Powered by Deep Web Technologies
Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

2

Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part II: effective diameter and ice water path  

Science Conference Proceedings (OSTI)

The paper describes the version 3 Level 2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the CALIPSO mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the ...

Anne Garnier; Jacques Pelon; Philippe Dubuisson; Ping Yang; Michal Faivre; Olivier Chomette; Nicolas Pascal; Pat Lucker; Tim Murray

3

Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...  

NLE Websites -- All DOE Office Websites (Extended Search)

J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The infrared cloud imager (ICI) is a...

4

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals  

Science Conference Proceedings (OSTI)

Comparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch ...

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias M. Schreier; Richard A. Frey

2011-05-01T23:59:59.000Z

5

Application of CALIOP Measurements to the Evaluation of Cloud Phase Derived from MODIS Infrared Channels  

Science Conference Proceedings (OSTI)

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) infrared-based cloud thermodynamic phase retrievals are evaluated using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals for the 6 months from January to ...

Hyoun-Myoung Cho; Shaima L. Nasiri; Ping Yang

2009-10-01T23:59:59.000Z

6

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

7

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

8

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

9

Infrared and Visible Satellite Rain Estimation. Part II: A Cloud Definition Approach  

Science Conference Proceedings (OSTI)

This study examines the relationships between satellite infrared clouds and rainfall, and infrared-threshold visible clouds and rainfall. Clouds are defined by the outline of the 253 K isotherm. Cloud infrared area was highly correlated with rain ...

Andrew J. Negri; Robert F. Adler

1987-11-01T23:59:59.000Z

10

Mesoscale Cloud State Estimation from Visible and Infrared Satellite Radiances  

Science Conference Proceedings (OSTI)

This study focuses on cloudy atmosphere state estimation from high-resolution visible and infrared satellite remote sensing measurements and a mesoscale model with explicit cloud prediction. The cloud state is defined as 3D spatially distributed ...

T. Vukicevic; T. Greenwald; M. Zupanski; D. Zupanski; T. Vonder Haar; A. S. Jones

2004-12-01T23:59:59.000Z

11

Molecular Clouds and Infrared Stellar Clusters in the Far-Outer Ronald L. Snell 1 , John M. Carpenter 2 , Mark H. Heyer 1  

E-Print Network (OSTI)

Molecular Clouds and Infrared Stellar Clusters in the Far-Outer Galaxy Ronald L. Snell 1 , John M We present a study of the molecular cloud content and star formation ac- tivity in the far-0) and K 0 -band near-infrared imaging. This region contains 63 far-outer Galaxy molecular clouds; the most

Carpenter, John

12

Study of ice cloud properties using infrared spectral data  

E-Print Network (OSTI)

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the METOP-A satellite, which provide the bulk-scattering properties of these clouds for the 8461 IASI channels between 645 and 2760 cm-1. We investigate the sensitivity of simulated brightness temperatures in this spectral region to the bulk-scattering properties of ice clouds containing individual ice crystal habits as well as for one habit distribution. The second part of this thesis describes an algorithm developed to analyze the sensitivity of simulated brightness temperatures at 8.5 and 11.0 m to changes in effective cloud temperature by adjusting cloud top height and geometric thickness in a standard tropical atmosphere. Applicability of using these channels in a bi-spectral approach to retrieve cirrus cloud effective particle size and optical thickness is assessed. Finally, the algorithm is applied to the retrieval of these ice cloud properties for a case of single-layered cirrus cloud over a tropical ocean surface using measurements from the Moderate Resolution Infrared Spectroradiometer (MODIS). Cloud top height and geometric thickness in the profile are adjusted to assess the influence of effective cloud temperature on the retrieval.

Garrett, Kevin James

2007-08-01T23:59:59.000Z

13

Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement  

Science Conference Proceedings (OSTI)

Determining cloud thermodynamic phase using infrared satellite observations typically requires a priori assumptions about relationships between cloud phase and cloud temperature. In this study, limitations of an approach using two infrared ...

Shaima L. Nasiri; Brian H. Kahn

2008-11-01T23:59:59.000Z

14

Radiative Properties of Cirrus Clouds in the Infrared Region  

Science Conference Proceedings (OSTI)

A multiple-scattering radiative transfer model is employed to evaluate the 11 ?m and the broad-band infrared (IR) fluxes, cooling rates and emittances in model cirrus clouds for a number of standard vertical atmospheric profiles of temperature ...

Graeme L. Stephens

1980-02-01T23:59:59.000Z

15

Infrared Thermal Imagery of Cloud Base in Tornadic Supercells  

Science Conference Proceedings (OSTI)

During the spring seasons of 2003 and 2004, an infrared thermal camera was deployed in and around supercell thunderstorms in an attempt to retrieve the temperature at the cloud base of a mesocyclone prior to tornadogenesis. The motivation for ...

Robin L. Tanamachi; Howard B. Bluestein; Stephen S. Moore; Robert P. Madding

2006-11-01T23:59:59.000Z

16

Cloud detection of MODIS multispectral images  

Science Conference Proceedings (OSTI)

Methods coming from statistics and pattern recognition to estimate the cloud mask from radiance measured by visible and infrared sensors onboard satellites are gaining greater and greater consideration for their ability to properly exploit the ...

Loredana Murino; Umberto Amato; Maria Francesca Carfora; Anestis Antoniadis; Bormin Huang; W. Paul Menzel; Carmine Serio

17

An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image  

Science Conference Proceedings (OSTI)

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the ...

Jun Yang; Weitao Lu; Ying Ma; Wen Yao

2012-04-01T23:59:59.000Z

18

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earths current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave visible to longwave infrared ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

19

An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data  

Science Conference Proceedings (OSTI)

The next-generation Visible and Infrared Imaging Radiometer Suite (VIIRS) offers infrared (IR)-window measurements with a horizontal spatial resolution of at least 1 km, but it lacks IR spectral bands that are sensitive to absorption by carbon ...

Elisabeth Weisz; W. Paul Menzel; Nadia Smith; Richard Frey; Eva E. Borbas; Bryan A. Baum

2012-08-01T23:59:59.000Z

20

Infrared Optical Imaging Techniques for Gas Visualization and Measurement  

E-Print Network (OSTI)

Advancement in infrared imaging technology has allowed the thermal imaging to detect and visualize several gases, mostly hydrocarbon gases. In addition, infrared cameras could potentially be used as a non-contact temperature measurement for gas and vapor. However, current application of infrared imaging techniques for gas measurements are still limited due to several uncertainties in their performance parameters. The aim of this research work was to determine the key factors in the application of infrared imaging technology for gas visualization and a non-contact temperature measurement. Furthermore, the concentration profile and emission rate of the gas are predicted by combining the application of the infrared imaging method with gas dispersion modeling. In this research, infrared cameras have been used to visualize liquefied natural gas (LNG) plumes from LNG spills on water. The analyses of the thermograms showed that the apparent temperatures were different from the thermocouple measurement which occurred due to the assumption of that the object emissivity was always equal to unity. The emissivity for pure methane gas and a mixture of methane and atmospheric gases were then evaluated in order to obtain the actual temperature distribution of the gas cloud. The results showed that by including the emissivity value of the gas, the temperature profile of the dispersed gas obtained from a thermal imaging measurement was in good agreement with the measurement using the thermocouples. Furthermore, the temperature distribution of the gas was compared to the concentration of a dispersed LNG vapor cloud to obtain a correlation between the temperature and the concentration of the cloud. Other application of infrared imaging technique was also conducted for leak detection of natural gas from a pipeline. The capability of an infrared camera to detect a fugitive gas leak was combined with the simulation of vapor discharge and dispersion in order to obtain a correlation between the emission rates and the sizes of the gas plume to the minimum detectable concentration. The relationship of the methane gas cloud size to the gas emission rate was highly dependent to the prevailing atmospheric condition. The results showed that the correlation were best to predict the emission rate less than 0.2 kg/s. At higher emission rate, the increase in gas release rate did not change the size of the cloud significantly.

Safitri, Anisa

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Infrared Emission from Interstellar Dust. III. The Small Magellanic Cloud  

E-Print Network (OSTI)

The infrared (IR) emission from interstellar dust in the Small Magellanic Cloud (SMC) is modelled using a mixture of amorphous silicate and carbonaceous grains, including a population of polycyclic aromatic hydrocarbon (PAH) molecules. (1) It is shown that this dust model is able to reproduce the spectral energy distribution from near-IR to far-IR for the entire SMC Bar region, provided the PAH abundance in the SMC Bar region is very low. (2) The IR spectrum of the SMCB1#1 molecular cloud can also be reproduced by our dust model provided the PAH abundance is increased relative to the overall SMC Bar. The PAHs in SMCB1#1 incorporate ~3% of the SMC C abundance, compared to environmental conditions. Other possibilities such as super-hydrogenation of PAHs and softening of the starlight spectrum are also discussed.

Aigen Li; B. T. Draine

2001-12-05T23:59:59.000Z

22

Cloud-Tracked Winds from Pioneer Venus OCPP Images  

Science Conference Proceedings (OSTI)

Analysis of ultraviolet image sequences, obtained from the Pioneer Venus Orbiter Cloud Photopolarimeter and covering five 80-day periods from 19791985, provides the first climatological description of the cloud top circulation on Venus. The ...

William B. Rossow; Anthony D. Del Genio; Timothy Eichler

1990-09-01T23:59:59.000Z

23

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

24

Initial Cloud Detection Using the EOF Components of High-Spectral-Resolution Infrared Sounder Data  

Science Conference Proceedings (OSTI)

Measured cloud spectral signatures in high-resolution infrared interferometer data have been separated from the clear-air signatures using singular value decomposition. Sets of empirical orthogonal functions (EOFs) have then been created from ...

Jonathan A. Smith; Jonathan P. Taylor

2004-01-01T23:59:59.000Z

25

Determination of Semi-Transparent Cirrus Cloud Temperature from Infrared Radiances: Application to METEOSAT  

Science Conference Proceedings (OSTI)

The use of simultaneous infrared measurements to derive the temperature and emissivity of semi-transparent cirrus clouds is experimentally investigated. Results from the NASA/CONVAIR-990 Winter Experiment Program, 1977 (WEP) are discussed. It is ...

