996-07-01T23:59:59.000Z

231

Human radiation experiments: The Department of Energy roadmap to the story and the records  

SciTech Connect

The role of the US Government in conducting or sponsoring human radiation experiments has become the subject of public debate. Questions have been raised about the purpose, extent, and health consequences of these studies, and about how subjects were selected. The extent to which subjects provided informed consent is also under scrutiny. To respond to these questions, the Clinton administration has directed the US Department of Energy (DOE), along with other Federal agencies, to retrieve and inventory all records that document human radiation experiments. Many such records are now publicly available and will permit an open accounting and understanding of what took place. This report summarizes the Department`s ongoing search for records about human radiation experiments. It is also a roadmap to the large universe of pertinent DOE information. DOE is working to instill greater openness--consistent with national security and other appropriate considerations--throughout its operations. A key aspect of this effort is opening DOE`s historical records to independent research and analysis.

1995-02-01T23:59:59.000Z

232

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

Ryan T. Kristensen; John F. Beausang; David M. DePoy

2003-12-01T23:59:59.000Z

233

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

RF Kristensen; JF Beausang; DM DePoy

2004-06-28T23:59:59.000Z

234

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation -Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutes: Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, HA6 2JR, UK For over a decade, the Gray Cancer Institute (GCI) has been actively engaged in the development and use of micro-irradiation techniques applied to radiobiological research. Our initial investigations made use of a charged-particle microbeam capable of irradiating individual cells with collimated energetic protons or 3He ions. By the end of the 1990's, a second facility had been constructed, which uses diffractive X-ray optics to focus ultrasoft X-rays to a sub-micron spot. The X-ray microprobe was

235

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kevin M Prise and Barry D Michael. Institutions: Gray Cancer Institute. We are currently engaged on two projects in the Low-dose Program: "Low dose studies with focused X-rays in cell and tissue models: mechanisms of bystander and genomic instability responses" (DE-FG07-99ER62877) and "Mechanistic modeling of bystander effects: An integrated theoretical and experimental approach" (DE-FG02-02ER63305). Central to both of these studies is a unique micro irradiation facility that uses ultrasoft X-rays focused to a sub micron beam for individual cell and sub cellular targeting. This facility allows us to selectively irradiate individual

236

Deep Valley Radiation and Surface Energy Budget Microclimates. Part II: Energy Budget  

Science Conference Proceedings (OSTI)

Surface energy budget measurements were made concurrently at five sites located on the valley floor, sidewalls and ridgetop of Colorado's 650-m deep Brush Creek Valley (3932?N, 10824?W) on the nearly clear day of 25 September 1984 using the ...

C. David Whiteman; K. Jerry Allwine; Leo J. Fritschen; Montie M. Orgill; James R. Simpson

1989-06-01T23:59:59.000Z

237

High-Energy Radiation from Remnants of Neutron Star Binary Mergers  

E-Print Network (OSTI)

We study high-energy emission from the mergers of neutron star binaries as electromagnetic counterparts to gravitational waves aside from short gamma-ray bursts. The mergers entail significant mass ejection, which interacts with the surrounding medium to produce similar but brighter remnants than supernova remnants in a few years. We show that electrons accelerated in the remnants can produce synchrotron radiation in X-rays detectable at $\\sim 100$ Mpc by current generation telescopes and inverse Compton emission in gamma rays detectable by the \\emph{Fermi} Large Area Telescopes and the Cherenkov Telescope Array under favorable conditions. The remnants may have already appeared in high-energy surveys such as the Monitor of All-sky X-ray Image and the \\emph{Fermi} Large Area Telescope as unidentified sources. We also suggest that the merger remnants could be the origin of ultra-high-energy cosmic rays beyond the knee energy, $\\sim 10^{15}$ eV, in the cosmic-ray spectrum.

Takami, Hajime; Ioka, Kunihito

2013-01-01T23:59:59.000Z

238

TERSat: Trapped Energetic Radiation Satellite  

E-Print Network (OSTI)

Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

Clements, Emily B.

2012-01-01T23:59:59.000Z

239

Analytic calculations of the spectra of ultra high energy cosmic ray nuclei. II. The general case of background radiation  

E-Print Network (OSTI)

We discuss the problem of ultra high energy nuclei propagation in extragalactic background radiations. The present paper is the continuation of the accompanying paper I where we have presented three new analytic methods to calculate the fluxes and spectra of Ultra High Energy Cosmic Ray (UHECR) nuclei, both primary and secondary, and secondary protons. The computation scheme in this paper is based on the analytic solution of coupled kinetic equations, which takes into account the continuous energy losses due to the expansion of the universe and pair-production, together with photo-disintegration of the nuclei. This method includes in the most natural way the production of secondary nuclei in the process of photo-disintegration of the primary nuclei during their propagation through extragalactic background radiations. In paper I, in order to present the suggested analytical schemes of calculations, we have considered only the case of the Cosmic Microwave Background (CMB) radiation, in the present paper we gene...

Aloisio, R; Grigorieva, S

2013-01-01T23:59:59.000Z

240

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory,...

242

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2001-01-01T23:59:59.000Z

243

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2002-01-01T23:59:59.000Z

244

H A&S 220c Energy and Environment: Life Under the Pale Sun P.B. Rhines 7 Dec. 2004  

E-Print Network (OSTI)

a history of human use of energy...as first fire, then animals, then other forms of energy mining gave us' that traps outgoing infrared radiation and warms the Earth. Recent history of the first energy crisis (19721 H A&S 220c Energy and Environment: Life Under the Pale Sun P.B. Rhines 7 Dec. 2004 REVIEW

245

H A&S 222a Energy and Environment: Life Under the Pale Sun P.B. Rhines, J. Wright 25 May 2007  

E-Print Network (OSTI)

marginally green land. 3. Human energy use. McNeill's text gave a history of human use of energy...as first fuels. The history of environment in the 20th Century is one of cheap, readily available energy as oil' that traps outgoing infrared radiation and warms the Earth. Recent history of the first energy crisis (1972

246

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

247

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

248

Real-time scene simulator for thermal infrared localization  

Science Conference Proceedings (OSTI)

Exploiting the natural thermal infrared radiation of humans is a promising approach for an accurate, comfortable and inexpensive indoor localization system. However, different sources of disturbance make the development challenging. In order to provide ...

Daniel Hauschildt; Jrgen Kemper; Nicolaj Kirchhof; Benedict Juretko; Holger Linde

2010-12-01T23:59:59.000Z

249

CIRCE, the Coherent Infrared Center at the ALS  

E-Print Network (OSTI)

INFRARED CENTER AT THE ALS* J. M. Byrd, S. De Santis, J-Yat the Advanced Light Source (ALS) of the Lawrence Berkeleyinfrared radiation from the ALS generated via femtosecond

2004-01-01T23:59:59.000Z

250

Techniques of evaluation of QCD low-energy physical quantities with running coupling with infrared fixed point  

E-Print Network (OSTI)

Perturbative QCD (pQCD) running coupling a(Q^2) (=alpha_s(Q^2)/pi) is expected to get modified at low spacelike momenta 0 1 GeV by nonperturbative (NP) terms, typically by some power-suppressed terms ~1/(Q^2)^N. Evaluations of low-energy physical QCD quantities in terms of such A(Q^2) couplings (with IR fixed point) at a level beyond one-loop are usually performed with (truncated) power series in A(Q^2). We argue that such an evaluation is not correct, because the NP terms in general get out of control as the number of terms in the power series increases. The series consequently become increasingly unstable under the variation of the renormalization scale, and have a fast asymptotic divergent behavior compounded by the renormalon problem. We argue that an alternative series in terms of logarithmic derivatives of A(Q^2) should be used. Further, a Pad\\'e-related resummation based on this series gives results which are renormalization scale independent and show very good convergence. Timelike low-energy observables can be evaluated analogously, using the integral transformation which relates the timelike observable with the corresponding spacelike observable.

Gorazd Cveti?

2013-09-06T23:59:59.000Z

251

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

252

Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use  

DOE Patents (OSTI)

A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

1998-01-01T23:59:59.000Z

253

The Annual Cycle of Earth Radiation Budget from Clouds and the Earths Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earths Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1 equal-angle grid are used for ...

Pamela E. Mlynczak; G. Louis Smith; David R. Doelling

2011-12-01T23:59:59.000Z

254

Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

Sun, K.

2011-05-04T23:59:59.000Z

255

Coherent Synchrotron Radiation: Theory and Simulations.  

Science Conference Proceedings (OSTI)

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

256

Incident Solar Radiation over Europe Estimated from METEOSAT Data  

Science Conference Proceedings (OSTI)

Daily sums of the downward solar radiation, i.e., the global radiation, have been computed from imaging data of reflected solar and emitted infrared radiation which were measured from the geostationary satellites METEOSAT I and II during the ...

Werner Mser; Ehrhard Raschke

1984-01-01T23:59:59.000Z

257

Evidence from the Special Relativity and Blackbody Radiation Theories for the Existence of Photons Possessing Zero Kinetic Energy  

E-Print Network (OSTI)

The traditional interpretation of radiative emission and absorption asserts that photons are created and annihilated in such processes. A Gedanken experiment is considered in which kinetic energy from observed photons is systematically removed until a limit of zero is reached. With the help of the relativistic Doppler effect it is shown that even for infinitesimally small kinetic energies the photons continue to exist, since in other inertial systems they will be observed to have a much higher energy/frequency falling in an easily detectable range. It is possible to formulate an alternative explanation for absorption and emission processes on this basis in terms of real photons with exactly zero kinetic energy being present before or after radiative interactions. Bolstering this hypothesis is the fact that the statistical mechanical treatment of photons interacting with oscillators in blackbody radiation theory predicts an infinite density of photons of this energy, both in the original Planck formulation employing Maxwell-Boltzmann statistics and in the subsequent Bose-Einstein description. These considerations demonstrate that the E = 0 state is greatly preferred as the product of absorption because of the requirement to have the interaction occur in a relatively narrow region of space- time. There is thus strong evidence that photons are not created and annihilated in radiative processes but simply have their kinetic energy changed either to or from a zero value. Accordingly a very high density of zero-energy photons is expected to exist uniformly throughout the universe. Finally, this development suggests that one should subject the creation-annihilation hypothesis to careful scrutiny in other areas of physics as well.

