Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

2

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

3

Infrared Debonding - Energy Innovation Portal  

Building Energy Efficiency; Electricity Transmission; ... Solar Thermal; Startup America; ... Benefits Materials or components are not damaged or abraded, ...

4

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Forward looking infrared Citation Wikipedia. Forward looking infrared...

5

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

6

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

7

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

8

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

9

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

10

Apparatus for generating coherent infrared energy of selected wavelength  

SciTech Connect

A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

Stevens, Charles G. (Danville, CA)

1985-01-01T23:59:59.000Z

11

The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths  

E-Print Network (OSTI)

New far-infrared and submillimeter data are used to solidify and to extend to long wavelengths the empirical calibration of the infrared spectral energy distribution (SED) of normal star-forming galaxies. As was found by Dale et al. (2001), a single parameter family, characterized by f_nu(60 microns)/f_nu(100 microns), is adequate to describe the range of normal galaxy spectral energy distributions observed by IRAS and ISO from 3 to 100 microns. However, predictions based on the first generation models at longer wavelengths (122 to 850 microns) are increasingly overluminous compared to the data for smaller f_nu(60 microns)/f_nu(100 microns), or alternatively, for weaker global interstellar radiation fields. After slightly modifying the far-infrared/submillimeter dust emissivity in those models as a function of the radiation field intensity to better match the long wavelength data, a suite of SEDs from 3 microns to 20 cm in wavelength is presented. Results from relevant applications are also discussed, including submillimeter-based photometric redshift indicators, the infrared energy budget and simple formulae for recovering the bolometric infrared luminosity, and dust mass estimates in galaxies. Regarding the latter, since galaxy infrared SEDs are not well-described by single blackbody curves, the usual methods of estimating dust masses can be grossly inadequate. The improved model presented herein is used to provide a more accurate relation between infrared luminosity and dust mass.

Daniel A. Dale; George Helou

2002-05-06T23:59:59.000Z

12

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton dissociation of vinyl  

E-Print Network (OSTI)

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton the rovibra- tional energy distributions of fragmentsl formed in the infrared multiphoton dissociation (IRMPD energies of the frag- ment can be well characterized in terms of a Boltzmann distribution with a single

Zare, Richard N.

13

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

14

Definition: Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Long-Wave Infrared Jump to: navigation, search Dictionary.png Long-Wave Infrared Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features such as hot springs, fumaroles, and snow melt. LWIR can also be used to map the distribution of certain minerals related to hydrothermal alterations.[2] View on Wikipedia Wikipedia Definition References ↑ Katherine Young,Timothy Reber,Kermit Witherbee. 2012. Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei. In: Proceedings of the Thirty-Seventh Workshop on Geothermal

15

Method and apparatus for coherent imaging of infrared energy  

DOE Patents (OSTI)

A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

Hutchinson, D.P.

1998-05-12T23:59:59.000Z

16

Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications  

E-Print Network (OSTI)

We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.30.1% with simultaneous ...

Lunt, Richard R.

17

Thermal And-Or Near Infrared At Coso Geothermal Area (2009) | Open Energy  

Open Energy Info (EERE)

And-Or Near Infrared At Coso Geothermal Area (2009) And-Or Near Infrared At Coso Geothermal Area (2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2009) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2009 Usefulness useful DOE-funding Unknown Exploration Basis Determine the importance of elevation and temperature inversions using thermal infrared satellite images Notes Examples of nighttime temperature inversions are shown in thermal infrared satellite images collected over the Coso geothermal field in eastern California. Temperature-elevation plots show the normal trend of temperature decrease with elevation, on which temperature inversions appear

18

Long-Wave Infrared At Coso Geothermal Area (1968-1971) | Open Energy  

Open Energy Info (EERE)

Long-Wave Infrared At Coso Geothermal Area (1968-1971) Long-Wave Infrared At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Long-Wave Infrared At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Long-Wave Infrared Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes 8- to 14-micrometer IR imagery has value in delineating the typical arcuate structural patterns References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Long-Wave_Infrared_At_Coso_Geothermal_Area_(1968-1971)&oldid=473747"

19

Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m  

Science Conference Proceedings (OSTI)

To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

Kimball B. A.; Lewin K.; Conley, M. M.

2012-04-01T23:59:59.000Z

20

ON THE SIMULTANEOUS GENERATION OF HIGH-ENERGY EMISSION AND SUBMILLIMETER/INFRARED RADIATION FROM ACTIVE GALACTIC NUCLEI  

Science Conference Proceedings (OSTI)

For active galactic nuclei (AGNs), we study the role of the mechanism of quasi-linear diffusion (QLD) in producing the high-energy emission in the MeV-GeV domains strongly connected with the submillimeter/infrared radiation. Considering the kinetic equation governing the stationary regime of the QLD, we investigate the feedback of the diffusion on electrons. We show that this process leads to the distribution of particles by pitch angles, implying that the synchrotron mechanism is no longer prevented by energy losses. Examining a reasonable interval of physical parameters, we show that it is possible to produce MeV-GeV {gamma}-rays that are strongly correlated with submillimeter/infrared bands.

Osmanov, Z., E-mail: z.osmanov@iliauni.edu.g [Centre for Theoretical Astrophysics, ITP, Ilia State University, Kazbegi Str. 2a, 0160 Tbilisi (Georgia)

2010-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal And-Or Near Infrared At Alum Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Alum_Area_(DOE_GTP)&oldid=402991" Categories: Exploration Activities

22

Thermal And-Or Near Infrared At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

2007) 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. Field measurements

23

Photoluminescent Energy Transfer from Poly(phenyleneethynylene)s to Near-Infrared Emitting Fluorophores  

E-Print Network (OSTI)

Photoluminescent energy transfer was investigated in conjugated polymer-fluorophore blended thin films. A pentiptycene-containing poly(phenyleneethynylene) was used as the energy donor, and 13 fluorophores were used as ...

Swager, Timothy Manning

24

THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

Using data from the mid-infrared to millimeter wavelengths for individual galaxies and for stacked ensembles at 0.5 tight correlation between star formation rate (SFR) and stellar mass (M {sub *}), and for starbursting galaxies that fall outside that relation. Exploiting the correlation of gas-to-dust mass with metallicity (M {sub gas}/M {sub dust}-Z), we use our measurements to constrain the gas content, CO-to-H{sub 2} conversion factors ({alpha}{sub CO}), and star formation efficiencies (SFE) of these distant galaxies. Using large statistical samples, we confirm that {alpha}{sub CO} and SFE are an order of magnitude higher and lower, respectively, in MS galaxies at high redshifts compared to the values of local galaxies with equivalently high infrared luminosities (L {sub IR} > 10{sup 12} L {sub Sun }). For galaxies within the MS, we show that the variations of specific star formation rates (sSFRs = SFR/M {sub *}) are driven by varying gas fractions. For relatively massive galaxies like those in our samples, we show that the hardness of the radiation field, (U), which is proportional to the dust-mass-weighted luminosity (L {sub IR}/M {sub dust}) and the primary parameter defining the shape of the IR spectral energy distribution (SED), is equivalent to SFE/Z. For MS galaxies with stellar mass log (M {sub *}/M {sub Sun }) {>=} 9.7 we measure this quantity, (U), showing that it does not depend significantly on either the stellar mass or the sSFR. This is explained as a simple consequence of the existing correlations between SFR-M {sub *}, M {sub *}-Z, and M {sub gas}-SFR. Instead, we show that (U) (or equally L {sub IR}/M {sub dust}) does evolve, with MS galaxies having harder radiation fields and thus warmer temperatures as redshift increases from z = 0 to 2, a trend that can also be understood based on the redshift evolution of the M {sub *}-Z and SFR-M {sub *} relations. These results motivate the construction of a universal set of SED templates for MS galaxies that are independent of their sSFR or M {sub *} but vary as a function of redshift with only one parameter, (U).

Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Daddi, E.; Bethermin, M.; Sargent, M.; Elbaz, D.; Pannella, M. [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Dickinson, M.; Kartaltepe, J. [NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Dannerbauer, H. [Institut fuer Astronophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Da Cunha, E.; Walter, F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Charmandaris, V. [Department of Physics and ICTP, University of Crete, GR-71003, Heraklion (Greece); Hwang, H. S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-11-20T23:59:59.000Z

25

3.1 $?$m H$_{2}$O Ice Absorption in LINER-Type Ultraluminous Infrared Galaxies with Cool Far-Infrared Colors: the Centrally-Concentrated Nature of Their Deeply Buried Energy Sources  

E-Print Network (OSTI)

Ground-based 2.8--4.1 $\\mu$m slit spectra of the nuclei of seven ultraluminous infrared galaxies (ULIRGs) that are classified optically as LINERs and have cool far-infrared colors are presented. All the nuclei show 3.3 $\\mu$m polycyclic aromatic hydrocarbon (PAH) emission, with equivalent widths that are systematically lower than those in starburst galaxies. Strong 3.1 $\\mu$m H$_{2}$O ice absorption, with optical depth greater than 0.6, is also detected in five nuclei, and 3.4 $\\mu$m carbonaceous dust absorption is detected clearly in one of the five nuclei. It is quantitatively demonstrated that the large optical depths of the H$_{2}$O ice absorption in the five sources, and the 3.4 $\\mu$m absorption in one source, are incompatible with a geometry in which the energy sources are spatially mixed with dust and molecular gas, as is expected for a typical starburst, but instead require that a large amount of nuclear dust (including ice-covered grains) and molecular gas be distributed in a screen in front of the 3--4 $\\mu$m continuum-emitting sources. This geometrical requirement can naturally be met if the energy sources are more centrally concentrated than the nuclear dust and molecular gas. The low equivalent widths of the PAH emission compared to starbursts and the central concentration of the nuclear energy sources in these five ULIRGs are best explained by the presence of energetically important active galactic nuclei deeply buried in dust and molecular gas.

Masatoshi Imanishi; Philip R. Maloney

2003-02-04T23:59:59.000Z

26

CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: A{sub V} = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption R{sub V} = 3.1 plus a contribution from local dust with R{sub V} > 4.0 in the Carina molecular clouds that increases as A{sub V} increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L{sub bol} {approx}> 10{sup 4} L{sub sun} by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by {approx}50%. Correcting for incompleteness due to OB stars falling below the L{sub bol} cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gagne, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Babler, Brian L.; Meade, Marilyn R.; Townsend, Richard H. D. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Indebetouw, Remy; Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Robitaille, Thomas P., E-mail: povich@astro.psu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

27

Observations of the Hubble Deep Field with the Infrared Space Observatory. V. Spectral Energy Distributions, Starburst Models and Star Formation History  

E-Print Network (OSTI)

We have modelled the spectral energy distributions of the 13 HDF galaxies reliably detected by ISO. For 2 galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far infrared luminosity and derive star formation rates for these galaxies of 8-1000 $\\phi M_{\\sun}$ per yr, where $\\phi$ takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the universe. Although uncertainties in the calibration, reliability of source detection, associations, and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least.

The ISO-HDF Consortium; :; Michael Rowan-Robinson

1997-07-02T23:59:59.000Z

28

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

29

INFRARED MODULATOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration. SAND # 2011-8914P TE HNOLOGY

30

Purified and Porous Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Films For Pyroelectric Infrared Sensing and Energy Harvesting  

E-Print Network (OSTI)

Pruvost, and D. Guyomar. Energy harvesting based on EricssonS. Pruvost, and G. Sebald. Energy harvesting based on FE-FEinfrared sensing and energy harvesting A Navid, C S Lynch

Navid, Ashcon; Lynch, Christopher S.; Pilon, Laurent

2010-01-01T23:59:59.000Z

31

Infrared Debonding  

abraded, allowing for preservation or reuse IR heating is instantaneous and rapid, shortening schedules Uses less energy than conventional methods,

32

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

33

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory,...

34

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2001-01-01T23:59:59.000Z

35

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2002-01-01T23:59:59.000Z

36

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

37

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

38

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

39

Techniques of evaluation of QCD low-energy physical quantities with running coupling with infrared fixed point  

E-Print Network (OSTI)

Perturbative QCD (pQCD) running coupling a(Q^2) (=alpha_s(Q^2)/pi) is expected to get modified at low spacelike momenta 0 1 GeV by nonperturbative (NP) terms, typically by some power-suppressed terms ~1/(Q^2)^N. Evaluations of low-energy physical QCD quantities in terms of such A(Q^2) couplings (with IR fixed point) at a level beyond one-loop are usually performed with (truncated) power series in A(Q^2). We argue that such an evaluation is not correct, because the NP terms in general get out of control as the number of terms in the power series increases. The series consequently become increasingly unstable under the variation of the renormalization scale, and have a fast asymptotic divergent behavior compounded by the renormalon problem. We argue that an alternative series in terms of logarithmic derivatives of A(Q^2) should be used. Further, a Pad\\'e-related resummation based on this series gives results which are renormalization scale independent and show very good convergence. Timelike low-energy observables can be evaluated analogously, using the integral transformation which relates the timelike observable with the corresponding spacelike observable.

Gorazd Cveti?

2013-09-06T23:59:59.000Z

40

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

42

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

43

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

44

Method of Detecting Infrared Energy  

uncooled, high speed, and portable (small, lightweight and lower power consumption). Inventor KISNER, ROGER A Engineering Science & Technology Div Licensing Contact

45

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

46

Energy and waste reduction in the wood fiber and fuel industry utilizing a long wave length catalytic infrared drying system. Progress report Number 3  

SciTech Connect

Following the testing of the Cat-Tec handling system, detail design work commenced both at the Catalytic Industrial Systems (CIS) Kansas facility and at the Cat-Tec offices in Minneapolis for the mating of the heating and handling system elements of the catalytic infrared particulate dryer. A used equipment looped handling system designed to feed and recirculate the test material was procured and shipped to CIS in anticipation of the on-site testing. Evaluation of the findings of the test results led the joint CIS-Cat-Tec design team to conclude that the unit to be provided to Lignetics for testing needed to have approximately 120 square feet of agitation bed and approximately 100 feet of infrared generation surfaces. The overall size was thus increased approximately 50% from the initial test unit.

Davis, R.

1998-01-15T23:59:59.000Z

47

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

48

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

49

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

50

Infrared Radiation Properties of CuO-ZnO-Based Sintered Material ...  

Science Conference Proceedings (OSTI)

Presentation Title, Infrared Radiation Properties of CuO-ZnO-Based Sintered Material Prepared for Energy-Saving Coating. Author(s), Chao Lian, Wei Wei, Hao...

51

Solar Infrared Photometer  

Science Conference Proceedings (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

52

Pilot aerial infrared roof top survey. Final report  

SciTech Connect

A summary is presented of a pilot aerial infrared roof top study conducted by the Minnesota Energy Agency. Infrared surveys of 27 Minnesota cities were conducted during the fall and winter of the 1976-1977 heating season. In addition, conventional daytime color photographs were taken of several cities. Film processing was done by the Environmental Protection Agency. The University of Minnesota conducted ground tests to verify the aerial infrared imagery. Thermograph dissemination centers were established in each city and training seminars and materials were prepared and delivered to dissemination center staff. A survey of homeowners who viewed their thermograph at a dissemination center were used to determine the energy savings resulting from the program. An Aerial Infrared Program Users Manual was prepared by the Energy Agency and the Remote Sensing Institute of Brookings, South Dakota.

1979-10-15T23:59:59.000Z

53

Mid?Infrared Spectral Diagnostics of Luminous Infrared Galaxies  

Science Conference Proceedings (OSTI)

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All?sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on?board Spitzer in the rest?frame wavelength range between 5 and 38 ?m. The GOALS sample enables a direct measurement of the relative contributions of star?formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large

A. Petric; The GOALS collaboration

2010-01-01T23:59:59.000Z

54

Energy and waste reduction in the wood fiber and fuel industry utilizing a long wave length catalytic infrared drying system. Progress report No.4, January 1--March 31, 1998  

SciTech Connect

During the past quarter significant headway was made on the project. The design and fabrication of the materials handling system by the subcontractor, Cat-Tech Industries, was completed in late January and was shipped in February to Catalytic Industrial System (CIS) Kansas facility. Unfortunately a part shipped directly from the manufacturer, for mating in Kansas to the unit, was determined to be the wrong size and nearly a month was lost in the process of ordering and receiving the correct parts. In early March the system was ready for agitation testing and performed perfectly. Design of the air circulation system was completed in late March and fabrication and installation of that element is expected to be completed this week (April 15--22). The insulation panels have been designed and ordered and are expected to be on site and ready for installation the last week of April. In a series of conference phone calls, it was decided to increase the amount of infrared energy input in Zone 1 (the first one-third of the 30 foot unit) of the dryer. These zones are presently being redesigned and fabricated and will likely be installed by the 10th of May. Product testing is expected to commence around the 15--20 of May. Work on the testing protocol was held in check while the discussion on increasing the total energy input was transpiring. It is scheduled to restart on or about May 1.

Davis, R.

1998-04-15T23:59:59.000Z

55

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

56

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

57

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

58

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

59

Infra-Red Process for Colour Fixation on Fabrics  

E-Print Network (OSTI)

Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for color fixation on fabrics. Shorter production cycles and energy saving are the main results.

Biau, D.; Raymond, D. J.

1983-01-01T23:59:59.000Z

60

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nano-Mechanical Infrared Detectors  

SciTech Connect

Infrared radiation (IR) is electromagnetic radiation with wavelengths between 0.7 m and 100 m. It extends from visible light to THz waves. Because fundamentally different phenomena can be observed within the IR region, four sub-bands are usually distinguished: near-IR (NIR), mid-wave-IR (MWIR), long-wave-IR (LWIR) and very long-wave-IR (VLWIR). Although somewhat different definitions exist in literature, wavelengths from 0.7 m to 2.5 m belong to NIR, from 2.5 m to 8 m belong to MWIR, from 8 m to 14 m belong to LWIR and wavelengths above 14 m belong to VLWIR. The IR photon energies range from 1.77 eV for 0.7 m photons to 0.0124 eV for 100 m photons. The significance and practical applications of IR detectors are related to two distinct phenomena: emission of electromagnetic waves by all objects at T > 0 K and interaction of electromagnetic waves with vibrational modes of molecular bonds. Thermal imaging and molecular spectroscopy are, respectively, the two major fields that critically depend on the ability to detect IR radiation.

Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott [Oak Ridge National Laboratory (ORNL); Hunt, Rodney Dale [ORNL; Datskos, Panos G [ORNL

2011-01-01T23:59:59.000Z

62

Thermal Scout Software - Energy Innovation Portal  

Energy Analysis Thermal ... Technology Marketing Summary. ... The software uses GPS data to automate infrared camera image capture and temperature ana ...

63

Tunable infrared source employing Raman mixing  

SciTech Connect

A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

1980-01-01T23:59:59.000Z

64

An infrared image of a dog, with warmest areas appearing the brightest.  

E-Print Network (OSTI)

sunlight, a roaring fire, a radiator or a warm sidewalk is infrared radiation. Although our eyes cannot see in space. Infrared astronomy is the art of measuring incredibly small values of thermal energy astronomers face the same problem when they try to detect heat from space. At room temperature

65

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

66

Wind-Driven Response of Ocean Surface Infrared Signals  

Science Conference Proceedings (OSTI)

In the course of archiving positions of the edge of the Loop Current from satellite infrared (IR) data, we have found a substantial amount of energy at periods in the wind-driven band. Using a technique patterned after that of Price et al., we ...

W. Sturges; S. Welsh

1990-12-01T23:59:59.000Z

67

Overlap of Solar and Infrared Spectra and the Shortwave Radiative Effect of Methane  

Science Conference Proceedings (OSTI)

This paper focuses on two shortcomings of radiative transfer codes commonly used in climate models. The first aspect concerns the partitioning of solar versus infrared spectral energy. In most climate models, the solar spectrum comprises ...

J. Li; C. L. Curry; Z. Sun; F. Zhang

2010-07-01T23:59:59.000Z

68

Mesoscale Spectra of Marss Atmosphere Derived from MGS TES Infrared Radiances  

Science Conference Proceedings (OSTI)

Wavenumber spectra of the atmospheric potential energy of Mars at mesoscales (wavelengths of 64957 km) were obtained as a function of latitude, season, and Martian year using infrared radiance data obtained by the Thermal Emission Spectrometer (...

Takeshi Imamura; Yasuhiro Kawasaki; Tetsuya Fukuhara

2007-05-01T23:59:59.000Z

69

Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots  

E-Print Network (OSTI)

The performance of short-wavelength infrared (SWIR) cameras in the visible and ultraviolet (UV) regions is limited by the absorption of high-energy photons in inactive regions of the imaging array. Dual-band UV-SWIR imaging ...

Geyer, Scott M.

70

Tunable Surface Plasmon Infrared Modulator - Energy Innovation ...  

Patent 8,009,356: Tunable surface plasmon devices A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation ...

71

Method of using infrared radiation for assembling a first component with a second component  

DOE Patents (OSTI)

A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

72

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents (OSTI)

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

73

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

74

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

75

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

76

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

77

Infrared Thermography Guide (Revision 3)  

Science Conference Proceedings (OSTI)

Costly equipment outages can be reduced by implementing a comprehensive predictive maintenance program. Infrared thermography (IR), a fundamental component of such programs, uses nonintrusive techniques to monitor the operating condition of equipment and components. This revised report provides updated information to assist utilities in implementing an effective IR program.

2002-05-30T23:59:59.000Z

78

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

79

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

80

Advanced far infrared detectors  

SciTech Connect

Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

Haller, E.E.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

82

Thermographic Inspections | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

being lost. Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. How Thermographic Inspections Work...

83

Energy Balance Models Incorporating Transport of Thermal and Latent Energy  

Science Conference Proceedings (OSTI)

Standard latitudinally resolved energy balance models describe conservation of energy on a sphere subject to solar heating, cooling by infrared radiation and diffusive redistribution of energy according to a Fourier type heat flow with flux ...

Brian P. Flannery

1984-02-01T23:59:59.000Z

84

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

85

Foreword for Non-Dispersive Infrared (NDIR) Gas Measurement Today  

Science Conference Proceedings (OSTI)

Infrared spectroscopy provides the analytical laboratory with essential capabilities to identify and to quantify components of gas mixtures in a relatively straightforward manner. Except for symmetric diatomic species, most molecules are 'IR active' that is, they absorb IR light at specific energies associated with that molecule's vibrational and rotation modes. Simple molecules have a few predominant absorption energies and are easy to identify, while more complicated molecules with many bonds have many absorption peaks. To cover the full range of possible absorption energies, laboratory instruments initially employed dispersive elements, typically gratings, to scan over the wavelengths of interest. Today, Fourier-transform infrared (FTIR) spectroscopy has replaced most dispersive IR spectrometry due to improvements in speed and the signal-to-noise ratio but at the expense of instrumental complexity. The impressive analytical power of IR spectroscopy can be distilled into a tiny sensor for a restricted, but nevertheless very useful, set of chemical vapors. Non-dispersive infrared (NDIR) sensors use bandpass filters to select one, or at most a few, energy bands corresponding absorption by carbon dioxide, water, hydrocarbons, etc. Although the concept is simple, the task has proved to be elusive for constructing an NDIR sensor that maintains its calibration in spite of aging and environmental factors. Over the past four decades, Dr. Wong has been on the quest to perfect NDIR sensing, yet in very practical designs. This book reflects his journey, and more recently that of his coauthor, to do just that.

Warmack, Robert J Bruce [ORNL

2012-01-01T23:59:59.000Z

86

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

87

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

88

Ferroelectric infrared detector and method  

DOE Patents (OSTI)

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

89

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

90

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

91

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

92

Infra-red signature neutron detector  

SciTech Connect

A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generating a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

93

Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven .  

E-Print Network (OSTI)

??A quantitative, model-based understanding of heat exchange in infrared and combined infrared-microwave heating of food inside an oven is developed. The research is divided into (more)

Frangipani Almeida, Marialuci

2004-01-01T23:59:59.000Z

94

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

95

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

96

Near-infrared spectroscopy. Innovative technology summary report  

Science Conference Proceedings (OSTI)

A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy`s (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program.

Not Available

1999-07-01T23:59:59.000Z

97

Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy  

Science Conference Proceedings (OSTI)

We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

2008-12-10T23:59:59.000Z

98

A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part I: Theory and Application  

Science Conference Proceedings (OSTI)

The calibration and accuracy of the Eppley precision infrared radiometer (PIR) is examined both theoretically and experimentally. A rederivation of the fundamental energy balance of the PIR indicates that the calibration equation in common use in ...

C. W. Fairall; P. O. G. Persson; E. F. Bradley; R. E. Payne; S. P. Anderson

1998-12-01T23:59:59.000Z

99

Visible and Infrared Optical Design for the ITER Upper Ports  

SciTech Connect

This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.

Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J

2007-03-01T23:59:59.000Z

100

Dirac charge dynamics in graphene by infrared spectroscopy  

Science Conference Proceedings (OSTI)

A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrdinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.

Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

2008-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared  

E-Print Network (OSTI)

We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of th...

da Cunha, Elisabete; Diaz-Santos, Tanio; Armus, Lee; Marshall, Jason A; Elbaz, David

2010-01-01T23:59:59.000Z

102

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

103

CenterPoint Energy (Gas)- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

CenterPoint Energy offers rebates on a variety of energy efficient equipment to its business customers in Minnesota. This includes boilers, furnaces, tune-ups, system controls, infrared heaters,...

104

Infrared emission from interplanetary dust  

Science Conference Proceedings (OSTI)

Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

1989-02-01T23:59:59.000Z

105

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

P. Huang; Yong-Chang Huang

2012-12-30T23:59:59.000Z

106

A Holographic Energy Model  

E-Print Network (OSTI)

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

Huang, P

2013-01-01T23:59:59.000Z

107

Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers  

DOE Patents (OSTI)

A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

Haller, Eugene E. (Berkeley, CA); Brundermann, Erik (Berlin, DE)

2000-01-01T23:59:59.000Z

108

NIST Transient resonant infrared spectroscopy  

Science Conference Proceedings (OSTI)

... 0.7 to 1 mJ pulsed output energy) for UV excitation and ... including dual-beam probe normalization to reduce spectral intensity fluctuations and IR ...

2013-04-01T23:59:59.000Z

109

SPECTRAL IRRADIANCE CALIBRATION IN THE INFRARED. XVII. ZERO-MAGNITUDE BROADBAND FLUX REFERENCE FOR VISIBLE-TO-INFRARED PHOTOMETRY  

Science Conference Proceedings (OSTI)

The absolutely calibrated infrared (IR) stellar spectra of standard stars described by Engelke et al. are being extended into the visible and will span a continuous wavelength range from {approx}0.35 {mu}m to 35.0 {mu}m. This paper, which is a continuation of the series on calibration initiated with Cohen et al., presents the foundation of this extension. We find that due to various irregularities Vega ({alpha} Lyr) is not suitable for its traditional role as the primary visible or near-infrared standard star. We therefore define a new zero-point flux that is independent of Vega and, as far as is feasible, uses measured spectral energy distributions (SEDs) and fluxes derived from photometry. The calibrated primary stars now underpinning this zero-point definition are 109 Vir in the visible and Sirius ({alpha} CMa) in the infrared. The resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also maintaining an unambiguous link to specific calibration stars, thus providing a pragmatic range of options for any researcher wishing to tie it to a given set of photometry.

Engelke, Charles W. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02135 (United States); Price, Stephan D.; Kraemer, Kathleen E. [Space Vehicle Directorate, Air Force Research Laboratory, 29 Randolph Road, Hanscom AFB, MA 01731 (United States)

2010-12-15T23:59:59.000Z

110

Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors  

DOE Patents (OSTI)

Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

1999-01-01T23:59:59.000Z

111

Science and applications of infrared semiconductor nanocrystals  

E-Print Network (OSTI)

In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

Geyer, Scott Mitchell

2010-01-01T23:59:59.000Z

112

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

113

NIST Infrared laser gonioreflectometer instrument (ILGRI)  

Science Conference Proceedings (OSTI)

... stable CO 2 , near infrared diode, and continuously tunable OPO PPLN lasers) and a ... from 1 nW to 1 W. The addition of other laser wavelengths in ...

2010-10-05T23:59:59.000Z

114

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

115

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

116

Session Z: Pb-Salt Infrared Materials  

Science Conference Proceedings (OSTI)

In order to demonstrate the advantages of this light coupling scheme, a two-color C-QWIP covering the two infrared atmospheric windows as well as a relatively...

117

Low-Temperature Calibration of Infrared Thermometers  

Science Conference Proceedings (OSTI)

A method was developed for calibrating infrared thermometers to properly measure target temperatures ranging from ?70 to 0C. Once calibrated for this range, the thermometer can then be used to measure the flux of thermal radiation from the sky. ...

B. A. Kimball; S. T. Mitchell

1984-12-01T23:59:59.000Z

118

Infrared Issues in Graviton Higgs Theory  

E-Print Network (OSTI)

We investigate the one-loop infrared behaviour of the effective potential in minimally coupled graviton Higgs theory in Minkowski background. The gravitational analogue of one loop Coleman Weinberg effective potential turns out to be complex, the imaginary part indicating an infrared instability. This instability is traced to a tachyonic pole in the graviton propagator for constant Higgs fields. Physical implications of this behaviour are studied. We also discuss physical differences between gauge theories coupled to Higgs fields and graviton Higgs theory.

Srijit Bhattacharjee; Parthasarathi Majumdar

2013-01-30T23:59:59.000Z

119

Comparing Optical and Near Infrared Luminosity Functions  

E-Print Network (OSTI)

The Sloan Digital Sky Survey [SDSS] has measured an optical luminosity function for galaxies in 5 bands, finding 1.5 to 2.1 times more luminosity density than previous work. This note compares the SDSS luminosity density to two recent determinations of the near infrared luminosity function based on 2MASS data, and finds that an extrapolation of the SDSS results gives a 2.3 times greater near infrared luminosity density.

Edward L. Wright

2001-02-02T23:59:59.000Z

120

About: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades Two photos side by side showing energy loss through the use of infrared technology. As part of a home energy evaluation, an energy professional can use an infrared camera to pinpoint where air leaks and drafts are occurring in your home or building. Although normally difficult to see, these infrared photos clearly show in color where energy losses are occurring in a typical house. How We Use Energy in Our Buildings How We Use Energy in Our Homes (% of Energy Consumption) A pie chart illustrating the following breakdown: Space heating 43%, space cooling 9.7%, water heating 17.1%, lighting 6.2%, refrigeration 3.9%, electronics 3%, wet cleaning 3.2%, cooking 3.1%, computers 1.6%. Source: 2010 Buildings Energy Data Book, Table 2.1.6

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy  

Site Map; Printable Version; Share this resource. Send a link to Full Size Image - Energy Innovation Portalto someone by E-mail; Share Full Size Image - Energy ...

122

CERECenter for Energy Resources Engineering Annual Report 2010  

E-Print Network (OSTI)

p failure to do this is sometimes called Tippett--before a graphite filter was installed and while there was a period of leaking fuel pins. However, at no time would calculations invalid. ... = fuelE of II( mi als powet plan1 radi( for E

Mosegaard, Klaus

123

Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Land Surface Emissivity in the Vicinity Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the vicinity of the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Central Facility (CF) in North Central Oklahoma. The UW-Madison LSE model is part of the ARM best

124

On the infrared freezing of perturbative QCD in the Minkowskian region  

E-Print Network (OSTI)

The infrared freezing of observables is known to hold at fixed orders of perturbative QCD if the Minkowskian quantities are defined through the analytic continuation from the Euclidean region. In a recent paper [1] it is claimed that infrared freezing can be proved also for Borel resummed all-orders quantities in perturbative QCD. In the present paper we obtain the Minkowskian quantities by the analytic continuation of the all-orders Euclidean amplitudes expressed in terms of the inverse Mellin transform of the corresponding Borel functions [2]. Our result shows that if the principle of analytic continuation is preserved in Borel-type resummations, the Minkowskian quantities exhibit a divergent increase in the infrared regime, which contradicts the claim made in [1]. We discuss the arguments given in [1] and show that the special redefinition of Borel summation at low energies adopted there does not reproduce the lowest order result obtained by analytic continuation.

Irinel Caprini; Jan Fischer

2005-05-03T23:59:59.000Z

125

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

126

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

127

Infrared light sources with semimetal electron injection  

DOE Patents (OSTI)

An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

128

The FourStar Infrared Camera  

E-Print Network (OSTI)

The FourStar infrared camera is a 1.0-2.5 micron (JHKs) near infrared camera for the Magellan Baade 6.5m telescope at Las Campanas Observatory (Chile). It is being built by Carnegie Observatories and the Instrument Development Group at Johns Hopkins and is scheduled for completion in 2009. The instrument uses four Teledyne HAWAII-2RG arrays that produce a 10.9 x 10.9 arcmin field of view. The outstanding seeing at the Las Campanas site coupled with FourStar's high sensitivity and large field of view will enable many new survey and targeted science programs.

S. E. Persson; Robert Barkhouser; Christoph Birk; Randy Hammond; Albert Harding; E. R. Koch; J. L. Marshall; Patrick J. McCarthy; David Murphy; Joe Orndorff; Gregg Scharfstein; Stephen A. Shectman; Stephen Smee; Alan Uomoto

2008-07-24T23:59:59.000Z

129

Infrared Heating of Hydrogen Layers in Hohlraums  

DOE Green Energy (OSTI)

The authors report results of modeling and experiments on infrared heated deuterium-hydride (HD) layers in hohlraums. A 2 mm diameter, 40 {micro}m thick shell with 100-400 {micro}m thick HD ice inside a NIF scale-1 gold hohlraum with 1-3 {micro}m rms surface roughness is heated by pumping the HD vibrational bands. Models indicate control of the low-mode layer shape by adjusting the infrared distribution along the hohlraum walls. They have experimentally demonstrated control of the layer symmetry perpendicular to the hohlraum axis.

Kozioziemski, B J; McEachern, R L; London, R A; Bitter, D N

2001-08-15T23:59:59.000Z

130

Energy  

Science Conference Proceedings (OSTI)

Energy. Summary: Key metrologies/systems: Scanning tunneling microscopy and one- and two-photon photoemission/Model ...

2012-10-02T23:59:59.000Z

131

Energy  

Home. Site Map; Printable Version; Share this resource. About; Search; Categories (15) Advanced Materials; Biomass and Biofuels; Building Energy Efficiency ...

132

Infrared Properties of z=7 Galaxies from Cosmological Simulations  

E-Print Network (OSTI)

Three-dimensional panchromatic dust radiative transfer calculations are performed on a set of 198 galaxies of stellar masses in the range 5x10^8-3x10^10 Msun from a cosmological hydrodynamic simulation (resolved at 29pc/h) at z=7. In a companion paper (Kimm & Cen), the stellar mass and UV luminosity functions, and UV-optical and FUV-NUV colors are shown to be in good agreement with observations, if an SMC-type dust extinction curve is adopted. Here we make useful predictions, self-consistently, of the infrared properties of these z=7 simulated galaxies that can be confronted with upcoming ALMA data. Our findings are as follows. (1) The effective radius in the rest-frame MIPS 70 micron band is in the range of 80-400pc proper for z=7 galaxies with L_FIR=10^{11.3-12}Lsun. (2) The median of the peak wavelength of the far-infrared (FIR) spectral energy distribution is in the range of 45-60 micron, depending on the dust-to-metal ratio. (3) For star formation rate in the range 3-100 Msun/yr the median FIR to bol...

Cen, Renyue

2013-01-01T23:59:59.000Z

133

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals  

Science Conference Proceedings (OSTI)

Comparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch ...

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias M. Schreier; Richard A. Frey

2011-05-01T23:59:59.000Z

134

Noise reduction efforts for the ALS infrared beamlines  

E-Print Network (OSTI)

is being commissioned at the ALS that should help quietalso has links to the main ALS Infrared Website, where PDFsNoise reduction efforts for the ALS infrared beamlines Tom

2003-01-01T23:59:59.000Z

135

Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms  

Science Conference Proceedings (OSTI)

The development of a combined infrared and passive microwave satellite rainfall estimation technique is outlined. Infrared data from geostationary satellites are combined with polar-orbiting passive microwave estimates to provide 30-min rainfall ...

Chris Kidd; Dominic R. Kniveton; Martin C. Todd; Tim J. Bellerby

2003-12-01T23:59:59.000Z

136

Infrared Brightness Temperature of Mars, 1983-2103  

E-Print Network (OSTI)

The predicted infrared brightness temperature of Mars using the 1976 model of Wright is tabulated here for the period 1983 to 2103. This model was developed for far-infrared calibration, and is still being used for JCMT calibration.

E. L. Wright

2007-03-25T23:59:59.000Z

137

Infrared Quantum Dots** By Edward H. Sargent*  

E-Print Network (OSTI)

increasingly on mastery of the infrared spectral region. Fiber-optic communications systems rely on the low's progress in visible-light-emitting colloidal-quantum-dot synthesis, physical chemistry, and devices on applications and devices. The applications of interest surveyed include monolithic integration of fiber-optic

138

MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS  

Science Conference Proceedings (OSTI)

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

Xia, X. Y.; Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Gao, Y.; Tan, Q. H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mao, S. [National Astronomical Observatories of China, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Omont, A. [Institut d'Astrophysique de Paris, UMR7095, UPMC and CNRS, 98bis boulevard Arago, F-75014 Paris (France); Flaquer, B. O.; Leon, S. [Instituto de Radioastronomia Milimetrica (IRAM), Avenida Divina Pastora 7, Nucleo Central, 18012 Granada (Spain); Cox, P., E-mail: xyxia@bao.ac.cn [Institut de Radio Astronomie Millimetrique (IRAM), F-38406 St. Martin d'Heres (France)

2012-05-10T23:59:59.000Z

139

SiGeC Near Infrared Photodetectors  

E-Print Network (OSTI)

A near infrared waveguide photodetector in Si-based ternary Si???x??yGexCy alloy was demonstrated for 0.85~1.06 m wavelength fiber-optic interconnection system applications. Two sets of detectors with active absorption ...

Li, Baojun

140

Shortwave Infrared Spectroradiometer for Atmospheric Transmittance Measurements  

Science Conference Proceedings (OSTI)

The use of a shortwave infrared (SWIR) spectroradiometer as a solar radiometer is presented. The radiometer collects 1024 channels of data over the spectral range of 1.12.5 ?m. The system was tested by applying the Langley method to data ...

M. Sicard; K. J. Thome; B. G. Crowther; M. W. Smith

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Comparison of Infrared Light Emitting Diodes (IR-LED) versus Infrared  

E-Print Network (OSTI)

B. Characteristics of a typical IR LED analogous to the typeLight Emitting Diodes (IR-LED) versus Infrared Helium-Neon (light emitting diode (IR-LED) to quantitatively measure fuel

Girard, James W.; Bogin, Gregory E; Mack, John Hunter; Chen, J-Y; Dibble, Rober W

2005-01-01T23:59:59.000Z

142

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

143

A multimedia museum guide system with instant infrared communication  

Science Conference Proceedings (OSTI)

In this paper, we describe a prototype of an multimedia guide system that use instant infrared communication to get the multimedia contents and play the contents based on the operation of the users. The portable guide device is conposed of an infrared ... Keywords: guide system, infrared, uubiquitous computing, wireless communication

Dawei Cai

2008-03-01T23:59:59.000Z

144

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Energy Express Licensing Accelerator-Driven Transmutation Of Spent Fuel Elements Express Licensing Acid-catalyzed dehydrogenation of amine-boranes Express Licensing Air Breathing Direct Methanol Fuel Cell Express Licensing Aligned Crystalline Semiconducting Film On A Glass Substrate And Method Of Making Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Apparatus for Producing Voltage and Current Pulses Express Licensing Biaxially oriented film on flexible polymeric substrate Express Licensing Corrosion Test Cell For Bipolar Plates Express Licensing Device for hydrogen separation and method Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing

145

Energy  

Science Conference Proceedings (OSTI)

There has been a significant progress in converting solar energy using silicon technology to replace fossil fuels. However, its high cost of production has led...

146

Energy  

Efficient, Low-cost Microchannel Heat Exchanger. Return to Marketing Summary. Skip footer navigation to end of page. ... Energy Innovation Portal on Facebook;

147

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

energy, including Fundamental advances in nuclear fuels Nonproliferation safeguards Reactor concepts Reactor waste disposition Animation of new reactor concept for deep space...

148

INTRODUCTION Progress among the various techniques for rapid  

E-Print Network (OSTI)

across the wafer and repeatability from wafer to wafer. Multiple lamp systems use arrayed temper- ature is determined by infrared-based optical pyrometers that incorporate systems for measuring wafer radi- ance encountered in processed Si wafers. Infrared pyrometry systems typically operate in the wavelength range of 0

Fiory, Anthony

149

Energy 101: Home Energy Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Assessment Home Energy Assessment Energy 101: Home Energy Assessment Addthis Description A home energy checkup helps owners determine where their house is losing energy, money and how such problems can be corrected to make the home more energy efficient. A professional technician, often called an energy auditor, can give your home a checkup. You can also do some of the steps yourself. This video includes examples of examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera to detect leaks. Duration 3:31 Topic Tax Credits, Rebates, Savings Home Energy Audits Energy Sector Jobs Education & Training Credit Energy Department Video MR. : In any season a leaky home costs money. How do you stop it? It starts with a comprehensive home energy checkup. That's a

150

Energy 101: Home Energy Checkup (Text Version) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Home Energy Checkup (Text Version) Energy 101: Home Energy Checkup (Text Version) Energy 101: Home Energy Checkup (Text Version) April 2, 2012 - 5:25pm Addthis Energy 101: Home Energy Checkup (Text Version) Below is the text version for the Home Energy Checkup 101 video. The video opens with "Energy 101: Home Energy Checkup." A computer-generated image shows money flying out of the windows of a house. In any season, a leaky home costs money. How do you stop it? It starts with a comprehensive home energy checkup. The video switches to a shot of an inspector walking through a house and doing various tasks: reading an infrared gage, putting on a mask, checking the insulation, checking wiring in the attic, checking lighting fixtures. That's a series of tests and inspections to find out where your house could

151

THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG  

SciTech Connect

With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

Debes, John H.; Leisawitz, David T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoard, D. W. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Wachter, Stefanie [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cohen, Martin [Monterey Institute for Research in Astronomy, Marina, CA 93933 (United States)

2011-12-01T23:59:59.000Z

152

FAR-INFRARED PROPERTIES OF TYPE 1 QUASARS  

SciTech Connect

We use the Spitzer Space Telescope Enhanced Imaging Products and the Spitzer Archival Far-InfraRed Extragalactic Survey to study the spectral energy distributions (SEDs) of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the Two Micron All Sky Survey, we are able to construct a statistically robust rest-frame 0.1-100 {mu}m type 1 quasar template. We find that the quasar population is well-described by a single power-law SED at wavelengths less than 20 {mu}m, in good agreement with previous work. However, at longer wavelengths, we find a significant excess in infrared luminosity above an extrapolated power-law, along with significant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 {mu}m.

Hanish, D. J.; Teplitz, H. I.; Capak, P.; Desai, V.; Armus, L.; Brinkworth, C.; Brooke, T.; Colbert, J.; Fadda, D.; Noriega-Crespo, A.; Paladini, R. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 E California Blvd., Pasadena, CA 91125 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Huynh, M. [International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, WA 6009 (Australia); Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Murphy, E. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Shenoy, S., E-mail: hanish@ipac.caltech.edu [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States)

2013-05-01T23:59:59.000Z

153

Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud  

E-Print Network (OSTI)

The infrared (IR) emission from interstellar dust in the Small Magellanic Cloud (SMC) is modelled using a mixture of amorphous silicate and carbonaceous grains, including a population of polycyclic aromatic hydrocarbon (PAH) molecules. (1) It is shown that this dust model is able to reproduce the spectral energy distribution from near-IR to far-IR for the entire SMC Bar region, provided the PAH abundance in the SMC Bar region is very low. (2) The IR spectrum of the SMCB1#1 molecular cloud can also be reproduced by our dust model provided the PAH abundance is increased relative to the overall SMC Bar. The PAHs in SMCB1#1 incorporate ~3% of the SMC C abundance, compared to environmental conditions. Other possibilities such as super-hydrogenation of PAHs and softening of the starlight spectrum are also discussed.

Aigen Li; B. T. Draine

2001-12-05T23:59:59.000Z

154

Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization » Home Energy Audits Weatherization » Home Energy Audits Home Energy Audits A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician -- often called an energy auditor -- can give your home a checkup. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera. Learn more about a professional home energy audit. A home energy audit, also known as a home energy assessment, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you

155

Posters Long-Pathlength Infrared Absorption Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 µm, this absorption can be attributed primarily to water vapor. It consists of 1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the υ 2 rovibrational band (at the high-wavenumber boundary of the window); and 2) the

156

Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers  

E-Print Network (OSTI)

We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.

Morishita, T; Chen, Z; Lin, C D

2007-01-01T23:59:59.000Z

157

Analysis of the SIAM Infrared Acquisition System  

SciTech Connect

This report describes and presents the results of an analysis of the performance of the infrared acquisition system for a Self-Initiated Antiaircraft Missile (SIAM). A description of the optical system is included, and models of target radiant intensity, atmospheric transmission, and background radiance are given. Acquisition probabilities are expressed in terms of the system signal-to-noise ratio. System performance against aircraft and helicopter targets is analyzed, and background discrimination techniques are discussed. 17 refs., 22 figs., 6 tabs.

Varnado, S.G.

1974-02-01T23:59:59.000Z

158

THE INFRARED COLORS OF THE SUN  

Science Conference Proceedings (OSTI)

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

2012-12-10T23:59:59.000Z

159

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

160

Infrared Sky Brightness Monitors for Antarctica  

E-Print Network (OSTI)

. Two sky brightness monitorsone for the near-infrared and one for the mid-infraredhave been developed for site survey work in Antarctica. The instruments, which we refer to as the NISM (Near-Infrared Sky Monitor) and the MISM (Mid-Infrared Sky Monitor), are part of a suite of instruments being deployed in the Automated Astrophysical Site-Testing Observatory (AASTO). The chief design constraints include reliable, autonomous operation, low power consumption, and of course the ability to operate under conditions of extreme cold. The instruments are currently operational at the Amundsen-Scott South Pole Station, prior to deployment at remote, unattended sites on the high antarctic plateau. 1. INTRODUCTION The antarctic plateau is recognized as having the potential to provide some of the best astronomical observing conditions on earth (see, e.g., Burton et al. 1994). Almost all the site testing to date has been carried out at the South Pole, where it has already been demonstrated t...

Storey Ashley Boccas; J. W. V. Storey; M. C. B. Ashley; M. Boccas; M. A. Phillips; A. E. T. Schinckel

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Home Energy Assessments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Assessments Energy Assessments Home Energy Assessments Addthis Description A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Speakers Jason Dispenza Duration 1:44 Topic Home Weatherization Home Energy Audits Consumption Credit Energy Department Video MR. : Core to any energy audit, you've got a blower door test; an infrared camera scan; combustion safety testing for homes with gas

162

Energy  

Office of Legacy Management (LM)

..) ".. ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information related to the Milwaukee Ai.rport site in your jurisdiction that performed work, for DOE orits predecessor agencies. information; use, and retention. ., This information .is provided for your '/ ,' DOE's Formerly Utilized Sites Remedial:'Action~'Prog&is responsible for ,"'

163

Energy 101: Home Energy Checkup (Text Version) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Home Energy Checkup (Text Version) 101: Home Energy Checkup (Text Version) Energy 101: Home Energy Checkup (Text Version) April 2, 2012 - 5:25pm Addthis Energy 101: Home Energy Checkup (Text Version) Below is the text version for the Home Energy Checkup 101 video. The video opens with "Energy 101: Home Energy Checkup." A computer-generated image shows money flying out of the windows of a house. In any season, a leaky home costs money. How do you stop it? It starts with a comprehensive home energy checkup. The video switches to a shot of an inspector walking through a house and doing various tasks: reading an infrared gage, putting on a mask, checking the insulation, checking wiring in the attic, checking lighting fixtures. That's a series of tests and inspections to find out where your house could

164

Non-destructive component separation using infrared radiant energy  

jar 42 and the combustion control device 44 of the embodiment of FIG. 3. An assembly 60 of components is disposed in the quartz bell jar 42 of FIG. 4.

165

Infrared Images of Shock-Heated Tin  

Science Conference Proceedings (OSTI)

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

166

Infrared Emission from the Nearby Cool Core Cluster Abell 2597  

E-Print Network (OSTI)

We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.

Megan Donahue; Andres Jordan; Stefi A. Baum; Patrick Cote; Laura Ferrarese; Paul Goudfrooij; Duccio Macchetto; Christopher P. O'Dea; James E. Pringle; James E. Rhoads; William B. Sparks; G. Mark Voit

2007-08-10T23:59:59.000Z

167

Nanosecond Mid-Infrared Detection for Pulse Radiolysis  

DOE Green Energy (OSTI)

Pulse radiolysis, utilizing electron pulses from accelerators, is the definitive method for adding single positive or negative charges to molecules. It is also among the most effective means for creating free radicals. Such species are particularly important in applications such as redox catalysis relevant to solar energy conversion and advanced nuclear energy systems. Coupled with fast UV-visible detection, pulse radiolysis has become an extremely powerful method for monitoring the kinetics of the subsequent reactions of these species on timescales ranging from picoseconds to seconds. However, in many important contexts the radicals formed are difficult to identify due to their broad and featureless UV-visible absorption spectra. Time-resolved infrared (TRIR) absorption spectroscopy is a powerful structural probe of short-lived intermediates, which allows multiple transient species to be clearly identified and simultaneously monitored in a single process. Unfortunately, due to technical challenges the coupling of fast (sub-millisecond) TRIR with pulse radiolysis has received little attention, being confined to gas-phase studies. Taking advantage of recent developments in mid-IR laser technology, we have recently begun developing nanosecond TRIR detection methodologies for condensed-phase samples at our Laser Electron Accelerator Facility (LEAF). The results of preliminary pulse radiolysis-TRIR investigations on the formation of the one-electron reduced forms of CO{sub 2} reduction catalysts (e.g. see above) and their interactions with CO{sub 2} will be presented.