Gerard Szejwach

1982-03-01T23:59:59.000Z

26

The computation of cloud base height from paired whole-sky imaging cameras  

SciTech Connect

A major goal for global change studies is to improve the accuracy of general circulation models (GCMs) capable of predicting the timing and magnitude of greenhouse gas-induced global warming. Research has shown that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. Of particular value to reducing the uncertainties associated with cloud-radiation interactions is the measurement of cloud base height (CBH), both because it is a dominant factor in determining the infrared radiative properties of clouds with respect to the earth`s surface and lower atmosphere and because CBHs are essential to measuring cloud cover fraction. We have developed a novel approach to the extraction of cloud base height from pairs of whole sky imaging (WSI) cameras. The core problem is to spatially register cloud fields from widely separated WSI cameras; this complete, triangulation provides the CBH measurements. The wide camera separation (necessary to cover the desired observation area) and the self-similarity of clouds defeats all standard matching algorithms when applied to static views of the sky. To address this, our approach is based on optical flow methods that exploit the fact that modern WSIs provide sequences of images. We will describe the algorithm and present its performance as evaluated both on real data validated by ceilometer measurements and on a variety of simulated cases.

Allmen, M.C.; Kegelmeyer, W.P. Jr.

1994-03-01T23:59:59.000Z

27

Infrared Cloud Imager Measurements of Cloud Statistics from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22-26, 2004 identified from radiative transfer calculations using different MODTRAN atmospheric models. To process ICI data from the CIC deployment, we developed four...

28

Sensitivity Analysis of Cirrus Cloud Properties from High-Resolution Infrared Spectra. Part I: Methodology and Synthetic Cirrus  

Science Conference Proceedings (OSTI)

A set of simulated high-resolution infrared (IR) emission spectra of synthetic cirrus clouds is used to perform a sensitivity analysis of top-of-atmosphere (TOA) radiance to cloud parameters. Principal component analysis (PCA) is applied to ...

Brian H. Kahn; Annmarie Eldering; Michael Ghil; Simona Bordoni; Shepard A. Clough

2004-12-01T23:59:59.000Z

29

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

30

The characterization of particle clouds using optical imaging techniques  

E-Print Network (OSTI)

Optical imaging techniques can be used to provide a better understanding of the physical properties of particle clouds. The purpose of this thesis is to design, perform and evaluate a set of experiments using optical imaging ...

Bruce, Elizabeth J. (Elizabeth Jane), 1972-

1998-01-01T23:59:59.000Z

31

Cloud classification using whole-sky imager data  

SciTech Connect

Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes, thereby providing the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here utilizes binary decision trees to distinguish the different cloud types based on cloud feature vectors.

Buch, K.A. Jr.; Sun, Chen-Hui

1995-02-01T23:59:59.000Z

32

Boundary Layer and Cloud Structure Controls on Tropical Low Cloud Cover Using A-Train Satellite Data and ECMWF Analyses  

Science Conference Proceedings (OSTI)

The CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat radar, and the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud data on the A-Train constellation complemented with the European Centre for ...

Terence L. Kubar; Duane E. Waliser; J-L. Li

2011-01-01T23:59:59.000Z

33

Cloud Properties Derived from Visible and Near-infrared Reflectance in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Properties Derived from Visible and Near-infrared Reflectance in the Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols Hofmann, Odele University of Colorado at Boulder Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Russell, Phil NASA Ames Research Center Livingston, John SRI International Redemann, Jens BAERI/NASA Ames Research Center Bergstrom, Robert Bay Area Environmental Research Institute Platnick, Steven NASA-GSFC Daniel, John NOAA Aeronomy Laboratory Category: Cloud Properties The New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS-ITCT) experiment conducted in July-August 2004 included objectives on the effects of urban-industrial pollution aerosols on cloud radiative properties, the so-called indirect effect. Measurements

34

Particle habit imaging using incoherent light: a first step towards a novel instrument for cloud microphysics  

Science Conference Proceedings (OSTI)

The imaging unit of the novel cloud particle instrument PHIPS (Particle Habit Imaging and Polar Scattering probe) has been developed to image individual ice particles produced inside a large cloud chamber. The PHIPS produces images of single ...

Roland Schn; Martin Schnaiter; Zbigniew Ulanowski; Carl Schmitt; Stefan Benz; Ottmar Mhler; Steffen Vogt; Robert Wagner; Ulrich Schurath

35

Particle Habit Imaging Using Incoherent Light: A First Step toward a Novel Instrument for Cloud Microphysics  

Science Conference Proceedings (OSTI)

The imaging unit of the novel cloud particle instrument Particle Habit Imaging and Polar Scattering (PHIPS) probe has been developed to image individual ice particles produced inside a large cloud chamber. The PHIPS produces images of single ...

Roland Schn; Martin Schnaiter; Zbigniew Ulanowski; Carl Schmitt; Stefan Benz; Ottmar Mhler; Steffen Vogt; Robert Wagner; Ulrich Schurath

2011-04-01T23:59:59.000Z

36

A Multichannel, Multiangle Method for the Determination of Infrared Optical Depth of Semitransparent High Cloud from an Orbiting Satellite. Part I: Formulation and Simulation  

Science Conference Proceedings (OSTI)

A method is presented for determining the infrared optical depth of semitransparent clouds from satellite measurements. The technique employs cloud measurements at two infrared wavelengths and two angles. Using a simple but accurate model it is ...

A. J. Prata; I. J. Barton

1993-10-01T23:59:59.000Z

37

Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Drizzle in Marine Warm Clouds Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small droplets not only make the cloud more reflective, but also reduce the probability of rainfall and prolong cloud lifetime, because small droplets have less efficiency of coalescence (e.g., Albrecht 1989, Rosenfeld 2000). Since precipitation is a key component in

38

Infrared Images of Shock-Heated Tin  

Science Conference Proceedings (OSTI)

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

39

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos; Stavros (Livermore, CA), Staggs; Michael C. (Tracy, CA)

2006-03-21T23:59:59.000Z

40

Near-infrared spectroscopic tissue imaging for medical applications  

DOE Patents (OSTI)

Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

Demos, Stavros (Livermore, CA); Staggs, Michael C. (Tracy, CA)

2006-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

42

Assessment of the Quality of MODIS Cloud Products from Radiance Simulations  

Science Conference Proceedings (OSTI)

Observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS), the CloudAerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat are synergistically used to ...

Seung-Hee Ham; Byung-Ju Sohn; Ping Yang; Bryan A. Baum

2009-08-01T23:59:59.000Z

43

Ice Cloud Retrievals and Analysis with the Compact Scanning Submillimeter Imaging Radiometer and the Cloud Radar System during CRYSTAL FACE  

Science Conference Proceedings (OSTI)

Submillimeter-wave radiometry is a new technique for determining ice water path (IWP) and particle size in upper-tropospheric ice clouds. The first brightness temperatures images of ice clouds above 340 GHz were measured by the Compact Scanning ...

K. Franklin Evans; James R. Wang; Paul E. Racette; Gerald Heymsfield; Lihua Li

2005-06-01T23:59:59.000Z

44

Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band  

Science Conference Proceedings (OSTI)

Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main ...

Galina Wind; Steven Platnick; Michael D. King; Paul A. Hubanks; Michael J. Pavolonis; Andrew K. Heidinger; Ping Yang; Bryan A. Baum

2010-11-01T23:59:59.000Z

45

Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85  

Science Conference Proceedings (OSTI)

Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. Further, as technology advances so do the options for developing ...

Redgie S. Lancaster; James D. Spinhirne; Kathrine F. Manizade

2003-01-01T23:59:59.000Z

46

ISCCP Cloud Data Products  

Science Conference Proceedings (OSTI)

The operational data collection phase of the International Satellite Cloud Climatology Project (ISCCP) began in July 1983. Since then, visible and infrared images from an international network of weather satellites have been routinely processed ...

William B. Rossow; Robert A. Schiffer

1991-01-01T23:59:59.000Z

47

Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative Effects  

Science Conference Proceedings (OSTI)

Their relatively good spectral resolution makes infrared sounders very useful for the determination of cloud properties (day and night), and their coarse spatial resolution has less effect on clouds with large spatial extents like cirrus clouds. ...

C. J. Stubenrauch; W. B. Rossow; N. A. Scott; A. Chdin

1999-12-01T23:59:59.000Z

48

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager  

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager ... The field emission current of each cesiated carbon nanoflake structure is modulated by the

49

Infrared Thermometer Measurements of the Temperature of the Clouds from the Surface during the 7 March 1970 Total Eclipse  

Science Conference Proceedings (OSTI)

An infrared thermometer was used to observe the apparent radiation temperature of the overcast sky during a 15 h period including the total solar eclipse of 7 March 1970 at the Suwannee River State Park, Florida. An effective cloud temperature ...

L. F. Hall

1980-11-01T23:59:59.000Z

50

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description  

Science Conference Proceedings (OSTI)

This work describes the algorithms used for the fully automated retrieval of profiles of particulate extinction coefficients from the attenuated backscatter data acquired by the lidar on board the Cloud-Aerosol Lidar Infrared Pathfinder Satellite ...

Stuart A. Young; Mark A. Vaughan

2009-06-01T23:59:59.000Z

51

Geothermal Exploration with Visible through Long Wave Infrared Imaging  

Open Energy Info (EERE)

with Visible through Long Wave Infrared Imaging with Visible through Long Wave Infrared Imaging Spectrometers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration with Visible through Long Wave Infrared Imaging Spectrometers Abstract Surface minerals of active geothermal systems have been mapped using visible-short wave infrared and mid wave and long wave imaging spectrometers separately. May and June 2008, the Prospectir sensor and SEBASS (Spatially Enhanced Broadband Array Spectrograph System) were located on together on a roll compensated mount viewing through the same camera port in a Twin Otter. These two imaging spectrometers have similar Instantaneous Fields of View (IFOV) and together collect over 600 channels of spectral information from the visible to the long wave infrared.

52

Extraction of cloud statistics from whole sky imaging cameras  

SciTech Connect

Computer codes have been developed to extract basic cloud statistics from whole sky imaging (WSI) cameras. This report documents, on an algorithmic level, the steps and processes underlying these codes. Appendices comment on code details and on how to adapt to future changes in either the source camera or the host computer.

Kegelmeyer, W.P. Jr.

1994-03-01T23:59:59.000Z

53

Multichannel Satellite Retrieval of Cloud Parameter Probability Distribution Functions  

Science Conference Proceedings (OSTI)

A retrieval method has been developed to directly retrieve statistics of cloud parameters from Geostationary Operational Environmental Satellite (GOES) visible and infrared imager data. This method retrieves cloud parameter probability density ...

Darren McKague; K. Franklin Evans

2002-04-01T23:59:59.000Z

54

Assimilation of Global Cloud Imagery from Multiple Satellites  

Science Conference Proceedings (OSTI)

Synoptic images of the global cloud field have been created from measurements of infrared radiation taken aboard four geostationary and two polar-orbiting platforms simultaneously observing the earth's cloud field. A series of spatial and ...