Robert J. Buenker

2005-01-11T23:59:59.000Z

258

Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics J. Simmons, O. Lie-Svendsen, and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska The Arctic is a key element in determining the radiation budget of the earth. Within the polar regions, the net radiation (incoming solar radiation minus outgoing infrared radiation) is negative. To understand the role this energy deficit plays in the overall radiation budget, one must examine the prevalent atmospheric features of the Arctic. One such feature is a persistent layer of low-altitude, stratiform clouds found over the central Arctic predominantly from April to September (Tsay et al. 1984). These Arctic stratus clouds (ASC) modulate the earth's radiation budget

259

Microscreen radiation shield for thermoelectric generator  

DOE Patents (OSTI)

The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1990-01-01T23:59:59.000Z

260

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

262

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

263

Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect  

SciTech Connect

The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous greenhouse effect in the atmosphere.

Silverstein, S.D.

1976-07-16T23:59:59.000Z

264

Method of Detecting Infrared Energy  

uncooled, high speed, and portable (small, lightweight and lower power consumption). Inventor KISNER, ROGER A Engineering Science & Technology Div Licensing Contact

265

Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes  

Science Conference Proceedings (OSTI)

A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

Famiano, M.A.

1997-07-07T23:59:59.000Z

266

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

267

Energy spectrum and mass composition of primary cosmic radiation in the region above the knee from the GAMMA experiment  

E-Print Network (OSTI)

The energy spectrum of the primary cosmic radiation in the energy range 1 - 100 PeV and the extensive air shower (EAS) characteristics obtained on the basis of the expanded data bank of the GAMMA experiment (Mt. Aragats, Armenia) are presented. With increased statistics we confirm our previous results on the energy spectrum. The spectral index above the knee is about -3.1, but at energies beyond 20 PeV a flattening of the spectrum is observed. The existence of the 'bump' at about 70 PeV is confirmed with a significance of more than 4{\\sigma}. In the energy range of 10 - 100 PeV the shower age becomes energy independent and we observe a direct proportionality of the EAS size to the primary energy. This suggests an approximately constant depth of the EAS maximum in this energy range. This is evidence in favour of an increasing average mass of primary particles at energies above 20 PeV. The additional source scenario, which is a possible explanation of the 'bump' in the spectrum, also leads to the conclusion of ...

Martirosov, R M; Vardanyan, H S; Erlykin, A D; Nikolskaya, N M; Gallant, Y A; Jones, L W; Babayan, H A

2012-01-01T23:59:59.000Z

268

Apparatus and method for transient thermal infrared spectrometry  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1991-12-03T23:59:59.000Z

269

A Study on the Runaway Greenhouse Effect with a One-Dimensional RadiativeConvective Equilibrium Model  

Science Conference Proceedings (OSTI)

A simple one-dimensional radiativeconvective equilibrium model is used to investigate the relationship between the surface temperature and the outgoing infrared radiation at the top of the atmosphere. The model atmosphere has a gray infrared ...

Shinichi Nakajima; Yoshi-Yuki Hayashi; Yutaka Abe

1992-12-01T23:59:59.000Z

270

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

271

FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs  

SciTech Connect

The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

Joe M. Aldrich

2004-11-01T23:59:59.000Z

272

Surface Radiation from GOES: A Physical Approach; Preprint  

DOE Green Energy (OSTI)

Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

Habte, A.; Sengupta, M.; Wilcox, S.

2012-09-01T23:59:59.000Z

273

Composite scintillators for detection of ionizing radiation ...  

Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy ... Fluorescent Nanoparticles for Radiation DetectionFluorescent Nanoparticles for ...

274

Infrared Properties of z=7 Galaxies from Cosmological Simulations  

E-Print Network (OSTI)

Three-dimensional panchromatic dust radiative transfer calculations are performed on a set of 198 galaxies of stellar masses in the range 5x10^8-3x10^10 Msun from a cosmological hydrodynamic simulation (resolved at 29pc/h) at z=7. In a companion paper (Kimm & Cen), the stellar mass and UV luminosity functions, and UV-optical and FUV-NUV colors are shown to be in good agreement with observations, if an SMC-type dust extinction curve is adopted. Here we make useful predictions, self-consistently, of the infrared properties of these z=7 simulated galaxies that can be confronted with upcoming ALMA data. Our findings are as follows. (1) The effective radius in the rest-frame MIPS 70 micron band is in the range of 80-400pc proper for z=7 galaxies with L_FIR=10^{11.3-12}Lsun. (2) The median of the peak wavelength of the far-infrared (FIR) spectral energy distribution is in the range of 45-60 micron, depending on the dust-to-metal ratio. (3) For star formation rate in the range 3-100 Msun/yr the median FIR to bol...

Cen, Renyue

2013-01-01T23:59:59.000Z

275

Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)  

SciTech Connect

The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM programs new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

2012-09-28T23:59:59.000Z

276

Energy and waste reduction in the wood fiber and fuel industry utilizing a long wave length catalytic infrared drying system. Progress report Number 3  

SciTech Connect

Following the testing of the Cat-Tec handling system, detail design work commenced both at the Catalytic Industrial Systems (CIS) Kansas facility and at the Cat-Tec offices in Minneapolis for the mating of the heating and handling system elements of the catalytic infrared particulate dryer. A used equipment looped handling system designed to feed and recirculate the test material was procured and shipped to CIS in anticipation of the on-site testing. Evaluation of the findings of the test results led the joint CIS-Cat-Tec design team to conclude that the unit to be provided to Lignetics for testing needed to have approximately 120 square feet of agitation bed and approximately 100 feet of infrared generation surfaces. The overall size was thus increased approximately 50% from the initial test unit.

Davis, R.

1998-01-15T23:59:59.000Z

277

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

278

Development of a 3D atmospheric radiative transfer model  

Science Conference Proceedings (OSTI)

The 3D atmospheric radiative transfer model is established based on MODTRAN4. Moreover, the methods of calculating the ratio of atmospheric transmission, path radiation and single scattering solar radiation are presented. This 3D model is running by ... Keywords: MODTRAN4, atmospheric radiative transfer model, infrared radiation

Zhifeng Lu; Ge Li; Gang Guo; Kedi Huang

2008-05-01T23:59:59.000Z

279

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

280

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

282

Radiated energy and impurity density changes during intensive hydrogen influx in the PLT tokamak  

DOE Green Energy (OSTI)

During a discharge a puff of hydrogen is admitted, sufficient to more than triple the plasma density, and the resulting changes in various plasma parameters are determined. The absolute densities of various wall and limiter (carbon) materials are found to decrease by a substantial fraction, probably as a result of lowered peripheral temperature. The radiation pattern deduced from spectroscopically determined plasma composition is in good quantitative agreement with direct bolometric measurements. In the interior of the discharge radiation constitutes only a small part of the power input. Neither the radiated power nor the power input changes very markedly as a result of the density rise, since the effects of temperature and plasma composition changes tend to compensate each other.

Hinnov, E.; Hosea, J.; Hsuan, H.; Jobes, F.; Meservey, E.; Schmidt, G.; Suckewer, S.

1981-12-01T23:59:59.000Z

283

Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators  

Science Conference Proceedings (OSTI)

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

2012-09-15T23:59:59.000Z

284

Solar radiation modelling  

Science Conference Proceedings (OSTI)

The Sun is the main energy source of the life on the Earth. Thus, solar radiation energy data and models are important for many areas of research and applications. Many parameters influence the amount of solar energy at a particular standing point of ... Keywords: Digital elevation model, Energy of quasiglobal radiation, Meteorology, Shadows, Virtual Sun motion

Klemen Zakek; Toma Podobnikar; Kritof Otir

2005-03-01T23:59:59.000Z

285

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

286

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

287

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

288

Radiation effects at a high power accelerator and applications to advanced energy sources  

Science Conference Proceedings (OSTI)

Many materials are exposed to atom-displacing radiation at high-power accelerators such as the Los Alamos Meson Physics Facility (LAMPF). Beam current densities in the 800-MeV proton beam vary from 12.5 mA cm{sup {minus}2} (8 {times} 10{sup 16} p/cm{sup 2}s) on graphite targets to 20-{mu}A cm{sup {minus}2} (1.3 {times} 10{sup 14} p/cm{sup 2}s) on metal-alloy windows. High-level radiation damage results from these particle fluxes. As a consequence of secondary-particle generation in targets and windows and low-level beam losses that lead to particle interactions with structural material, various components are exposed to low-level proton fluxes, gamma radiation, and neutron fluxes of 10{sup 6}--10{sup 10} n/cm{sup 2}s. These include vacuum seals and vacuum chambers of stainless steel and aluminum alloys, solid-state devices for control, diagnostic, and data acquisition electronics, closed-loop cooling-water systems, and insulators. Properties of these materials are degraded by the radiation exposure. Studies of LAMPF and other accelerators, however, have produced solutions to materials problems, allowing the machines to operate for acceptable times without failure. Nevertheless, additional improvements are being investigated in order to further improve operational reliability and safety. 25 refs., 3 figs., 3 tabs.

Sommer, W.F.; Garner, F.A.; Brown, R.D.; Wechsler, M.S. (Los Alamos National Lab., NM (USA); Battelle Pacific Northwest Lab., Richland, WA (USA); Los Alamos National Lab., NM (USA); Iowa State Univ. of Science and Technology, Ames, IA (USA))

1989-01-01T23:59:59.000Z

289

On the band-to-continuum intensity ratio in the infrared spectra of interstellar carbonaceous dust  

E-Print Network (OSTI)

Published interpretations of the relative intensity variations of the Unidentified Infrared Bands (UIBs) and their underlying continuum are discussed. An alternative model is proposed, in which a single carrier for both emits a) mostly a continuum when it is electronically excited by photons (visible or UV), or b) exclusively the UIBs, when only chemical energy is deposited by H capture on its surface, inducing only nuclear vibrations. The bands will dominate in atomic H regions but will be overcome by thermal continuum radiation when the ambient field is strong but lacks dissociating photons (900-1100 Angstroms). The model applies to PDRs as well as to limbs of molecular clouds in the ISM and agrees quantitatively with recent satellite observations. It gives indications on atomic H density and UIB intensity provided the ambient radiation field is known. It invokes no chemical, electronic, structural or size change in order to interpret the observed intensity variations.

Renaud Papoular

2004-03-24T23:59:59.000Z

290

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

291

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

292

First Data From the Earth Radiation Budget Experiment (ERBE)  

Science Conference Proceedings (OSTI)

The first data obtained from the Earth Radiation Budget Experiment (ERBE) are presented. These data include emitted infrared radiation, albedo, and estimated scene types for 15 November 1984, as well as measurements of the solar constant. ...