Grills,D.C.; Preses, J.M.; Wishart, J.F.; Cook, A.R.

2009-07-12T23:59:59.000Z

168

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

169

Testing and Deployment of an Infrared Thermometer Network at...  

NLE Websites -- All DOE Office Websites (Extended Search)

four user- definable field-of-view retrievals centered on zenith * Ferroelectric thermal infrared detector does not need cryogenic cooling * Detector is resistant to...

170

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager  

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager ... The field emission current of each cesiated carbon nanoflake structure is modulated by the

171

First Principles Simulations of the Infrared Spectrum of Liquid...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared spectra. These important findings suggest that through the use of high-performance computing, we can improve our predictive power of aqueous environments. Prof. Galli...

172

a prospective for new mid-infrared medical endoscopy  

Science Conference Proceedings (OSTI)

It is shown that chalcogenide glass fiberoptics could underpin new mid-infrared medical endoscopic systems for real-time molecular sensing, imaging and...

173

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

174

Application Of High-Resolution Thermal Infrared Sensors For Geothermal...  

Open Energy Info (EERE)

Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

175

Infrared Imagery Applied to A Large Buoyant Plume  

Science Conference Proceedings (OSTI)

The possibility of applying infrared imagery to the study of a large, hot plume materialized by carbon particles resulting from the incomplete combustion of fuel oil is investigated.

J-M. Brustet; B. Benech; P. Waldteufel

1981-05-01T23:59:59.000Z

176

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

177

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H. Churnside, and J. B....

178

Near Infrared Heating and Sintering; A Versatile Tool to Enable ...  

Science Conference Proceedings (OSTI)

A single heating technique (near infrared (NIR)) can bring down oven residence times to seconds. Five examples in relation to HOPV production are: (1) TiO2...

179

Laboratory Procedures for using Infrared Thermography to Validate...  

NLE Websites -- All DOE Office Websites (Extended Search)

925 Laboratory Procedures for using Infrared Thermography to Validate Heat Transfer Models Daniel Trler, Brent T. Griffith, and Dariush K. Arasteh Lawrence Berkeley National...

180

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Progressive Powder Coating: New Infrared Curing Oven at Metal Finishing Plant Increases Production by 50%  

SciTech Connect

Progressive Powder Coating in Mentor, Ohio, is a metal finishing plant that uses a convection oven in its manufacturing process. In an effort to save energy and improve production, the company installed an infrared oven in between the powder coating booth and the convection oven on its production line. This installation allowed the plant to increase its conveyor line speed and increase production by 50 percent. In addition, the plant reduced its natural gas consumption, yielding annual energy savings of approximately$54,000. With a total project cost of$136,000, the simple payback is 2.5 years.

Not Available

2003-05-01T23:59:59.000Z

182

Energy 101: Home Energy Checkup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Checkup Home Energy Checkup Energy 101: Home Energy Checkup Addthis Below is the text version for the Home Energy Checkup 101 video. The video opens with "Energy 101: Home Energy Checkup." A computer-generated image shows money flying out of the windows of a house. In any season, a leaky home costs money. How do you stop it? It starts with a comprehensive home energy checkup. The video switches to a shot of an inspector walking through a house and doing various tasks: reading an infrared gage, putting on a mask, checking the insulation, checking wiring in the attic, checking lighting fixtures. That's a series of tests and inspections to find out where your house could be more efficient. The end goal is to save energy, save money, and make your house more

183

Vibrational Infrared Lifetime of the Anesthetic nitrous oxide gas in solution  

E-Print Network (OSTI)

The lifetime of the asymmetric fundamental stretching 2218 cm$^{-1}$ vibration of the anesthetic gas nitrous oxide (N$_2$O) dissolved in octanol and olive oil is reported. These solvents are model systems commonly used to assess anesthetic potency. Picosecond time-scale molecular dynamics simulations have suggested that protein dynamics or membrane dynamics play a role in the molecular mechanism of anesthetic action. Ultrafast infrared spectroscopy with 100 fs time resolution is an ideal tool to probe dynamics of anesthetic molecules on such timescales. Pump-probe studies at the peak of the vibrational band yield a lifetime of $55 \\pm 1$ ps in olive oil and $52 \\pm 1 ps$ in octanol. The similarity of lifetimes suggests that energy relaxation of the anesthetic is determined primarily by the hydrophobic nature of the environment, consistent with models of anesthetic action. The results show that nitrous oxide is a good model system for probing anesthetic-solvent interactions using nonlinear infrared spectroscop...

Chieffo, Logan; Shattuck, Jeffrey; Hong, Mi K; Ziegler, Lawrence; Erramilli, Shyamsunder

2006-01-01T23:59:59.000Z

184

Interferometric measurement of melt depth in silicon using femtosecond infrared Cr:forsterite laser  

SciTech Connect

Interferometric microscopy technique combined with high power infrared Cr:forsterite laser system was applied to investigate femtosecond laser induced melting of silicon. Optically polished wafer of single crystalline silicon of 400 {mu}m thickness was irradiated with 100 fs pump pulses at second harmonic wavelength of 620 nm. We used infrared probe pulses at main wavelength of 1240 nm, whose photon energy was less than the band gap width E{sub g} = 1.12eV of silicon, and the penetration depth of probe essentially exceeded the sample thickness. Unlike many previous experiments with Ti:sapphire lasers it allowed us to probe the heated area from the rear side of the sample and obtain the data on melt depth after laser irradiation.

Ashitkov, Sergey I.; Ovchinnikov, Andrey V.; Agranat, Mikhail B. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation)

2012-07-30T23:59:59.000Z

185

State energy drive toward greater energy independence  

SciTech Connect

Part two of a state-by-state review of grassroots energy conservation developments covers a local energy center at the St. Louis, Missouri library, 10 regional energy management and information centers in Pennsylvania, and a house doctor program of home energy audits in Pierre, South Dakota. Pierre homeowners may have an infrared scan, but must agree to implement at least some of the conservation recommendations to get the free service. South Dakota also has a pilot program to dispense alternate fuel and conservation information in Clay County and a television series designed to teach homeowners conservation techniques. (DCK)

1981-07-01T23:59:59.000Z

186

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)

2006-03-21T23:59:59.000Z

187

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)

2006-12-12T23:59:59.000Z

188

Apparatus and method for transient thermal infrared spectrometry  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1991-12-03T23:59:59.000Z

189

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION  

E-Print Network (OSTI)

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION Yingying Li , Wei Computational and Applied Mathematics, Rice University ABSTRACT Early detection of oil spill events is the key in detecting the early onset of a small-scale oil spill event. Based on an infrared oil-water contrast model

Yin, Wotao

190

Guideline for Developing and Managing an Infrared Thermography (IRT) Program  

Science Conference Proceedings (OSTI)

The Guideline for Developing and Managing an Infrared Thermography Program is an extension of a number of reports addressing the use and benefits of infrared thermography (IRT) as a diagnostic tool. This document expands on more of the technology's intricacies, as well as defining procedures for setting up a comprehensive IRT program.

2001-09-27T23:59:59.000Z

191

Infrared NDT methods applied to solar cell and panel characterization  

DOE Green Energy (OSTI)

Infrared nondestructive testing (NDT) methods are described that have a good potential for providing valuable data concerning solar cell or panel characteristics without requiring contact with the photovoltaic device. Preliminary tests with cells and panels were conducted and the infrared NDT results are presented and discussed. (MHR)

Green, D. R.; Olsen, L. C.

1978-10-20T23:59:59.000Z

192

Minutiae feature analysis for infrared hand vein pattern biometrics  

Science Conference Proceedings (OSTI)

This paper proposes a novel technique to analyze the infrared vein patterns in the back of the hand for biometric purposes. The technique utilizes the minutiae features extracted from the vein patterns for recognition, which include bifurcation points ... Keywords: Biometrics, Infrared, Minutiae, Vein pattern

Lingyu Wang; Graham Leedham; David Siu-Yeung Cho

2008-03-01T23:59:59.000Z

193

Compound parabolic concentrators for narrowband wireless infrared receivers  

E-Print Network (OSTI)

Compound parabolic concentrators for narrowband wireless infrared receivers Keang-Po Ho Joseph M and hollow compound parabolic concentrators (CPCs), for use in free-space infrared communication receivers terms: compound parabolic concentrators (CPCs); optical bandpass fil- ters; Monte Carlo ray tracing

Kahn, Joseph M.

194

Hybrid Infrared and Visible Light Projection for Location Tracking  

E-Print Network (OSTI)

-output light emitting diodes. Figure 5. Inside our projector: A) LED light source B) culminating lens C) DMD for application content. In [4], Nii et al. created an infrared projector prototype using discrete light emitting diodes (LEDs). The projection lens focused directly onto the LED array creating a low resolution infrared

Olsen Jr., Dan R.

195

Infrared and Visible Satellite Rain Estimation. Part II: A Cloud Definition Approach  

Science Conference Proceedings (OSTI)

This study examines the relationships between satellite infrared clouds and rainfall, and infrared-threshold visible clouds and rainfall. Clouds are defined by the outline of the 253 K isotherm. Cloud infrared area was highly correlated with rain ...

Andrew J. Negri; Robert F. Adler

1987-11-01T23:59:59.000Z

196

Information Content of Infrared Satellite Sounding Measurements with Respect to CO2  

Science Conference Proceedings (OSTI)

Information theory is used to study the capabilities of the new-generation satellite infrared sounders [Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI)] for retrieving atmospheric carbon dioxide (CO2) ...

R. J. Engelen; G. L. Stephens

2004-02-01T23:59:59.000Z

197

Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared  

Open Energy Info (EERE)

Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): K. Watson Published: Proceedings of the ninth international symposium on remote sensing of environment, April 15-19, p. 1919-1932., 1974 Document Number: Unavailable DOI: Unavailable Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Reconnaissance_From_Quantitative_Analysis_Of_Thermal_Infrared_Imagery&oldid=387504" Category:

198

Geothermal Exploration with Visible through Long Wave Infrared Imaging  

Open Energy Info (EERE)

with Visible through Long Wave Infrared Imaging with Visible through Long Wave Infrared Imaging Spectrometers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration with Visible through Long Wave Infrared Imaging Spectrometers Abstract Surface minerals of active geothermal systems have been mapped using visible-short wave infrared and mid wave and long wave imaging spectrometers separately. May and June 2008, the Prospectir sensor and SEBASS (Spatially Enhanced Broadband Array Spectrograph System) were located on together on a roll compensated mount viewing through the same camera port in a Twin Otter. These two imaging spectrometers have similar Instantaneous Fields of View (IFOV) and together collect over 600 channels of spectral information from the visible to the long wave infrared.

199

INFRARED ABSORPTION SPECTROSCOPY AND CHEMICAL KINETICS OF FREE RADICALS  

NLE Websites -- All DOE Office Websites (Extended Search)

mNAL PERFORMANCE REPORT mNAL PERFORMANCE REPORT for INFRARED ABSORPTION SPECTROSCOPY AND CHEMICAL KINETICS OF FREE RADICALS DE-FG05-85ER13439 1-AUG-1985 to 31-JUL-1994 Robert F. Curl and Graham P. Glass Principal Investigators Introduction This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then

200

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Automated Spot Weld Inspection using Infrared Thermography  

Science Conference Proceedings (OSTI)

An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

202

Spatial resolution limits for synchrotron-based infrared spectromicroscopy  

SciTech Connect

Detailed spatial resolution tests were performed on beamline 1.4.4 at the Advanced Light Source synchrotron facility in Berkeley, CA. The high-brightness synchrotron source is coupled at this beamline to a Thermo-Electron Continumum XL infrared microscope. Two types of resolution tests in both the mid-IR (using a KBr beamsplitter and an MCT-A* detector) and in the near-IR (using a CaF2 beamsplitter and an InGaAS detector) were performed and compared to a simple diffraction-limited spot size model. At the shorter wavelengths in the near-IR the experimental results begin to deviate from only diffraction-limited. The entire data set is fit using a combined diffraction-limit and demagnified electron beam source size model. This description experimentally verifies how the physical electron beam size of the synchrotron source demagnified to the sample stage on the endstation begins to dominate the focussed spot size and therefore spatial resolution at higher energies. We discuss how different facilities, beamlines, and microscopes will affect the achievable spatial resolution.

Levenson, Erika; Lerch, Philippe; Martin, Michael C.

2007-10-15T23:59:59.000Z

203

High-Density Infrared Surface Treatments of Refractories  

SciTech Connect

Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

Tiegs, T.N.

2005-03-31T23:59:59.000Z

204

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2012 5, 2012 Training Your Thermostat to Save Money... and Energy! While at work, sleeping or on a summer vacation, if you set the temperature up for eight per day, you will see significant energy-cost savings. June 25, 2012 Thermographic Inspections Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. June 25, 2012 A view of one of the aisles of racks that hold Sequoia's 1.6 million cores. Its 16.32 sustained petaflops and 1.6 petabytes of memory make it the world's fastest supercomputer. | Photo courtesy of Lawrence Livermore National Laboratory. Sequoia Ranked as Fastest Supercomputer in the World With 1.6 million cores and 1.6 petabytes of memory, Sequoia takes the title for the fastest supercomputer on the planet.

205

Tunable Infrared Absorption and Visible Transparency of ...  

parent conducting oxide (TCO), indium tin oxide (ITO).1 At ... and dye-sensitized solar cells, ... energy-dispersive X-ray spectroscopy ...

206

Visible/infrared radiometric calibration station  

Science Conference Proceedings (OSTI)

We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W. [Los Alamos National Lab., NM (United States); O`Brian, T.R. [National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Radiometric Physics Div.

1994-07-01T23:59:59.000Z

207

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

Ryan T. Kristensen; John F. Beausang; David M. DePoy

2003-12-01T23:59:59.000Z

208

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

RF Kristensen; JF Beausang; DM DePoy

2004-06-28T23:59:59.000Z

209

Very Large Array Observations of Ammonia in Infrared-Dark Clouds II: Internal Kinematics  

E-Print Network (OSTI)

Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope (GBT) and Very Large Array (VLA) maps of ammonia (NH3) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH3 emission are not high velocity outflows but rather moderate (few km/s) increases in the line width that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These line width enhancements could be the result of infall or (hidden in NH3 emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We co...

Ragan, Sarah E; Bergin, Edwin A; Wilner, David

2012-01-01T23:59:59.000Z

210

Probing brain oxygenation with near infrared spectroscopy  

E-Print Network (OSTI)

The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somanetics's INVOS Brain Oximeter (IBO) and Toomim's HEG spectrophotometer. The performances of both devices were compared including their merits and draw...

Gersten, Alexander; Raz, Amir; Fried, Robert

2011-01-01T23:59:59.000Z

211

Quantitative infrared analysis of hydrogen fluoride  

SciTech Connect

This work was performed at the Portsmouth Gaseous Diffusion Plant where hydrogen fluoride is produced upon the hydrolysis of UF{sub 6}. This poses a problem for in this setting and a method for determining the mole percent concentration was desired. HF has been considered to be a non-ideal gas for many years. D. F. Smith utilized complex equations in his HF studies in the 1950s. We have evaluated HF behavior as a function of pressure from three different perspectives. (1) Absorbance at 3877 cm{sup -1} as a function of pressure for 100% HF. (2) Absorbance at 3877 cm{sup -1} as a function of increasing partial pressure HF. Total pressure = 300 mm HgA maintained with nitrogen. (3) Absorbance at 3877 cm{sup -1} for constant partial pressure HF. Total pressure is increased to greater than 800 mm HgA with nitrogen. These experiments have shown that at partial pressures up to 35mm HgA, HIF follows the ideal gas law. The absorbance at 3877 cm{sup -1} can be quantitatively analyzed via infrared methods.

Manuta, D.M.

1997-04-01T23:59:59.000Z

212

Infrared Transmission Spectra for Extrasolar Giant Planets  

E-Print Network (OSTI)

Among the hot Jupiters that transit their parent stars known to date, the two best candidates to be observed with transmission spectroscopy in the mid-infrared (MIR) are HD189733b and HD209458b, due to their combined characteristics of planetary density, orbital parameters and parent star distance and brightness. Here we simulate transmission spectra of these two planets during their primary eclipse in the MIR, and we present sensitivity studies of the spectra to the changes of atmospheric thermal properties, molecular abundances and C/O ratios. Our model predicts that the dominant species absorbing in the MIR on hot Jupiters are water vapor and carbon monoxide, and their relative abundances are determined by the C/O ratio. Since the temperature profile plays a secondary role in the transmission spectra of hot Jupiters compared to molecular abundances, future primary eclipse observations in the MIR of those objects might give an insight on EGP atmospheric chemistry. We find here that the absorption features caused by water vapor and carbon monoxide in a cloud-free atmosphere, are deep enough to be observable by the present and future generation of space-based observatories, such as Spitzer Space Telescope and James Webb Space Telescope. We discuss our results in light of the capabilities of these telescopes.

G. Tinetti; M. C. Liang; A. Vidal-Madjar; D. Ehrenreich; A. Lecavelier des Etangs; Y. Yung

2006-11-06T23:59:59.000Z

213

Infrared Thermographic Study of Laser Ignition  

SciTech Connect

Pyrotechnic ignition has been studied in the past by making a limited number of discrete temperature-time observations during ignition. Present-day infrared scanning techniques make it possible to record thermal profiles, during ignition, with high spacial and temporal resolution. Data thus obtained can be used with existing theory to characterize pyrotechnic materials and to develop more precise kinetic models of the ignition process. Ignition has been studied theoretically and experimentally using various thermal methods. It has been shown that the whole process can, ideally, be divided into two stages. In the first stage, the sample pellet behaves like an inert body heated by an external heat source. The second stage is governed by the chemical reaction in the heated volume produced during the first stage. High speed thermographic recording of the temperature distribution in the test sample during laser ignition makes it possible to calculate the heat content at any instant. Thus, one can actually observe laser heating and the onset of self-sustained combustion in the pellet. The experimental apparatus used to make these observations is described. The temperature distributions recorded are shown to be in good agreement with those predicted by heat transfer theory. Heat content values calculated from the observed temperature distributions are used to calculate thermal and kinetic parameters for several samples. These values are found to be in reasonable agreement with theory.

Mohler, Jonathan H.; Chow, Charles T. S.

1986-07-01T23:59:59.000Z

214

Geothermal Exploration in Eastern California Using Aster Thermal Infrared  

Open Energy Info (EERE)

in Eastern California Using Aster Thermal Infrared in Eastern California Using Aster Thermal Infrared Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration in Eastern California Using Aster Thermal Infrared Data Abstract Remote sensing is a cost-effective tool that can be used to cover large areas for the purpose of geothermal exploration. A particular application is the use of satellite thermal infrared (TIR) imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard an orbiting satellite. It can be used to search remotely for elevated surface temperatures, which may be associated with geothermal resources. The study region is in the central part of eastern California, with emphasis on the Coso geothermal field. Nighttime scenes are most

215

Mesoscale Cloud State Estimation from Visible and Infrared Satellite Radiances  

Science Conference Proceedings (OSTI)

This study focuses on cloudy atmosphere state estimation from high-resolution visible and infrared satellite remote sensing measurements and a mesoscale model with explicit cloud prediction. The cloud state is defined as 3D spatially distributed ...

T. Vukicevic; T. Greenwald; M. Zupanski; D. Zupanski; T. Vonder Haar; A. S. Jones

2004-12-01T23:59:59.000Z

216

Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations  

Science Conference Proceedings (OSTI)

State-of-the-art radiative transfer models can calculate outgoing infrared (IR) irradiance at the top of the atmosphere (F) to an accuracy suitable for climate modeling given the proper atmospheric profiles of temperature and absorbing gases and ...

Starley L. Thompson; Stephen G. Warren

1982-12-01T23:59:59.000Z

217

The Multi-Channel Infrared Sea Truth Radiometric Calibrator (MISTRC)  

Science Conference Proceedings (OSTI)

A new multichannel infrared sea truth radiometer has been designed and built to improve validation of satellite-determined sea surface temperature. Horizontal grid polarized filters installed on the shortwave channels are very effective in ...

M. J. Suarez; W. J. Emery; G. A. Wick

1997-04-01T23:59:59.000Z

218

Infrared Continental Surface Emissivity Spectra Retrieved from AIRS Hyperspectral Sensor  

Science Conference Proceedings (OSTI)

Atmospheric Infrared Sounder (AIRS; NASA Aqua platform) observations over land are interpreted in terms of monthly mean surface emissivity spectra at a resolution of 0.05 ?m and skin temperature. For each AIRS observation, an estimation of the ...

E. Pquignot; A. Chdin; N. A. Scott

2008-06-01T23:59:59.000Z

219

A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation  

Science Conference Proceedings (OSTI)

A simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) ...

Yi Huang

2013-03-01T23:59:59.000Z

220

Radiative Properties of Cirrus Clouds in the Infrared Region  

Science Conference Proceedings (OSTI)

A multiple-scattering radiative transfer model is employed to evaluate the 11 ?m and the broad-band infrared (IR) fluxes, cooling rates and emittances in model cirrus clouds for a number of standard vertical atmospheric profiles of temperature ...

Graeme L. Stephens

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cirrus Infrared Parameters and Shortwave Reflectance Relations from Observations  

Science Conference Proceedings (OSTI)

A summary of experimental observations and analysis of cirrus from high-altitude aircraft remote sensing is presented. The vertical distribution of cirrus optical and infrared cross-section parameters and the relative effective emittance and ...

James D. Spinhirne; William D. Hart; Dennis L. Hlavka

1996-05-01T23:59:59.000Z

222

Aerial Thermal Infrared Mapping Of The Waimangu-Waiotapu Geothermal...  

Open Energy Info (EERE)

Aerial Thermal Infrared Mapping Of The Waimangu-Waiotapu Geothermal Region, New Zealand - M A Mongillo, Geothermics, 23(5-6), 1994, Pp 511-526 Jump to: navigation, search...

223

Infrared Thermal Imagery of Cloud Base in Tornadic Supercells  

Science Conference Proceedings (OSTI)

During the spring seasons of 2003 and 2004, an infrared thermal camera was deployed in and around supercell thunderstorms in an attempt to retrieve the temperature at the cloud base of a mesocyclone prior to tornadogenesis. The motivation for ...

Robin L. Tanamachi; Howard B. Bluestein; Stephen S. Moore; Robert P. Madding

2006-11-01T23:59:59.000Z

224

Estimating Tropical Cyclone Intensity from Infrared Image Data  

Science Conference Proceedings (OSTI)

This paper describes results from a near-real-time objective technique for estimating the intensity of tropical cyclones from satellite infrared imagery in the North Atlantic Ocean basin. The technique quantifies the level of organization or ...

Miguel F. Pieros; Elizabeth A. Ritchie; J. Scott Tyo

2011-10-01T23:59:59.000Z

225

Real-time scene simulator for thermal infrared localization  

Science Conference Proceedings (OSTI)

Exploiting the natural thermal infrared radiation of humans is a promising approach for an accurate, comfortable and inexpensive indoor localization system. However, different sources of disturbance make the development challenging. In order to provide ...

Daniel Hauschildt; Jrgen Kemper; Nicolaj Kirchhof; Benedict Juretko; Holger Linde

2010-12-01T23:59:59.000Z

226

Infrared Thermography (IRT) Anomalies Manual (Revision 1 - 2001)  

Science Conference Proceedings (OSTI)

This manual provides both an overview of the basic concepts of infrared thermography (IRT) technology and an examination of applications of the technology for equipment used to produce and deliver electric power.

2001-12-14T23:59:59.000Z

227

CIRCE, the Coherent Infrared Center at the ALS  

E-Print Network (OSTI)

INFRARED CENTER AT THE ALS* J. M. Byrd, S. De Santis, J-Yat the Advanced Light Source (ALS) of the Lawrence Berkeleyinfrared radiation from the ALS generated via femtosecond

2004-01-01T23:59:59.000Z

228

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned...