Ken Tanaka; Karen Woodberry; Harry Hendon; Murry Salby

1991-10-01T23:59:59.000Z

55

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8OE-160W) have been objectively processed to reveal tropical cloud clusters with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

56

A Land and Ocean Microwave Cloud Classification Algorithm Derived from AMSU-A and -B, Trained Using MSG-SEVIRI Infrared and Visible Observations  

Science Conference Proceedings (OSTI)

A statistical cloud classification and cloud mask algorithm is developed based on Advanced Microwave Sounding Unit (AMSU-A and -B) microwave (MW) observations. The visible and infrared data from the Meteosat Third Generation-Spinning Enhanced ...

Filipe Aires; Francis Marquisseau; Catherine Prigent; Genevive Sze

2011-08-01T23:59:59.000Z

57

The Image Navigation Cloud Mask for the Multiangle Imaging Spectroradiometer (MISR)  

Science Conference Proceedings (OSTI)

The authors have developed a cloud mask technique that may be applied to the efficient selection of clear enough scenes for image navigation. While the mask can be applied generally, the motivation for its development comes from its intended ...

Larry Di Girolamo; Roger Davies

1995-12-01T23:59:59.000Z

58

Calibration of the Cloud Particle Imager Probes Using Calibration Beads and Ice Crystal Analogs: The Depth of Field  

Science Conference Proceedings (OSTI)

This paper explains and develops a correction algorithm for measurement of cloud particle size distributions with the Stratton Park Engineering Company, Inc., Cloud Particle Imager (CPI). Cloud particle sizes, when inferred from images taken with ...

Paul J. Connolly; Michael J. Flynn; Z. Ulanowski; T. W. Choularton; M. W. Gallagher; K. N. Bower

2007-11-01T23:59:59.000Z

59

AIRS Subpixel Cloud Characterization Using MODIS Cloud Products  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is ...

Jun Li; W. Paul Menzel; Fengying Sun; Timothy J. Schmit; James Gurka

2004-08-01T23:59:59.000Z

60

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION  

E-Print Network (OSTI)

OIL SPILL SENSOR USING MULTISPECTRAL INFRARED IMAGING VIA 1 MINIMIZATION Yingying Li , Wei Computational and Applied Mathematics, Rice University ABSTRACT Early detection of oil spill events is the key in detecting the early onset of a small-scale oil spill event. Based on an infrared oil-water contrast model

Yin, Wotao

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Very Large Array Observations of Ammonia in Infrared-Dark Clouds II: Internal Kinematics  

E-Print Network (OSTI)

Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope (GBT) and Very Large Array (VLA) maps of ammonia (NH3) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH3 emission are not high velocity outflows but rather moderate (few km/s) increases in the line width that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These line width enhancements could be the result of infall or (hidden in NH3 emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We co...

Ragan, Sarah E; Bergin, Edwin A; Wilner, David

2012-01-01T23:59:59.000Z

62

ARM - Evaluation Product - Airborne Visible/Infrared Imaging Spectrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAirborne Visible/Infrared Imaging ProductsAirborne Visible/Infrared Imaging Spectrometer (AVIRIS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997.08.01 - 1997.08.01 Site(s) SGP General Description AVIRIS is an optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers. AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet and the Twin Otter turboprop. The main objective of the AVIRIS project is to identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures. Research with

63

A Climatology of Warm-Season Cloud Patterns over East Asia Based on GMS Infrared Brightness Temperature Observations  

Science Conference Proceedings (OSTI)

In the present study, hourly infrared (IR) brightness temperatures observed by the Geostationary Meteorological Satellite (GMS) over the region 2040N, 95145E in MayAugust 19982001 are used to compile a climatology of warm-season cloud/...

Chung-Chieh Wang; George Tai-Jen Chen; Richard E. Carbone

2004-07-01T23:59:59.000Z

64

Cloud Cover over the South Pole from Visual Observations, Satellite Retrievals, and Surface-Based Infrared Radiation Measurements  

Science Conference Proceedings (OSTI)

Estimates of cloud cover over the South Pole are presented from five different data sources: routine visual observations (19572004; Cvis), surface-based spectral infrared (IR) data (2001; CPAERI), surface-based broadband IR data (19942003; Cpyr)...

Michael S. Town; Von P. Walden; Stephen G. Warren

2007-02-01T23:59:59.000Z

65

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents (OSTI)

A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

1995-08-22T23:59:59.000Z

66

SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01  

Science Conference Proceedings (OSTI)

We obtained 350 and 850 {mu}m continuum maps of the infrared dark cloud G049.40-00.01. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 {mu}m continuum map with an angular resolution of about 9.''6. We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps range from 50 to 600 M{sub Sun }. About 70% of the clumps are associated with bright 24 {mu}m emission sources, and they may contain protostars. The two most massive clumps show extended, enhanced 4.5 {mu}m emission indicating vigorous star-forming activity. The clump-size-mass distribution suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-protostellar clumps to H II regions.

Kang, Miju; Choi, Minho [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Bieging, John H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Rho, Jeonghee [SOFIA Science Center, USRA/NASA Ames Research Center, Moffet Field, CA 94035 (United States); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Tsai, Chao-Wei, E-mail: mjkang@kasi.re.kr [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

2011-12-20T23:59:59.000Z

67

Spitzer SAGE survey of the Large Magellanic Cloud II: Evolved Stars and Infrared Color Magnitude Diagrams  

E-Print Network (OSTI)

Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 um MIPS channel that previously unexplored, lower luminosity oxygen-rich AGB stars contribute significantly to the mass loss budget of the LMC (1200 such sources are identified).

R. D. Blum; J. R. Mould; K. A. Olsen; J. A. Frogel; M. Werner; M. Meixner; F. Markwick-Kemper; R. Indebetouw; B. Whitney; M. Meade; B. Babler; E. B. Churchwell; K. Gordon; C. Engelbracht; B. -Q. For; K. Misselt; U. Vijh; C. Leitherer; K. Volk; S. Points; W. Reach; J. L. Hora; J. -P. Bernard; F. Boulanger; S. Bracker; M. Cohen; Y. Fukui; J. Gallagher; V. Gorjian; J. Harris; D. Kelly; A. Kawamura; W. B. Latter; S. Madden; A. Mizuno; N. Mizuno; A. Nota; M. S. Oey; T. Onishi; R. Paladini; N. Panagia; P. Perez-Gonzalez; H. Shibai; S. Sato; L. Smith; L. Staveley-Smith; A. G. G. M. Tielens; T. Ueta; S. Van Dyk; D. Zaritsky

2006-08-08T23:59:59.000Z

68

FLAMINGOS Near Infra-Red Survey of The Serpens Cloud Main Core  

E-Print Network (OSTI)

We obtained JHK images and low-resolution JH spectra in the embedded young cluster in the Serpens cloud Main core (also known as Serpens North). We determined spectral types for 15 previously identified cluster members (for 5 of them for the first time), 1 new candidate, and 11 stars that appear to be field interlopers. Extinction, for which we derived an analytical expression, was obtained by taking SpT and near-IR excess into account. The location on the Hertzsprung-Russell diagram indicates that we probed a low-mass population of the cloud (0.05 - 1.5 Msol), including 1 - 3 brown dwarfs. We used our individually determined photospheric parameters to analyze the ISO and the Spitzer determined spectral energy distribution classes. The latter were correlated with the age and location of the sources in the cloud. We find that most flat objects from our study (4 out of 5) have SEDs consistent with reddened classical T Tau stars; however, when comparing to the thick disk SEDs of lower mass M-type objects, we fin...

Gorlova, N; Lada, E

2010-01-01T23:59:59.000Z

69

The Computation of Cloud-Base Height from Paired Whole-Sky Imaging Cameras  

Science Conference Proceedings (OSTI)

The authors have developed a novel approach to the extraction of cloud-base height (CBH) from pairs of whole-sky images. The core problem is to spatially register cloud fields from widely separated whole-sky imaging (WSI) cameras; this complete ...

Mark C. Allmen; W. Philip Kegelmeyer Jr.

1996-02-01T23:59:59.000Z

70

Possibilities and Limitations for Quantitative Precipitation Forecasts Using Nowcasting Methods with Infrared Geosynchronous Satellite Imagery  

Science Conference Proceedings (OSTI)

A rainfall nowcasting system is developed that identifies locations of raining clouds on consecutive infrared geosynchronous satellite images while predicting the movement of the rain cells for up to 10 h using cloud-motion-based winds. As part ...

Andrew M. E. Grose; Eric A. Smith; Hyo-Sang Chung; Mi-Lim Ou; Byung-Ju Sohn; F. Joseph Turk

2002-07-01T23:59:59.000Z

71

Temperature profile of the infrared image Heat exchange between  

E-Print Network (OSTI)

T Temperature profile of the infrared image Heat exchange between atmosphere and ocean References part at high frequencies delivers the exchange time. Cool skin of the ocean the net heat flux between gas exchange and wind speed over the ocean, J. Geophys. Res. 97, 7373-7381, 1992, Nightingale, P

Jaehne, Bernd

72

Retrieval of Ice Cloud Parameters Using a Microwave Imaging Radiometer  

Science Conference Proceedings (OSTI)

Based on the radiative transfer theory, the microwave radiance emanating from ice clouds at arbitrary viewing angles is expressed as an analytic function of the cloud ice water path (IWP), the particle effective diameter (De), and the particle ...

Fuzhong Weng; Norman C. Grody

2000-04-01T23:59:59.000Z

73

Cloud Coverage Based on All-Sky Imaging and Its Impact on Surface Solar Irradiance  

Science Conference Proceedings (OSTI)

In Lauder, Central Otago, New Zealand, two all-sky imaging systems have been in operation for more than 1 yr, measuring the total, opaque, and thin cloud fraction, as well as indicating whether the sun is obscured by clouds. The data provide a ...

G. Pfister; R. L. McKenzie; J. B. Liley; A. Thomas; B. W. Forgan; C. N. Long

2003-10-01T23:59:59.000Z

74

Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

heated by the sun, produces rising columns of air in which the moisture condenses into tall fleecy white clouds At night, when the sky is clear, the earth cools to give those...

75

Potential Applications of the SSM/I Cloud Liquid Water Parameter to the Estimation of Marine Aircraft Icing  

Science Conference Proceedings (OSTI)

Images of integrated cloud liquid water derived from the Special Sensor Microwave Imager (SSM/I) aboard the Defense Meteorological Satellite Program polar-orbiting satellite are presented. Examples with infrared and visible images and synoptic ...