ERRE Science Team

1986-07-01T23:59:59.000Z

293

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

294

Solar energy conversion systems engineering and economic analysis radiative energy input/thermal electric output computation. Volume III  

DOE Green Energy (OSTI)

The direct energy flux analytical model, an analysis of the results, and a brief description of a non-steady state model of a thermal solar energy conversion system implemented on a code, SIRR2, as well as the coupling of CIRR2 which computes global solar flux on a collector and SIRR2 are presented. It is shown how the CIRR2 and, mainly, the SIRR2 codes may be used for a proper design of a solar collector system. (LEW)

Russo, G.

1982-09-01T23:59:59.000Z

295

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

296

Solar Infrared Photometer  

Science Conference Proceedings (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

297

Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation  

Science Conference Proceedings (OSTI)

The authors investigate whether combining a data type derived from radio occultation (RO) with the infrared spectral data in an optimal detection method improves the quantification of longwave radiative forcing and feedback. Signals derived from ...

Yi Huang; Stephen S. Leroy; James G. Anderson

2010-11-01T23:59:59.000Z

298

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earths current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave visible to longwave infrared ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

299

An Intercalibration of METEOSAT-1 and GOES-2 Visible and Infrared Measurements  

Science Conference Proceedings (OSTI)

An intercomparison between radiative parameters determined from visible and infrared channels of the METEOSAT-1 and GOES-2 geosynchronous satellites has been carried out using data obtained over the central Atlantic Ocean for 5 November 1978. ...

David R. Brooks; Christopher F. England; Carry E. Hunt; Patrick Minnis

1984-09-01T23:59:59.000Z

300

Examination of the Relationship between Outgoing Infrared Window and Total Longwave Fluxes Using Satellite Data  

Science Conference Proceedings (OSTI)

The relationship between narrowband and broadband thermal radiances is explored to determine the accuracy of outgoing longwave radiation derived from narrowband data. Infrared window (10.212.2 ?m) data from the Geostationary Operational ...

Patrick Minnis; David F. Young; Edwin F. Harrison

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Energy Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade...

302

Polarization of high-energy pulsar radiation in the striped wind model  

E-Print Network (OSTI)

The Stokes parameters of the pulsed synchrotron radiation produced in the striped pulsar wind model are computed and compared with optical observations of the Crab pulsar. We assume the main contribution to the wind emissivity comes from a thin transition layer where the dominant toroidal magnetic field reverses its polarity. The radial component of the field is neglected, but a small meridional component is added. The resulting radiation is linearly polarized (Stokes V=0). In the off-pulse region, the electric vector lies in the direction of the projection on the sky of the rotation axis of the pulsar. This property is unique to the wind model and in good agreement with the data. Other properties such as a reduced degree of polarization and a characteristic sweep of the polarization angle within the pulses are also reproduced. These properties are qualitatively unaffected by variations of the wind Lorentz factor, the electron injection power law index and the inclination of the line of sight.

J. Petri; J. Kirk

2005-05-20T23:59:59.000Z

303

REBAL '92A Cooperative Radiation and Energy Balance Field Study for Imagery and Electromagnetic Propagation  

Science Conference Proceedings (OSTI)

The surface energy balance directly affects vertical gradients in temperature and specific humidity within the atmospheric surface layer, and these gradients influence optical turbulence. This study was conducted to improve current understanding ...

Arnold Tunick; Henry Rachele; Frank V. Hansen; Terry A. Howell; Jean L. Steiner; Ariand D. Schneider; Steve R. Evett

1994-03-01T23:59:59.000Z

304

Low radiative efficiency accretion at work in active galactic nuclei: the nuclear spectral energy distribution of NGC4565  

E-Print Network (OSTI)

We derive the spectral energy distribution (SED) of the nucleus of the Seyfert galaxy NGC4565. Despite its classification as a Seyfert2, the nuclear source is substantially unabsorbed. The absorption we find from Chandra data (N_H=2.5 X 10^21 cm^-2) is consistent with that produced by material in the galactic disk of the host galaxy. HST images show a nuclear unresolved source in all of the available observations, from the near-IR H band to the optical U band. The SED is completely different from that of Seyfert galaxies and QSO, as it appears basically ``flat'' in the IR-optical region, with a small drop-off in the U-band. The location of the object in diagnostic planes for low luminosity AGNs excludes a jet origin for the optical nucleus, and its extremely low Eddington ratio L_o/L_Edd indicates that the radiation we observe is most likely produced in a radiatively inefficient accretion flow (RIAF). This would make NGC4565 the first AGN in which an ADAF-like process is identified in the optical. We find that the relatively high [OIII] flux observed from the ground cannot be all produced in the nucleus. Therefore, an extended NLR must exist in this object. This may be interpreted in the framework of two different scenarios: i) the radiation from ADAFs is sufficient to give rise to high ionization emission-line regions through photoionization, or ii) the nuclear source has recently ``turned-off'', switching from a high-efficiency accretion regime to the present low-efficiency state.

M. Chiaberge; R. Gilli; F. D. Macchetto; W. B. Sparks

2006-01-27T23:59:59.000Z

305

Quick Reference Information - Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma and x-rays are photons. Protons: Positively charged elementary particles found in atomic nuclei. Radiation: The propagation of energy through space, or some other medium,...

306

Computation of Infrared Cooling Rates in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent ...

Ming Dah Chou; Albert Arking

1980-04-01T23:59:59.000Z

307

NREL: Solar Radiation Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities NREL's solar radiation research staff provides expertise in renewable energy measurement and instrumentation. Major capabilities include solar resource measurement,...

308

Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1993-03-02T23:59:59.000Z

309

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

310

Definition: FLIR | Open Energy Information  

Open Energy Info (EERE)

on military and civilian aircraft, use an imaging technology that senses infrared radiation at wavelengths between 3-12 micrometers.1 View on Wikipedia Wikipedia Definition...

311

Pilot aerial infrared roof top survey. Final report  

SciTech Connect

A summary is presented of a pilot aerial infrared roof top study conducted by the Minnesota Energy Agency. Infrared surveys of 27 Minnesota cities were conducted during the fall and winter of the 1976-1977 heating season. In addition, conventional daytime color photographs were taken of several cities. Film processing was done by the Environmental Protection Agency. The University of Minnesota conducted ground tests to verify the aerial infrared imagery. Thermograph dissemination centers were established in each city and training seminars and materials were prepared and delivered to dissemination center staff. A survey of homeowners who viewed their thermograph at a dissemination center were used to determine the energy savings resulting from the program. An Aerial Infrared Program Users Manual was prepared by the Energy Agency and the Remote Sensing Institute of Brookings, South Dakota.

1979-10-15T23:59:59.000Z

312

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

313

Optical guided modes coupled with Cerenkov radiation excited in Si slab using angular-resolved electron energy-loss spectrum  

SciTech Connect

Retardation effects in the valence electron energy-loss spectrum (EELS) of a Si slab are analyzed by angular-resolved EELS. The dispersion curves of the valence spectra excited in a slab are directly observed from a specimen area with several different thicknesses and are interpreted by performing a calculation of the dispersion relation using Kroeger's formula. The dispersion curves observed below about 3 eV are attributed to guided modes coupled with Cerenkov radiation (CR). The coupling between guided modes and CR is found to be dependent on the sample thickness (t). For the sample with t > 150 nm, the intensity of the guided modes increased linearly with thickness, revealing the coupling with CR. For t < 150 nm, however, the intensity of the guided modes rapidly decreased due to a diminished coupling with CR, resulting from the thickness-dependent dispersion curves of the guided modes.

Saito, H.; Kurata, H. [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Chen, C. H. [Center for condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China)

2013-03-21T23:59:59.000Z

314

The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation  

E-Print Network (OSTI)

Observations of cosmic-ray electrons and positrons have been made with a new balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach and the data analysis procedures, and we present results from this flight. The measurement has provided a new determination of the individual energy spectra of electrons and positrons from 5 GeV to about 50 GeV, and of the combined "all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3 +/- 0.2, respectively. We find that a contribution from primary sources to the positron intensity in this energy region, if it exists, must be quite small.

S. W. Barwick; J. J. Beatty; C. R. Bower; C. J. Chaput; S. Coutu; G. A. de Nolfo; M. A. DuVernois; D. Ellithorpe; D. Ficenec; J. Knapp; D. M. Lowder; S. McKee; D. Muller; J. A. Musser; S. L. Nutter; E. Schneider; S. P. Swordy; G. Tarle; A. D. Tomasch; E. Torbet

1997-12-24T23:59:59.000Z

315

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earths Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) investigates the critical role that clouds and aerosols play in modulating the radiative energy flow within the Earthatmosphere system. CERES builds upon the foundation laid by previous ...

Norman G. Loeb; Natividad Manalo-Smith; Seiji Kato; Walter F. Miller; Shashi K. Gupta; Patrick Minnis; Bruce A. Wielicki

2003-02-01T23:59:59.000Z

316

Low-power clock synchronization using electromagnetic energy radiating from AC power lines  

Science Conference Proceedings (OSTI)

Clock synchronization is highly desirable in many sensor networking applications. It enables event ordering, coordinated actuation, energy-efficient communication and duty cycling. This paper presents a novel low-power hardware module for achieving global ... Keywords: hardware clock synchronization, sensor networks, synchronization, wireless sensor networks

Anthony Rowe; Vikram Gupta; Ragunathan (Raj) Rajkumar

2009-11-01T23:59:59.000Z

317

Energy-Saving Tips 1. Turn the radiator off when you are out.  

E-Print Network (OSTI)

your mobile phone charger at the wall when you are not using it. 16. Use energy efficient light bulbs. Switch off the light when you leave your room. 14. Switch off the light when it is sunny. 15. Switch off to turn lights off in unoccupied rooms 48% use the car for short journeys 44% wash clothes at 60C 32

Brierley, Andrew

318

Comparison of Energy Source Estimates Derived from Atmospheric Circulation Data with Satellite Measurements of Net Radiation  

Science Conference Proceedings (OSTI)

The distributions of the net sources of atmospheric dry and latent energy are evaluated by the residual technique using the reanalyzed ECMWF FGGE level IIIb data for February and July 1979. Their sum (i.e., the residual estimate of the source of ...