229

Infrared Radiative Properties Of the Maritime Antarctic Atmosphere  

Science Conference Proceedings (OSTI)

The longwave radiation environment of the Antarctic Peninsula and Southern Ocean has been investigated using radiometric Fourier Transform Infrared (FTIR) measurements of atmospheric emission in conjunction with detailed radiative transfer ...

Dan Lubin

1994-01-01T23:59:59.000Z

230

An Infrared Hygrometer for Atmospheric Research and Routine Monitoring  

Science Conference Proceedings (OSTI)

The development and testing of a field durable, infrared differential absorption hygrometer is described. This noncontact hygrometer offers reliable operation in harsh environments while maintaining subsecond response speed. A modified ...

Todd A. Cerni

1994-04-01T23:59:59.000Z

231

The NCAR Airborne Infrared Lidar System: Status and Applications  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research Airborne Infrared Lidar System is being developed for Doppler wind measurements using heterodyne detection. Its design is based on a pulsed CO2 laser transmitter and a single continuous-wave CO2 laser ...

R. L. Schwiesow; M. P. Spowart

1996-02-01T23:59:59.000Z

232

Pomeron fan diagrams with an infrared cutoff and running coupling  

E-Print Network (OSTI)

By direct numerical calculations the influence of a physically relevant infrared cutoff and running coupling on the gluon density and structure function of a large nucleus is studied in the perturbative QCD approach. It is found that the infrared cutoff changes the solutions very little. Running of the coupling produces a bigger change, considerably lowering both the saturation momentum and values of the structure functions.

M. A. Braun

2003-08-29T23:59:59.000Z

233

Miniaturized Mid-Infrared Sensor Technologies  

SciTech Connect

Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for overall at least maintaining, or ideally improving the achievable sensitivity.

Kim, S; Young, C; Mizaikoff, B

2007-08-16T23:59:59.000Z

234

Infrared safe definition of jet flavor.  

E-Print Network (OSTI)

(energy) and collinear (angular) divergence. For flavour algorithms one should remember that the matrix elements for g ? qq or q ? qg (with a soft quark) have no soft divergence, but just the collinear divergence, [dkj]|M2g?qiqj(kj)| ? ?sTR 2? dEj Ei d?2... energy larger than 1TeV and the two hardest jets to have |?| < 1. Three representative channels, qq ? qq (including qq ? qq), qq ? gg and qg ? qg are shown in fig. 6, as obtained with Herwig [15]. The standard parton showering in Pythia [23] gives...

Banfi, Andrea; Salam, Gavin P; Zanderighi, Giulia

235

ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI  

Science Conference Proceedings (OSTI)

We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported by some previous studies, most of our sample objects are probably radio-loud quasars. Finally, we also discuss the negative correlations seen in the near-infrared SFs.

Kouzuma, S. [School of International Liberal Studies, Chukyo University, Toyota 470-0393 (Japan); Yamaoka, H., E-mail: skouzuma@lets.chukyo-u.ac.jp, E-mail: yamaoka@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

2012-03-01T23:59:59.000Z

236

Observations of stimulated Raman scattering using simultaneous Thomson scattering, fast electron spectroscopy, and infrared diagnostics  

SciTech Connect

Stimulated Raman scattering (SRS) in a CO/sub 2/ laser(lambda/sub 0/ -- 10.6 ..mu..m) produced plasma has been studied experimentally. The enhanced electron plasma wave (epw) fluctuations observed with ruby laser Thomson scattering have been compared with the scattered infrared (IR) spectra and the high-energy (near 100 keV) electrons. No scattered IR light in the range 1.5lambda/sub 0/ energy spectra of the fast electrons are well correlated with the Thomson scattered wave vector spectra.

McIntosh, G.; Meyer, J.; Yazhou, Z.

1986-10-01T23:59:59.000Z

237

Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths  

E-Print Network (OSTI)

We have used different spectroscopic techniques to obtain a consistent quantitative absorption spectrum of a sample of meteoritic nano-diamonds in the wavelength range from the vacuum ultraviolet (0.12 $\\mu$m) to the far infrared (100 $\\mu$m). The nano-diamonds have been isolated by a chemical treatment from the Allende meteorite (Braatz et al.2000). Electron energy loss spectroscopy (EELS) extends the optical measurements to higher energies and allows the derivation of the optical constants (n & k) by Kramers-Kronig analysis. The results can be used to restrain observations and to improve current models of the environment where the nano-diamonds are expected to have formed. We also show that the amount of nano-diamond which can be present in space is higher than previously estimated by Lewis et al. (1989).

H. Mutschke; A. C. Andersen; C. Jaeger; Th. Henning; A. Braatz

2004-08-10T23:59:59.000Z

238

Mid-Infrared Spectral Diagnostics of Nearby Galaxies  

E-Print Network (OSTI)

The Spitzer Space Telescope is pushing into new frontiers in high redshift astronomy. Closer to home, Spitzer is making an equally large impact on our understanding of galaxy formation and evolution. In this contribution we present mid-infrared diagnostics based largely on data from the Spitzer Infrared Nearby Galaxies Survey (SINGS). Our main result is that these mid-infrared diagnostics effectively constrain a target's dominant power source. The combination of a high ionization line index and PAH strength serves as an efficient discriminant between AGN and star-forming nuclei, confirming progress made with ISO spectroscopy on starbursting and ultraluminous infrared galaxies. The sensitivity of Spitzer allows us to probe fainter nuclei and star-forming regions within galaxy disks. We find that both star-forming nuclei and extranuclear regions stand apart from nuclei that are powered by Seyfert or LINER activity. In fact, we identify areas within three diagnostic diagrams containing >90% Seyfert/LINER nuclei or >90% HII regions/HII nuclei. We also find that, compared to starbursting nuclei, extranuclear regions typically separate even further from AGN, especially for low-metallicity extranuclear environments. In addition, instead of the traditional mid-infrared approach to differentiating between AGN and star-forming sources that utilizes relatively weak high-ionization lines, we show that strong low-ionization cooling lines of X-ray dominated regions like [SiII] 34.82 micron can alternatively be used as excellent discrimants.

Daniel A. Dale; the SINGS Team

2006-04-01T23:59:59.000Z

239

Session U: Antimonide Based Infrared Materials  

Science Conference Proceedings (OSTI)

*This work was supported by the US DOE under Contract DE-AC04-94AL85000. ... Semiconductor light emitting diodes offer a solution to this requirement, with the ... InSb has the smallest energy gap and highest electron mobility of all binary ... School of Physics & Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.

240

Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration  

Open Energy Info (EERE)

Thermal Infrared Imagery To Geothermal Exploration Thermal Infrared Imagery To Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in Washington, Montana and Wyoming because of this remote sensing tool's ability to detect variations in the heat emitted from the earth's surface. The surveys were flown at an average elevation of 5000 ft. above the ground surface which gave a spatial resolution of approximately 7 feet diameter. BN found thermal activity which had not been recognized previously in some prospects (e.g., Lester,

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

242

Cryogenic Capacitive Transimpedance Amplifier for Astronomical Infrared Detectors  

E-Print Network (OSTI)

We have developed a new capacitive transimpedance amplifier (CTIA) that can be operated at 2 K, and have good performance as readout circuits of astronomical far-infrared array detectors. The circuit design of the present CTIA consists of silicon p-MOSFETs and other passive elements. The process is a standard Bi-CMOS process with 0.5$mu$m design rule. The open-loop gain of the CTIA is more than 300, resulting in good integration performance. The output voltage swing of the CTIA was 270 mV. The power consumption for each CTIA is less than 10$mu$W. The noise at the output showed a$1/rm f$noise spectrum of 4$mu$V/$surdhbox Hz$at 1 Hz. The performance of this CTIA nearly fulfills the requirements for the far-infrared array detectors onboard ASTRO-F, Japanese infrared astronomical satellite to be launched in 2005.

Hirohisa Nagata; Hiroshi Shibai; Takanori Hirao; Toyoki Watabe; Manabu Noda; Yasunori Hibi; Mitsunobu Kawada; Takao Nakagawa

2004-03-15T23:59:59.000Z

243

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Wednesday, 29 October 2008 00:00 Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from the University of California at San Diego, Columbia University, and the ALS has succeeded in probing the dynamical properties of the charge carriers in graphene with an accuracy never before achieved. Their results have uncovered signatures of many-body interactions in graphene and have demonstrated the potential of graphene for novel applications in optoelectronics.

244

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from the University of California at San Diego, Columbia University, and the ALS has succeeded in probing the dynamical properties of the charge carriers in graphene with an accuracy never before achieved. Their results have uncovered signatures of many-body interactions in graphene and have demonstrated the potential of graphene for novel applications in optoelectronics.

245

Application Of High-Resolution Thermal Infrared Sensors For Geothermal  

Open Energy Info (EERE)

High-Resolution Thermal Infrared Sensors For Geothermal High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Details Activities (2) Areas (1) Regions (0) Abstract: The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered

246

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY FRONTIER SYNCHROTRON INFRARED SPECTROSCOPY BEAMLINE UNDER EXTREME CONDITIONS (FIS) Proposal Team: L. Carr 1 , D. Dolan 2 , R. Hemley 3 , S. Jacobson 4 , S. Karato 5 , Z. Liu 3 , W. Panero 6 , M. Pravica 7 , and T. Zhou 8 1 Brookhaven National Laboratory, 2 Sandia National Laboratories, 3 Carnegie Institution of Washington, 4 Northwestern University, 5 Yale University, 6 Ohio State University, 7 University of Nevada, 8 New Jersey Institute of Technology TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * TECHNIQUE(S): Fourier transform infrared spectroscopy; Raman and visible spectroscopy; Diamond anvil cell techniques for static high pressure; Gas-gun launchers for dynamic compression; Cryogenic techniques combined with DACs;

247

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Dirac Charge Dynamcs in Graphene by Infrared Spectroscopy Print Graphene-a single layer of carbon atoms arranged in a honeycomb lattice-has very high conductivity that can be tuned by applying a gate voltage. The charge carriers in graphene can travel ballistically over great distances (~1 micron) without scattering. These unusual electronic properties make graphene a promising candidate for future nanoelectronics. Using infrared spectromicroscopy at ALS Beamline 1.4, a group of researchers from the University of California at San Diego, Columbia University, and the ALS has succeeded in probing the dynamical properties of the charge carriers in graphene with an accuracy never before achieved. Their results have uncovered signatures of many-body interactions in graphene and have demonstrated the potential of graphene for novel applications in optoelectronics.

248

Hard, infrared black coating with very low outgassing  

SciTech Connect

Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

2008-06-02T23:59:59.000Z

249

Infrared Optical Imaging Techniques for Gas Visualization and Measurement  

E-Print Network (OSTI)

Advancement in infrared imaging technology has allowed the thermal imaging to detect and visualize several gases, mostly hydrocarbon gases. In addition, infrared cameras could potentially be used as a non-contact temperature measurement for gas and vapor. However, current application of infrared imaging techniques for gas measurements are still limited due to several uncertainties in their performance parameters. The aim of this research work was to determine the key factors in the application of infrared imaging technology for gas visualization and a non-contact temperature measurement. Furthermore, the concentration profile and emission rate of the gas are predicted by combining the application of the infrared imaging method with gas dispersion modeling. In this research, infrared cameras have been used to visualize liquefied natural gas (LNG) plumes from LNG spills on water. The analyses of the thermograms showed that the apparent temperatures were different from the thermocouple measurement which occurred due to the assumption of that the object emissivity was always equal to unity. The emissivity for pure methane gas and a mixture of methane and atmospheric gases were then evaluated in order to obtain the actual temperature distribution of the gas cloud. The results showed that by including the emissivity value of the gas, the temperature profile of the dispersed gas obtained from a thermal imaging measurement was in good agreement with the measurement using the thermocouples. Furthermore, the temperature distribution of the gas was compared to the concentration of a dispersed LNG vapor cloud to obtain a correlation between the temperature and the concentration of the cloud. Other application of infrared imaging technique was also conducted for leak detection of natural gas from a pipeline. The capability of an infrared camera to detect a fugitive gas leak was combined with the simulation of vapor discharge and dispersion in order to obtain a correlation between the emission rates and the sizes of the gas plume to the minimum detectable concentration. The relationship of the methane gas cloud size to the gas emission rate was highly dependent to the prevailing atmospheric condition. The results showed that the correlation were best to predict the emission rate less than 0.2 kg/s. At higher emission rate, the increase in gas release rate did not change the size of the cloud significantly.

Safitri, Anisa

2011-05-01T23:59:59.000Z

250

Design and Implementation of Remote-Controlled Smart Home Network for Energy Saving and Carbon Reduction  

Science Conference Proceedings (OSTI)

Due to the lack of energy and greenhouse effect, how to building a smart home network for energy saving and carbon reduction is an important issue in the world. This paper presents a remote-control smart home energy conservation system with infrared ... Keywords: Energy saving, Smart Grid, Smart power controller, Energy Management

Ying-Chang Hsiao; Wen-Ping Chen; Jen-Chih Hsu; Yuan-Hsu Chang Chien

2012-10-01T23:59:59.000Z

251

A decadal gridded hyperspectral infrared record for climate sep 1st 2002--aug 31st 2012  

Science Conference Proceedings (OSTI)

We present a gridded Fundamental Decadal Data Record (FDDR) of Brightness Temperatures (BT) from the NASA Atmospheric Infrared Sounder (AIRS) from ten years of hyperspectral Infrared Radiances onboard the NASA EOS Aqua satellite. Although global surface ...

David Raymond Chapman / Milton Halem

2012-01-01T23:59:59.000Z

252

Remote Sounding of High Clouds. V: Infrared Properties and Structures of Tropical Thunderstorm Anvils  

Science Conference Proceedings (OSTI)

The infrared properties and structures of some anvils emanating from local thunderstorms were studied by lidar and infrared radiometry at Darwin, tropical Northern Australia. The anvils were typically from 1 to 2 km deep, at altitudes from 7 to ...

C. M. R. Platt; A. C. Dilley; J. C. Scott; I. J. Barton; G. L. Stephens

1984-09-01T23:59:59.000Z

253

Multi-mode two-dimensional infrared spectroscopy of peptides and proteins  

E-Print Network (OSTI)

In this thesis, a methodology for understanding structural stability of proteins through multi-mode two-dimensional infrared (2D IR) spectroscopy is developed. The experimental framework for generation of broadband infrared ...

DeFlores, Lauren P

2008-01-01T23:59:59.000Z

254

Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement  

Science Conference Proceedings (OSTI)

Determining cloud thermodynamic phase using infrared satellite observations typically requires a priori assumptions about relationships between cloud phase and cloud temperature. In this study, limitations of an approach using two infrared ...

Shaima L. Nasiri; Brian H. Kahn

2008-11-01T23:59:59.000Z

255

An Instrument for the Measurement of Precipitation Rate by Near-Infrared Extinction  

Science Conference Proceedings (OSTI)

The design, construction and performance of a near-infrared atmospheric precipitation sensing device is described. An infrared light emitting diode was used to generate a sensing beam of 0.92 ?m wavelength. The collimated sensing beam traversed ...

F. J. Nedvidek; Z. Kucerovsky; E. Brannen

1983-09-01T23:59:59.000Z

256

Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations  

Science Conference Proceedings (OSTI)

The calculation of infrared radiative fluxes and cooling rates using the two-stream equations is discussed. It is argued that at infrared wavelengths the two-stream equations are best viewed as an approximation to the differential radiance, the ...

J. M. Edwards

1996-07-01T23:59:59.000Z

257

Wide-fieldInfraredSurvey ExplorerLaunch  

E-Print Network (OSTI)

system's main asteroid belt. By measuring the objects' infrared light, astronomers will get the first solar system· To better understand the evolution of planets, stars and galaxies· why the sun looks red are estimated to reside in our solar system, but most have gone unidenti- fied. WISE will detect hundreds

258

Temperature profile of the infrared image Heat exchange between  

E-Print Network (OSTI)

T Temperature profile of the infrared image Heat exchange between atmosphere and ocean References part at high frequencies delivers the exchange time. Cool skin of the ocean the net heat flux between gas exchange and wind speed over the ocean, J. Geophys. Res. 97, 7373-7381, 1992, Nightingale, P

Jaehne, Bernd

259

Beyond HDF - Searching for Early Star Formation in the Infrared  

E-Print Network (OSTI)

The success of the Hubble Deep Field (HDF) data in identifying galaxies at redshifts up to ~3 has been quite spectacular. It is possible to extend this to even higher redshifts using infrared techniques, several of which are briefly described in this paper.

D. Thompson

1997-02-06T23:59:59.000Z

260

Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators  

E-Print Network (OSTI)

Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators Victor W. Brar,, Min observed in the 2-6 THz range, and active graphene plasmonic devices operating in that regime have been explored. However there is great interest in under- standing the properties of graphene plasmons across

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Releasable infrared metamaterials J. A. D'Archangela)  

E-Print Network (OSTI)

-type resonating elements. These particles would be suitable for implementation in a paint if dispersed in an IR design was symmetric about a Cr ground plane). Infrared spectral reflectivity measurements from collected flakes were compared to infinite-surface simulations in Ansoft HFSS and spectral reflectance meas

Boreman, Glenn D.

262

Absorption Approximation with Scattering Effect for Infrared Radiation  

Science Conference Proceedings (OSTI)

A scheme that can handle cloud infrared scattering based on the absorption approximation is developed. In a two-stream mode, the new scheme produces more accurate results than those from the modified two-stream discrete ordinate method. For low ...

J. Li; Qiang Fu

2000-09-01T23:59:59.000Z

263

Computation of Infrared Cooling Rates in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent ...

Ming Dah Chou; Albert Arking

1980-04-01T23:59:59.000Z

264

Facial expression recognition from near-infrared videos  

Science Conference Proceedings (OSTI)

Facial expression recognition is to determine the emotional state of the face regardless of its identity. Most of the existing datasets for facial expressions are captured in a visible light spectrum. However, the visible light (VIS) can change with ... Keywords: Component-based facial features, Facial expression recognition, Near-infrared (NIR), Spatiotemporal descriptors, Visible light (VIS)

Guoying Zhao; Xiaohua Huang; Matti Taini; Stan Z. Li; Matti PietikInen

2011-08-01T23:59:59.000Z

265

Near Infrared Surface Plasmon Resonance Phase Imaging and Nanoparticle-Enhanced Surface Plasmon Resonance Phase Imaging  

E-Print Network (OSTI)

utilized a near-infrared 860 nm light emitting diode (LED) light source and a wedge depolarizer to create

266

Polarimetric Remote Sensing in the Visible to Near Infrared James R. Shell II  

E-Print Network (OSTI)

Polarimetric Remote Sensing in the Visible to Near Infrared by James R. Shell II B.S. Physics Title of Dissertation: Polarimetric Remote Sensing in the Visible to Near Infrared I, James R. Shell II Remote Sensing in the Visible to Near Infrared by James R. Shell II Submitted to the Chester F. Carlson

Salvaggio, Carl

267

From confinement to dark energy  

E-Print Network (OSTI)

The infrared divergence of the self-energy of a color charge is due to an enhancement of the long wavelength modes of the color Coulomb potential field. There are also long wavelength contributions to the QCD vacuum energy that are similarly enhanced. Vacuum modes of Hubble scale wavelengths may be affected in a cosmological setting and this can lead to a residual positive energy density of the form $H^d\\Lambda_{\\rm QCD}^{4-d}$. Lattice studies constrain $d$. If the dark energy takes this form then the universe is driven towards de Sitter expansion, and we briefly study this cosmology when $d$ is just slightly above unity.

B. Holdom

2010-12-02T23:59:59.000Z

268

Thermal Integrity Assessment of Building Envelopes of Experimental Houses Using Infrared Thermography  

Science Conference Proceedings (OSTI)

Zero Energy Building Research Alliance, or ZEBRAlliance, is a joint DOE-ORNL-construction industry initiative to develop and demonstrate new energy efficiency technologies for residential buildings, as well as fine-tune and integrate existing technologies, to lower energy costs. Construction of residential envelopes, the diaphragms that separate the inside from outdoors, can have enormous impact on whole-building energy usage. Consequently, post-construction thermal integrity assessment of the building envelopes in the experimental ZEBRAlliance homes is an integral part of the research and development cycle. Nondestructive infrared (IR) thermography provides a relatively easy and quick means of inspecting the experimental homes for thermal bridging, insulation imperfections, moisture penetration, air leakage, etc. Two experimental homes located in Oak Ridge, TN were inspected using IR thermography. The homes are designed with two different envelope systems: (i) Structural Insulated Panels (SIP home) consisting of an insulating foam core sandwiched between oriented strand boards, and (ii) Optimal Value Framing (OVF home) using innovatively spaced wood studs, which are designed to minimize the amount of wood framing, reduce thermal bridging, and lower material costs. IR thermal imaging was performed from both outside and inside of the homes. In this paper, IR images of roof and wall sections of the homes are presented and discussed with respect to identification of areas of thermal bridging and any insulation deficiencies.

Biswas, Kaushik [ORNL; Kosny, Jan [ORNL; Miller, William A [ORNL

2010-01-01T23:59:59.000Z

269

Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

2012-10-09T23:59:59.000Z

270

On the band-to-continuum intensity ratio in the infrared spectra of interstellar carbonaceous dust  

E-Print Network (OSTI)

Published interpretations of the relative intensity variations of the Unidentified Infrared Bands (UIBs) and their underlying continuum are discussed. An alternative model is proposed, in which a single carrier for both emits a) mostly a continuum when it is electronically excited by photons (visible or UV), or b) exclusively the UIBs, when only chemical energy is deposited by H capture on its surface, inducing only nuclear vibrations. The bands will dominate in atomic H regions but will be overcome by thermal continuum radiation when the ambient field is strong but lacks dissociating photons (900-1100 Angstroms). The model applies to PDRs as well as to limbs of molecular clouds in the ISM and agrees quantitatively with recent satellite observations. It gives indications on atomic H density and UIB intensity provided the ambient radiation field is known. It invokes no chemical, electronic, structural or size change in order to interpret the observed intensity variations.

Renaud Papoular

2004-03-24T23:59:59.000Z

271

Infrared system for monitoring movement of objects  

DOE Patents (OSTI)

A system is described for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array of solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1[times]3[times]5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A wake-up' circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described. 4 figures.

Valentine, K.H.; Falter, D.D.; Falter, K.G.

1991-04-30T23:59:59.000Z

272

Infrared system for monitoring movement of objects  

DOE Patents (OSTI)

A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A "wake-up" circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described.

Valentine, Kenneth H. (San Diego, CA); Falter, Diedre D. (Knoxville, TN); Falter, Kelly G. (Knoxville, TN)

1991-01-01T23:59:59.000Z

273

HOLOGRAPHY AND INFRARED CONFORMALITY IN TWO DIMENSIONS  

E-Print Network (OSTI)

This is a very brief review of some results from Refs. [2] and [3]. In holographic renormalization, we studied the RG flow of a 2d N = (4, 4) CFT perturbed by a relevant operator, flowing to a conformal fixed point in the IR. Here, the supergravity dual is displayed, and the computation of correlators is discussed. The sample stress-energy correlator given here provides an opportunity to explicitly compare Zamolodchikovs C-function to the proposal for a holographic C-function. First, I will recall how to compute correlators holographically, even in the presence of domain walls (for a review, see [1]). As a simple analogy to keep in mind, consider a medieval castle where soldiers are practicing cannon-firing from atop the castle walls into the interior courtyard. Let us say that when the wall has height h0, a horizontally fired cannon ball hits the ground precisely in the middle of the courtyard. A priori the height of the wall h and the angle of firing ?

Marcus Berg

2002-01-01T23:59:59.000Z

274

Energy Basics: Tidal Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

275

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

276

Energy guides | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial...

277

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes For this project, fused imagery was created using ASTER data and USGS Digital Orthophoto Quandrangles (DOQs). The ASTER data have a spatial resolution of 15 m for the visible to infrared and near_infrared bands, and 30 m for shortwave_infrared bands; with a cost of $85.00 per 60 x 60 km image. Thermal anomalies were mapped using ASTER kinetic temperature data

278

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

279

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

280

Near-infrared photodetector with reduced dark current  

SciTech Connect

A photodetector is disclosed for the detection of near-infrared light with a wavelength in the range of about 0.9-1.7 microns. The photodetector, which can be formed as either an nBp device or a pBn device on an InP substrate, includes an InGaAs light-absorbing layer, an InAlGaAs graded layer, an InAlAs or InP barrier layer, and an InGaAs contact layer. The photodetector can detect near-infrared light with or without the use of an applied reverse-bias voltage and is useful as an individual photodetector, or to form a focal plane array.

Klem, John F; Kim, Jin K

2012-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Infrared Extinction by Aggregates of SiC Particles  

E-Print Network (OSTI)

Particle shape and aggregation have a strong influence on the spectral profiles of infrared phonon bands of solid dust grains. In this paper, we use a discrete dipole approximation, a cluster-of-spheres code following the Gerardy-Ausloos approach and a T-matrix method for calculating IR extinction spectra of aggregates of spherical silicon carbide (SiC) particles. We compare the results obtained with the three different methods and discuss differences in the band profiles.