Thomas F. Lee; James R. Clark; Steven D. Swadley

1994-06-01T23:59:59.000Z

76

Automatic Analysis of Stereoscopic Satellite Image Pairs for Determination of Cloud-Top Height and Structure  

Science Conference Proceedings (OSTI)

A massively parallel processor (MPP) computer has made it practical to do automatic stereo analysis of cloud-top heights from stereoscopic satellite image pairs. The automatic analysis is of equivalent quality to manual analysis while taking ...

A. F. Hasler; J. Strong; R. H. Woodward; H. Pierce

1991-03-01T23:59:59.000Z

77

Development of a GOES-R Advanced Baseline Imager Solar Channel Radiance Simulator for Ice Clouds  

Science Conference Proceedings (OSTI)

This paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ...

Shouguo Ding; Ping Yang; Bryan A. Baum; Andrew Heidinger; Thomas Greenwald

2013-04-01T23:59:59.000Z

78

VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07  

SciTech Connect

We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

Devine, K. E.; Churchwell, E. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53703 (United States); Chandler, C. J.; Borg, K. J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Brogan, C.; Indebetouw, R. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Shirley, Y., E-mail: kdevine@collegeofidaho.edu [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

2011-05-20T23:59:59.000Z

79

Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images  

Science Conference Proceedings (OSTI)

A discussion is presented of daytime sky imaging and techniques that may be applied to the analysis of full-color sky images to infer cloud macrophysical properties. Descriptions of two different types of sky-imaging systems developed by the ...

C. N. Long; J. M. Sabburg; J. Calb; D. Pags

2006-05-01T23:59:59.000Z

80

Feature Extraction from Whole-Sky Ground-Based Images for Cloud-Type Recognition  

Science Conference Proceedings (OSTI)

Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier ...

Josep Calb; Jeff Sabburg

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of AIRS cloud thermodynamic phase determination with CALIPSO  

Science Conference Proceedings (OSTI)

The Atmospheric Infrared Sounder (AIRS) infrared-based cloud thermodynamic phase retrievals are evaluated using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud thermodynamic phase. The AIRS cloud phase is ...

Hongchun Jin; Shaima L. Nasiri

82

Retrieval of Cloud Microphysical Properties from MODIS and AIRS  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the NASA Earth Observing System Aqua satellite enable global monitoring of the distribution of clouds during day and night. ...

Jun Li; Hung-Lung Huang; Chian-Yi Liu; Ping Yang; Timothy J. Schmit; Heli Wei; Elisabeth Weisz; Li Guan; W. Paul Menzel

2005-10-01T23:59:59.000Z

83

Analysis of Global Cloud Imagery from Multiple Satellites  

Science Conference Proceedings (OSTI)

Synoptic images of the global cloud field have been created from infrared measurements taken aboard tour geostationary and two polar-orbiting platforms simultaneously observing the earth. A series of spatial and temporal interpolations together ...

Murry L. Salby; Harry H. Hendon; Karen Woodberry; Ken Tanaka

1991-04-01T23:59:59.000Z

84

Validation of Cloud Liquid Water Path Retrievals from SEVIRI Using One Year of CloudNET Observations  

Science Conference Proceedings (OSTI)

The accuracy and precision are determined of cloud liquid water path (LWP) retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat-8 using 1 yr of LWP retrievals from microwave radiometer (MWR) measurements of ...

R. A. Roebeling; H. M. Deneke; A. J. Feijt

2008-01-01T23:59:59.000Z

85

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

86

Remote Sounding of High Clouds. V: Infrared Properties and Structures of Tropical Thunderstorm Anvils  

Science Conference Proceedings (OSTI)

The infrared properties and structures of some anvils emanating from local thunderstorms were studied by lidar and infrared radiometry at Darwin, tropical Northern Australia. The anvils were typically from 1 to 2 km deep, at altitudes from 7 to ...

C. M. R. Platt; A. C. Dilley; J. C. Scott; I. J. Barton; G. L. Stephens

1984-09-01T23:59:59.000Z

87

Skylab Near-Infrared Observations of Clouds Indicating Supercooled Liquid Water Droplets  

Science Conference Proceedings (OSTI)

Orographically-induced lee-wave clouds were observed over New Mexico by a multichannel scanning radiometer on Skylab during December 1973. Channels centered at 0.83, 1.61 and 2.125 ?m were used to determine the cloud optical thickness, ...

Robert J. Curran; Man-Li C. Wu

1982-03-01T23:59:59.000Z

88

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Calibration and characterization  

Science Conference Proceedings (OSTI)

Calibration is a critical step for developing spectral imaging systems. This paper presents a systematic calibration and characterization approach for a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. A series ... Keywords: Characterization, Inspection, LCTF, Shortwave infrared, Spectral imaging, System calibration

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

89

Phenomenological Description of Tropical Clouds Using CloudSat Cloud Classification  

Science Conference Proceedings (OSTI)

Two years of tropical oceanic cloud observations are analyzed using the operational CloudSat cloud classification product and CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. Relationships are examined between ...

Ali Behrangi; Terry Kubar; Bjorn Lambrigtsen

2012-10-01T23:59:59.000Z

90

Global ice cloud observations: radiative properties and statistics from moderate-resolution imaging spectroradiometer measurements  

E-Print Network (OSTI)

Ice clouds occur quite frequently, yet so much about these clouds is unknown. In recent years, numerous investigations and field campaigns have been focused on the study of ice clouds, all with the ultimate goal of gaining a better understanding of microphysical and optical properties, as well as determining the radiative impact. Perhaps one of the most recognized instruments used for such research is the Moderate-resolution Imaging Spectroradiometer (MODIS), carried aboard the NASA EOS satellites Terra and Aqua. The present research aims to support ongoing efforts in the field of ice cloud research by use of observations obtained from Terra and Aqua MODIS. First, a technique is developed to infer ice cloud optical depth from the MODIS cirrus reflectance parameter. This technique is based on a previous method developed by Meyer et al. (2004). The applicability of the algorithm is demonstrated with retrievals from level-2 and -3 MODIS data. The technique is also evaluated with the operational MODIS cloud retrieval product and a method based on airborne ice cloud observations. From this technique, an archive of daily optical depth retrievals is constructed. Using simple statistics, the global spatial and temporal distributions of ice clouds are determined. Research has found that Aqua MODIS observes more frequent ice clouds and larger optical depths and ice water paths than does Terra MODIS. Finally, an analysis of the time series of daily optical depth values revealed that ice clouds at high latitudes, which are most likely associated with synoptic scale weather sytems, persist long enough to move with the upper level winds. Tropical ice clouds, however, dissipate more rapidly, and are in all likelihood associated with deep convective cells.

Meyer, Kerry Glynne

2007-08-01T23:59:59.000Z

91

Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Image Inferral of Sky Cover  

NLE Websites -- All DOE Office Websites (Extended Search)

Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Accounting for Circumsolar and Horizon Cloud Determination Errors in Sky Image Inferral of Sky Cover. C. N. Long, Pacific Northwest National Laboratory 1) Introduction In observing the cloudless sky, one can often notice that the area near the sun is whiter and brighter than the rest of the hemisphere. Additionally, even a slight haze will make a large angular area of the horizon whiter and brighter when the sun is low on the horizon. The human eye has an amazing ability to handle a range of light intensity spanning orders of magnitude. But one of the persistent problems in using sky images to infer fractional sky cover is the intensity range limitations of the camera detector. It is desirable to have bright enough images to be able to detect thin clouds, yet this often means the part of the image near the

92

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics  

E-Print Network (OSTI)

We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA)- a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R \\sim 1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

Stephen Eikenberry; S. Nicholas Raines; Nicolas Gruel; Richard Elston; Rafael Guzman; Jeff Julian; Glenn Boreman; Paul Glenn; Greg Hull-Allen; Jeff Hoffmann; Michael Rodgers; Kevin Thompson; Scott Flint; Lovell Comstock; Bruce Myrick

2006-04-27T23:59:59.000Z

93

An Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in the Rho Ophiuchi and Serpens Molecular Clouds  

E-Print Network (OSTI)

We present new near- and mid-infrared observations of 19 Class I/flat-spectrum young stellar objects in the nearby Rho Oph (d=125pc) and Serpens (d=310pc) dark clouds. These observations are part of a larger systematic infrared multiplicity survey of Class I/flat-spectrum objects in the nearest dark clouds. We find 7/19 (37% +/- 14%) of the sources surveyed to be multiple systems over a separation range of ~150 - 1800 AU. This is consistent with the fraction of multiple systems found among older pre-main-sequence stars in each of the Taurus, Rho Oph, Chamaeleon, Lupus, and Corona Australis star-forming regions over a similar separation range. However, solar-type main-sequence stars in the solar neighborhood have a fraction approximately one-third that of our Class I/flat- spectrum sample (11% +/- 3%). This may be attributed to evolutionary effects or environmental differences. An examination of the spectral energy distributions of the SVS 20 and WL 1 binaries reveals that the individual components of each source exhibit the same SED classifications, similar to what one typically finds for binary T Tauri star (TTS) systems, where the companion of a classical TTS also tends to be of the same SED type.

K. E. Haisch Jr.; M. Barsony; T. P. Greene; M. E. Ressler

2002-09-11T23:59:59.000Z

94

Retrieval of Cloud Microphysical Properties from Thermal Infrared Observations by a Fast Iterative Radiance Fitting Method  

Science Conference Proceedings (OSTI)

An algorithm is presented for inferring the IR optical depth, effective radius, and liquid water path of clouds from multispectral observations of emitted thermal radiation, which takes advantage of the larger number of spectral channels of ...

C. Rathke; J. Fischer

2000-11-01T23:59:59.000Z

95

Retrieval of Vertical Profiles of Cirrus Cloud Microphysical Parameters from Doppler Radar and Infrared Radiometer Measurements  

Science Conference Proceedings (OSTI)

This paper describes a new method to retrieve vertical profiles of the parameters of cirrus cloud microphysics that are important for the estimation of climatic feedback. These parameters are the particle characteristic size and ice mass content. ...

S. Y. Matrosov; B. W. Orr; R. A. Kropfli; J. B. Snider

1994-05-01T23:59:59.000Z

96

Dual-band ultraviolet-short-wavelength infrared imaging via luminescent downshifting with colloidal quantum dots  

E-Print Network (OSTI)

The performance of short-wavelength infrared (SWIR) cameras in the visible and ultraviolet (UV) regions is limited by the absorption of high-energy photons in inactive regions of the imaging array. Dual-band UV-SWIR imaging ...