Carl Fortelius; Eero Holopainen

1990-06-01T23:59:59.000Z

319

High energy atomic chemistry and chemical radiation effects. Progress report, January 1, 1973--December 31, 1973  

SciTech Connect

Research progress is reported on high energy atomic chemistry studies that include stopping power research; classical trajectory calculations; F to HF abstraction reactions; hot substitution reactions; and fast neutron dosimetry. A listing is included of technical publications resulting from the research and manuscripts in preparation. Abstracts of technical papers scheduled for presentation are also included. (DHM)

1973-01-01T23:59:59.000Z

320

Plutonium radiation surrogate  

DOE Patents (OSTI)

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

322

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network (OSTI)

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet NIKOLAOS A. BAKAS AND BRIAN F. FARRELL Harvard University Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality

Farrell, Brian F.

323

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca+  

E-Print Network (OSTI)

A systematic study of Ca+ atomic properties is carried out using high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n = 7. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the 5s, 6s, 7s, 8s, 4p, 5p, 3d, and 4d states and tensor polarizabilities for the 4p, 5p, 3d, and 4d states in Ca+ are calculated. Methods are developed to accurately treat the contributions from highly-excited states, resulting in significant (factor of 3) improvement in accuracy of the 3d_{5/2} static polarizability value, 31.8(3) a.u., in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007)]. The blackbody radiation (BBR) shift of the 4s - 3d_{5/...

Safronova, M S

2010-01-01T23:59:59.000Z

324

Radiation protection at CERN  

E-Print Network (OSTI)

This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

2013-01-01T23:59:59.000Z

325

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

326

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca+  

E-Print Network (OSTI)

A systematic study of Ca+ atomic properties is carried out using high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n = 7. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the 5s, 6s, 7s, 8s, 4p, 5p, 3d, and 4d states and tensor polarizabilities for the 4p, 5p, 3d, and 4d states in Ca+ are calculated. Methods are developed to accurately treat the contributions from highly-excited states, resulting in significant (factor of 3) improvement in accuracy of the 3d_{5/2} static polarizability value, 31.8(3) a.u., in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007)]. The blackbody radiation (BBR) shift of the 4s - 3d_{5/2} clock transition in Ca+ is calculated to be 0.381(4) Hz at room temperature, T=300K. Electric-quadrupole 4s -nd and electric-octupole 4s -nf matrix elements are calculated to obtain the ground state multipole E2 and E3 static polarizabilities. The hyperfine constants A are determined for the low-lying levels up to n = 7. The quadratic Stark effect on hyperfine structure levels of 43Ca+ ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca+ atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

M. S. Safronova; U. I. Safronova

2010-11-27T23:59:59.000Z

327

Mid?Infrared Spectral Diagnostics of Luminous Infrared Galaxies  

Science Conference Proceedings (OSTI)

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All?sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on?board Spitzer in the rest?frame wavelength range between 5 and 38 ?m. The GOALS sample enables a direct measurement of the relative contributions of star?formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large

A. Petric; The GOALS collaboration

2010-01-01T23:59:59.000Z

328

Energy and waste reduction in the wood fiber and fuel industry utilizing a long wave length catalytic infrared drying system. Progress report No.4, January 1--March 31, 1998  

SciTech Connect

During the past quarter significant headway was made on the project. The design and fabrication of the materials handling system by the subcontractor, Cat-Tech Industries, was completed in late January and was shipped in February to Catalytic Industrial System (CIS) Kansas facility. Unfortunately a part shipped directly from the manufacturer, for mating in Kansas to the unit, was determined to be the wrong size and nearly a month was lost in the process of ordering and receiving the correct parts. In early March the system was ready for agitation testing and performed perfectly. Design of the air circulation system was completed in late March and fabrication and installation of that element is expected to be completed this week (April 15--22). The insulation panels have been designed and ordered and are expected to be on site and ready for installation the last week of April. In a series of conference phone calls, it was decided to increase the amount of infrared energy input in Zone 1 (the first one-third of the 30 foot unit) of the dryer. These zones are presently being redesigned and fabricated and will likely be installed by the 10th of May. Product testing is expected to commence around the 15--20 of May. Work on the testing protocol was held in check while the discussion on increasing the total energy input was transpiring. It is scheduled to restart on or about May 1.

Davis, R.

1998-04-15T23:59:59.000Z

329

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 Solar Energy Resources Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be...

330

Coherent infared radiation from the ALS generated via femtosecond laser modulation of the electron beam  

E-Print Network (OSTI)

INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECONDthrough a wiggler at the ALS produces large modulation oflocations for a nominal ALS lattice and for an experimental

2004-01-01T23:59:59.000Z

331

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

332

Department of Energy Cites Battelle Energy Alliance, LLC for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation...

333

An energy-conserving two-temperature model of radiation damage in single-component and binary Lennard-Jones crystals  

SciTech Connect

Two-temperature models are used to represent the interaction between atoms and free electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. In this paper, we introduce an energy-conserving version of an inhomogeneous finite reservoir two-temperature model using a Langevin thermostat to communicate energy between the electronic and atomic subsystems. This energy-conserving modification allows the inhomogeneous two-temperature model to be used for longer and larger simulations and simulations of small energy phenomena, without introducing nonphysical energy fluctuations that may affect simulation results. We test this model on the annealing of Frenkel defects. We find that Frenkel defect annealing is largely indifferent to the electronic subsystem, unless the electronic subsystem is very tightly coupled to the atomic subsystem. We also consider radiation damage due to local deposition of heat in two idealized systems. We first consider radiation damage in a large face-centered-cubic Lennard-Jones (LJ) single-component crystal that readily recrystallizes. Second, we consider radiation damage in a large binary glass-forming LJ crystal that retains permanent damage. We find that the electronic subsystem parameters can influence the way heat is transported through the system and have a significant impact on the number of defects after the heat deposition event. We also find that the two idealized systems have different responses to the electronic subsystem. The single-component LJ system anneals most rapidly with an intermediate electron-ion coupling and a high electronic thermal conductivity. If sufficiently damaged, the binary glass-forming LJ system retains the least permanent damage with both a high electron-ion coupling and a high electronic thermal conductivity. In general, we find that the presence of an electronic gas can affect short and long term material annealing.

Phillips, Carolyn L. [Applied Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Crozier, Paul S. [Department of Multiscale Dynamic Materials Modeling, Sandia National Laboratories, P.O. Box 5800, MS 1322, Albuquerque, New Mexico 87185-1322 (United States)

2009-08-21T23:59:59.000Z

334

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

335

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

336

Living with radiation  

SciTech Connect

The authors present an account of the hopes and fears associated with ionizing radiation, extending from nuclear energy and medical radiation to nuclear weapons. They argue that a justified fear of nuclear weapons has led to a widespread, unjustified, and unreasoning fear of the beneficial applications of radiation. Although these two aspects of atomic energy are tied together-they both involve the nucleus of the atom and its radioactive rays-a deep misunderstanding of this relationship by the general public has evolved since the time of the atomic bombing of Hiroshima and Nagasaki. The authors' aim is to place the beneficial applications of nuclear radiation in perspective.

Wagner, H.N. Jr. (Johns Hopkins Medical Institutions, Baltimore, MD (USA). Div. of Nuclear Medicine); Ketchum, L.E. (Proclinica, Inc., New York, NY (US))

1989-01-01T23:59:59.000Z

337

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

338

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

339

The Baseline Surface Radiation Network Pyrgeometer Round-Robin Calibration Experiment  

Science Conference Proceedings (OSTI)

With the aim of improving the consistency of terrestrial and atmospheric longwave radiation measurements within the Baseline Surface Radiation Network, five Eppley Precision Infrared Radiometer (PIR) pyrgeometers and one modified Meteorological ...

Rolf Philipona; Claus Frhlich; Klaus Dehne; John DeLuisi; John Augustine; Ellsworth Dutton; Don Nelson; Bruce Forgan; Peter Novotny; John Hickey; Steven P. Love; Steven Bender; Bruce McArthur; Atsumu Ohmura; John H. Seymour; John S. Foot; Masataka Shiobara; Francisco P. J. Valero; Anthony W. Strawa

1998-06-01T23:59:59.000Z

340

Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for ...

Qing Yue; K. N. Liou; S. C. Ou; B. H. Kahn; P. Yang; G. G. Mace

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. ...

P. Jonathan Gero; David D. Turner

2011-09-01T23:59:59.000Z

342

Infrared Thermometer Measurements of the Temperature of the Clouds from the Surface during the 7 March 1970 Total Eclipse  

Science Conference Proceedings (OSTI)

An infrared thermometer was used to observe the apparent radiation temperature of the overcast sky during a 15 h period including the total solar eclipse of 7 March 1970 at the Suwannee River State Park, Florida. An effective cloud temperature ...

L. F. Hall

1980-11-01T23:59:59.000Z

343

Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields  

Science Conference Proceedings (OSTI)

Current techniques for deriving cirrus optical depth and altitude from visible (0.65 ?m) and infrared (11.5 ?m) satellite data use radiative transfer calculations based on scattering phase functions of spherical water droplets. This study ...

Patrick Minnis; Kuo-Nan Liou; Yoshihide Takano

1993-05-01T23:59:59.000Z

344

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

345

Radiation-Induced Bystander Effects and Relevance to Human Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation-Induced Bystander Effects and Relevance to Human Radiation Radiation-Induced Bystander Effects and Relevance to Human Radiation Exposures Review of phenomenon appears in Radiation Research Pamela Sykes and Benjamin Blyth One concern of radiobiologists is the effect radiation exposure might have on nearby unirradiated cells. For example, when only a small fraction of cells are directly hit by radiation energy, are the surrounding unirradiated cells also at an increased risk of cancer? The term "radiation-induced bystander effect" is used to describe radiation-induced biological changes that occur in unirradiated cells within an irradiated cell population. Radiation-induced bystander effects have become established in the vernacular and are considered as an authentic radiation response. However, there is still no consensus on a precise definition of the term, which

346

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

347

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

348

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

349

Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge  

SciTech Connect

The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

Potanin, E. P., E-mail: potanin@imp.kiae.ru; Ustinov, A. L. [National Research Centre Kurchatov Institute (Russian Federation)

2013-06-15T23:59:59.000Z

350

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents (OSTI)

A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

1995-08-22T23:59:59.000Z

351

Radiation dose assessment methodology and preliminary dose estimates to support US Department of Energy radiation control criteria for regulated treatment and disposal of hazardous wastes and materials  

Science Conference Proceedings (OSTI)

This report provides unit dose to concentration levels that may be used to develop control criteria for radionuclide activity in hazardous waste; if implemented, these criteria would be developed to provide an adequate level of public and worker health protection, for wastes regulated under U.S, Environmental Protection Agency (EPA) requirements (as derived from the Resource Conservation and Recovery Act [RCRA] and/or the Toxic Substances Control Act [TSCA]). Thus, DOE and the US Nuclear Regulatory Commission can fulfill their obligation to protect the public from radiation by ensuring that such wastes are appropriately managed, while simultaneously reducing the current level of dual regulation. In terms of health protection, dual regulation of very small quantities of radionuclides provides no benefit.