Anja C. Andersen; Harald Mutschke; Thomas Posch

2005-11-11T23:59:59.000Z

282

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents (OSTI)

A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

1995-08-22T23:59:59.000Z

283

Study of ice cloud properties using infrared spectral data  

E-Print Network (OSTI)

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the METOP-A satellite, which provide the bulk-scattering properties of these clouds for the 8461 IASI channels between 645 and 2760 cm-1. We investigate the sensitivity of simulated brightness temperatures in this spectral region to the bulk-scattering properties of ice clouds containing individual ice crystal habits as well as for one habit distribution. The second part of this thesis describes an algorithm developed to analyze the sensitivity of simulated brightness temperatures at 8.5 and 11.0 m to changes in effective cloud temperature by adjusting cloud top height and geometric thickness in a standard tropical atmosphere. Applicability of using these channels in a bi-spectral approach to retrieve cirrus cloud effective particle size and optical thickness is assessed. Finally, the algorithm is applied to the retrieval of these ice cloud properties for a case of single-layered cirrus cloud over a tropical ocean surface using measurements from the Moderate Resolution Infrared Spectroradiometer (MODIS). Cloud top height and geometric thickness in the profile are adjusted to assess the influence of effective cloud temperature on the retrieval.

Garrett, Kevin James

2007-08-01T23:59:59.000Z

284

VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS  

SciTech Connect

Debris disks with extremely large infrared excesses (fractional luminosities >10{sup -2}) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 {mu}m infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

Meng, Huan Y. A.; Rieke, George H. [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Su, Kate Y. L.; Rujopakarn, Wiphu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ivanov, Valentin D. [European Southern Observatory, Ave. Alonso de Cordova 3107, Casilla 19, Santiago, 19001 (Chile); Vanzi, Leonardo [Department of Electrical Engineering and Center of Astro Engineering, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago (Chile)

2012-05-20T23:59:59.000Z

285

Infrared [Fe II] and Dust Emissions from Supernova Remnants  

E-Print Network (OSTI)

Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H$_2$ emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the "[Fe II]-H$_2$ reversal" in SNRs and on using the [Fe II]-line luminosity as an indic...

Koo, Bon-Chul

2013-01-01T23:59:59.000Z

286

Fine structure collision strengths and line ratios for [Ne V] in infrared and optical sources  

E-Print Network (OSTI)

Improved collisions strengths for the mid-infrared and optical transitions in Ne V are presented. Breit-Pauli R-Matrix calculations for electron impact excitation are carried out with fully resolved near-threshold resonances at very low energies. In particular, the fine structure lines at 14 micron and 24 micron due to transitions among the ground state levels 1s^22s^22p^3 (^3P_{0,1,2}), and the optical/near-UV lines at 2973, 3346 and 3426 Angstrom transitions among the ^3P_{0,1,2}, ^1D_2, ^1S_0 levels are described. Maxwellian averaged collision strengths are tabulated for all forbidden transistion within the ground configuration. Significant differences are found in the low temperature range Te < 10000 K for both the FIR and the opitcal transitions compared to previous results. An analysis of the 14/24 line ratio in low-energy-density (LED) plasma conditions reveals considerable variation; the effective rate coefficient may be dominated by the very low-energy behaviour rather than the maxwellian averaged...

Dance, Michael; Nahar, Sultana N; Pradhan, Anil K

2013-01-01T23:59:59.000Z

287

Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1993-03-02T23:59:59.000Z

288

The Environment on few Mpc scales of Infrared Luminous Galaxies at Redshifts z~1  

E-Print Network (OSTI)

We investigate the environment of infrared luminous galaxies (L$_{IR}$[8-1000 $\\mu $m$] >10^{11}$L$_{\\sun}$). We focus on the redshift range 0.7 $\\leq$ z $\\leq$ 1, where these galaxies dominate the star formation activity and play a significant role in galaxy evolution. We employ MIPS 24$\\mu$m data to identify infrared galaxies in the Extended Groth Strip (EGS). We use a local density indicator to probe the environment on few Mpc scales and a group member catalog, both of which make use of the DEEP2 spectroscopic redshift catalog, to quantify the environment of these galaxies. We find that the local environment of LIRGs and ULIRGs is intermediate between that of blue and red galaxies. LIRGs and ULIRGs avoid underdense environments and inhabit local environments that are more dense on average than those of other DEEP2 galaxies at similar redshifts. However, when the comparison sample of the non-IR DEEP2 galaxies is restricted to have the same range of stellar mass, color, or luminosity as the IR--galaxies, there is no longer any significant difference in environment; the IR-galaxies follow the same trends in the color-environment and luminosity-environment relations observed at z$\\sim$1. We also find that about 30% of the LIRGs and ULIRGs belong to groups, associated with a minimum dark matter halo of 6$\\times10^{12}$M$_{\\odot}$h$^{-1}$. The group members constitute 20 % of the sources responsible for the IR star formation rate density and comoving energy density at z$\\sim$1.

D. Marcillac; G. H. Rieke; C. Papovich; C. N. A. Willmer; B. J. Weiner; A. L. Coil; M. C. Cooper; B. F. Gerke; J. Woo; J. A. Newman; A. Georgakakis; E. S. Laird; K. Nandra; G. G. Fazio; J. -S. Huang; D. C. Koo

2007-12-01T23:59:59.000Z

289

The Unusual Infrared Object HDF-N J123656.3+621322  

E-Print Network (OSTI)

We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise ~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.

Mark Dickinson; Christopher Hanley; Richard Elston; Peter R. Eisenhardt; S. A. Stanford; Kurt L. Adelberger; Alice Shapley; Charles C. Steidel; Casey Papovich; Alexander S. Szalay; Matthew A. Bershady; Christopher J. Conselice; Henry C. Ferguson; Andrew S. Fruchter

1999-08-07T23:59:59.000Z

290

A near-infrared/optical/X-ray survey in the centre of sigma Orionis  

E-Print Network (OSTI)

Because of the intense brightness of the OB-type multiple star system sigma Ori, the low-mass stellar and substellar populations close to the centre of the very young sigma Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early-type stars down to cluster members below the deuterium burning mass limit. The near-infrared and optical data have been complemented with X-ray imaging. Ten objects have been found for the first time to display high-energy emission. Previously known stars with clear spectroscopic youth indicators and/or X-ray emission define a clear sequence in the I vs. I-Ks diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X-ray emission and a very red J-Ks colour, indicative of a disc. Other three low-mass stars have excesses in the Ks band as well. The frequency of X-ray emitters in the area is 80+/-20 %. The spatial density of stars is very high, of up to 1.6+/-0.1 arcmin-2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X-ray emission located at only 8000-11000 AU to sigma Ori AB, two sources with peculiar colours and an object with X-ray emission and near-infrared magnitudes similar to those of previously-known substellar objects in the cluster.

Jos A. Caballero

2007-05-07T23:59:59.000Z

291

Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect  

SciTech Connect

The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous greenhouse effect in the atmosphere.

Silverstein, S.D.

1976-07-16T23:59:59.000Z

292

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates Vectren Energy Delivery of Indiana (Gas) - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Boilers: $5,000 Boiler Modulating Burner Control: $5,000 Infrared Heater: $700 Custom: Contact Vectren Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Boilers: $4/MMbtu Boiler Modulating Burner Control: up to $5000 Boiler Reset Control or Tune-Up: $250 Boiler Tune-up: $200 Furnace: $150 - $275 Tank Water Heater: $125 - $150 Tankless Water Heater: $150

293

Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses  

DOE Green Energy (OSTI)

The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

Epstein, S.; Stolper, E.

1992-01-01T23:59:59.000Z

294

Data reduction pipeline for the MMT Magellan Infrared Spectrograph  

E-Print Network (OSTI)

We describe principal components of the new spectroscopic data pipeline for the multi-object MMT/Magellan Infrared Spectrograph (MMIRS). The pipeline is implemented in IDL and C++. The performance of the data processing algorithms is sufficient to reduce a single dataset in 2--3 min on a modern PC workstation so that one can use the pipeline as a quick-look tool during observations. We provide an example of the spectral data processed by our pipeline and demonstrate that the sky subtraction quality gets close to the limits set by the Poisson photon statistics.

Chilingarian, Igor; Fabricant, Daniel; McLeod, Brian; Roll, John; Szentgyorgyi, Andrew

2012-01-01T23:59:59.000Z

295

Improved Spatial Resolution For Reflection Mode Infrared Spectromicroscopy  

SciTech Connect

Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using a microscope coupled to a synchrotron source.

Bechtel, Hans A; Martin, Michael C.; May, T. E.; Lerch, Philippe

2009-08-13T23:59:59.000Z

296

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

297

Synthesis of materials with infrared and ultraviolet lasers  

SciTech Connect

This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

Lyman, J.L.

1988-01-01T23:59:59.000Z

298

Upgrade of the JET far infrared interferometer diagnostic  

Science Conference Proceedings (OSTI)

In recent years there has been a major upgrade of the JET far infrared diagnostic system consisting of a new laser system with the wavelength at 118.8 {mu}m at and more advanced processing electronics for phase counting. This provides a second colour measurement of the electron plasma density on the vertical system. Due to the shorter wavelength, the plasma induced laser beam refraction is reduced by a factor of three alleviating density errors caused by loss of signal (so-called 'fringe jumps'[A. Murari et al., Rev. Sci. Instrum. 77, 073505 (2006)]), in particular during high performance plasmas experiments in JET.

Boboc, A.; Edlington, T.; Dorling, S. [EURATOM/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Gil, C.; Pastor, P.; Spuig, P. [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

299

Far Infrared Study of IRAS 00494+5617 & IRAS 05327-0457  

E-Print Network (OSTI)

High angular resolution far-infrared observations at 143 & 185 \\micron, using the TIFR 1-m balloon borne telescope, are presented for two Galactic star forming complexes associated with IRAS 00494+5617 and 05327-0457. The latter map also reveals the cold dust in OMC-3. The HIRES processed IRAS maps at 12, 25, 60 & 100 micron have also been presented for comparison. Both these regions are illuminated at the edges by high mass stars with substantial UV flux.The present study is aimed at quantifying the role of the nearby stars vis-a-vis embedded young stellar objects in the overall heating of these sources. Based on the FIR observations at 143 & 185 micron carried out simultaneously with almost identical angular resolution, reliable dust temperature and optical depth maps have been generated for the brighter regions of these sources. Radiative transfer modeling in spherical geometry has been carried out to extract physical parameters of these sources by considering the observational constraints like : spectral energy distribution, angular size at different wavelengths, dust temperature distribution etc. It has been concluded that for both IRAS 00494+5617 and IRAS 05327-0457, the embedded energy sources play the major role in heating them with finite contribution from the nearby stars. The best fit model for IRAS 00494+5617 is consistent with a simple two phase clump-interclump picture with $\\sim$ 5% volume filling factor (of clumps) and a density contrast of $\\approx$ 80.

B. Mookerjea; S. K. Ghosh; T. N. Rengarajan; S. N. Tandon; R. P. Verma

2000-04-04T23:59:59.000Z

300

A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua...  

Open Energy Info (EERE)

Of The Rotorua Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua...

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

302

Thermal And-Or Near Infrared At Socorro Mountain Area (Owens...  

Open Energy Info (EERE)

And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above background)...

303

Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) Exploration Activity Details...

304

Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz, Et Al., 2009) Jump to:...

305

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents (OSTI)

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2013-07-16T23:59:59.000Z

306

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents (OSTI)

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2012-10-30T23:59:59.000Z

307

Resonant-cavity-enhanced multispectral infrared photodetectors for monolithic integration on silicon  

E-Print Network (OSTI)

Multispectral infrared (IR) detection has been widely employed for numerous applications including hyperspectral imaging, IR spectroscopy, and target identification. Traditional multispectral detection technology is based ...

Wang, Jianfei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

308

Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...  

NLE Websites -- All DOE Office Websites (Extended Search)

J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The infrared cloud imager (ICI) is a...

309

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics  

E-Print Network (OSTI)

We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA)- a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R \\sim 1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

Stephen Eikenberry; S. Nicholas Raines; Nicolas Gruel; Richard Elston; Rafael Guzman; Jeff Julian; Glenn Boreman; Paul Glenn; Greg Hull-Allen; Jeff Hoffmann; Michael Rodgers; Kevin Thompson; Scott Flint; Lovell Comstock; Bruce Myrick

2006-04-27T23:59:59.000Z

310

Thermal Infrared Exposure of Cryogenic Indirect Drive ICF Targets  

DOE Green Energy (OSTI)

Cryogenic inertial confinement fusion targets at the National Ignition Facility and the Laser Megajoule will be protected from thermal infrared radiation by a cold shroud. As the shroud is removed just before the laser pulse, infrared radiation will heat and possibly degrade the symmetry of the solid hydrogen fuel layer. A lumped component mathematical model has been constructed to calculate how long an indirect drive target can be exposed to thermal radiation before the fuel layer degrades. The allowed exposure time sets the maximum shroud removal time and therefore has important implications for the design of the cryogenic shroud systems. The model predicts that the maximum exposure time is approximately 0.18 s for plastic capsules inside hohlraums with transparent laser entrance holes. By covering the laser entrance holes with a partially reflective coating, the exposure time can be increased to approximately 1 s. The exposure time can be increased to about 2 s by using beryllium capsules. Several other design concepts could increase the exposure time even further. Lengthening of the allowed exposure time to 1 s or longer could allow a significant cost savings for the shroud system.

London, R A; Moody, J D; Sanchez, J J; Sater, J D; Haid, B J; Bittner, D N

2005-07-08T23:59:59.000Z

311

Infrared Spectra of Meteoritic SiC Grains  

E-Print Network (OSTI)

We present here the first infrared spectra of meteoritic SiC grains. The mid-infrared transmission spectra of meteoritic SiC grains isolated from the Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in order to make available the optical properties of presolar SiC grains. These grains are most likely stellar condensates with an origin predominately in carbon stars. Measurements were performed on two different extractions of presolar SiC from the Murchison meteorite. The two samples show very different spectral appearance due to different grain size distributions. The spectral feature of the smaller meteoritic SiC grains is a relatively broad absorption band found between the longitudinal and transverse lattice vibration modes around 11.3 micron, supporting the current interpretation about the presence of SiC grains in carbon stars. In contrast to this, the spectral feature of the large (> 5 micron) grains has an extinction minimum around 10 micron. The obtained spectra are compared with commercially available SiC grains and the differences are discussed. This comparison shows that the crystal structure (e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the optical signature of SiC grains compared to e.g. grain size.

A. C. Andersen; C. Jager; H. Mutschke; A. Braatz; C. Clement; Th. Henning; U. G. Jorgensen; U. Ott

1998-12-22T23:59:59.000Z

312

MID-INFRARED SPECTRAL PROPERTIES OF POST-STARBURST QUASARS  

SciTech Connect

We present Spitzer InfraRed Spectrograph low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z {approx} 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signatures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3 {mu}m and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.

Wei Peng; Shang Zhaohui [Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Brotherton, Michael S.; Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Cales, Sabrina L. [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Hines, Dean C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ganguly, Rajib [Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, Flint, MI 48502 (United States); Canalizo, Gabriela, E-mail: zshang@gmail.com [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

2013-07-20T23:59:59.000Z

313

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145F (62.78C) and 100F (36.78C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

314

SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION  

SciTech Connect

We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

Gandhi, P. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yamanaka, M.; Itoh, R. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, M. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Nozawa, T.; Maeda, K.; Moriya, T. J. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Saviane, I. [European Southern Observatory, Alonso de Cordova 3107, Santiago 19 (Chile); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sasada, M. [Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

2013-04-20T23:59:59.000Z

315

A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part II: Calibration and Use of the Woods Hole Oceanographic Institution Improved Meteorology Precision Infrared Radiometer*  

Science Conference Proceedings (OSTI)

For some years, investigators have made measurements of downwelling longwave irradiance with the Eppley Precision Infrared Radiometer (PIR), recording the values of thermopile voltage and body and dome thermistor resistances and combining them in ...

Richard E. Payne; Steven P. Anderson

1999-06-01T23:59:59.000Z

316

CONCENTRATIONS WITHIN THE BSEChE PROGRAM February 2013 All concentrations consist of 12 credits, and must include at least one 300 or 400 level course. Only technical engineering, and general electives can be used as  

E-Print Network (OSTI)

.) NERS 441 Nuclear Reactor Theory (4 cr. Reqs NERS 312 and Math 454) NERS 471 Introduction to Plasmas (3 Topics in Mechanical Engr (3 cr.) NERS 250 Fundamentals of Nuclear Energy and Radi- ological Sciences (4 in Nuclear Engineering Required Courses: NERS 250 Funds of NERS (4 cr.) NERS 311 Elements of NERS I (3 cr

Kamat, Vineet R.

317

Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code  

SciTech Connect

Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)

Dai, H.L.

1981-04-01T23:59:59.000Z

318

A Search for Mid-Infrared Emission from Hot Molecular Core Candidates  

E-Print Network (OSTI)

We present here mid-infrared images of seven sites of water maser emission thought to be associated with the hot molecular core (HMC) phase of massive star formation. Observations were obtained at the NASA InfraRed Telescope Facility 3-m, the Gemini 8-m, and Keck II 10-m telescopes. We have detected mid-infrared sources at the locations of two HMC candidates, G11.94-0.62 and G45.07-0.13. We observed G19.61-0.23 and G34.26+0.15, each of which have HMCs previously detected in the mid-infrared. We did not detect mid-infrared emission from either HMC source, and we place new upper limits on the mid-infrared flux densities for these HMCs that are much lower than their previously reported flux densities. We were able to obtain extremely accurate astrometry for our mid-infrared images of G9.62+0.19, and conclude that the mid-infrared emission thought to be coming from the HMC in this field is in fact coming from a different source altogether.

James M. De Buizer; James T. Radomski; Charles M. Telesco; Robert K. Pina

2003-07-08T23:59:59.000Z

319

Study and simulation of the infrared WLAN IrDA: an alternative to the radio  

Science Conference Proceedings (OSTI)

The dramatic development of radio solutions for wireless communications tends to blur the wider use that can be made of infrared transmissions in a room, a workshop or even a building. For some local applications for which a wireless part often constitutes ... Keywords: Infrared, IrDA, Modelisation, OPNET, Protocols, Simulation, WLAN, WPAN, Wireless

Thierry Val; Fabrice Peyrard; Michel Misson

2003-07-01T23:59:59.000Z

320

Regional differences of cerebral hemoglobin concentration in preterm infants measured by near infrared spectrophotometry  

Science Conference Proceedings (OSTI)

Near infrared spectrophotometry has been used to measure total cerebral hemoglobin concentration (\\mumol/l) as a major indicator of the oxygen transport capacity in neonates. The aim of this study was to find out how the position of the probe influences ... Keywords: cerebral hemoglobin concentration, infants, near infrared spectrophotometry, positioning, preterm, probe

Matthias Keel; Martin Wolf; Oskar Baenziger; Vera Dietz; Kurt von Siebenthal; Hans U. Bucher

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Feasibility study of free-space quantum key distribution in the mid-infrared  

Science Conference Proceedings (OSTI)

We report on a feasibility study of a free-space Quantum Key Distribution setup operatingat a mid-infrared wavelength. Alice sends polarization-coded pseudo-single photonsfrom a Quantum Cascade Laser at 4.6 m to Bob, who uses a nonlinear crystal ... Keywords: free-space optics, frequency up-conversion, mid-infrared, quantum key distribution

Guilherme Temporao; Hugo Zibinden; Sebastien Tanzilli; Nicolas Gisin; Thierry Aellen; Marcella Giovannini; Jerome Faist; Jean von der Weid

2008-01-01T23:59:59.000Z

322

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization  

Science Conference Proceedings (OSTI)

Calibration is a critical step for developing spectral imaging systems. This paper presents a systematic calibration and characterization approach for a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. A series ... Keywords: Characterization, Inspection, LCTF, Shortwave infrared, Spectral imaging, System calibration

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

323

DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES  

SciTech Connect

In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

Sterling Backus

2012-05-14T23:59:59.000Z

324

Space charge spectroscopy of integrated quantum well infrared photodetectorlight emitting diode  

E-Print Network (OSTI)

Space charge spectroscopy of integrated quantum well infrared photodetector±light emitting diode M ± light emitting diode (QWIP-LED). Quasistatic capacitance±voltage (C±V ) characteristics under reverse.V. All rights reserved. Keywords: Quantum-well infrared photodetector; Light-emitting diode; Space charge

Matsik, Steven G.

325

Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy  

E-Print Network (OSTI)

Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy Jason M. Kriesel and testing of hollow core glass waveguides (i.e., fiber optics) for use in Mid-Wave Infrared (MWIR) and Long related applications, and fiber optics are a key enabling technology needed to improve the utility

326

Original papers: Evaluation of a wireless infrared thermometer with a narrow field of view  

Science Conference Proceedings (OSTI)

Many agricultural studies rely on infrared sensors for remote measurement of surface temperatures for crop status monitoring and estimating sensible and latent heat fluxes. Historically, applications for these non-contact thermometers employed the use ... Keywords: Infrared thermometers, Irrigation water management, Precision agriculture, Remote sensing, Wireless sensors

Susan A. O'Shaughnessy; Martin A. Hebel; Steve R. Evett; Paul D. Colaizzi

2011-03-01T23:59:59.000Z

327

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004)  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown References Melanie J. Hellman, Michael S. Ramsey (2004) Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Yellowstone_Region_(Hellman_%26_Ramsey,_2004)&oldid=401329" Category: Exploration Activities

328

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

329

An Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in the Rho Ophiuchi and Serpens Molecular Clouds  

E-Print Network (OSTI)

We present new near- and mid-infrared observations of 19 Class I/flat-spectrum young stellar objects in the nearby Rho Oph (d=125pc) and Serpens (d=310pc) dark clouds. These observations are part of a larger systematic infrared multiplicity survey of Class I/flat-spectrum objects in the nearest dark clouds. We find 7/19 (37% +/- 14%) of the sources surveyed to be multiple systems over a separation range of ~150 - 1800 AU. This is consistent with the fraction of multiple systems found among older pre-main-sequence stars in each of the Taurus, Rho Oph, Chamaeleon, Lupus, and Corona Australis star-forming regions over a similar separation range. However, solar-type main-sequence stars in the solar neighborhood have a fraction approximately one-third that of our Class I/flat- spectrum sample (11% +/- 3%). This may be attributed to evolutionary effects or environmental differences. An examination of the spectral energy distributions of the SVS 20 and WL 1 binaries reveals that the individual components of each source exhibit the same SED classifications, similar to what one typically finds for binary T Tauri star (TTS) systems, where the companion of a classical TTS also tends to be of the same SED type.

K. E. Haisch Jr.; M. Barsony; T. P. Greene; M. E. Ressler

2002-09-11T23:59:59.000Z

330

Convective Activity over Africa and the Tropical Atlantic Inferred from 20 Years of Geostationary Meteosat Infrared Observations  

Science Conference Proceedings (OSTI)

A 20-yr (19862005) time series of Meteosat Visible and Infrared Imager (MVIRI) geostationary infrared observations was used to study deep convection over Africa and the tropical Atlantic. The 20-yr time period is covered by six consecutive ...

Ralf Bennartz; Marc Schroeder

2012-01-01T23:59:59.000Z

331

A High-Accuracy Multiwavelength Radiometer for In Situ Measurements in the Thermal Infrared. Part I: Characterization of the Instrument  

Science Conference Proceedings (OSTI)

The new infrared radiometer (conveyable low-noise infrared radiometer for measurements of atmosphere and ground surface targets, or CLIMAT) is a highly sensitive field instrument designed to measure brightness temperatures or radiances in the ...

Michel Legrand; Christophe Pietras; Grard Brogniez; Martial Haeffelin; Nader Khalil Abuhassan; Michal Sicard

2000-09-01T23:59:59.000Z

332

Calibration of Geostationary-Satellite Infrared Radiometers Using the TIROS-N Vertical Sounder: Application to METEOSAT-1  

Science Conference Proceedings (OSTI)

A method is presented for the calibration of infrared radiometers on geostationary satellites using calibrated infrared radiometers on an orbiting satellite. This method relies on similarities between the weighting functions corresponding to the ...

N. Beriot; N. A. Scott; A. Chedin; P. Sitbon

1982-01-01T23:59:59.000Z

333

Mid-Infrared Instrumentation for the European Extremely Large Telescope  

E-Print Network (OSTI)

MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIR's science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.