Geyer, Scott M.

97

Mixed phase clouds, cloud electrification and remote sensing.  

SciTech Connect

Most of hypothesis trying to explain charge separation in thunderstorm clouds require presence of ice and supercooled water. Thus the existence of ice or at least mixed phase regions near cloud tops should be a necessary (but not a sufficient) condition for development of lightning. We show that multispectral satellite based instruments, like the DOE MTI (Multispectral Thermal Imager) or NASA MODIS (Moderate Resolution Imaging Spectroradiometer), using the near infrared and visible spectral bands are able to distinguish between water, ice and mixed phase cloud regions. An analysis of the MTI images of mixed phase clouds - with spatial resolution of about 20 m - shows regions of pure water, pure ice as well as regions of water/ice mixtures. We suggest that multispectral satellite instruments may be useful for a short time forecast of lightning probabilities.

Chylek, P. (Petr); Borel, C. C. (Christoph C.); Klett, James

2004-01-01T23:59:59.000Z

98

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements  

Science Conference Proceedings (OSTI)

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ...

Jennifer M. Comstock; Kenneth Sassen

2001-10-01T23:59:59.000Z

99

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE RECOGNITION  

E-Print Network (OSTI)

FUSION OF VISIBLE AND INFRARED IMAGES USING EMPIRICAL MODE DECOMPOSITION TO IMPROVE FACE of Tennessee, Knoxville, TN-37996 ABSTRACT In this effort, we propose a new image fusion technique, utilizing). In this method, we decompose images from different imaging modalities into their IMFs. Fusion is performed

Koschan, Andreas

100

An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies  

Science Conference Proceedings (OSTI)

A six-channel airborne total-power Millimeter-wave Imaging Radiometer (MIR) was recently built to provide measurements of atmospheric water vapor, clouds, and precipitation. The instrument is a cross-track scanner that has a 3-dB beamwidth of 3.5...

P. Racette; R. F. Adler; J. R. Wang; A. J. Gasiewski; D. M. Jakson; D. S. Zacharias

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reply to Comments on ``Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast''  

E-Print Network (OSTI)

CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Stellite Observations (CALIPSO). J. Geophys

102

Validation of MODIS-Retrieved Cloud Fractions Using Whole Sky Imager Measurements at the Three ARM Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

MODIS-Retrieved Cloud Fractions Using MODIS-Retrieved Cloud Fractions Using Whole Sky Imager Measurements at the Three ARM Sites Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Given the importance of clouds in modulating the surface energy budget, it is critical to obtain accurate estimates of their fractional amount in the atmospheric column for use in modeling studies. Satellite remote sensing of cloud properties such as cloud amount has the advantage of providing global coverage on a regular basis. Ground-based surveys of cloud fraction offer a practical database for use in determining the accuracy of these remotely sensed estimates of cloud fraction on a regional scale.

103

Satellite-Image-derived Gulf Stream Currents Compared with Numerical Model Results  

Science Conference Proceedings (OSTI)

Sequential infrared satellite imagery is used to objectively compute surface currents in the Gulf Stream region using the maximum correlation (MCC) method. The infrared images, filtered for cloud cover, are used to find the displacement of ...

W. J. Emery; C. Fowler; C. A. Clayson

1992-06-01T23:59:59.000Z

104

Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable global monitoring of the distribution of clouds. MODIS is able to ...

Jun Li; W. Paul Menzel; Wenjian Zhang; Fengying Sun; Timothy J. Schmit; James J. Gurka; Elisabeth Weisz

2004-11-01T23:59:59.000Z

105

Monitoring Mesoscale Convective Cloud Systems Associated with Heavy Storms Using Meteosat Imagery  

Science Conference Proceedings (OSTI)

In this study, an automatic algorithm for monitoring areas of cold cloud tops within mesoscale convective systems that produced floods in Greece is developed. The technique is based on Meteosat infrared and water vapor images. The purpose of the ...

Haralambos Feidas; Constantinos Cartalis

2001-03-01T23:59:59.000Z

106

A liquid crystal tunable filter based shortwave infrared spectral imaging system: Design and integration  

Science Conference Proceedings (OSTI)

This paper presents the methodology to design and integrate a liquid crystal tunable filter (LCTF) based shortwave infrared (SWIR) spectral imaging system. The system consisted of an LCTF-based SWIR spectral imager, an illumination unit, a frame grabber, ... Keywords: Food quality and safety, Hyperspectral imaging, LCTF, Nondestructive inspection, SWIR, System design

Weilin Wang; Changying Li; Ernest W. Tollner; Glen C. Rains; Ronald D. Gitaitis

2012-01-01T23:59:59.000Z

107

Wide-Angle Imaging Lidar Deployment at the ARM Southern Great Plains Site: Intercomparison of Cloud Property Retrievals  

Science Conference Proceedings (OSTI)

The Wide-Angle Imaging Lidar (WAIL), a new instrument that measures cloud optical and geometrical properties by means of off-beam lidar returns, was deployed as part of a multi-instrument campaign to probe a cloud field at the Atmospheric ...

Igor N. Polonsky; Steven P. Love; Anthony B. Davis

2005-06-01T23:59:59.000Z

108

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

109

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

E-Print Network (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to ...

Ganapati, Vidya

110

Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment  

SciTech Connect

Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

2005-03-18T23:59:59.000Z

111

Estimating Tropical Cyclone Intensity from Infrared Image Data  

Science Conference Proceedings (OSTI)

This paper describes results from a near-real-time objective technique for estimating the intensity of tropical cyclones from satellite infrared imagery in the North Atlantic Ocean basin. The technique quantifies the level of organization or ...

Miguel F. Pieros; Elizabeth A. Ritchie; J. Scott Tyo

2011-10-01T23:59:59.000Z

112

Spitzer Infrared Spectrograph Observations of Magellanic Cloud Planetary Nebulae: the nature of dust in low metallicity circumstellar ejecta  

E-Print Network (OSTI)

We present 5 - 40 micron spectroscopy of 41 planetary nebulae (PNe) in the Magellanic Clouds, observed with the Infrared Spectrograph on board the Spitzer Space Telescope. The spectra show the presence of a combination of nebular emission lines and solid-state features from dust, superimposed on the thermal IR continuum. By analyzing the 25 LMC and 16 SMC PNe in our sample we found that the IR spectra of 14 LMC and 4 SMC PNe are dominated by nebular emission lines, while the other spectra show solid-state features. We observed that the solid-state features are compatible with carbon-rich dust grains (SiC, polycyclic aromatic hydrocarbons (PAHs), etc.) in most cases, except in three PNe showing oxygen-rich dust features. The frequency of carbonaceous dust features is generally higher in LMC than in SMC PNe. The spectral analysis allowed the correlations of the dust characteristics with the gas composition and morphology, and the properties of the central stars. We found that: 1) all PNe with carbonaceous dust features have C/O>1, none of these being bipolar or otherwise highly asymmetric; 2) all PNe with oxygen-rich dust features have C/Oproduction efficiency depends on metallicity, with low metallicity environments not favoring dust production.

L. Stanghellini; P. Garcia-Lario; D. A. Garcia-Hernandez; J. V. Perea-Calderon; J. E. Davies; A. Manchado; E. Villaver; R. A. Shaw

2007-09-04T23:59:59.000Z

113

Cloud microphysical properties retrieved from downwelling infrared radiance measurements made at Eureka, Nunavut, Canada (2006-2009)  

Science Conference Proceedings (OSTI)

The radiative properties of clouds are related to cloud microphysical and optical properties, including water path, optical depth, particle size, and thermodynamic phase. Ground-based observations provide high quality, long-term, continuous ...

Christopher J. Cox; David D. Turner; Penny M. Rowe; Matthew D. Shupe; Von P. Walden

114

Investigation of GOSAT TANSO-CAI Cloud Screening Ability through an Intersatellite Comparison  

Science Conference Proceedings (OSTI)

In this work, the Greenhouse Gases Observing Satellite (GOSAT) Thermal and Near-infrared Sensor for Carbon ObservationCloud and Aerosol Imager (TANSO-CAI) cloud screening results, which are necessary for the retrieval of carbon dioxide (CO2) and ...

Haruma Ishida; Takashi Y. Nakjima; Tatsuya Yokota; Nobuyuki Kikuchi; Hiroshi Watanabe

2011-07-01T23:59:59.000Z

115

Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid Clouds  

Science Conference Proceedings (OSTI)

The importance of accurately representing the role of clouds in climate change studies has become increasingly apparent in recent years, leading to a substantial increase in the number of satellite sensors and associated algorithms that are ...

Tristan S. LEcuyer; Philip Gabriel; Kyle Leesman; Steven J. Cooper; Graeme L. Stephens

2006-01-01T23:59:59.000Z

116

Convective Tendency Images Derived from a Combination of Lightning and Satellite Data  

Science Conference Proceedings (OSTI)

A technique is presented for generating convective tendency products by combining satellite images with observations of cloud-to-ground lightning activity. Rapid scan (5-min) infrared satellite images are used to define the areal distribution of ...

Steven J. Goodman; Dennis E. Buechler; Paul J. Meyer

1988-09-01T23:59:59.000Z

117

Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission  

E-Print Network (OSTI)

The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.

Reuter, Dennis C; Scherrer, John; Jennings, Donald E; Baer, James; Hanley, John; Hardaway, Lisa; Lunsford, Allen; McMuldroch, Stuart; Moore, Jeffrey; Olkin, Cathy; Parizek, Robert; Reitsma, Harold; Sabatke, Derek; Spencer, John; Stone, John; Throop, Henry; Van Cleve, Jeffrey; Weigle, Gerald E; Young, Leslie A

2007-01-01T23:59:59.000Z

118

Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission  

E-Print Network (OSTI)

The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.

Dennis C. Reuter; S. Alan Stern; John Scherrer; Donald E. Jennings; James Baer; John Hanley; Lisa Hardaway; Allen Lunsford; Stuart McMuldroch; Jeffrey Moore; Cathy Olkin; Robert Parizek; Harold Reitsma; Derek Sabatke; John Spencer; John Stone; Henry Throop; Jeffrey Van Cleve; Gerald E. Weigle; Leslie A. Young

2007-09-26T23:59:59.000Z

119

ARM - Field Campaign - Boundary Layer Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBoundary Layer Cloud IOP govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer Cloud IOP 2005.07.11 - 2005.08.07 Lead Scientist : William Shaw For data sets, see below. Description Investigators from Pacific Northwest National Laboratory, in collaboration with scientists from a number of other institutions, carried out a month of intensive measurements at the ARM Climate Research Facility on the North Slope of Alaska in the summer of 2005. The purpose of these measurements was to determine how much the arctic land surface modifies the way low clouds reflect, absorb, and transmit solar and infrared radiation. This is an important problem because arctic clouds play a prominent role in

120

Near Infrared Surface Plasmon Resonance Phase Imaging and Nanoparticle-Enhanced Surface Plasmon Resonance Phase Imaging  

E-Print Network (OSTI)

utilized a near-infrared 860 nm light emitting diode (LED) light source and a wedge depolarizer to create

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Comparison of Cloud Cover from All-Sky Imager and Meteorological Observer  

Science Conference Proceedings (OSTI)

Naked-eye observation of cloud cover has widely resisted automation. Replacement of human observation by instruments is an inexorable trend for the development of ground-based macroscopic cloud observation. In this paper, cloud covers from an all-...