Aaberg, R.L.; Baker, D.A.; Rhoads, K.; Jarvis, M.F.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

352

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II: Validation  

Science Conference Proceedings (OSTI)

Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth's Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper ...

Norman G. Loeb; Konstantin Loukachine; Natividad Manalo-Smith; Bruce A. Wielicki; David F. Young

2003-12-01T23:59:59.000Z

353

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earths Radiant Energy System Instrument on the Terra Satellite. Part II: Validation  

Science Conference Proceedings (OSTI)

Errors in top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earths Radiant Energy System (CERES) instrument due to uncertainties in radiance-to-flux conversion from CERES Terra angular distribution models (ADMs) are evaluated ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith; David R. Doelling

2007-04-01T23:59:59.000Z

354

Modeling the Dust Spectral Energy Distributions of Dwarf Galaxies  

E-Print Network (OSTI)

Recent efforts on the modeling of the infrared spectral energy distributions (SEDs) of dwarf galaxies are summarised here. The characterisation of the dust properties in these low metallicity environments is just unfolding, as a result of recently available mid-infrared to millimetre observations. From the limited cases we know to date, it appears that the hard radiation fields that are present in these star-bursting dwarf galaxies, as well as the rampent energetics of supernovae shocks and winds have modified the dust properties, in comparison with those in the Galaxy, or other gas and dust rich galaxies. The sophistication of the SED models is limited by the availability of detailed data in the mid infrared and particularly in the submillimetre to millimetre regime, which will open up in the near future with space-based missions, such as Herschel.

Suzanne C. Madden

2005-01-31T23:59:59.000Z

355

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

356

Variability of Radiative Cooling during the Asian Summer Monsoon and Its Influence on Intraseasonal Waves  

Science Conference Proceedings (OSTI)

Infrared radiative cooling rates are calculated over the Asian summer monsoon between 5S20N and 40135E at a spatial resolution of 5 5 for the summer seasons of 1984 and 1987. A medium spectral resolution infrared radiative transfer ...

Amita V. Mehta; Eric A. Smith

1997-04-01T23:59:59.000Z

357

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

DOE Green Energy (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL

2005-07-11T23:59:59.000Z

358

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

359

Absorption of Solar Radiation by Atmospheric O4  

Science Conference Proceedings (OSTI)

Spectroscopic measurements of the atmospheric solar radiation attenuation reveal that the near ultravioletvisiblenear-infrared absorption of the oxygen collision complex (O2)2, thus far omitted from models, is important for the direct heating ...

Klaus Pfeilsticker; Frank Erle; Ulrich Platt

1997-04-01T23:59:59.000Z

360

Thermal Scout Software - Energy Innovation Portal  

Energy Analysis Thermal ... Technology Marketing Summary. ... The software uses GPS data to automate infrared camera image capture and temperature ana ...

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessment of Methods to Manipulate Thermal Emission and Evaluate the Quality of Thermal Radiation for Direct Energy Conversion.  

E-Print Network (OSTI)

??ABSTRACT Control of spectral thermal emission from surfaces may be desirable in some energy related applications, such as nano-scale antenna energy conversion and thermophotovoltaic conversion. (more)

Wijewardane, Samantha

2012-01-01T23:59:59.000Z

362

Ionizing Radiation Division Quality Manual  

Science Conference Proceedings (OSTI)

... 08 47020C Low-energy Photon Brachytherapy Seeds, ... Calibrated for Surface Dose Rate 10 ... Sources Calibrated for Radiation Protection Ionization ...

2012-03-08T23:59:59.000Z

363

Radiation Measurement (ARM) Climate Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve...

364

SSRL- Stanford Synchrotron Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL)". The Secretary of Energy sent these words to be conveyed at the formal opening of...

365

* The far-infrared (λ > 15 µm) is an important  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

366

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

367

NIST Ionizing Radiation Division 1999 - Current Directions  

Science Conference Proceedings (OSTI)

... effect relationships for radiation-induced stochastic ... validate the EPR dose assessment methods ... Calibration of Low-Energy Photon Brachytherapy ...

368

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

369

THE EFFECT OF CIRCUMSOLAR RADIATION ON THE ACCURACY OF PYRHELIOMETER MEASUREMENTS OF THE DIRECT SOLAR RADIATION  

E-Print Network (OSTI)

Diffuse, and Total Solar Radiation," Solar Energy, vol. 4,r Presented at the Solar Radiation workshop of Solar Rising,MEASUREMENTS OF THE DIRECT SOLAR RADIATION D. Grether, D.

Grether, D.

2012-01-01T23:59:59.000Z

370

A Two-Dimensional Radiation-Turbulence Climate Model. I: Sensitivity to Cirrus Radiative Properties  

Science Conference Proceedings (OSTI)

Based on the thermodynamic energy balance between radiation and vertical plus horizontal dynamic transports, a two-dimensional radiation-turbulence climate model is developed. This model consists of a broadband solar and IR radiation transfer ...

Szu-Cheng S. Ou; Kuo-Nan Liou

1984-08-01T23:59:59.000Z

371

Tunable Surface Plasmon Infrared Modulator - Energy Innovation ...  

Patent 8,009,356: Tunable surface plasmon devices A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation ...

372

Fundamentals of Radiation Dosimetry  

Science Conference Proceedings (OSTI)

The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

Bos, Adrie J. J. [Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB Delft (Netherlands)

2011-05-05T23:59:59.000Z

373

Wind-Driven Response of Ocean Surface Infrared Signals  

Science Conference Proceedings (OSTI)

In the course of archiving positions of the edge of the Loop Current from satellite infrared (IR) data, we have found a substantial amount of energy at periods in the wind-driven band. Using a technique patterned after that of Price et al., we ...

W. Sturges; S. Welsh

1990-12-01T23:59:59.000Z

374

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

375

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

376

Volume 35A, number4 PHYSICS LETTERS l4June 1971 ULTRA-INTENSE LASER RADIATION AS A POSSIBLE ENERGY BOOSTER FOR RELATIVISTIC CHARGED PARTICLE *  

E-Print Network (OSTI)

A new effect of large energy absorption is predicted for a relativistic charged particle interacting parallel with an ultraintense laser beam. For 10 example, V/cm in a a distance 10MeV electron of 1.3 mm. can absorb energy of 40MeV from a laser beam of A = 1.06!1 and ~ 3 x10 In the production of coherent y-ray radiation with ~=e2~2/mw2. For Wrmin = IT, Emax2E. from a laser beam being backscattered (anti- Let K=Emax/mc2, then the final total particle parallel scattering) by a high energy electron energy is given by Emax=(l K)E 0. To achieve beam [e.g., 1,2], it demonstrates the unusual this condition, the minimum value of ~ required role of an electron beam as a frequency multi- is plier for laser radiation. In this communication 1/2 (w~=r) = (mcw/e)(yK). a new effect of opposite sense is described in the mm (3) case of parallel scattering. Namely, when a rela- For a Nd-glass laser, w = 1.8x 5Eo. 1015 Under rad/sec this(x = tivistic laser beam charged moving particle almost is together interacting in the withsame a 1.06 condition, ii). When ( max)e K=2, Emax = 1 MeV and (~min)e 3 X direction, an abnormally large amount of energy 10volt/cm for an electron and (Emax)p~2GeV can be transferred from the radiation to the par- and (d min)p 5.5 x 1013 volt/cm for a proton. tide, as if the radiation behaves as an energy For experimental verification of this effect amplifier for the particle with an electron beam, some other effects must Since (np 0)11 =n, ~0.(A-A0) = 0 and nJ30 = be taken into consideration. in the case of parallel scattering, the i) Beam divergence. After scattering, the energy absorbed by the particle is simply as [2] particle is deflected by the radiation with a trans- f15 I verse momentum Pm. Since Porn = 0, the angle of ~11 L~0,11 / ~oJ / deflection is given by ~ Pm/Pn With Pm = where (6o)~=(1 _p~)-1and E e 2(A-A 2/2mc2,-(e/c)j A-Aol = (2rne)1/2andPn = energy absorbed if the particle was initially 0) at [2], we have rest. For a relativistic particle E 2, ~ 2mc2~5E (4 1 and ~~~ii 2y~.Therefore, 0>>rnc eq. (1) becomes

Yau Wa Chan

1971-01-01T23:59:59.000Z

377

International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance  

Science Conference Proceedings (OSTI)

The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earths radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show retrievals of the aerosol properties from spectrally resolved solar measurements, the simulated and observed radiative fluxes at the surface, and outline factors that control the magnitude and variability of aerosol and radiative properties [8].

Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

2009-03-11T23:59:59.000Z

378

Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation  

DOE Patents (OSTI)

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

1999-09-14T23:59:59.000Z

379

Satellite-based reconstruction of the tropical oceanic clear sky outgoing longwave radiation and comparison with climate models  

Science Conference Proceedings (OSTI)

The changes of the outgoing longwave radiation (OLR) in clear-sky conditions have been calculated using High-resolution Infrared Radiation Sounder (HIRS) observations from 1979 to 2004. After applying corrections for satellite orbital drift and ...

Guillaume Gastineau; Brian J. Soden; Darren L. Jackson; Chris W. ODell

380

Some Characteristic Differences in the Earth's Radiation Budget over Land and Ocean Derived from the Nimbus-7 ERB Experiment  

Science Conference Proceedings (OSTI)

Broad spectral band Nimbus-7 Earth Radiation Budget (ERB) experiment data are analyzed for top-of-the-atmosphere regional variations in near-ultraviolet visible and near-infrared reflected solar radiation. Regional differences in the noon vs ...