S. Kendrew; B. Brandl; R. Lenzen; L. Venema; H. U. Kufl; G. Finger; A. Glasse; R. Stuik

2007-08-23T23:59:59.000Z

334

UMBRAL DYNAMICS IN THE NEAR-INFRARED CONTINUUM  

SciTech Connect

We detected peaks of oscillatory power at 3 and {approx}6.5 minutes in the umbra of the central sunspot of the active region NOAA AR 10707 in data obtained in the near-infrared (NIR) continuum at 1565.7 nm. The NIR data set captured umbral dynamics around 50 km below the {tau}{sub 500} = 1 level. The umbra does not oscillate as a whole, but rather in distinct parts that are distributed over the umbral surface. The most powerful oscillations, close to a period of {approx}6.5, do not propagate upward. We noted a plethora of large umbral dots (UDs) that persisted for {>=}30 minutes and stayed in the same locations. The peaks of oscillatory power above the detected UDs are located at 3 and 5 minute oscillations, but are very weak in comparison with the oscillations of {approx}6.5 minutes.

Andic, A.; Cao, W.; Goode, P. R. [Also at Big Bear Solar Observatory, 40398 North Shore Lane, Big Bear City, CA 92314 (United States)

2011-08-01T23:59:59.000Z

335

Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers  

SciTech Connect

The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

1999-04-05T23:59:59.000Z

336

Graphene-based plasmonic switches at near infrared frequencies  

E-Print Network (OSTI)

The concept, analysis, and design of series switches for graphene-strip plasmonic waveguides at near infrared frequencies are presented. Switching is achieved by using graphene's field effect to selectively enable or forbid propagation on a section of the graphene strip waveguide, thereby allowing good transmission or high isolation, respectively. The electromagnetic modeling of the proposed structure is performed using full-wave simulations and a transmission line model combined with a matrix-transfer approach, which takes into account the characteristics of the plasmons supported by the different graphene-strip waveguide sections of the device. The performance of the switch is evaluated versus different parameters of the structure, including surrounding dielectric media, electrostatic gating and waveguide dimensions.

Gomez-Diaz, J S

2013-01-01T23:59:59.000Z

337

Infrared Spectroscopy of Atomic Lines in Gaseous Nebulae  

E-Print Network (OSTI)

Spectroscopy in the infrared provides a means to assess important properties of the plasma in gaseous nebulae. We present some of our own work that illustrates the need for interactions between the themes of this conference - astronomical data, atomic data, and plasma simulations. We undertook Infrared Space Observatory (ISO) observations with the intent of better understanding the effects of density variations in nebulae, particularly planetary nebulae (PNs), by determining average electron densities from the flux ratios of several fine-structure, IR emission lines. Instead, we are able to ascertain only minor density information because of several instances of the observed line flux ratios being out of range of the theoretical predictions using current atomic data. In these cases, the ISO data cannot presently be used to derive electron density, but rather provide direction for needed improvements in the atomic collision strengths. We have detected an unidentified (uid) strong emission line in an ISO/SWS spectrum of the Orion Nebula. The line has a rest wavelength 2.89350$\\pm$0.00003 $\\mu$m. A long-slit UKIRT observation confirms the presence of this line and shows that the emission is spatially extended and appears to be coincident with the brightest part of the ionized region. We do not detect the uid line in our SWS02 spectra of any of the several bright PNs which we observed for a comparable time. The need for basic atomic data, in this case wavelengths to aid species identification, is paramount for future progress. We look toward the future with a brief synopsis of upcoming or planned IR missions.

R. H. Rubin; R. J. Dufour; T. R. Geballe; S. W. J. Colgan; J. P. Harrington; S. D. Lord; A. L. Liao; D. A. Levine

2001-09-23T23:59:59.000Z

338

Smart Infrared Inspection System Field Operational Test Final Report  

SciTech Connect

The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

2011-06-01T23:59:59.000Z

339

Evaluation of Using Infrared Thermography for quantifying Heat Losses From Buried Heat Distribution Pipes in chicago Housing Authority's Projects  

Science Conference Proceedings (OSTI)

Evaluation of using infrared thermography for quantifying heat losses from buried heat distribution pipes in Chicago Housing Authority's Projects

Gary Phetteplace

2001-05-29T23:59:59.000Z

340

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator  

E-Print Network (OSTI)

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator

Bane, K L F; Tu, J J

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Services Energy Economy Energy Policy Energy Policy Energy Secretary Steven Chu speaks with President Barack Obama. | Energy Department Photo Energy Secretary Steven...

342

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renewable Energy October 7, 2013 - 9:16am Addthis Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases...

343

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

344

Infrared and ultraviolet cutoffs in variational calculations with a harmonic oscillator basis  

E-Print Network (OSTI)

I abstract from a recent publication [1] the motivations for, analysis in and conclusions of a study of the ultraviolet and infrared momentum regulators induced by the necessary truncation of the model spaces formed by a variational trial wave function. This trial function is built systematically from a complete set of many-body basis states based upon three-dimensional harmonic oscillator (HO) functions. Each model space is defined by a truncation of the expansion characterized by a counting number (N) and by the intrinsic scale ($\\hbar\\omega$) of the HO basis. Extending both the uv cutoff to infinity and the ir cutoff to zero is prescribed for a converged calculation. In [1] we established practical procedures which utilize these regulators to obtain the extrapolated result from sequences of calculations with model spaces. Finally, I update this subject by mentioning recent work on our extrapolation prescriptions which have appeared since the submission of [1]. The numerical example chosen for this contribution consists of calculations of the ground state energy of the triton with the "bare" and "soft" Idaho N3LO nucleon-nucleon (NN) interaction.

Sidney A Coon

2013-03-26T23:59:59.000Z

345

Science Yield of an Improved Wide Field Infrared Survey Telescope (WFIRST)  

E-Print Network (OSTI)

The Astronomy and Astrophysics Decadal Survey's highest recommended space mission was a Wide-Field Infrared Survey Telescope (WFIRST) to efficiently conduct three kinds of studies: dark energy surveys, exoplanet surveys, and guest surveys. In this paper we illustrate four potential WFIRST payloads that accomplish these objectives and that fully utilize optical and technical advances made since the community input to the Decadal Survey. These improvements, developed by our group, are: unobscured 1.3 or 1.5 m apertures; simultaneous dual focal lengths delivering pixel scales of 0.18" for imaging and 0.38" or 0.45" for slitless spectroscopy; the use of a prism in converging light for slitless spectroscopy; and payload features that allow up to 270 days/year observing the Galactic Bulge. These factors combine to allow WFIRST payloads that provide improved survey rates compared to previous mission concepts. In this report we perform direct comparisons of survey speeds for constant survey depth using our optical an...

Levi, Michael E; Lampton, Michael L; Sholl, Michael J

2011-01-01T23:59:59.000Z

346

Generation of tunable coherent far-infrared radiation using atomic Rydberg states  

SciTech Connect

A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm/sup -1/ with a demonstrated tunability of .63 cm/sup -1/. The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy.

Bookless, W.

1980-12-01T23:59:59.000Z

347

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools of the Trade Tools of the Trade Clockwise: IR thermograph, IR camera, Air flow measurement, Blower door, Combustion test for water heater A hammer and a saw used to be the key tools for home contractors. Today, the best-in-breed also use high-tech equipment while performing a professional energy audit or verifying that construction has been done correctly. Infrared cameras can "see" heat loss and find hidden energy savings opportunities. PFT tests or blower door tests measure a homes air leakage and tell you when sealing has been successful. Combustion monitoring equipment and indoor-air pollution detectors ensure that a heating system is not only efficient but also not dumping dangerous pollutants into the home. All of these practices should be conducted with a

348

About the Geometric Solution to the Problems of Dark Energy  

E-Print Network (OSTI)

In this paper is proposed a geometric solution to the dark energy, assuming that the space can be divided into regions of size $\\sim L_{p}$ and energy $\\sim E_{p}$. Significantly this assumption generate a energy density similar to the energy density observed for the vaccum energy, the correct solution for the coincidence problem and the state equation characteristic of quintessence in the comoving coordinates. Similarly is studied the ultraviolet and infrarred limits and the amount of dark energy in the Universe.

Miguel Angel Garca-Aspeitia

2010-11-19T23:59:59.000Z

349

H A&S 220c Energy and Environment: Life Under the Pale Sun P.B. Rhines 7 Dec. 2004  

E-Print Network (OSTI)

a history of human use of energy...as first fire, then animals, then other forms of energy mining gave us' that traps outgoing infrared radiation and warms the Earth. Recent history of the first energy crisis (19721 H A&S 220c Energy and Environment: Life Under the Pale Sun P.B. Rhines 7 Dec. 2004 REVIEW

350

H A&S 222a Energy and Environment: Life Under the Pale Sun P.B. Rhines, J. Wright 25 May 2007  

E-Print Network (OSTI)

marginally green land. 3. Human energy use. McNeill's text gave a history of human use of energy...as first fuels. The history of environment in the 20th Century is one of cheap, readily available energy as oil' that traps outgoing infrared radiation and warms the Earth. Recent history of the first energy crisis (1972

351

Regional performance targets for transparent near-infrared switching...  

NLE Websites -- All DOE Office Websites (Extended Search)

glazings, NIR-switching, Performance targets, Solar heat gain Abstract With building heating and cooling accounting for nearly 14% of the national energy consumption, emerging...

352

Frequency Converter Enables Ultra-High Sensitivity Infrared ...  

Science Conference Proceedings (OSTI)

... photons are strictly selected by the energy conservation condition in ... to Frontier in Optics 2009 (the 93rd annual meeting of ... WERB review approved. ...

2010-10-05T23:59:59.000Z

353

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument  

Science Conference Proceedings (OSTI)

Nine months of the Clouds and the Earth's Radiant Energy System (CERES)/Tropical Rainfall Measuring Mission (TRMM) broadband fluxes combined with the TRMM visible infrared scanner (VIRS) high-resolution imager measurements are used to estimate ...

Norman G. Loeb; Seiji Kato

2002-06-01T23:59:59.000Z

354

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

355

Free Energy of ABJM Theory  

E-Print Network (OSTI)

The free energy of ABJM theory has previously been computed in the strong and weak coupling limits. In this note, we report on results for the computation of the first non-vanishing quantum correction to the free energy, from the field theory side. The correction can be expressed in terms of a thermal mass for the scalar fields. This mass vanishes to 1-loop order, but there is a non-vanishing result to 2-loop order. Hence, the leading correction to the free energy is non-analytic in the 't Hooft coupling constant lambda. The reason is that the infrared divergences necessitate a resummation of ring diagrams and a related reorganization of perturbation theory, in which already the leading correction receives contributions from all orders in lambda. These results suggest that the free energy interpolates smoothly between weak and strong coupling.

Mikael Smedbck

2011-03-24T23:59:59.000Z

356

Matter & Energy Solar Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

Rogers, John A.

357

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

Energy Efficiency & Renewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUST 2010 #12;2009 Wind Associates) Suzanne Tegen (National Renewable Energy Laboratory) Table of Contents Acknowledgments' Association); Ed DeMeo (Renewable Energy Consulting Services, Inc.); Mike O'Sullivan (NextEra Energy Resources

358

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 25250 of 28,904 results. 41 - 25250 of 28,904 results. Rebate NSTAR (Gas)- Commercial Energy Efficiency Programs NSTAR Gas offers incentives for their commercial customers to save energy in existing facilities. Rebates are for high efficiency gas space heating equipment, water heating equipment, infrared... http://energy.gov/savings/nstar-gas-commercial-energy-efficiency-programs Rebate NYSEG (Gas)- Residential Efficiency Program NYSEG is offering residential natural gas customers rebates for installing energy efficient equipment. Customers can complete one rebate application for multiple pieces of equipment as long as... http://energy.gov/savings/nyseg-gas-residential-efficiency-program Rebate National Grid (Gas)- Residential Energy Efficiency Rebate Programs (Metro New York) National Grid's High Efficiency Heating Rebates are offered to

359

WILEY ENCYCLOPEDIA OF TELECOMMUNICATIONS, 2002 (PREPRINT) 1 Wireless Infrared Communications  

E-Print Network (OSTI)

like these to capture solar energy produces no greenhouse gases or pollution. Answer Key to the Guiding within Earth's geologic reservoir for millions of years. The burning of coal to generate electricity of a metric ton of coal: Students can explore the connection between energy use (electricity), the burning

Carruthers, Jeffrey

360

Surface Energy Balance System (SEBS) Handbook  

Science Conference Proceedings (OSTI)

A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

Cook, DR

2011-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Save energy | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive...

362

The mid-infrared diameter of W Hydrae  

E-Print Network (OSTI)

Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Modeling results in an apparent angular FDD diameter of W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12 microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/- 0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 +/- 20) deg and an axis ra...

Zhao-Geisler, R; Koehler, R; Lopez, B; Leinert, C

2011-01-01T23:59:59.000Z

363

Airborne Infrared Target Tracking with the Nintendo Wii Remote Sensor  

E-Print Network (OSTI)

Intelligence, surveillance, and reconnaissance unmanned aircraft systems (UAS) are the most common variety of UAS in use today and provide invaluable capabilities to both the military and civil services. Keeping the sensors centered on a point of interest for an extended period of time is a demanding task requiring the full attention and cooperation of the UAS pilot and sensor operator. There is great interest in developing technologies which allow an operator to designate a target and allow the aircraft to automatically maneuver and track the designated target without operator intervention. Presently, the barriers to entry for developing these technologies are high: expertise in aircraft dynamics and control as well as in real- time motion video analysis is required and the cost of the systems required to flight test these technologies is prohibitive. However, if the research intent is purely to develop a vehicle maneuvering controller then it is possible to obviate the video analysis problem entirely. This research presents a solution to the target tracking problem which reliably provides automatic target detection and tracking with low expense and computational overhead by making use of the infrared sensor from a Nintendo Wii Remote Controller.

Beckett, Andrew 1984-

2012-12-01T23:59:59.000Z

364

Infrared Behavior of Scalar Condensates in Effective Holographic Theories  

E-Print Network (OSTI)

We investigate the infrared behavior of the spectrum of scalar-dressed, asymptotically Anti de Sitter (AdS) black brane (BB) solutions of effective holographic models. These solutions describe scalar condensates in the dual field theories. We show that for zero charge density the ground state of these BBs must be degenerate with the AdS vacuum, must satisfy conformal boundary conditions for the scalar field and it is isolated from the continuous part of the spectrum. When a finite charge density is switched on, the ground state is not anymore isolated and the degeneracy is removed. Depending on the coupling functions, the new ground state may possibly be energetically preferred with respect to the extremal Reissner-Nordstrom AdS BB. We derive several properties of BBs near extremality and at finite temperature. As a check and illustration of our results we derive and discuss several analytic and numerical, BB solutions of Einstein-scalar-Maxwell AdS gravity with different coupling functions and different potentials. We also discuss how our results can be used for understanding holographic quantum critical points, in particular their stability and the associated quantum phase transitions leading to superconductivity or hyperscaling violation.

Mariano Cadoni; Paolo Pani; Matteo Serra

2013-04-11T23:59:59.000Z

365

Integral field near-infrared spectroscopy of II Zw 40  

E-Print Network (OSTI)

We present integral field spectroscopy in the near-infrared of the nearby starburst galaxy IIZw40. Our new observations provide an unprecedented detailed view of the interstellar medium and star formation of this galaxy. The radiation emitted by the galaxy is dominated by a giant HII region, which extends over an area of more than 400 pc in size. A few clusters are present in this area, however one in particular appears to be the main source of ionizing photons. We derive the properties of this object and compare them with those of the 30 Doradus cluster in the Large magellanic cloud (LMC). We study the spatial distribution and velocity field of different components of the inetrstellar medium (ISM), mostly through the Bracket series lines, the molecular hydrogen spectrum, and [FeII]. We find that [FeII] and H2 are mostly photon excited, but while the region emitting [FeII] is almost coincident with the giant HII region observed in the lines of atomic H and He, the H2 has a quite different distribution in space and velocity. The age of the stellar population in the main cluster is such that no supernova (SN) should be present yet so that the gas kinematics must be dominated by the young stars. We do not see, in the starbursting region, any geometrical or dynamical structure that can be related to the large scale morphology of the galaxy.

L. Vanzi; G. Cresci; E. Telles; J. Melnick

2008-03-17T23:59:59.000Z

366

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

367

Masers and the Massive Star Formation Process: New Insights Through Infrared Observations  

E-Print Network (OSTI)

Our mid-infrared and near-infrared surveys over the last five years have helped to strengthen and clarify the relationships between water, methanol, and OH masers and the star formation process. Our surveys show that maser emission seems to be more closely associated with mid-infrared emission than cm radio continuum emission from UC HII regions. We find that masers of all molecular species surveyed trace a wide variety of phenomena and show a proclivity for linear distributions. The vast majority of these linear distributions can be explained by outflows or shocks, and in general do not appear to trace circumstellar disks as was previously thought. Some water and methanol masers that are not associated with radio continuum emission appear to trace infrared-bright hot cores, the earliest observable stage of massive stellar life before the onset of a UC HII region.

James M. De Buizer; James T. Radomski; Charles M. Telesco; Robert K. Pina

2005-06-08T23:59:59.000Z

368

Infrared Interferometric Measurements of the Near-Surface Air Temperature over the Oceans  

Science Conference Proceedings (OSTI)

The radiometric measurement of the marine air temperature using a Fourier transform infrared spectroradiometer is described. The measurements are taken by the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) that has been deployed on ...

P. J. Minnett; K. A. Maillet; J. A. Hanafin; B. J. Osborne

2005-07-01T23:59:59.000Z

369

Determining Soil Moisture from Geosynchronous Satellite Infrared Data: A Feasibility Study  

Science Conference Proceedings (OSTI)

In the absence of a current capability for global routine daily soil moisture observation, an infrared technique using existing instrumentation is sought. Numerical modeling results are reported from a pilot study, the purpose of which was to ...

Peter J. Wetzel; David Atlas; Robert H. Woodward

1984-03-01T23:59:59.000Z

370

An Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) for Deployment aboard Volunteer Observing Ships (VOS)  

Science Conference Proceedings (OSTI)

The infrared SST autonomous radiometer (ISAR) is a self-calibrating instrument capable of measuring in situ sea surface skin temperature (SSTskin) to an accuracy of 0.1 K. Extensive field deployments alongside two independent research radiometers ...

C. Donlon; I. S. Robinson; W. Wimmer; G. Fisher; M. Reynolds; R. Edwards; T. J. Nightingale

2008-01-01T23:59:59.000Z

371

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

372

A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall  

Science Conference Proceedings (OSTI)

This paper describes a new method of estimating both tropical convective precipitation and stratiform precipitation (produced under the anvils of mature and decaying convective systems) from satellite infrared data. The method, denoted CST (...

Robert F. Adler; Andrew J. Negri

1988-01-01T23:59:59.000Z

373

Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer  

Science Conference Proceedings (OSTI)

Thunderstorm top structure is examined with high spatial resolution radiometric data (visible and infrared) from aircraft overflights together with other storm views, including geosynchronous satellite observations. Results show that overshooting ...

Robert F. Adler; Michael J. Markus; Douglas D. Fenn; Gerard Szejwach; William E. Shenk

1983-04-01T23:59:59.000Z

374

Infrared and Visible Satellite Rain Estimation. Part I: A Grid Cell Approach  

Science Conference Proceedings (OSTI)

The relationships between satellite-viewed cloudy (or partly cloudy) grid cells and the variability of the precipitation contained therein are explored. Using a 32 km grid and 30 min interval visible, infrared and radar data, 5 days of the ...

Andrew J. Negri; Robert F. Adler

1987-11-01T23:59:59.000Z

375

A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal  

Open Energy Info (EERE)

Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helicopter-Borne Video Thermal Infrared Survey Of The Rotorua Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Delineation and monitoring of surface thermal activity at geothermal development sites and in tourist and urban areas is important for safety, planning, scientific and field management reasons. Because the standard ground-based temperature measurement methods employed for such work are incomplete, expensive and often impractical, we have developed a helicopter-borne video thermal infrared scanner technique to replace them. The imagery obtained is conveniently stored on videotape and powerful image

376

A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Details Activities (0) Areas (0) Regions (0) Abstract: We propose a simple graphic and statistical method for processing short-wave infrared (SWIR) reflectivity spectra of alteration minerals, which classifies spectra according to their shape and absorption features, thus obtaining groups of spectra equivalent to mineral assemblages. It also permits selection of fewer samples for further mineralogical verification.

377

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earths current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave visible to longwave infrared ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

378

Mid-Infrared Single-Photon Detection Using Superconducting Nanowires Integrated with Nano-Antennae  

E-Print Network (OSTI)

We present some major challenges of mid-infrared superconducting nanowire single-photon detector technology and our device design with nano-antenna integration to address these challenges.

Berggren, Karl K.

379

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

380

Examining Rapid Onset Drought Development Using the Thermal InfraredBased Evaporative Stress Index  

Science Conference Proceedings (OSTI)

Reliable indicators of rapid drought onset can help to improve the effectiveness of drought early warning systems. In this study, the evaporative stress index (ESI), which uses remotely sensed thermal infrared imagery to estimate ...

Jason A. Otkin; Martha C. Anderson; Christopher Hain; Iliana E. Mladenova; Jeffrey B. Basara; Mark Svoboda

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Possibilities and Limitations for Quantitative Precipitation Forecasts Using Nowcasting Methods with Infrared Geosynchronous Satellite Imagery  

Science Conference Proceedings (OSTI)

A rainfall nowcasting system is developed that identifies locations of raining clouds on consecutive infrared geosynchronous satellite images while predicting the movement of the rain cells for up to 10 h using cloud-motion-based winds. As part ...

Andrew M. E. Grose; Eric A. Smith; Hyo-Sang Chung; Mi-Lim Ou; Byung-Ju Sohn; F. Joseph Turk

2002-07-01T23:59:59.000Z

382

The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part I: Laboratory Characterization of Blackbody Targets  

Science Conference Proceedings (OSTI)

The second calibration and intercomparison of infrared radiometers (Miami2001) was held at the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS) during MayJune 2001. The participants were from several groups ...

J. P. Rice; J. J. Butler; B. C. Johnson; P. J. Minnett; K. A. Maillet; T. J. Nightingale; S. J. Hook; A. Abtahi; C. J. Donlon; I. J. Barton

2004-02-01T23:59:59.000Z

383

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements  

Science Conference Proceedings (OSTI)

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ...

Jennifer M. Comstock; Kenneth Sassen

2001-10-01T23:59:59.000Z

384

Thermal And-Or Near Infrared At Coso Geothermal Area (1968-1971...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Thermal And-Or Near Infrared At Coso Geothermal Area (1968-1971) Jump to: navigation, search...

385

Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data  

Science Conference Proceedings (OSTI)

Measured cloud spectral signatures in high-resolution infrared interferometer data have been separated from the clear-air signatures using singular value decomposition. Sets of empirical orthogonal functions (EOFs) have then been created from ...

Jonathan A. Smith; Jonathan P. Taylor

2004-01-01T23:59:59.000Z

386

OpenIR [Open Infrared] : enhancing environmental monitoring through accessible remote sensing, in Indonesia and beyond  

E-Print Network (OSTI)

As the human landscape changes ever more rapidly, environmental change accelerates. Much environmental information is publicly available as infrared satellite data. However, for the general user, this information is difficult ...

Ducao, Arlene (Arlene Brigoli)

2013-01-01T23:59:59.000Z

387

A Comparison of Near-Infrared Diode Laser Techniques for Airborne Hygrometry  

Science Conference Proceedings (OSTI)

High-frequency wavelength modulation spectroscopy and dual beam absorption noise canceler methods are compared for near-infrared laser detection of moisture at levels relevant to airborne hygrometry. Both techniques exhibit sensitivities ...

Joel A. Silver; David Christian Hovde

1998-02-01T23:59:59.000Z

388

An Intercalibration of METEOSAT-1 and GOES-2 Visible and Infrared Measurements  

Science Conference Proceedings (OSTI)

An intercomparison between radiative parameters determined from visible and infrared channels of the METEOSAT-1 and GOES-2 geosynchronous satellites has been carried out using data obtained over the central Atlantic Ocean for 5 November 1978. ...

David R. Brooks; Christopher F. England; Carry E. Hunt; Patrick Minnis

1984-09-01T23:59:59.000Z

389

Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate  

Science Conference Proceedings (OSTI)

Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal ...

Andrew Gettelman; William D. Collins; Eric J. Fetzer; Annmarie Eldering; Fredrick W. Irion; Phillip B. Duffy; Govindasamy Bala

2006-12-01T23:59:59.000Z

390

A Combined Satellite Infrared and Passive Microwave Technique for Estimation of Small-Scale Rainfall  

Science Conference Proceedings (OSTI)

There are numerous applications in climatology and hydrology where accurate information at scales smaller than the existing monthly/2.5 products would be invaluable. Here, a new microwave/infrared rainfall algorithm is introduced that combines ...