Juan Huo; Daren Lu

2012-08-01T23:59:59.000Z

122

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument  

Science Conference Proceedings (OSTI)

Nine months of the Clouds and the Earth's Radiant Energy System (CERES)/Tropical Rainfall Measuring Mission (TRMM) broadband fluxes combined with the TRMM visible infrared scanner (VIRS) high-resolution imager measurements are used to estimate ...

Norman G. Loeb; Seiji Kato

2002-06-01T23:59:59.000Z

123

Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.  

SciTech Connect

At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Tellier, L. L. (Larry L.); Ho, Cheng,

2002-01-01T23:59:59.000Z

124

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging  

E-Print Network (OSTI)

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging in order to determine the presence of any chemical and kinetic inhomogeneity. Unfortunately, to date, NIR to determine the chemical and kinetic inho- mogeneity of sol-gel. Preliminary results on the kinetics of sol

Reid, Scott A.

125

Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes  

Science Conference Proceedings (OSTI)

Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Mso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (...

Ingo Meirold-Mautner; Catherine Prigent; Eric Defer; Juan R. Pardo; Jean-Pierre Chaboureau; Jean-Pierre Pinty; Mario Mech; Susanne Crewell

2007-05-01T23:59:59.000Z

126

Remote Sensing of Cloud Parameters  

Science Conference Proceedings (OSTI)

Day and night mapping of the global distributions of the horizontal cloud covers and the corresponding cloud-top pressure levels are derived from the same set of infrared radiance data used to retrieve clear-column temperature profiles. General ...

Moustafa T. Chahine

1982-01-01T23:59:59.000Z

127

Method and apparatus for coherent imaging of infrared energy  

DOE Patents (OSTI)

A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.

Hutchinson, D.P.

1998-05-12T23:59:59.000Z

128

An Infrared Imaging Study of the Bipolar Proto-Planetary Nebula IRAS 16594-4656  

E-Print Network (OSTI)

High-resolution mid-infrared images have been obtained in N-band and Q-band for the proto-planetary nebula IRAS 16594-4656. A bright equatorial torus and a pair of bipolar lobes can clearly be seen in the infrared images. The torus appears thinner at the center than at the edges, suggesting that it is viewed nearly edge-on. The infrared lobes correspond to the brightest lobes of the reflection nebula seen in the Hubble Space Telescope (HST) optical image, but with no sign of the point-symmetric structure seen in the visible image. The lobe structure shows a close correspondence with a molecular hydrogen map obtained with HST, suggesting that the dust emission in the lobes traces the distribution of the shocked gas. The shape of the bipolar lobes shows clearly that the fast outflow is still confined by the remnant circumstellar envelope of the progenitor asymptotic giant branch (AGB) star. However, the non-detection of the dust outside of the lobes suggests that the temperature of the dust in the AGB envelope is too low for it to be detected at 20 microns.

Kevin Volk; Bruce J. Hrivnak; Kate Y. L. Su; Sun Kwok

2006-07-20T23:59:59.000Z

129

A Decade of the Moderate Resolution Imaging Spectroradiometer: Is a SolarCloud Link Detectable?  

Science Conference Proceedings (OSTI)

Based on the results of decadal correlation studies between the International Satellite Cloud Climatology Projectdetected cloud anomalies and the galactic cosmic ray (GCR) flux, it has been suggested that a relationship exists between solar ...

Benjamin Laken; Enric Pall; Hiroko Miyahara

2012-07-01T23:59:59.000Z

130

Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I Algorithms  

Science Conference Proceedings (OSTI)

First comparisons of improved initialization inversion (3I) cloud parameters determined from TIROS-N Operational Vertical Sounder observations with timespace-collocated clouds from the recently reprocessed International Satellite Cloud ...

C. J. Stubenrauch; A. Chdin; R. Armante; N. A. Scott

1999-08-01T23:59:59.000Z

131

Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions  

E-Print Network (OSTI)

(abridged) Our project endeavors to obtain a robust view of multiplicity among embedded Class I and Flat Spectrum protostars in a wide array of nearby molecular clouds to disentangle ``universal'' from cloud-dependent processes. We have used near-infrared adaptive optics observations at the VLT through the H, Ks and L' filters to search for tight companions to 45 Class I and Flat Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga, Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with published high-resolution surveys of 13 additional objects in Taurus and Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400 AU and 14-1400 AU separation ranges, respectively. These rates are in excellent agreement with those previously found among T Tauri stars in Taurus and Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate of solar-type field stars. We found no non-hierarchical triple systems, nor any quadruple or higher-order systems. No significant cloud-to-cloud difference has been found, except for the fact that all companions to low-mass Orion protostars are found within 100 AU of their primaries whereas companions found in other clouds span the whole range probed here. Based on this survey, we conclude that core fragmentation always yields a high initial multiplicity rate, even in giant molecular clouds such as the Orion cloud or in clustered stellar populations as in Serpens, in contrast with predictions of numerical simulations. The lower multiplicity rate observed in clustered Class II and Class III populations can be accounted for by a universal set of properties for young systems and subsequent ejections through close encounters with unrelated cluster members.

G. Duchne; S. Bontemps; J. Bouvier; P. Andr; A. A. Djupvik; A. M. Ghez

2007-10-03T23:59:59.000Z

132

Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields  

Science Conference Proceedings (OSTI)

Current techniques for deriving cirrus optical depth and altitude from visible (0.65 ?m) and infrared (11.5 ?m) satellite data use radiative transfer calculations based on scattering phase functions of spherical water droplets. This study ...

Patrick Minnis; Kuo-Nan Liou; Yoshihide Takano

1993-05-01T23:59:59.000Z

133

Relationship between Ice Water Path and Downward Longwave Radiation for Clouds Optically Thin in the Infrared: Observations and Model Calculations  

Science Conference Proceedings (OSTI)

A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Zi-IWC (ice water content) relationship developed by Sassen (1987) to ...

Taneil Uttal; Sergey Y. Matrosov; Jack B. Snider; Robert A. Kropfli

1994-03-01T23:59:59.000Z

134

Cirrus Cloud Properties Derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part III: Ground-Based HIS Results  

Science Conference Proceedings (OSTI)

During FIRE II, cirrus clouds were observed in the wavelength range 319, m with two High Resolution Interferometer Sounders as described in the Part I companion paper. One, known as AC-HIS, was mounted on the NASA ER-2 aircraft in order to look ...

A. D. Collard; S. A. Ackerman; W. L. Smith; X. Ma; H. E. Revercomb; R. O. Knuteson; S-C. Lee

1995-12-01T23:59:59.000Z

135

Small Cloud Particle Shapes in Mixed-Phase Clouds  

Science Conference Proceedings (OSTI)

The shapes of cloud particles with maximum dimensions Dmax between 35 and 60 ?m in mixed-phase clouds were studied using high-resolution particle images collected by a cloud particle imager (CPI) during the Mixed-Phase Arctic Cloud Experiment (M-...

Greg M. McFarquhar; Junshik Um; Robert Jackson

2013-05-01T23:59:59.000Z

136

Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers  

E-Print Network (OSTI)

We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.

Morishita, T; Chen, Z; Lin, C D

2007-01-01T23:59:59.000Z

137

High-sensitivity, and cost-effective system for infrared imaging of concealed objects in dynamic mode.  

Science Conference Proceedings (OSTI)

Novel, cost-efficient, and highly-sensitive IR imaging systems play an important role in homeland security functions. Technical limitations in the areas of sensitivity, contrast ratio, bandwidth and cost continue to constrain imaging capabilities. We have designed and prototyped a compact computer-piloted high sensitivity infrared imaging system. The device consists of infrared optics, cryostat, low-noise pre-amplifier, Analog-to-Digital hardware, feedback electronics, and unique image processing software. Important advantages of the developed system are: (i) Eight electronic channels are available for simultaneous registration of IR and visible images in multiple spectral ranges, (ii) Capability of real-time analysis such as comparing the 'sensed' image with 'reference' images from a database, (iii) High accuracy temperature measurement of multiple points on the image by referencing the radiation intensity from the object to a black body model, (iv) Image generation by real-time integration of images from multiple sensors operating from the visible to the terahertz range. The device was tested with a liquid-nitrogen-cooled, single-pixel HgCdTe detector for imaging in 8-12 microns range. The demonstrated examples of infrared imaging of concealed objects in static and dynamic modes include a hammer (metal head and wooden handle), plastic imitator of handguns hidden under clothes, powder in an envelope, and revealing complex wall structures under decorative plaster.

Gordiyenko, E.; Yefremenko, V.; Pearson, J.; Bader, S.; Novosad, V.; Materials Science Division

2005-08-05T23:59:59.000Z

138

The infrared imaging spectrograph (IRIS) for TMT: on-instrument wavefront sensors and NFIRAOS interface  

E-Print Network (OSTI)

The InfraRed Imaging Spectrograph (IRIS) is a first light client science instrument for the TMT observatory that operates as a client of the NFIRAOS facility multi-conjugate adaptive optics system. This paper reports on the concept study and baseline concept design of the On-Instrument WaveFront Sensors (OIWFS) and NFIRAOS interface subsystems of the IRIS science instrument, a collaborative effort by NRC-HIA, Caltech, and TMT AO and Instrument teams. This includes work on system engineering, structural and thermal design, sky coverage modeling, patrol geometry, probe optics and mechanics design, camera design, and controls design.

Loop, David; Fletcher, Murray; Wooff, Robert; Dunn, Jennifer; Moore, Anna; Smith, Roger; Hale, David; Dekany, Richard; Wang, Lianqi; Ellerbroek, Brent; Simard, Luc; Crampton, David

2010-01-01T23:59:59.000Z

139

Satellite-Derived Sea Surface Temperatures: Evaluation of GOES-8 and GOES-9 Multispectral Imager Retrieval Accuracy  

Science Conference Proceedings (OSTI)

Sea surface temperature (SST) retrieval accuracy from the multispectral imager on the new generation of GOES satellites is analyzed. Equations for two and three infrared channels are empirically derived using cloud-free satellite radiances ...