H. Lee Kyle; K. L. Vasanth

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

Science Conference Proceedings (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

382

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

383

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

384

The Use of Two-Stream Approximations for the Parameterization of Solar Radiative Energy Fluxes through Vegetation  

Science Conference Proceedings (OSTI)

Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical ...

Joachim H. Josepoh; Jean Laquinta; Bernard Pinty

1996-10-01T23:59:59.000Z

385

Radiation Incident on Tilted Collectors  

Science Conference Proceedings (OSTI)

For solar energy system design purposes, observations of solar radiation on a horizontal surface must be converted to values on a tilted energy collector. An empirical conversion relationship, introduced by Liu and Jordan (1960) and based on ...

P. J. Robinson

1981-12-01T23:59:59.000Z

386

Devices, systems, and methods for harvesting energy and methods for forming such devices  

DOE Patents (OSTI)

Energy harvesting devices include a substrate coupled with a photovoltaic material and a plurality of resonance elements associated with the substrate. The resonance elements are configured to collect energy in at least visible and infrared light spectra. Each resonance element is capacitively coupled with the photovoltaic material, and may be configured to resonate at a bandgap energy of the photovoltaic material. Systems include a photovoltaic material coupled with a feedpoint of a resonance element. Methods for harvesting energy include exposing a resonance element having a resonant electromagnetic radiation having a frequency between approximately 20 THz and approximately 1,000 THz, absorbing at least a portion of the electromagnetic radiation with the resonance element, and resonating the resonance element at a bandgap energy of an underlying photovoltaic material. Methods for forming an energy harvesting device include forming resonance elements on a substrate and capacitively coupling the resonance elements with a photovoltaic material.

Kotter, Dale K.; Novack, Steven D.

2012-12-25T23:59:59.000Z

387

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

388

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

389

Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots  

E-Print Network (OSTI)

The performance of short-wavelength infrared (SWIR) cameras in the visible and ultraviolet (UV) regions is limited by the absorption of high-energy photons in inactive regions of the imaging array. Dual-band UV-SWIR imaging ...

Geyer, Scott M.

390

Mesoscale Spectra of Marss Atmosphere Derived from MGS TES Infrared Radiances  

Science Conference Proceedings (OSTI)

Wavenumber spectra of the atmospheric potential energy of Mars at mesoscales (wavelengths of 64957 km) were obtained as a function of latitude, season, and Martian year using infrared radiance data obtained by the Thermal Emission Spectrometer (...

Takeshi Imamura; Yasuhiro Kawasaki; Tetsuya Fukuhara

2007-05-01T23:59:59.000Z

391

OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION  

E-Print Network (OSTI)

spot radius (mm) Fig. 9. o u If) .r- :::::I s::: ttl s:::or- ttlttl S- O) If) O~----~----J-----~----~----~--~~ o Angle from

Morris, J.R.

2010-01-01T23:59:59.000Z

392

Gaussian Quadrature and Its Application to Infrared Radiation  

Science Conference Proceedings (OSTI)

The Gaussian integration of moments is systematically discussed. It is shown that the well-known diffusivity-factor approximation is equivalent to a one-node Gaussian quadrature. The limit as the moment power approaches infinity in a one-node ...

J. Li

2000-03-01T23:59:59.000Z

393

Novel rectenna for collection of infrared and visible radiation.  

E-Print Network (OSTI)

??This dissertation presents the rectifying antennas potential for harvesting solar power, along with a novel design for a solar rectenna. The suns general features and (more)

Sarehraz, Mohammad

2005-01-01T23:59:59.000Z

394

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

395

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

396

Registration of the signal of a star and PCR sources optical radiation by means of the installation, aimed at the investigation of EAS of high energy cosmic rays  

E-Print Network (OSTI)

With the help of the experimental installation aimed at the investigation of high energy cosmic rays (Tien-Shan high mountain laboratory) the signal of Solar and star optical radiation is registered. The signal is well provided statistically and possesses the strictly expressed maximum in the region of EAS sizes Ne 1.19 106 particles (primary energy Eo 1.33 1015 eV). This signal is the peak from gamma EAS, generated by gamma quanta from decay of pi zero mesons, photo produced by the Primary Cosmic Radiation (PCR) nuclei on the photons of stars and of PCR sources. The assumption is made, that exactly this process provides the main contribution in the formation of so called knee on the primary spectrum. Due to the universality and distinct maximum of this signal, its usage for independent and reliable calibration of the EAS installations, for the mutual calibration of these installations and, possibly, for the merger of experimental data obtained by means of these installations to increase the statistics, is pr...

Barnaveli, T T; Khaldeeva, I V; Chubenko, A P; Nesterova, N M; Barnaveli, T T

2013-01-01T23:59:59.000Z

397

RADIATION COUNTER  

DOE Patents (OSTI)

This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

Goldsworthy, W.W.

1958-02-01T23:59:59.000Z

398

RADIATION DOSIMETER  

DOE Patents (OSTI)

An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

Balkwell, W.R. Jr.; Adams, G.D. Jr.

1960-05-10T23:59:59.000Z

399

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

400

Advanced far infrared detectors  

SciTech Connect

Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

Haller, E.E.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison of Photoneutron Yields in Tungsten Calculated by MCNPX Using Different Photonuclear Cross-Section Data for Typical Radiation Therapy Energies  

Science Conference Proceedings (OSTI)

Neutron Data / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Biology and Medicine

Bryan Bednarz; Bin Han; X. George Xu

402

Infrared Thermography Guide (Revision 3)  

Science Conference Proceedings (OSTI)

Costly equipment outages can be reduced by implementing a comprehensive predictive maintenance program. Infrared thermography (IR), a fundamental component of such programs, uses nonintrusive techniques to monitor the operating condition of equipment and components. This revised report provides updated information to assist utilities in implementing an effective IR program.

2002-05-30T23:59:59.000Z

403

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

404

The intergalactic propagation of ultrahigh energy cosmic ray nuclei  

SciTech Connect

We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

2006-08-01T23:59:59.000Z

405

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

406

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

407

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, Barry L. (Del Mar, CA)

1987-01-01T23:59:59.000Z

408

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

409

Electrodeposition of Al-Sb Nanowire Arrays for Radiation ... - TMS  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Radiation detectors are having broad variety of applications in detecting low-high energy radiation for various non-proliferation, homeland...

410

Thermal Infrared Exposure of Cryogenic Indirect Drive ICF Targets  

DOE Green Energy (OSTI)

Cryogenic inertial confinement fusion targets at the National Ignition Facility and the Laser Megajoule will be protected from thermal infrared radiation by a cold shroud. As the shroud is removed just before the laser pulse, infrared radiation will heat and possibly degrade the symmetry of the solid hydrogen fuel layer. A lumped component mathematical model has been constructed to calculate how long an indirect drive target can be exposed to thermal radiation before the fuel layer degrades. The allowed exposure time sets the maximum shroud removal time and therefore has important implications for the design of the cryogenic shroud systems. The model predicts that the maximum exposure time is approximately 0.18 s for plastic capsules inside hohlraums with transparent laser entrance holes. By covering the laser entrance holes with a partially reflective coating, the exposure time can be increased to approximately 1 s. The exposure time can be increased to about 2 s by using beryllium capsules. Several other design concepts could increase the exposure time even further. Lengthening of the allowed exposure time to 1 s or longer could allow a significant cost savings for the shroud system.

London, R A; Moody, J D; Sanchez, J J; Sater, J D; Haid, B J; Bittner, D N

2005-07-08T23:59:59.000Z

411

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

412

Amazon Forest Radiation Budget from Satellite Data  

Science Conference Proceedings (OSTI)

The top-of-the-atmosphere net radiation is determined over the Ducke Reserve Forest site, Manaus, Brazil (257 S, 5957 W), from GOES-7 visible and infrared data during the 1987 wet season (April?May), for 0900 and 1500 LST. It is shown that a ...

J-C. Calvet; Y. Viswanadham

1993-05-01T23:59:59.000Z

413

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

414

Infrared Cooling in Cloudy Atmospheres: Precision of Grid Point Selection for Numerical Models  

Science Conference Proceedings (OSTI)

The infrared layer temperature change in a cloudy atmosphere normally shows warming at the base of the cloud and intense cooling at the top of the cloud. In a model that uses broad-band radiative transfer to calculate atmospheric temperature ...

L. P. Stearns

1983-07-01T23:59:59.000Z

415

Calibration method for video and radiation imagers  

DOE Patents (OSTI)

The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

Cunningham, Mark F. (Oak Ridge, TN); Fabris, Lorenzo (Knoxville, TN); Gee, Timothy F. (Oak Ridge, TN); Goddard, Jr., James S. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Ziock, Klaus-peter (Clinton, TN)

2011-07-05T23:59:59.000Z

416

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

417

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

418

Synthesis of materials with infrared and ultraviolet lasers  

SciTech Connect

This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

Lyman, J.L.

1988-01-01T23:59:59.000Z

419

Comment on the paper "Energy Loss of Charm Quarks in the Quark-Gluon Plasma : Collisional vs Radiative"  

E-Print Network (OSTI)

In the article by M. G. Mustafa published in Phys. Rev. C {\\bf 72}, 014905 (2005) the author has estimated the total energy loss of a charm quark and quenching of hadron spectra due to the collisional energy loss of energetic partons in an expanding quark-gluon plasma employing Fokker-Planck equation. We wish to point out through this comment that some of conceptual and numerical results of the said paper are unreliable.

Mishra, M; Patra, B K

2007-01-01T23:59:59.000Z

420

Far Infrared Study of IRAS 00494+5617 & IRAS 05327-0457  

E-Print Network (OSTI)

High angular resolution far-infrared observations at 143 & 185 \\micron, using the TIFR 1-m balloon borne telescope, are presented for two Galactic star forming complexes associated with IRAS 00494+5617 and 05327-0457. The latter map also reveals the cold dust in OMC-3. The HIRES processed IRAS maps at 12, 25, 60 & 100 micron have also been presented for comparison. Both these regions are illuminated at the edges by high mass stars with substantial UV flux.The present study is aimed at quantifying the role of the nearby stars vis-a-vis embedded young stellar objects in the overall heating of these sources. Based on the FIR observations at 143 & 185 micron carried out simultaneously with almost identical angular resolution, reliable dust temperature and optical depth maps have been generated for the brighter regions of these sources. Radiative transfer modeling in spherical geometry has been carried out to extract physical parameters of these sources by considering the observational constraints like : spectral energy distribution, angular size at different wavelengths, dust temperature distribution etc. It has been concluded that for both IRAS 00494+5617 and IRAS 05327-0457, the embedded energy sources play the major role in heating them with finite contribution from the nearby stars. The best fit model for IRAS 00494+5617 is consistent with a simple two phase clump-interclump picture with $\\sim$ 5% volume filling factor (of clumps) and a density contrast of $\\approx$ 80.