Martin C. Todd; Chris Kidd; Dominic Kniveton; Tim J. Bellerby

2001-05-01T23:59:59.000Z

391

Combining Satellite Infrared and Lightning Information to Estimate Warm Season Convective and Stratiform Rainfall  

Science Conference Proceedings (OSTI)

This paper describes and evaluates a satellite rainfall estimation technique that combines infrared and lightning information to estimate precipitation in deep convective systems. The algorithm is developed and tested using seven years (2002-2008) ...

Weixin Xu; Robert F. Adler; Nai-Yu Wang

392

Analysis of Information Content of Infrared Sounding Radiances in Cloudy Conditions  

Science Conference Proceedings (OSTI)

Information content analysis of the Geostationary Operational Environmental Satellite (GOES) sounder observations in the infrared was conducted for use in satellite data assimilation. Information content is defined as a first-order response of ...

T. Koyama; T. Vukicevic; M. Sengupta; T. Vonder Haar; A. S. Jones

2006-12-01T23:59:59.000Z

393

A Statistics-Based Method For The Short-Wave Infrared Spectral...  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to:...

394

Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery  

Science Conference Proceedings (OSTI)

A technique to identify and quantify intense convection in tropical cyclones (TCs) using bispectral, geostationary satellite imagery is explored. This technique involves differencing the water vapor (WV) and infrared window (IRW) channel ...

Timothy L. Olander; Christopher S. Velden

2009-12-01T23:59:59.000Z

395

Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation  

Science Conference Proceedings (OSTI)

The authors investigate whether combining a data type derived from radio occultation (RO) with the infrared spectral data in an optimal detection method improves the quantification of longwave radiative forcing and feedback. Signals derived from ...

Yi Huang; Stephen S. Leroy; James G. Anderson

2010-11-01T23:59:59.000Z

396

The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part II: Shipboard Results  

Science Conference Proceedings (OSTI)

The second calibration and intercomparison of infrared radiometers (Miami2001) was held at the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS) during a workshop held from May to June 2001. The radiometers ...

I. J. Barton; P. J. Minnett; K. A. Maillet; C. J. Donlon; S. J. Hook; A. T. Jessup; T. J. Nightingale

2004-02-01T23:59:59.000Z

397

Surface Emissivity Impact on Temperature and Moisture Soundings from Hyperspectral Infrared Radiance Measurements  

Science Conference Proceedings (OSTI)

An accurate land surface emissivity (LSE) is critical for the retrieval of atmospheric temperature and moisture profiles along with land surface temperature from hyperspectral infrared (IR) sounder radiances; it is also critical to assimilating IR ...

Zhigang Yao; Jun Li; Jinlong Li; Hong Zhang

2011-06-01T23:59:59.000Z

398

Air-clad silicon pedestal structures for broadband mid-infrared microphotonics  

E-Print Network (OSTI)

Toward mid-infrared (mid-IR) silicon microphotonic circuits, we demonstrate broadband on-chip silicon structures, such as: (i) straight and bent waveguides and (ii) beam splitters, utilizing an air-clad pedestal configuration ...

Lin, Pao Tai

399

Application of CALIOP Measurements to the Evaluation of Cloud Phase Derived from MODIS Infrared Channels  

Science Conference Proceedings (OSTI)

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) infrared-based cloud thermodynamic phase retrievals are evaluated using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals for the 6 months from January to ...

Hyoun-Myoung Cho; Shaima L. Nasiri; Ping Yang

2009-10-01T23:59:59.000Z

400

High Operating Temperature Quantum-Dot Infrared Photodetector Using Advanced Capping Techniques  

Science Conference Proceedings (OSTI)

We demonstrate an improvement in the operating temperature of a quantum dot-in-a-well (DWELL)-based infrared photodetector with spectral response observable till 250 K. This improvement was achieved through engineering the dot geometry and the quantum ...

Jiayi Shao; Thomas E. Vandervelde; Woo-Yong Jang; Andreas Stintz; Sanjay Krishna

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Development of an Airborne Infrared Interferometer for Meteorological Sounding Studies  

Science Conference Proceedings (OSTI)

The United Kingdom Meteorological Office (UKMO) has developed an airborne interferometer to act as a simulator for future satellite-based infrared meteorological sounders. The Airborne Research Interferometer Evaluation System (ARIES) consists of ...

S. H. S. Wilson; N. C. Atkinson; J. A. Smith

1999-12-01T23:59:59.000Z

402

The Global Distribution of Supersaturation in the Upper Troposphere from the Atmospheric Infrared Sounder  

Science Conference Proceedings (OSTI)

Satellite data from the Atmospheric Infrared Sounder (AIRS) is analyzed to examine regions of the upper troposphere that are supersaturated: where the relative humidity (RH) is greater than 100%. AIRS data compare well to other in situ and ...

Andrew Gettelman; Eric J. Fetzer; Annmarie Eldering; Fredrick W. Irion

2006-12-01T23:59:59.000Z

403

Computing the Atmospheric Absorption for the DMSP Operational Linescan System Infrared Channel  

Science Conference Proceedings (OSTI)

An accurate and rapid means is presented for computing the atmospheric absorption for the infrared channel (10.212.7 ?m) on the Defense Meteorological Satellite Program operational linescan system (OLS) for use in remote sensing studies of ...

Thomas J. Greenwald; Charles J. Drummond

1999-12-01T23:59:59.000Z

404

Lattice Studies for CIRCE (Coherent InfraRed CEnter) at the ALS  

E-Print Network (OSTI)

Lattice Studies for CIRCE (Coherent InfraRed CEnter) at theis neces- sary. The lattice for CIRCE allows controllingThe paper describes the lattice and presents the calculated

Nishimura, Hiroshi; Robin, David; Sannibale, Fernando; Wan, Weishi

2004-01-01T23:59:59.000Z

405

Objective Estimation of Tropical Cyclone Wind Structure from Infrared Satellite Data  

Science Conference Proceedings (OSTI)

Geostationary infrared (IR) satellite data are used to provide estimates of the symmetric and total low-level wind fields in tropical cyclones, constructed from estimations of an azimuthally averaged radius of maximum wind (RMAX), a symmetric ...

Kimberly J. Mueller; Mark DeMaria; John Knaff; James P. Kossin; Thomas H. Vonder Haar

2006-12-01T23:59:59.000Z

406

Application of Principal Component Analysis to High-Resolution Infrared Measurement Compression and Retrieval  

Science Conference Proceedings (OSTI)

A simulation study is used to demonstrate the application of principal component analysis to both the compression of, and meteorological parameter retrieval from, high-resolution infrared spectra. The study discusses the fundamental aspects of ...

Hung-Lung Huang; Paolo Antonelli

2001-03-01T23:59:59.000Z

407

Hurricane Structure and Wind Fields from Stereoscopic and Infrared Satellite Observations and Radar Data  

Science Conference Proceedings (OSTI)

Infrared and stereoscopic visible satellite data from synchronized scanning of GOES-East and -West are combined with ground-based radar data for Hurricane Frederic (1979) and time-composited airborne radar for Hurricane Alien (1980) to ...

A. Frederick Hasler; K. Robert Morris

1986-06-01T23:59:59.000Z

408

The Identification and Verification of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations  

Science Conference Proceedings (OSTI)

Three algorithms based on geostationary visible and infrared (IR) observations are used to identify convective cells that do (or may) present a hazard to aviation over the oceans. The performance of these algorithms in detecting potentially ...

Michael F. Donovan; Earle R. Williams; Cathy Kessinger; Gary Blackburn; Paul H. Herzegh; Richard L. Bankert; Steve Miller; Frederick R. Mosher

2008-01-01T23:59:59.000Z

409

Infrared Tracers of Mass-Loss Histories and Wind-ISM Interactions in Hot Star Nebulae  

E-Print Network (OSTI)

Infrared observations of hot massive stars and their environments provide a detailed picture of mass loss histories, dust formation, and dynamical interactions with the local stellar medium that can be unique to the thermal regime. We have acquired new infrared spectroscopy and imaging with the sensitive instruments onboard the Spitzer Space Telescope in guaranteed and open time programs comprised of some of the best known examples of hot stars with circumstellar nebulae, supplementing with unpublished Infrared Space Observatory spectroscopy. Here we present highlights of our work on the environment around the extreme P Cygni-type star HDE316285, revealing collisionally excited H2 for the first time in a hot star nebula, and providing some defining characteristics of the star's evolution and interactions with the ISM at unprecented detail in the infrared.

P. Morris; the Spitzer WRRINGS Team

2008-01-31T23:59:59.000Z

410

Delineation of Precipitation Areas by Correlation of Meteosat Visible and Infrared Data with Radar Data  

Science Conference Proceedings (OSTI)

Methods of optimizing the Lovejoy and Austin technique to delineate areas of precipitation using visible and infrared satellite data are investigated. The technique involves training the satellite data by correlation with real-time radar data. ...

M. Cheng; R. Brown

1995-09-01T23:59:59.000Z

411

Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery  

Science Conference Proceedings (OSTI)

A technique is described for the detection of fog and low clouds at night using multispectral infrared (IR) imagery from Geostationary Operational Environmental Satellites (GOES). The technique requires subtraction and enhancement of digital data ...

Gary P. Ellrod

1995-09-01T23:59:59.000Z

412

An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder  

Science Conference Proceedings (OSTI)

The skill of instantaneous Atmospheric Infrared Sounder (AIRS) retrieved near-surface meteorology, including surface skin temperature (Ts), air temperature (Ta), specific humidity (q), and relative humidity (RH), as well as model-derived surface ...

Craig R. Ferguson; Eric F. Wood

2010-12-01T23:59:59.000Z

413

Stacked silicide/silicon mid- to long-wavelength infrared detector  

DOE Patents (OSTI)

The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

Maserjian, Joseph (Goleta, CA)

1990-03-13T23:59:59.000Z

414

An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration ...

Changyong Cao; Kenneth Jarva; Pubu Ciren

2007-02-01T23:59:59.000Z

415

Examination of the Relationship between Outgoing Infrared Window and Total Longwave Fluxes Using Satellite Data  

Science Conference Proceedings (OSTI)

The relationship between narrowband and broadband thermal radiances is explored to determine the accuracy of outgoing longwave radiation derived from narrowband data. Infrared window (10.212.2 ?m) data from the Geostationary Operational ...

Patrick Minnis; David F. Young; Edwin F. Harrison

1991-11-01T23:59:59.000Z

416

Satellite Determinations of the Relationship between Total Longwave Radiation Flux and Infrared Window Radiance  

Science Conference Proceedings (OSTI)

Nimbus-7 satellite observations are used to determine the relationship between the total longwave radiation flux and the radiance in the 10-12 ?m infrared window. The total longwave fluxes are obtained from the earth radiation budget (ERB) narrow-...

George Ohring; Arnold Gruber; Robert Ellingson

1984-03-01T23:59:59.000Z

417

Tunable Infrared Emission From Printed Colloidal Quantum Dot/Polymer Composite Films on Flexible Substrates  

E-Print Network (OSTI)

A simple and robust device structure for a flexible, multicolor infrared (IR) display is described. The display operates by optical downconversion of AC-driven blue phosphor electroluminescence using different-sized, ...

Panzer, Matthew J.

418

Determination of Semi-Transparent Cirrus Cloud Temperature from Infrared Radiances: Application to METEOSAT  

Science Conference Proceedings (OSTI)

The use of simultaneous infrared measurements to derive the temperature and emissivity of semi-transparent cirrus clouds is experimentally investigated. Results from the NASA/CONVAIR-990 Winter Experiment Program, 1977 (WEP) are discussed. It is ...

Gerard Szejwach

1982-03-01T23:59:59.000Z

419

Measurements of the Vapor Pressure of Supercooled Water Using Infrared Spectroscopy  

Science Conference Proceedings (OSTI)

Measurements are presented of the vapor pressure of supercooled water utilizing infrared spectroscopy, which enables unambiguous verification that the authors data correspond to the vapor pressure of liquid water, not a mixture of liquid water ...

Will Cantrell; Eli Ochshorn; Alexander Kostinski; Keith Bozin

2008-09-01T23:59:59.000Z

420

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

E-Print Network (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to ...

Ganapati, Vidya

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Comparison of Infrared Atmospheric Brightness Temperatures Measured by a Fourier Transform Spectrometer and a Filter Radiometer  

Science Conference Proceedings (OSTI)

Increased interest in using atmospheric brightness temperature measurements from simple infrared radiometers combined with radars and lidars has prompted the investigation of their accuracy for various sky conditions. In comparisons of ...

Joseph A. Shaw; Jack B. Snider; James H. Churnside; Mark D. Jacobson

1995-10-01T23:59:59.000Z

422

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

423

Plant energy auditing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial...

424

Improve energy performance | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

track, and benchmark Improve energy performance ENERGY STAR industrial partnership Energy guides Energy efficiency and air regulation Plant energy auditing Industrial...

425

Developments in enzyme immobilization and near-infrared Raman spectroscopy with downstream renewable energy applications  

DOE Green Energy (OSTI)

This dissertation focuses on techniques for (1) increasing ethanol yields from saccharification and fermentation of cellulose using immobilized cellulase, and (2) the characterization and classification of lignocellulosic feedstocks, and quantification of useful parameters such as the syringyl/guaiacyl (S/G) lignin monomer content using 1064 nm dispersive multichannel Raman spectroscopy and chemometrics.

Lupoi, Jason [Ames Laboratory

2012-08-27T23:59:59.000Z

426

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

DOE Green Energy (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL

2005-07-11T23:59:59.000Z

427

Generic Model of SH-LED for Mid-infrared (2-5m) Applications  

Science Conference Proceedings (OSTI)

In this paper, we present a physics based model of a P+-InAs0.36Sb0.20P0.44/ n0-InAs/n+-InAs single heterostructure light emitting diode (SH-LED) suitable for use as source in gas detection and futuristic optical fiber communication systems in the mid-infrared ... Keywords: Gas instrumentation, Optical fiber communication, Light emitting diode, Mid-infrared, Single heterostructure

Sanjeev; P. Chakrabarti

2008-07-01T23:59:59.000Z

428

Magnetism and infrared divergence in a Hubbard-phonon interacting system  

E-Print Network (OSTI)

We show that a finite Hubbard-phonon interacting system has ferromagnetic or unique spin-singlet ground state under the infrared singular condition. The key tool is a unitary transformation introduced by Arai and Hirokawa. We construct a concrete infrared singular representation using the operator algebraic method. The method is essentially same as one for the van Hove model using the Wightman functional method.

Yoshitsugu Sekine

2010-08-12T23:59:59.000Z

429

The Parameterization of Longwave Flux in Energy Balance Climate Models  

Science Conference Proceedings (OSTI)

Many climate models of the energy balance type parameterize the zonally-averaged infrared flux at the top of the atmosphere in terms of the surface (or sea level) temperature T and cloud cover n in the form I = A + BT ? (C + DT)nMost recent ...

Ian Simmonds; Cher Chidzey

1982-10-01T23:59:59.000Z

430

Water vapor and greenhouse trapping: The role of far infrared absorption  

SciTech Connect

Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red, over the middle/upper troposphere; in the SAw case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change. 16 refs., 3 figs., 1 tab.

Sinha, A.; Harries, J.E. [Imperial College of Science, Technology and Medicine, Prince Consort Road (United Kingdom)

1995-08-15T23:59:59.000Z

431

Resonant photonic crystal photodetectors for the infrared in silicon  

E-Print Network (OSTI)

The challenge of overcoming energy efficiency and bandwidth limitations in interconnects between components in computer systems (e.g. between memory and processors) has motivated the development of short-range optical ...

Mehta, Karan K. (Karan Kartik)

2012-01-01T23:59:59.000Z

432

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

of energy; · increase efficiency and productivity of the existing energy infrastructure; · bring clean lives of Americans by productively enhancing their energy choices and quality of life. Energy Efficiency Performance and Sustainable Buildings by 2015 Design all new Federal buildings which begin the planning

433

Energy Conservation Renewable Energy  

E-Print Network (OSTI)

Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

Delgado, Mauricio

434

NSTAR (Gas) - Commercial Energy Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTAR (Gas) - Commercial Energy Efficiency Programs NSTAR (Gas) - Commercial Energy Efficiency Programs NSTAR (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Commercial Weatherization Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Forced Hot Water Boilers: $500-$15,000 Boiler Reset Controls: $225 Condensing Unit or Water Heater: $500 On-Demand Unit Heater: $1000 or $1600 Warm Air Furnaces: $400-$800 Indirect Water Heater/Boiler: $400 Tankless Water Heater: $500 or $800 Storage Water Heaters: $50 or $100 Low Intensity Infrared Heating Units: $500 High Efficiency Cooking Equipment: up to $1,000 Steam Traps: $25 Programmable Thermostats: $25

435

Nicor Gas - Commercial Energy Efficiency Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates Nicor Gas - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Construction Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Business Custom Incentive Program: $500,000/year Program Info Expiration Date 5/31/2014 State Illinois Program Type Utility Rebate Program Rebate Amount Space Heating Non-Condensing Steam Boilers: $400 - $2,500 Space Heating Condensing Boilers: $500 - $7,500 Natural Gas Furnaces: $300 - $400 Condensing Unit Heaters: $2.50 per MBH Infrared Heaters: $700 Storage Water Heaters: $150-$200 Steam Trap Repairs/Replacements: $100 - $500/trap Boiler Controls: $0.50/MBTUH

436

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-003679: Categorical Exclusion Determination Polymeric Multilayer Infrared Reflecting Film Development CX(s) Applied: B3.6 Date: 09/01/2010 Location(s): Maplewood, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 1, 2010 CX-003678: Categorical Exclusion Determination Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project CX(s) Applied: B3.6, B5.1 Date: 09/01/2010 Location(s): Hudson, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 1, 2010 CX-003676: Categorical Exclusion Determination Legacy Engine Demonstration CX(s) Applied: A1, A9, A11, B1.31, B3.6 Date: 09/01/2010 Location(s): Knoxville, Tennessee Office(s): Energy Efficiency and Renewable Energy, National Energy

437

Texas Gas Service - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program Texas Gas Service - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount Front-loading Clothes Washers: up to $100 Commercial Water Heating System: up to 20% of cost Hydronic Heater: $125 per unit Infra-red Fryers: $400 Convection Ovens: $400 Conveyor Ovens: $400 Infra-red Griddles $200 Booster Heater: $500/unit Texas Gas Service (TGS) offers a range of financial incentives to commercal customers who purchase and install energy efficient commercial equipment. Eligible equipment includes commercial clothes washers, water heaters, hydronic heating systems, ovens, fryers, griddles and booster heaters.

438

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 12780 of 31,917 results. 71 - 12780 of 31,917 results. Download Slide 1 http://energy.gov/downloads/slide-1-16 Download Slide 1 http://energy.gov/downloads/slide-1-27 Download Audit Report: OAS-L-07-16 Audit of Contract Transition Activities at Los Alamos NationalLaboratory http://energy.gov/ig/downloads/audit-report-oas-l-07-16 Article Thermographic Inspections Energy auditors may use thermography -- or infrared scanning -- to detect thermal defects and air leakage in building envelopes. http://energy.gov/energysaver/articles/thermographic-inspections Download CX-008259: Categorical Exclusion Determination Slipstream Testing of a Membrane Carbon Dioxide Capture Process for Existing Coal-Fired Power Plants CX(s) Applied: A9, B3.6 Date: 03/28/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

439

Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign  

E-Print Network (OSTI)

Surface downward far-infrared (far-IR) spectra were collected from NASAs Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is known for its dry, cold, and dominantly clear atmosphere, which is optimal for studying the effects, that water vapor and cirrus clouds have on the far-IR. Comparisons with Line-By-Line Discrete Ordinants Radiative Transfer model, LBLDIS, show that FIRST observes the very fine spectral structure in the far-IR with differences as small as +/- 0.7% for both clear-sky and cloudy-sky simulations. Clear sky model analysis demonstrated the greatest sensitivity to atmospheric conditions is between 300 and 500 cm-1. The cloudy-sky simulations demonstrated that the far-IR radiation has minimal sensitivity to cloud particle effective radius, yet is very sensitive to cloud optical thickness at wavenumbers between 400 - 600 cm-1. In fact, cirrus optical thickness found to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but had little effect on the total far-IR radiative forcing. Furthermore, these far-IR measurements open a new window to understanding the radiative impacts of various atmospheric constituents such as water vapor and clouds, and to understanding and modeling the Earths climate and energy budget.

Baugher, Elizabeth

2011-12-01T23:59:59.000Z

440

Energy Education  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Energy Technologies and Carbon Dioxide Management: Energy Education .... A Suggestion for Establishing Energy Management Policy in...

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Portal. Energy Portal - Overview. ... see all Energy programs and projects ... Instruments. Nonlinear Optical Spectroscopy ...

2013-11-07T23:59:59.000Z

442

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earths Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

The Clouds and Earths Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith

2005-04-01T23:59:59.000Z

443

Modeling the Dust Spectral Energy Distributions of Dwarf Galaxies  

E-Print Network (OSTI)

Recent efforts on the modeling of the infrared spectral energy distributions (SEDs) of dwarf galaxies are summarised here. The characterisation of the dust properties in these low metallicity environments is just unfolding, as a result of recently available mid-infrared to millimetre observations. From the limited cases we know to date, it appears that the hard radiation fields that are present in these star-bursting dwarf galaxies, as well as the rampent energetics of supernovae shocks and winds have modified the dust properties, in comparison with those in the Galaxy, or other gas and dust rich galaxies. The sophistication of the SED models is limited by the availability of detailed data in the mid infrared and particularly in the submillimetre to millimetre regime, which will open up in the near future with space-based missions, such as Herschel.

Suzanne C. Madden

2005-01-31T23:59:59.000Z

444

Energy Information Administration - Energy Efficiency, energy ...  

U.S. Energy Information Administration (EIA)

The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy ...

445

Vibrational eigenvalues and eigenfunctions for planar acetylene by wave-packet propagation, and its mode-selective infrared excitation  

SciTech Connect

Vibrational eigenvalues with estimated errors {lt}5{times}10{sup {minus}2}cm{sup {minus}1} and their corresponding eigenfunctions for {bold J}=0 5D (planar) acetylene modeled by the Halonen{endash}Child{endash}Carter potential-energy surface are obtained using an energy-shifted, imaginary-time Lanczos propagation of symmetry-adapted wave packets. A lower resolution ({approximately}4cm{sup {minus}1}) vibrational eigenspectrum of the system is also calculated by the Fourier transform of the autocorrelation of an appropriate wave packet. The eigenvalues from both approaches are in excellent agreement. The wave function of the molecule is represented in a direct-product discrete variable representation (DVR) with nearly 300000 grid points. Our results are compared with the previously reported theoretical and experimental values. We use our 69 computed eigenstates as a basis to perform an optimal control simulation of selective two-photon excitation of the symmetric CH-stretch mode with an infrared, linearly polarized, transform-limited, and subpicosecond{endash}picosecond laser pulse. The resulting optimal laser pulses, which are then tested on the full DVR grid, fall within the capabilities of current powerful, subpicosecond, and tunable light sources. {copyright} {ital 1997 American Institute of Physics.}

Liu, L.; Muckerman, J.T. [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

1997-09-01T23:59:59.000Z

446

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

447

Correlation between near infrared emission and bismuth radical species of Bi{sub 2}O{sub 3}-containing aluminoborate glass  

Science Conference Proceedings (OSTI)

A strong correlation between bismuth radical species and emission in the near infrared (NIR) region of SnO-doped bismuth-containing aluminoborate glass, (CaO-B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2}) (CaBBAT), was observed. Since the activation energy of the NIR emission was similar to that of electron spin resonance signal, it is expected that bismuth radical species in the CaBBAT glass is an origin of the NIR emission. Compared to the observed emission spectra with energy diagram of previous data, we have confirmed that bismuth ion possessing low valence is the origin of broad emission in the NIR region.

Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi [Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Sendai 980-8579 (Japan); Suzuki, Takenobu; Ohishi, Yasutake [Department of Future-Oriented Basic Science and Materials, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

2009-11-15T23:59:59.000Z

448

REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES  

E-Print Network (OSTI)

System. B. Procedures. Catalyst Preparation Infrared DiskPreparation. Catalyst Characterization. PreliminaryReduction by CO Over a Pt Catalyst," M.S. thesis, Department

Lorimer, D.H.

2011-01-01T23:59:59.000Z

449

Department of Energy - Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 en Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage http:energy.govarticlesenergy-efficiency-helping-home-owners-and-businesses-understand-energy...

450

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

451

Energy Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Energy Policy Energy Secretary Steven Chu speaks with President Barack Obama. | Energy Department Photo Energy Secretary Steven Chu speaks with President Barack Obama. |...

452

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources Energy Sources Renewable Energy Learn more about Solar, Water, Biomass, Geothermal and Wind Energy. Read more Nuclear Learn more about how we use Nuclear Energy. Read more...