Douglas A. May; Walter O. Osterman

1998-06-01T23:59:59.000Z

140

Identifying Cloud-Uncontaminated AIRS Spectra from Cloudy FOV Based on Cloud-Top Pressure and Weighting Functions  

Science Conference Proceedings (OSTI)

An effort is made to increase the number of Advanced Infrared Sounder (AIRS) cloud-uncontaminated infrared data for regional mesoscale data assimilation and short-term quantitative precipitation forecast (QPF) applications. The cloud-top pressure ...

M. Carrier; X. Zou; William M. Lapenta

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Four Years of Global Cirrus Cloud Statistics Using HIRS  

Science Conference Proceedings (OSTI)

Trends in global upper-tropospheric transmissive cirrus cloud cover are beginning to emerge from a four-year cloud climatology using NOAA polar-orbiting High-Resolution Infrared Radiation Sounder (HIRS) multispectral data. Cloud occurrence, ...

Donald P. Wylie; W. Paul Menzel; Harold M. Woolf; Kathleen I. Strabala

1994-12-01T23:59:59.000Z

142

Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace  

Science Conference Proceedings (OSTI)

High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

Payzant, E.A.; Wang, H.

1999-04-05T23:59:59.000Z

143

Autonomous Observing and Control Systems for PAIRITEL, a 1.3m Infrared Imaging Telescope  

E-Print Network (OSTI)

The Peters Automated Infrared Imaging Telescope (PAIRITEL) is the first meter-class telescope operating as a fully robotic IR imaging system. Dedicated in October 2004, PAIRITEL began regular observations in mid-December 2004 as part of a 1.5 year commissioning period. The system was designed to respond without human intervention to new gamma-ray burst transients: this milestone was finally reached on November 9, 2005 but the telescope had a number of semi-automated sub-10 minute responses throughout early commissioning. When not operating in Target of Opportunity mode, PAIRITEL performs a number of queue scheduled transient monitoring campaigns. To achieve this level of automation, we have developed communicating tools to connect the various sub-systems: an intelligent queue scheduling database, run-time configurable observation sequence software, a data reduction pipeline, and a master state machine which monitors and controls all functions within and affecting the observatory.

J. S. Bloom; Dan L. Starr; Cullen H. Blake; M. F. Skrutskie; Emilio E. Falco

2005-11-30T23:59:59.000Z

144

Near infrared spectral imaging of explosives using a tunable laser source  

Science Conference Proceedings (OSTI)

Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

Klunder, G L; Margalith, E; Nguyen, L K

2010-03-26T23:59:59.000Z

145

Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques  

Science Conference Proceedings (OSTI)

The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

146

Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles  

E-Print Network (OSTI)

Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

2004-01-01T23:59:59.000Z

147

Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions  

E-Print Network (OSTI)

(abridged) Our project endeavors to obtain a robust view of multiplicity among embedded Class I and Flat Spectrum protostars in a wide array of nearby molecular clouds to disentangle ``universal'' from cloud-dependent processes. We have used near-infrared adaptive optics observations at the VLT through the H, Ks and L' filters to search for tight companions to 45 Class I and Flat Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga, Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with published high-resolution surveys of 13 additional objects in Taurus and Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400 AU and 14-1400 AU separation ranges, respectively. These rates are in excellent agreement with those previously found among T Tauri stars in Taurus and Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate of solar-type field stars. We found no non-hierarchical triple systems, nor any quadruple or higher-or...

Duchne, G; Bouvier, J; Andr, P; Djupvik, A A; Ghez, A M

2007-01-01T23:59:59.000Z

148

Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations  

Science Conference Proceedings (OSTI)

Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-?m infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (...

Kristopher M. Bedka; Richard Dworak; Jason Brunner; Wayne Feltz

2012-10-01T23:59:59.000Z

149

Forecasting of Chaotic Cloud Absorption Time Series for Meteorological and Plume Dispersion Modeling  

Science Conference Proceedings (OSTI)

A nonlinear forecasting method based on the reconstruction of a chaotic strange attractor from about 1.5 years of cloud absorption data obtained from half-hourly Meteosat infrared images was used to predict the behavior of the time series 24 h in ...

V. Prez-Muuzuri

1998-11-01T23:59:59.000Z

150

Chemical Abundances in Twelve Red Giants of the Large Magellanic Cloud from High-Resolution Infrared Spectroscopy  

E-Print Network (OSTI)

High-resolution infrared spectra (R=50,000) have been obtained for twelve red-giant members of the LMC with the Gemini South 8.3-meter telescope plus Phoenix spectrometer. Quantitative chemical abundances of carbon-12, carbon-13, nitrogen-14, and oxygen-16 were derived from molecular lines of CO, CN, and OH, while sodium, scandium, titanium, and iron abundances were derived from neutral atomic lines. The LMC giants have masses from about 1 to 4 solar masses and span a metallicity range from [Fe/H]= -1.1 to -0.3. The program red giants all show evidence of first dredge-up mixing, with low 12C/13C ratios, and low 12C correlated with high 14N abundances. Comparisons of the oxygen-to-iron ratios in the LMC and the Galaxy indicate that the trend of [O/Fe] versus [Fe/H] in the LMC falls about 0.2 dex below the Galactic trend. Such an offset can be modeled as due to an overall lower rate of supernovae per unit mass in the LMC relative to the Galaxy, as well as a slightly lower ratio of supernovae of type II to supernovae of type Ia.

V. V. Smith; K. H. Hinkle; K. Cunha; B. Plez; D. L. Lambert; C. A. Pilachowski; B. Barbuy; J. Melendez; S. Balachandran; M. S. Bessell; D. P. Geisler; J. E. Hesser; C. Winge

2002-08-22T23:59:59.000Z

151

OPTICAL-TO-NEAR-INFRARED SIMULTANEOUS OBSERVATIONS FOR THE HOT URANUS GJ3470b: A HINT OF A CLOUD-FREE ATMOSPHERE  

SciTech Connect

We present optical (g', R{sub c}, and I{sub c}) to near-infrared (J) simultaneous photometric observations for a primary transit of GJ3470b, a Uranus-mass transiting planet around a nearby M dwarf, by using the 50 cm MITSuME telescope and the 188 cm telescope, both at the Okayama Astrophysical Observatory. From these data, we derive the planetary mass, radius, and density as 14.1 {+-} 1.3 M{sub Circled-Plus }, 4.32{sup +0.21}{sub -0.10} R{sub Circled-Plus }, and 0.94 {+-} 0.12 g cm{sup -3}, respectively, thus confirming the low density that was reported by Demory et al. based on the Spitzer/IRAC 4.5 {mu}m photometry (0.72{sup +0.13}{sub -0.12} g cm{sup -3}). Although the planetary radius is about 10% smaller than that reported by Demory et al., this difference does not alter their conclusion that the planet possesses a hydrogen-rich envelope whose mass is approximately 10% of the planetary total mass. On the other hand, we find that the planet-to-star radius ratio (R{sub p} /R{sub s} ) in the J band (0.07577{sup +0.00072}{sub -0.00075}) is smaller than that in the I{sub c} (0.0802 {+-} 0.0013) and 4.5 {mu}m (0.07806{sup +0.00052}{sub -0.00054}) bands by 5.8% {+-} 2.0% and 2.9% {+-} 1.1%, respectively. A plausible explanation for the differences is that the planetary atmospheric opacity varies with wavelength due to absorption and/or scattering by atmospheric molecules. Although the significance of the observed R{sub p} /R{sub s} variations is low, if confirmed, this fact would suggest that GJ3470b does not have a thick cloud layer in the atmosphere. This property would offer a wealth of opportunity for future transmission-spectroscopic observations of this planet to search for certain molecular features, such as H{sub 2}O, CH{sub 4}, and CO, without being prevented by clouds.

Fukui, Akihiko; Yanagisawa, Kenshi; Kuroda, Daisuke; Shimizu, Yasuhiro; Izumiura, Hideyuki [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Narita, Norio; Takahashi, Yasuhiro H.; Kawauchi, Kiyoe; Nagayama, Shogo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kurosaki, Kenji; Ikoma, Masahiro [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Ohnuki, Hiroshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Onitsuka, Masahiro; Suenaga, Takuya [The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirano, Teruyuki [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502 (Japan); Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kawai, Nobuyuki, E-mail: afukui@oao.nao.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8551 (Japan)

2013-06-20T23:59:59.000Z

152

Almost a Century of Imaging Clouds Over the Whole-Sky Dome  

Science Conference Proceedings (OSTI)

Meteorological whole-sky photography can be traced back to just after the turn of the century. Capturing an objective and well-determined view of the cloud cover over the whole-sky dome has been one of the principal goals of subsequent ...

K. McGuffe; A. Henderson-Sellers

1989-10-01T23:59:59.000Z

153

Biogeography of Tropical Montane Cloud Forests. Part II: Mapping of Orographic Cloud Immersion  

Science Conference Proceedings (OSTI)

This study details two unique methods to quantify cloud-immersion statistics for tropical montane cloud forests (TMCFs). The first technique uses a new algorithm for determining cloud-base height using Moderate Resolution Imaging ...

Udaysankar S. Nair; Salvi Asefi; Ronald M. Welch; D. K. Ray; Robert O. Lawton; Vani Starry Manoharan; Mark Mulligan; Tom L. Sever; Daniel Irwin; J. Alan Pounds

2008-08-01T23:59:59.000Z

154

Biogeography of Tropical Montane Cloud Forests. Part I: Remote Sensing of Cloud-Base Heights  

Science Conference Proceedings (OSTI)

Cloud-base heights over tropical montane cloud forests are determined using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products and National Centers for Environmental Prediction global tropospheric final analysis (FNL) fields. ...

Ronald M. Welch; Salvi Asefi; Jian Zeng; Udaysankar S. Nair; Qingyuan Han; Robert O. Lawton; Deepak K. Ray; Vani Starry Manoharan

2008-04-01T23:59:59.000Z

155

Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS), CloudAerosol Lidar with Orthogonal Polarization (CALIOP), and CloudSat Cloud Profiling Radar (CPR) set of sensors, all in the Afternoon Constellation (A-Train), has been regarded as among ...