B. Mookerjea; S. K. Ghosh; T. N. Rengarajan; S. N. Tandon; R. P. Verma

2000-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Foreword for Non-Dispersive Infrared (NDIR) Gas Measurement Today  

Science Conference Proceedings (OSTI)

Infrared spectroscopy provides the analytical laboratory with essential capabilities to identify and to quantify components of gas mixtures in a relatively straightforward manner. Except for symmetric diatomic species, most molecules are 'IR active' that is, they absorb IR light at specific energies associated with that molecule's vibrational and rotation modes. Simple molecules have a few predominant absorption energies and are easy to identify, while more complicated molecules with many bonds have many absorption peaks. To cover the full range of possible absorption energies, laboratory instruments initially employed dispersive elements, typically gratings, to scan over the wavelengths of interest. Today, Fourier-transform infrared (FTIR) spectroscopy has replaced most dispersive IR spectrometry due to improvements in speed and the signal-to-noise ratio but at the expense of instrumental complexity. The impressive analytical power of IR spectroscopy can be distilled into a tiny sensor for a restricted, but nevertheless very useful, set of chemical vapors. Non-dispersive infrared (NDIR) sensors use bandpass filters to select one, or at most a few, energy bands corresponding absorption by carbon dioxide, water, hydrocarbons, etc. Although the concept is simple, the task has proved to be elusive for constructing an NDIR sensor that maintains its calibration in spite of aging and environmental factors. Over the past four decades, Dr. Wong has been on the quest to perfect NDIR sensing, yet in very practical designs. This book reflects his journey, and more recently that of his coauthor, to do just that.

Warmack, Robert J Bruce [ORNL

2012-01-01T23:59:59.000Z

422

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

423

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

424

Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation  

DOE Patents (OSTI)

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

2000-08-29T23:59:59.000Z

425

Thermographic Inspections | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

being lost. Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. How Thermographic Inspections Work...

426

Radiation blistering of Nb implanted sequentially with helium ions of different energies (3-500 keV)  

SciTech Connect

Cold rolled, polycrystalline niobium samples were irradiated at room temperature with $sup 4$He$sup +$ ions sequentially at 14 different energies over an energy range from 3 keV--500 keV in steps of 50 keV. The dose for each energy was chosen to give an approximately uniform concentration of helium between the implant depths corresponding to 3 keV and 500 keV. In one set of experiments the irradiations were started at the Kurchatov Institute with 3 keV $sup 4$He$sup +$ ions and extended up to 80 keV in several steps. Subsequently, the same target area was irradiated with $sup 4$He$sup +$ ions at Argonne National Laboratory (ANL) starting at 100 keV and increased to 500 keV in steps of 50 keV. Another set of irradiations were started at ANL with 500 keV $sup 4$He$sup +$ ions and continued with decreasing ion energies to 100 keV. Subsequently, the same area was irradiated at the Kurchatov Institute starting at 80 keV and continued with decreasing ion energies to 3 keV. Both sets of irradiations were completed for two different total doses, 0.5 C cm$sup -2$ and 1.0 C cm$sup -2$.

Guseva, M.I.; Gusev, V.; Krasulin, U.L.; Martinenko, U.V.; Das, S.K.; Kaminsky, M.S.

1976-01-01T23:59:59.000Z

427

The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance  

Science Conference Proceedings (OSTI)

Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in ...

D. D. Turner; D. C. Tobin; S. A. Clough; P. D. Brown; R. G. Ellingson; E. J. Mlawer; R. O. Knuteson; H. E. Revercomb; T. R. Shippert; W. L. Smith; M. W. Shephard

2004-11-01T23:59:59.000Z

428

Diurnal Variability of Regional Cloud and Clear-Sky Radiative Parameters Derived from GOES Data. Part III: November 1978 Radiative Parameters  

Science Conference Proceedings (OSTI)

The diurnal variability of the radiation emitted and reflected from the earth-atmosphere is investigated at the regional scale using November 1978 GOES-East visible and infrared data and GOES-derived cloud information. Narrowband GOES data are ...

Patrick Minnis; Edwin F. Harrison

1984-07-01T23:59:59.000Z

429

Solar Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy,...

430

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

431

Sommerfeld radiation condition at threshold  

E-Print Network (OSTI)

We prove Besov space bounds of the resolvent at low energies in any dimension for a class of potentials that are negative and obey a virial condition with these conditions imposed at infinity only. We do not require spherical symmetry. The class of potentials includes in dimension $\\geq3$ the attractive Coulomb potential. There are two boundary values of the resolvent at zero energy which we characterize by radiation conditions. These radiation conditions are zero energy versions of the well-known Sommerfeld radiation condition.

Erik Skibsted

2011-06-23T23:59:59.000Z

432

Infrared [Fe II] and Dust Emissions from Supernova Remnants  

E-Print Network (OSTI)

Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H$_2$ emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the "[Fe II]-H$_2$ reversal" in SNRs and on using the [Fe II]-line luminosity as an indic...

Koo, Bon-Chul

2013-01-01T23:59:59.000Z

433

Topics in radiation at accelerators: Radiation physics for personnel and environmental protection  

SciTech Connect

This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

Cossairt, J.D.

1993-11-01T23:59:59.000Z

434

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

435

Low Dose Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Ancient Salt Beds Ancient Salt Beds Repository Science Renewable Energy The WIPP Underground may be ideal to study effects of Very Low Dose Rates on Biological Systems Low Background Radiation Experiment We're all bathing in it. It's in the food we eat, the water we drink, the soil we tread and even the air we breathe. It's background radiation, it's everywhere and we can't get away from it. But what would happen if you somehow "pulled the plug" on natural background radiation? Would organisms suffer or thrive if they grew up without their constant exposure to background radiation? That's what a consortium of scientists conducting an experiment at the Waste Isolation Pilot Plant aim to find out. Despite being an underground repository for transuranic radioactive waste,

436

Method for microbeam radiation therapy  

DOE Patents (OSTI)

A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

1994-08-16T23:59:59.000Z

437

Method for microbeam radiation therapy  

DOE Patents (OSTI)

A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

Slatkin, Daniel N. (Sound Beach, NY); Dilmanian, F. Avraham (Yaphank, NY); Spanne, Per O. (Shoreham, NY)

1994-01-01T23:59:59.000Z

438

10th Radiation Physics and Protection Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Energy Authority National Network of Radiation Physics Atomic Energy Authority National Network of Radiation Physics 10 th Radiation Physics and Protection Conference Special Topic Elements of Regulating Nuclear and Radiation Activities Egyptian Law 26 -30 November 2010 To be held at EAEA Headquarter Nasr City Cairo - Egypt (www.rphysp.com) INVITATION The conference organizing committee invites scientists from the Atomic Energy , Research Centers , Universities Institutes , and all those involved in radiation Physics and its Applications in Egypt , Arab countries and abroad to participate in scientific activities of the conference . The official working language of the conference in English Conference Honorary Chairman Conference Scientific Secretary

439

Analyticity of the self-energy in total momentum of an atom coupled to the quantized radiation field  

E-Print Network (OSTI)

We study a neutral atom with a non-vanishing electric dipole moment coupled to the quantized electromagnetic field. For a sufficiently small dipole moment and small momentum, the one-particle (self-) energy of an atom is proven to be a real-analytic function of its momentum. The main ingredient of our proof is a suitable form of the Feshbach-Schur spectral renormalization group.

Jrmy Faupin; Juerg Froehlich; Baptiste Schubnel

2013-08-12T23:59:59.000Z

440

Solar Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources Solar Energy Resources August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic...

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solid-state radiation-emitting compositions and devices  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy. 4 figs.

Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

1992-08-11T23:59:59.000Z

442

Solid-state radiation-emitting compositions and devices  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy.

Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

443

DOE 2011 Occupational Radiation Exposure report, _Prepared for the U.S. Department of Energy, Office of Health, Safety and Security. December 2012  

Science Conference Proceedings (OSTI)

This report discusses radiation protection and dose reporting requirements, presents the 2011 occupational radiation dose data along with trends over the past 5 years, and provides instructions to submit successful as low as reasonably achievable (ALARA) projects.

Derek Hagemeyer, Yolanda McCormick

2012-12-12T23:59:59.000Z

444

Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation  

Science Conference Proceedings (OSTI)

The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

Jianfeng, Lu; Jing, Ding [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Jianping, Yang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

2010-11-15T23:59:59.000Z

445

STANFORD SYNCHROTRON RADIATION LIGHTSOURCE  

E-Print Network (OSTI)

-926-4100 SLAC is operated by Stanford University for the U.S. Department of Energy SSRL Facility Research Associate for Small Angle X-ray Scattering The Stanford Synchrotron Radiation Lightsource (SSRL) has) program. This position has a component (roughly 50%) that involves beam line development at SSRL

Ford, James

446

Lecture 3 week 2/3 2012: Solar radiation, the greenhouse, global heat engine  

E-Print Network (OSTI)

... that would be like 13.68 one- hundred watt light bulbs illuminating a one-meter square surface, except that light bulbs put about 80% of their 100 watts of power into heat/infrared radiation. Given the distance

447

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties and their effects on the Earth ...

William B. Rossow; Andrew A. Lacis

1990-11-01T23:59:59.000Z

448

A dedicated storage ring for Far-IR coherent synchrotron radiation at the ALS  

E-Print Network (OSTI)

SYNCHROTRON RADIATION AT THE ALS* W. C. Barry, K. M.on the Infrared Beamline ALS 1999 Activity Report pp. 78-m circumference ring will use the ALS injector parasitically

2002-01-01T23:59:59.000Z

449

Influence of Radiation on the Temperature Sensor Mounted on the Swiss Radiosonde  

Science Conference Proceedings (OSTI)

The Swiss radiosonde (SRS400) measures the air temperature with a very thin copperconstantan thermocouple. The influence of the visible and infrared radiation, as well as the dependency of the air pressure on the measured temperature, is ...