453

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Energy Sources Renewable Energy Learn more about Solar, Water, Biomass, Geothermal and Wind Energy. Read more Nuclear Learn more about how we...

454

Leonardo Energy | Open Energy Information  

Open Energy Info (EERE)

Area: Energy Efficiency, Renewable Energy, Transportation Resource Type: Webinar, Training materials Website: www.leonardo-energy.org References: Leonardo Energy 1 "Leonardo...

455

Method and apparatus for reducing radiation exposure through the use of infrared data transmission  

SciTech Connect

A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

1989-01-01T23:59:59.000Z

456

Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) Exploration Activity Details Location Lester Meadow Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes The first TIR survey BN conducted was over the Lester Hot Springs area to see if it would help outline the area of geothermal activity. These studies found extensive thermal springs and a grassland area caused by the thermal

457

* The far-infrared (λ > 15 µm) is an important  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

458

Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above background) near Socorro Peak). A four-year compellation of ASTER satellite IR imaging was used. These images work on a 5-band, TIR processor

459

Near-infrared reflectance analysis by Gauss-Jordan linear algebra  

SciTech Connect

Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

1983-11-01T23:59:59.000Z

460

Infrared and Sub-millimetre Observing Conditions on the Antarctic Plateau  

E-Print Network (OSTI)

The Antarctic plateau provides the best terrestrial sites for infrared and sub-millimetre astronomy. In this paper we examine the relative importance of temperature, aerosol content and precipitable water vapour to determine which parameters have the greatest influence on atmospheric transmission and sky brightness. We use the atmospheric modelling program, MODTRAN, to model the observed sky spectrum at the South Pole from the near-IR to the sub-millimetre. We find that temperature and aerosol content determine the quality of nearIR observing conditions, aerosol content is the determining factor in the mid-IR up to 20m, while at longer wavelengths, including the sub-millimetre, it is the water vapour content that matters. Finding a location where aerosol levels are minimised is a key constraint in determining the optimum site on the Antarctic plateau for an infrared observatory. Keywords: Site testing, atmospheric effects, infrared: general. 1 Introduction It is now well es...

Marton G. Hidas; Michael G. Burton; Matthew A. Chamberlain; John W.V. Storey

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope  

Science Conference Proceedings (OSTI)

The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

1998-05-01T23:59:59.000Z

462

POLARIZED RADIO SOURCES: A STUDY OF LUMINOSITY, REDSHIFT, AND INFRARED COLORS  

SciTech Connect

The Dominion Radio Astrophysical Observatory Deep Field polarization study has been matched with the Spitzer Wide-Area Infrared Extragalactic Survey of the European Large Area Infrared Space Observatory Survey North 1 field. We have used Very Large Array observations with a total intensity rms of 87 {mu}Jy beam{sup -1} to match SWIRE counterparts to the radio sources. Infrared color analysis of our radio sample shows that the majority of polarized sources are elliptical galaxies with an embedded active galactic nucleus. Using available redshift catalogs, we found 429 radio sources of which 69 are polarized with redshifts in the range of 0.04 < z < 3.2. We find no correlation between redshift and percentage polarization for our sample. However, for polarized radio sources, we find a weak correlation between increasing percentage polarization and decreasing luminosity.

Banfield, Julie K.; George, Samuel J.; Taylor, A. Russ; Stil, Jeroen M. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Calgary, Alberta, T2N 1N4 (Canada); Kothes, Roland [Dominion Radio Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council Canada, Penticton, BC V2A 6J9 (Canada); Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

2011-05-20T23:59:59.000Z

463

Energy Programs | Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Harnessing the Sun's Power for Fuel and Electricity Page 1 of 2 Solar Panels Featured Publication: Artificial Photosynthesis The average power need of the world's energy economy is 13 terawatts - a thousand trillion watts of power - and by 2050, that amount is expected to double. Fossil fuels and other nonrenewable sources are not the answer to the world's ever-expanding need for energy. Also, burning oil, coal or natural gas pollutes the atmosphere and contributes to global warming, which threatens the long-term viability of the earth and its inhabitants. Efficient utilization of energy from the sun may provide a solution to this important problem. The amount of clean, renewable energy derived from the sun in just one hour would meet the world's energy needs for a year. If

464

Mid-Infrared Spectral Diagnostics of Nuclear and Extra-Nuclear Regions in Nearby Galaxies  

E-Print Network (OSTI)

Mid-infrared diagnostics are presented for a large portion of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample plus archival data from the Infrared Space Observatory and the Spitzer Space Telescope. Our main result is that these mid-infrared diagnostics effectively constrain a target's dominant power source. The combination of a high ionization line index and PAH strength serves as an efficient discriminant between AGN and star-forming nuclei, confirming progress made with ISO spectroscopy on starbursting and ultraluminous infrared galaxies. The sensitivity of Spitzer allows us to probe fainter nuclei and star-forming regions within galaxy disks. We find that both star-forming nuclei and extranuclear regions stand apart from nuclei that are powered by Seyfert or LINER activity. In fact, we identify areas within four diagnostic diagrams containing >90% Seyfert/LINER nuclei or >90% HII regions/HII nuclei. We also find that, compared to starbursting nuclei, extranuclear regions typically separate even further from AGN, especially for low-metallicity extranuclear environments. In addition, instead of the traditional mid-infrared approach to differentiating between AGN and star-forming sources that utilizes relatively weak high-ionization lines, we show that strong low-ionization cooling lines of X-ray dominated regions like [SiII] 34.82 micron can alternatively be used as excellent discrimants. Finally, the typical target in this sample shows relatively modest interstellar electron density (~400 cm^{-3}) and obscuration (A_V ~ 1.0 mag for a foreground screen), consistent with a lack of dense clumps of highly obscured gas and dust residing in the emitting regions. [Abridged

D. A. Dale; J. D. T. Smith; L. Armus; B. A. Buckalew; G. Helou; R. C. Kennicutt; J. Moustakas; H. Roussel; K. Sheth; G. J. Bendo; D. Calzetti; B. T. Draine; C. W. Engelbracht; K. D. Gordon; D. J. Hollenbach; T. H. Jarrett; L. J. Kewley; C. Leitherer; A. Li; S. Malhotra; E. J. Murphy; F. Walter

2006-04-01T23:59:59.000Z

465

Metal oxides for efficient infrared to visible upconversion  

E-Print Network (OSTI)

, Guillaume, Anastasia, Marc, Alex, Lea, H eng, Hannoh , Bouh , Erik, etc) and in Cambridge (Marijn, Sri, Milos, Albert, Trudy, Anastasia, Pete, Steve, Arnaud, Tom, Geoff, BJ, Rob, Rose, Amr, Aurlie, Laure , Mohammad, Luke, etc). Thank s to my French... , A. Cassanho and H. Jenssen , J. Display Technol. , 2006, 2 , 68. 10 C. Strmpel , M. McCann, G. Beaucarne , V . Arkhipov, A. Slaoui, V. Svrcek, C. del Caizo and I. Tobias, Sol . Energy Mater . Sol . Cells , 2007, 91 , 238. 11 T. Trupke...

Etchart, Isabelle

2010-10-12T23:59:59.000Z

466

Design of a Mid-infrared Cavity Ring Down Spectrometer  

E-Print Network (OSTI)

) for LCD applications, but in recent years a lot of interest has been going out to the solar cells that can be produced with it. a-Si:H solar cells Solar cells based on amorphous silicon consist of a stack of thin the cell through the glass, and converts the photon energy into free electron-hole pairs. An n-type and p

Eindhoven, Technische Universiteit

467

The origin of the infrared emission in radio galaxies II: analysis of mid- to far-infrared Spitzer observations of the 2Jy sample  

E-Print Network (OSTI)

We present an analysis of deep mid- to far-infrared (MFIR) Spitzer photometric observations of the southern 2Jy sample of powerful radio sources (0.05 links between radio jet, AGN, starburst activity and MFIR properties. This is part of an ongoing extensive study of powerful radio galaxies that benefits from both complete optical emission line information and a uniquely high detection rate in the far-infrared (far-IR). We find tight correlations between the MFIR and [OIII] emission luminosities, which are significantly better than those between MFIR and extended radio luminosities, or between radio and [OIII] luminosities. Since [OIII] is a known indicator of intrinsic AGN power, these correlations confirm AGN illumination of the circum-nuclear dust as the primary heating mechanism for the dust producing thermal MFIR emission at both 24 and 70 microns. We demonstrate that AGN heating is energetically feasible, and identify the narrow line region ...

Dicken, D; Axon, D; Morganti, R; Inskip, K J; Holt, J; Delgado, R Gonzalez; Groves, B

2008-01-01T23:59:59.000Z

468

Structures, systems and methods for harvesting energy from electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

469

Structures, systems and methods for harvesting energy from electromagnetic radiation  

Science Conference Proceedings (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

470

AN APPARENTLY EXTENDED INFRARED COUNTERPART TO 1E 1740.7-2942  

Science Conference Proceedings (OSTI)

We present the results of a revised search for the near-infrared counterpart to the microquasar 1E 1740.7-2942, which has eluded identification despite the many years elapsed since its discovery. By taking into account new astrometric information, we have been successful to identify a single near-infrared source, with apparent non-stellar morphology, whose position agrees well with that of the microquasar X-ray and radio-emitting core at the subarcsecond level. The possible implications of this finding with respect to the nature of 1E 1740.7-2942 are discussed.

MartI, J.; Sanchez-Sutil, J. R.; Munoz-Arjonilla, A. J.; Sanchez-Ayaso, E.; Garcia-Hernandez, M. T. [Departamento de Fisica, EPSJ, Campus Las Lagunillas s/n, A3, 23071 Jaen (Spain); Luque-Escamilla, P. L. [Departamento de Ingenieria Mecanica y Minera, EPSJ, Campus Las Lagunillas s/n, A3, 23071 Jaen (Spain); Combi, J. A. [Instituto Argentino de Radioastronomia (CCT La Plata, CONICET), C.C.5, (1894) Villa Elisa, Buenos Aires (Argentina)

2010-10-01T23:59:59.000Z

471

Warm water vapor envelope in Mira variables and its effects on the apparent size from the near-infrared to the mid-infrared  

E-Print Network (OSTI)

We present a possible interpretation for the increase of the angular diameter of the Mira variables o Cet, R Leo, and chi Cyg from the K band to the 11 micron region revealed by the recent interferometric observations using narrow bandpasses where no salient spectral feature is present (Weiner et al. 2003a, 2003b). A simple two-layer model consisting of hot and cool H2O layers for the warm water vapor envelope can reproduce the angular diameters observed with Infrared Spatial Interferometer as well as the high-resolution TEXES spectra obtained in the 11 micron region. The strong absorption of H2O expected from the dense water vapor envelope is filled in by emission from the extended part of the envelope, and this results in the high-resolution 11 micron spectra which exhibit only weak, fine spectral features, masking the spectroscopic evidences of the dense, warm water vapor envelope. On the other hand, the presence of the warm water vapor envelope manifests itself as the larger angular diameters in the 11 micron region as compared to those measured in the near-infrared. Furthermore, comparison of the visibilities predicted in the near-infrared with observational results available in the literature demonstrates that our two-layer model for the warm water vapor envelope can also reproduce the observed near-infrared visibilities and angular diameters. The radii of the hot H2O layers in the three Mira variables are derived to be 1.5--1.7 Rstar with temperatures of 1800--2000 K and H2O column densities of (1--5) x 10^{21} cm^{-2}, while the radii of the cool H2O layers are derived to be 2.2--2.5 Rstar with temperatures of 1200--1400 K and H2O column densities of (1--7) x 10^{21} cm^{-2}.

Keiichi Ohnaka

2004-06-30T23:59:59.000Z

472

Tir (Aster) Geothermal Anomalies | Open Energy Information  

Open Energy Info (EERE)

Tir (Aster) Geothermal Anomalies Tir (Aster) Geothermal Anomalies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Tir (Aster) Geothermal Anomalies Details Activities (1) Areas (1) Regions (0) Abstract: The focus of this research is the detection of shallow thermal anomalies for geothermal exploration and field management. The objective of this paper is to outline the steps involved in applying thermal infrared imagery (TIR) for this task. This process is part of an ongoing project at the Energy & Geoscience Institute (EGI), where we are developing a methodology to use daytime and nighttime thermal infrared imagery produced by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map shallow thermal anomalies. Kinetic temperature images

473

Phase Transformations of Micron-Sized H2SO4/H2O Particles Studied by Infrared Spectroscopy  

E-Print Network (OSTI)

indicate that solid phase forma- tion from STS does not occur until the ice frost point is reached.2Phase Transformations of Micron-Sized H2SO4/H2O Particles Studied by Infrared Spectroscopy Scot T been developed for investigations of phase transitions of micron-sized particles through infrared

474

An SOM-Hybrid Supervised Model for the Prediction of Underlying Physical Parameters from Near-Infrared Planetary Spectra  

Science Conference Proceedings (OSTI)

Near-Infrared reflectance spectra of planets can be used to infer surface parameters, sometimes with relevance to recent geologic history. Accurate prediction of parameters (such as composition, temperature, grain size, crystalline state, and dilution ... Keywords: Near-Infrared spectra, New Horizons Space Mission, Pluto-Charon system, Self-Organizing Map, parameter prediction

Lili Zhang; Erzsbet Mernyi; William M. Grundy; Eliot F. Young

2009-06-01T23:59:59.000Z

475

Mid-infrared femtosecond optical parametric amplification in potassium niobate  

Science Conference Proceedings (OSTI)

We generated synchronized sub-200-fs pulses between 3 and 4.4{mu}m at a 1-kHz repetition rate by pumping a KNbO{sub 3} optical parametric amplifier with a femtosecond Ti:sapphire regenerative amplifier and seeding it by narrow-band quasi-cw radiation. Output idler energies as high as 7{mu}J at 4{mu}m are reported from this extremely simple single-stage device, which correspond to amplification factors as high as 3{times}10{sup 5} and a conversion efficiency of 15. {copyright} {ital 1996 Optical Society of America.}

Petrov, V.; Noack, F. [Max Born Institute for Nonlinear Optics and Ultrafast Spectroscopy, Rudower Chaussee 6, D-12474 Berlin (Germany)

1996-10-01T23:59:59.000Z

476

Absence of Magnetic-Field-Induced Effects in the Mid-infrared Transmission of La2?xSrxCuO4 Thin Films  

SciTech Connect

We report magnetotransmission measurements on a series of La{sub 2-x}Sr{sub x}CuO{sub 4} thin films. The measurements were performed in magnetic fields of 18 T, on films with doping levels of x = 0, 0.01, 0.03, 0.045, 0.06, 0.08, and 0.10. In addition, an optimally doped film (x = 0.16) was studied in magnetic fields up to 33 T, both above and below its superconducting critical temperature T{sub c} = 41 K. A combination of Gaussian and wavelet filtering was employed to improve the signal-to-noise ratio of the data. However, even after this procedure, we could not detect any field-induced changes of transmission in any of the studied samples. Our results therefore rule out a direct relation between intensity changes in mid-infrared charge excitations and a bosonic mode in the far infrared. We discuss these observations in the context of existing proposals regarding the nature of medium energy range excitations in the cuprates.

Dordevic, S.V.; Gozar, A.; Kohlman, L.W.; Tung, L.C.; Wang, Y.-J.; Logvenov, G.; Bozovic, I.

2009-04-01T23:59:59.000Z

477

Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations  

Science Conference Proceedings (OSTI)

Intersatellite radiance comparisons for the 19 infrared channels of the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 are performed with simultaneous nadir observations at the orbital intersections of the ...

Changyong Cao; Hui Xu; Jerry Sullivan; Larry McMillin; Pubu Ciren; Yu-Tai Hou

2005-04-01T23:59:59.000Z

478

A Multichannel, Multiangle Method for the Determination of Infrared Optical Depth of Semitransparent High Cloud from an Orbiting Satellite. Part I: Formulation and Simulation  

Science Conference Proceedings (OSTI)

A method is presented for determining the infrared optical depth of semitransparent clouds from satellite measurements. The technique employs cloud measurements at two infrared wavelengths and two angles. Using a simple but accurate model it is ...

A. J. Prata; I. J. Barton

1993-10-01T23:59:59.000Z

479

Energy Literacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages Intended use of this document as a...

480

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging  

E-Print Network (OSTI)

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging in order to determine the presence of any chemical and kinetic inhomogeneity. Unfortunately, to date, NIR to determine the chemical and kinetic inho- mogeneity of sol-gel. Preliminary results on the kinetics of sol

Reid, Scott A.

Note: This page contains sample records for the topic "infrared energy radi" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE RECOGNITION  

E-Print Network (OSTI)

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE of Tennessee, Knoxville, TN-37996 ABSTRACT In this effort, we propose a new image fusion technique, utilizing). In this method, we decompose images from different imaging modalities into their IMFs. Fusion is performed

Koschan, Andreas

482

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration  

Science Conference Proceedings (OSTI)

This paper presents the methodology to design and integrate a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. The system consisted of an LCTF-based SWIR spectral imager, an illumination unit, a frame grabber, ... Keywords: Food quality and safety, Hyperspectral imaging, LCTF, Nondestructive inspection, SWIR, System design

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

483

Mid-infrared nanoantenna arrays on silicon and CaF2 substrates for sensing applications  

Science Conference Proceedings (OSTI)

We report on the fabrication and systematic characterization of nanoantenna arrays with several different geometries realized both on standard silicon (Si) substrates and Calcium Fluoride (CaF"2) substrates aimed at the realization of a mid-Infrared ... Keywords: FTIR, Microfluidic devices, Nanoantenna arrays, Plasmon resonance

L. Businaro; O. Limaj; V. Giliberti; M. Ortolani; A. Di Gaspare; G. Grenci; G. Ciasca; A. Gerardino; A. De Ninno; S. Lupi

2012-09-01T23:59:59.000Z

484

Observation of enhanced infrared photoresponse in forward?biased amorphous silicon p?i?n diodes  

Science Conference Proceedings (OSTI)

The photoconductive response of hydrogenated amorphous silicon (a?Si:H) p?i?n diodes has been investigated under conditions of low?temperature operation. We show that cooled p?i?n diodes exhibit an enhanced infrared response when operated under forward bias conditions. The induced IR response is of the order of 10?3A/W

J. Wind; G. Mller

1991-01-01T23:59:59.000Z

485

The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)  

E-Print Network (OSTI)

We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown ...

Bochanski, John J.

486

Infra-red detector and method of making and using same  

DOE Patents (OSTI)

A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

Craig, Richard A. (Richland, WA); Griffin, Jeffrey W. (Kennewick, WA)

2007-02-20T23:59:59.000Z

487

Infrared reflectance and transmission spectra in II-VI alloys and superlattices  

E-Print Network (OSTI)

Room temperature measurements of the far-infrared (FIR) reflectance spectra are reported for the polar optical phonons in a series of bulk Cd[subscript x]Zn[subscript 1?x]Te (0 ? x ? 1) and CdSe[subscript x]Te[subscript ...

Talwar, Devki N.

488

Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data  

Science Conference Proceedings (OSTI)

Cold cloud features (CCFs) are defined by grouping six full years of Tropical Rainfall Measuring Mission (TRMM) infrared pixels with brightness temperature at 10.8-?m wavelength (TB11) less than or equal to 210 and 235 K. Then the precipitation ...

Chuntao Liu; Edward J. Zipser; Stephen W. Nesbitt

2007-02-01T23:59:59.000Z

489

Autonomous Measurements of Sea Surface Temperature Using In Situ Thermal Infrared Data  

Science Conference Proceedings (OSTI)

In situ and autonomous measurements of sea surface temperature (SST) have been performed with a thermal infrared radiometer mounted on a fixed oil rig. The accuracy limit was established at 0.3 K for these SST measurements in order to meet the ...

Raquel Nicls; Vicente Caselles; Csar Coll; Enric Valor; Eva Rubio

2004-04-01T23:59:59.000Z

490

Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data  

E-Print Network (OSTI)

Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into H I and H-alpha correlated components and a residual component. We find the H-alpha correlated component to be consistent with zero for each region, and we find that addition of an H-alpha correlated component in modeling the foreground emission has negligible effect on derived ...

Odegard, N; Dwek, E; Haffner, L M; Hauser, M G; Reynolds, R J

2007-01-01T23:59:59.000Z

491

Modified Shortwave Infrared Perpendicular Water Stress Index: A Farmland Water Stress Monitoring Method  

Science Conference Proceedings (OSTI)

Crop water stress monitoring by remote sensing has been the focus of numerous studies. In this paper, specifically red (630-690 nm) and shortwave infrared SWIR (1550-1750 nm), are identified to monitor farmland water stress, and a method (Modified ...

Feng Haixia; Chen Chao; Dong Heng; Wang Jinliang; Meng Qingye

492

SAFIRE-A: Spectroscopy of the Atmosphere Using Far-Infrared Emission/Airborne  

Science Conference Proceedings (OSTI)

A new instrument named SAFIRE-A (Spectroscopy of the Atmosphere using Far-Infrared Emission/Airborne), which can operate on high-altitude platforms, has been developed for the study of the atmospheric composition through limb-scanning emission ...

Bruno Carli; Peter A. R. Ade; Ugo Cortesi; Paul Dickinson; Michele Epifani; Fred C. Gannaway; Alessandro Gignoli; Corneli Keim; Clare Lee; Claude Meny; Jean Leotin; Francesco Mencaraglia; Alexander G. Murray; Ira G. Nolt; Marco Ridolfi

1999-10-01T23:59:59.000Z

493

The use of measured sky radiance data to improve infrared signature modelling  

Science Conference Proceedings (OSTI)

In this paper we discuss the complications of modelling the infrared signature of objects, for example ships and land-vehicles. Specifically we focus on the difficulties of accounting correctly for the effect of the environment on the signature. We attribute ...

Marcus Wilson; Ross Elliott; Keith Youern

2008-04-01T23:59:59.000Z

494

High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit  

Science Conference Proceedings (OSTI)

The first of the next-generation series of the Geostationary Operational Environmental Satellite (GOES-R) is scheduled for launch in 2015. The new series of GOES will not have an infrared (IR) sounder dedicated to acquiring high-vertical-...

Timothy J. Schmit; Jun Li; Steven A. Ackerman; James J. Gurka

2009-11-01T23:59:59.000Z

495

Near-Infrared Extinction in Rain Measured Using a Single Detector System  

Science Conference Proceedings (OSTI)

The performance and operation of an optical device to accurately measure extinction due to rainfall over a 100 m sample path is described. A collimated beam from an infrared light-emitting diode operating at 0.94 ?m is used as a sensing beam. A ...

F. J. Nedvidek; C. W. Schneider; Z. Kucerovsky; E. Brannen

1986-09-01T23:59:59.000Z

496

Room-temperature mid-infrared laser sensor for trace gas detection  

E-Print Network (OSTI)

, and pipeline leak detection. Applications such as landfill emissions monitoring require measurements of gasRoom-temperature mid-infrared laser sensor for trace gas detection Thomas To¨ pfer, Konstantin P. Petrov, Yasuharu Mine, Dieter Jundt, Robert F. Curl, and Frank K. Tittel Design and operation

497

Near-infrared AO coronograph design for giant telescopes Gemini Preprint #87  

E-Print Network (OSTI)

of randomly distributed nanorods (a) on calcium fluoride and (b) on glass substrate are shown. Legends that nanostencils can be reused multiple times to fabricate a series of infrared nanoantenna arrays with identical on different types of substrates. Another advantage of NSL is that the masks can be reused to pattern the same

498

Infrared Cooling in Cloudy Atmospheres: Precision of Grid Point Selection for Numerical Models  

Science Conference Proceedings (OSTI)

The infrared layer temperature change in a cloudy atmosphere normally shows warming at the base of the cloud and intense cooling at the top of the cloud. In a model that uses broad-band radiative transfer to calculate atmospheric temperature ...

L. P. Stearns

1983-07-01T23:59:59.000Z

499

Quantum interference effect and electric field domain formation in quantum well infrared photodetectors  

E-Print Network (OSTI)

Quantum interference effect and electric field domain formation in quantum well infrared April 1995 An observation of quantum interference effect in photocurrent spectra of a weakly coupled bound-to-continuum multiple quantum well photodetector is reported. This effect persists even at high

500

Calibration of METEOSAT Infrared Radiometer using Split Window Channels of NOAA AVHRR  

Science Conference Proceedings (OSTI)

A multispectral/multiangular procedure is proposed to calibrate the infrared channel of METEOSAT-2 IR 1 (760980 cm?1), using the radiances of NOAA-7 AVHRR channels 4 (870980 cm?1) and 5 (795885 cm?1). The METEOSAT radiance can be successfully ...

A. Asem; P. Y. Deschamps; D. Ho

1987-12-01T23:59:59.000Z