Dominique Ruffieux; Juerg Joss

2003-11-01T23:59:59.000Z

450

Absorption of Solar Radiation by Stratocumulus Clouds: Aircraft Measurements and Theoretical Calculations  

Science Conference Proceedings (OSTI)

Aircraft observations of shortwave radiative properties of stratocumulus clouds were carried out over the western North Pacific Ocean during January 1991. Two aircraft were equipped with a pair of pyranometers and near-infrared pyranometers. ...

Tadahiro Hayasaka; Nobuyuki Kikuchi; Masayuki Tanaka

1995-05-01T23:59:59.000Z

451

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

452

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

453

Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven .  

E-Print Network (OSTI)

??A quantitative, model-based understanding of heat exchange in infrared and combined infrared-microwave heating of food inside an oven is developed. The research is divided into (more)

Frangipani Almeida, Marialuci

2004-01-01T23:59:59.000Z

454

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

455

On the Relationship between Radiative Entropy and Temperature Distributions  

Science Conference Proceedings (OSTI)

The Earth can be viewed as a complex nonequilibrium system that exchanges primarily radiative energy and entropy with its surroundings. The energy balance equation provides an important constraint on the distribution of outgoing radiation since ...

Glen B. Lesins

1990-03-01T23:59:59.000Z

456

Discovery of Very High-Energy Gamma-Ray Radiation from the BL Lac 1ES 0806+524  

E-Print Network (OSTI)

The high-frequency-peaked BL-Lacertae object \\objectname{1ES 0806+524}, at redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime by VERITAS between November 2006 and April 2008. These data encompass the two-, and three-telescope commissioning phases, as well as observations with the full four-telescope array. \\objectname{1ES 0806+524} is detected with a statistical significance of 6.3 standard deviations from 245 excess events. Little or no measurable variability on monthly time scales is found. The photon spectrum for the period November 2007 to April 2008 can be characterized by a power law with photon index $3.6 \\pm 1.0_{\\mathrm{stat}} \\pm 0.3_{\\mathrm{sys}}$ between $\\sim$300 GeV and $\\sim$700 GeV. The integral flux above 300 GeV is $(2.2\\pm0.5_{\\mathrm{stat}}\\pm0.4_{\\mathrm{sys}})\\times10^{-12}\\:\\mathrm{cm}^{2}\\:\\mathrm{s}^{-1}$ which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous multiwavelength observations are combined with the VHE data to produce a broadband spectral energy distribution that can be reasonably described using a synchrotron-self Compton model.

VERITAS Collaboration; V. Acciari; E. Aliu; T. Arlen; M. Bautista; M. Beilicke; W. Benbow; M. Bttcher; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; K. Byrum; A. Cannon; O. Celik; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; P. Colin; W. Cui; R. Dickherber; C. Duke; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; D. Gall; K. Gibbs; G. H. Gillanders; J. Grube; R. Guenette; G. Gyuk; D. Hanna; E. Hays; J. Holder; D. Horan; C. M. Hui; T. B. Humensky; A. Imran; P. Kaaret; N. Karlsson; M. Kertzman; D. Kieda; J. Kildea; A. Konopelko; H. Krawczynski; F. Krennrich; M. J. Lang; S. LeBohec; G. Maier; A. McCann; M. McCutcheon; J. Millis; P. Moriarty; R. Mukherjee; T. Nagai; R. A. Ong; A. N. Otte; D. Pandel; J. S. Perkins; D. Petry; M. Pohl; J. Quinn; K. Ragan; L. C. Reyes; P. T. Reynolds; E. Roache; J. Rose; M. Schroedter; G. H. Sembroski; A. W. Smith; D. Steele; S. P. Swordy; M. Theiling; J. A. Toner; L. Valcarcel; A. Varlotta; V. V. Vassiliev; R. G. Wagner; S. P. Wakely; J. E. Ward; T. C. Weekes; A. Weinstein; R. J. White; D. A. Williams; S. Wissel; M. Wood; B. Zitzer

2008-12-04T23:59:59.000Z

457

Near-infrared spectroscopy. Innovative technology summary report  

Science Conference Proceedings (OSTI)

A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

Not Available

1999-07-01T23:59:59.000Z

458

Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy  

Science Conference Proceedings (OSTI)

We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

2008-12-10T23:59:59.000Z

459

NREL: Solar Radiation Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

solar technologies into the clean energy market. There are many ways to work with NREL's solar radiation research program. Developing Technology Partnerships NREL offers a variety...

460

New Facility Focuses on Improved Radiation Standards  

Science Conference Proceedings (OSTI)

... The MIRF contains a high-energy electron beam ... used in ionizing radiation treatments for cancer ... such as polymer curing and wastewater treatment. ...

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Radiation Effects on Structural Ceramics in Fusion  

Science Conference Proceedings (OSTI)

Fusion MaterialsRadiation Effects and Activation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

G. R. Hopkins; R. J. Price; P. W. Trester

462

NIST Ionizing Radiation Division 2001 - Program Directions  

Science Conference Proceedings (OSTI)

... seen a tremendous increase in the use of low-energy photon ... for the high levels of absorbed dose used in the industrial radiation processing of ...

463

NIST Ionizing Radiation Division 1998 - Current Directions  

Science Conference Proceedings (OSTI)

... Cs gamma-ray ranges, and the low-energy photon ... beam, and a high-dose- rate Gammacell used in our radiation-processing dosimetry ...

464

NIST Ionizing Radiation Division 2000 - Future Directions  

Science Conference Proceedings (OSTI)

... will enable dose-reconstruction studies for populations exposed at the natural background levels of ionizing radiation. Calibrations of Low-Energy ...

465

Atmospheric Radiation Measurement Convective and Orographically...  

NLE Websites -- All DOE Office Websites (Extended Search)

Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility...

466

Selective radiative cooling with MgO and/or LiF layers  

DOE Patents (OSTI)

A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

467

Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect

This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.

Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J

2007-03-01T23:59:59.000Z

468

Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5  

Science Conference Proceedings (OSTI)

Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

Dionne, B.J.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

1994-01-01T23:59:59.000Z

469

A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part I: Theory and Application  

Science Conference Proceedings (OSTI)

The calibration and accuracy of the Eppley precision infrared radiometer (PIR) is examined both theoretically and experimentally. A rederivation of the fundamental energy balance of the PIR indicates that the calibration equation in common use in ...

C. W. Fairall; P. O. G. Persson; E. F. Bradley; R. E. Payne; S. P. Anderson

1998-12-01T23:59:59.000Z

470

Sandia National Laboratories: Research: Research Foundations: Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and maintaining a safe, secure, and effective nuclear stockpile. For example, radiation effects science ensures that engineered systems are able to operate as intended in the radiation environments they encounter. In addition, high energy density science validates models that are used to certify the performance of the

471

Dirac charge dynamics in graphene by infrared spectroscopy  

Science Conference Proceedings (OSTI)

A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrdinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.

Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

2008-04-29T23:59:59.000Z

472

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

473

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

474

Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA  

Science Conference Proceedings (OSTI)

This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

1993-12-01T23:59:59.000Z

475

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

476

Infrared emission from interplanetary dust  

Science Conference Proceedings (OSTI)

Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

1989-02-01T23:59:59.000Z

477

PLANNING STUDY FOR ADVANCED NATIONAL SYNCHROTRON-RADIATION FACILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED NATIONAL SYNCHROTRON-RADIATION FACILITIES Printed March 14, 1984 The report of a study sponsored by the Department of Energy, Office of Basic Energy Sciences, and...

478

NIST Ionizing Radiat. Div. - 2004: Strategic Focus 1  

Science Conference Proceedings (OSTI)

... and to determine exposure or dose-rate values ... to maximize the energy absorption of the ionizing radiation. ... the calibration of an 55 Fe low-energy x ...

479

A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy  

SciTech Connect

Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and the treatment planning system were higher than 97.5% when the standard clinical tolerances of 3% or 3 mm were used. Excellent agreement was obtained between the doses measured and calculated when we used the 2D-PSDA for monitoring a MLC sequence from a step-and-shoot IMRT plan. Conclusions: We demonstrated the feasibility of using a large number of PSDs in a new 2D-PSDA for the dosimetry of MV energy photon beams in radiation therapy. The excellent precision, accuracy, and low angular dependence of the device indicate that such a prototype could potentially be used as a high-accuracy quality assurance tool for IMRT and arc therapy patient plan verification. The homogeneity and water-equivalence of the prototype we built suggest that this technology could be extended to multiple detection planes by arranging the fibers into more complex orientations, opening the possibility for 3D dosimetry with PSDs.

Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada); Department of Radiation Physics, Unit 94, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada)

2011-12-15T23:59:59.000Z

480

COLLAPSE OF MOLECULAR CLOUD CORES WITH RADIATION TRANSFER: FORMATION OF MASSIVE STARS BY ACCRETION  

Science Conference Proceedings (OSTI)

Most early radiative transfer calculations of protostellar collapse have suggested an upper limit of approx40 M{sub sun} for the final stellar mass before radiation pressure can exceed the star's gravitational pull and halt the accretion. Here we perform further collapse calculations, using frequency-dependent radiation transfer coupled to a frequency-dependent dust model that includes amorphous carbon particles, silicates, and ice-coated silicates. The models start from pressure-bounded, logatropic spheres of mass between 5 M{sub sun} and 150 M{sub sun} with an initial nonsingular density profile. We find that in a logatrope the infall is never reversed by the radiative forces on the dust and that stars with masses approx>100 M{sub sun} may form by continued accretion. Compared to previous models that start the collapse with a rho propor to r{sup -2} density configuration, our calculations result in higher accretion times and lower average accretion rates with peak values of approx5.8 x 10{sup -5} M{sub sun} yr{sup -1}. The radii and bolometric luminosities of the produced massive stars (approx>90 M{sub sun}) are in good agreement with the figures reported for detected stars with initial masses in excess of 100 M{sub sun}. The spectral energy distribution from the stellar photosphere reproduces the observed fluxes for hot molecular cores with peaks of emission from mid- to near-infrared.

Sigalotti, Leonardo Di G.; Daza-Montero, Judith [Centro de Fisica, Instituto Venezolano de Investigaciones CientIficas, IVIC, Apartado 21827, Caracas 1020A (Venezuela, Bolivarian Republic of); De Felice, Fernando [Dipartimento di Fisica 'G. Galilei', Universita di Padova, Via Marzolo 8 35131 Padova (Italy)

2009-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radiated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.