Mark Aaron Chan; Josefino C. Comiso

2013-05-01T23:59:59.000Z

156

Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells  

E-Print Network (OSTI)

Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

2002-01-01T23:59:59.000Z

157

Cloud-state-dependent Sampling in AIRS Observations based on CloudSat Cloud Classification  

Science Conference Proceedings (OSTI)

The precision, accuracy, and potential sampling biases of temperature (T) and water vapor (q) vertical profiles obtained by satellite infrared sounding instruments are highly cloud-state dependent and poorly quantified. We describe progress ...

Qing Yue; Eric J. Fetzer; Brian H. Kahn; Sun Wong; Gerald Manipon; Alexandre Guillaume; Brian Wilson

158

Imaging the Material Properties of Bone Specimens Using Reflection-Based Infrared Microspectroscopy  

Science Conference Proceedings (OSTI)

Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 {micro}m for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm{sup -1} in transmission-based to 1035/1025 cm{sup -1} in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.

Acerbo A. S.; Carr, G.L.; Judex, S.; Miller, L.M.

2012-03-13T23:59:59.000Z

159

Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon  

Science Conference Proceedings (OSTI)

This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

2010-05-05T23:59:59.000Z

160

IC cloud: Enabling compositional cloud  

Science Conference Proceedings (OSTI)

Cloud computing has attracted great interest from both academic and industrial communities. Different paradigms, architectures and applications based on the concept of cloud have emerged. Although many of them have been quite successful, efforts are ... Keywords: Cloud computing, cloud elasticity, cloud service, compositional cloud, infrastructure as a service (IaaS)

Yi-Ke Guo; Li Guo

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents (OSTI)

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2013-07-16T23:59:59.000Z

162

Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry  

DOE Patents (OSTI)

The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

Vertes, Akos; Nemes, Peter

2012-10-30T23:59:59.000Z

163

The Space Infrared Interferometric Telescope (SPIRIT): High-resolution imaging and spectroscopy in the far-infrared  

E-Print Network (OSTI)

We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their inhomogeneous composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.

David Leisawitz; Charles Baker; Amy Barger; Dominic Benford; Andrew Blain; Rob Boyle; Richard Broderick; Jason Budinoff; John Carpenter; Richard Caverly; Phil Chen; Steve Cooley; Christine Cottingham; Julie Crooke; Dave DiPietro; Mike DiPirro; Michael Femiano; Art Ferrer; Jacqueline Fischer; Jonathan P. Gardner; Lou Hallock; Kenny Harris; Kate Hartman; Martin Harwit; Lynne Hillenbrand; Tupper Hyde; Drew Jones; Jim Kellogg; Alan Kogut; Marc Kuchner; Bill Lawson; Javier Lecha; Maria Lecha; Amy Mainzer; Jim Mannion; Anthony Martino; Paul Mason; John Mather; Gibran McDonald; Rick Mills; Lee Mundy; Stan Ollendorf; Joe Pellicciotti; Dave Quinn; Kirk Rhee; Stephen Rinehart; Tim Sauerwine; Robert Silverberg; Terry Smith; Gordon Stacey; H. Philip Stahl; Johannes Staguhn; Steve Tompkins; June Tveekrem; Sheila Wall; Mark Wilson

2007-07-05T23:59:59.000Z

164

Imaging spectroscopy diagnosis of internal electron temperature and density distributions of plasma cloud surrounding hydrogen pellet in the Large Helical Device  

SciTech Connect

To investigate the behavior of hydrogen pellet ablation, a novel method of high-speed imaging spectroscopy has been used in the Large Helical Device (LHD) for identifying the internal distribution of the electron density and temperature of the plasma cloud surrounding the pellet. This spectroscopic system consists of a five-branch fiberscope and a fast camera, with each objective lens having a different narrow-band optical filter for the hydrogen Balmer lines and the background continuum radiation. The electron density and temperature in the plasma cloud are obtained, with a spatial resolution of about 6 mm and a temporal resolution of 5 Multiplication-Sign 10{sup -5} s, from the intensity ratio measured through these filters. To verify the imaging, the average electron density and temperature also have been measured from the total emission by using a photodiode, showing that both density and temperature increase with time during the pellet ablation. The electron density distribution ranging from 10{sup 22} to 10{sup 24} m{sup -3} and the temperature distribution around 1 eV have been observed via imaging. The electron density and temperature of a 0.1 m plasma cloud are distributed along the magnetic field lines and a significant electron pressure forms in the plasma cloud for typical experimental conditions of the LHD.

Motojima, G.; Sakamoto, R.; Goto, M.; Matsuyama, A.; Yamada, H. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan); Mishra, J. S. [Graduate University for Advanced Studies, 322-6, Oroshi-cho, Toki-City, Gifu 509-5292 (Japan)

2012-09-15T23:59:59.000Z

165

An infrared image of a dog, with warmest areas appearing the brightest.  

E-Print Network (OSTI)

sunlight, a roaring fire, a radiator or a warm sidewalk is infrared radiation. Although our eyes cannot see in space. Infrared astronomy is the art of measuring incredibly small values of thermal energy astronomers face the same problem when they try to detect heat from space. At room temperature

166

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

167

Optical Properties and Phase of Some Midlatitude, Midlevel Clouds in ECLIPS  

Science Conference Proceedings (OSTI)

Several cloud optical quantities were measured for the first time in midlevel, mixed-phase clouds. These included cloud infrared emittance and absorption coefficient (1012 ?m), effective backscatter-to-extinction ratio, and lidar depolarization ...

S. A. Young; C. M. R. Platt; R. T. Austin; G. R. Patterson

2000-02-01T23:59:59.000Z

168

A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols  

Science Conference Proceedings (OSTI)

The launch of CloudSat and CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) in 2006 provided the first opportunity to incorporate information about the vertical distribution of cloud and aerosols directly into global ...

David S. Henderson; Tristan LEcuyer; Graeme Stephens; Phil Partain; Miho Sekiguchi

2013-04-01T23:59:59.000Z

169

A Comparison of Cloud Cover Statistics from the GLAS Lidar with HIRS  

Science Conference Proceedings (OSTI)

The cloud dataset from the Geoscience Laser Altimeter System (GLAS) lidar on the Ice, Cloud, and Land Elevation Satellite (ICESat) spacecraft is compared to the cloud analysis of the Wisconsin NOAA High Resolution Infrared Radiation Sounder (HIRS)...

Donald Wylie; Edwin Eloranta; James D. Spinhirne; Steven P. Palm

2007-10-01T23:59:59.000Z

170

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance  

Science Conference Proceedings (OSTI)

The CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols ...

Zhaoyan Liu; Mark Vaughan; David Winker; Chieko Kittaka; Brian Getzewich; Ralph Kuehn; Ali Omar; Kathleen Powell; Charles Trepte; Chris Hostetler

2009-07-01T23:59:59.000Z

171

High-speed four-color infrared digital imaging for study in-cylinder processes in a di diesel engine  

SciTech Connect

The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

Rhee, K.T.

1995-07-12T23:59:59.000Z

172

Cloud Properties inferred from 8?12-m Data  

Science Conference Proceedings (OSTI)

A trispectral combination of observations at 8-, 11-, and 12-m bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive ...

Kathleen I. Strabala; Steven A. Ackerman; W. Paul Menzel

1994-02-01T23:59:59.000Z

173

Two Years of Cloud Cover Statistics Using VAS  

Science Conference Proceedings (OSTI)

Statistics of cloud characteristics over North America have been accumulated for the past 2 yr. The frequency of cloud cover with the associated heights and infrared attenuation were charted using the C02 channel radiometric data from the VISSR ...

D. P. Wylie; W. P. Menzel

1989-04-01T23:59:59.000Z

174

Synoptic sensitivities of subtropical clouds separating aerosol effects from meteorology  

E-Print Network (OSTI)

identi?ed as liquid, ice, mixed phase, or uncertain. Here wePhase Infrared Day Histogram Counts Cloud Fraction Liquid Cloud Fraction Iceice as well as the di?erent temperatures at which each phase

Mauger, Guillaume S.

2008-01-01T23:59:59.000Z

175

Physically Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements  

Science Conference Proceedings (OSTI)

A physical inversion scheme has been developed dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A ...

Daniel K. Zhou; William L. Smith Sr.; Xu Liu; Allen M. Larar; Stephen A. Mango; Hung-Lung Huang

2007-03-01T23:59:59.000Z

176

Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds  

Science Conference Proceedings (OSTI)

A new automated daytime cumulonimbus/towering cumulus (Cb/TCu) cloud detection method for the months of MaySeptember is presented that combines information on cloud physical properties retrieved from the Spinning Enhanced Visible and Infrared ...

Cintia Carbajal Henken; Maurice J. Schmeits; Hartwig Deneke; Rob A. Roebeling

2011-07-01T23:59:59.000Z

177

Retrieval of Cloud Ice Water Path from Special Sensor Microwave Imager/Sounder (SSMIS)  

Science Conference Proceedings (OSTI)

The Special Sensor Microwave Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program F-16 spacecraft measures the Earth-emitted radiation at frequencies from 19 to 183 GHz. From its high-frequency channels at 91 and 150 GHz, ...

Ninghai Sun; Fuzhong Weng

2012-02-01T23:59:59.000Z

178

The ARAUCARIA project: Deep near-infrared survey of nearby galaxies. I. The distance to the Large Magellanic Cloud from K-band photometry of red clump stars  

E-Print Network (OSTI)

We have obtained deep imaging in the near-infrared J and K bands for 2 nearby fields in the bar of the LMC with the ESO NTT telescope, under exquisite seeing conditions. The K, J-K color-magnitude diagrams constructed from these data are of outstanding photometric quality and reveal the presence of several hundreds of red clump stars. Using the calibration of Alves for the K-band absolute magnitude of Hipparcos-observed red clump stars in the solar neigbourhood we derive a distance modulus to our observed LMC fields of 18.487 mag. Applying a correction for the tilt of the LMC bar with respect to the line of sight according to the geometrical model of van der Marel et al., the corresponding LMC barycenter distance is 18.501 mag. If we adopt a K-band population correction of -0.03 mag, as done by Alves et al. 2002, to account for the difference in age and metallicity between the solar neighborhood and LMC red clump star populations, we obtain an LMC barycenter distance modulus of 18.471 mag from our data. This is in excellent agreement with the result of Alves et al., and of another very recent study of Sarajedini et al. (2002) obtained from K-band photometry. However, we emphasize that current model predictions about the uncertainties of population corrections seem to indicate that errors up to about 0.12 mag may be possible, probably in any photometric band. Therefore, work must continue to tighten the constraints on these corrections. We also determine the mean red clump star magnitude in our LMC fields in the J band, which could be a useful alternative to the K band should future work reveal that population effect corrections for red clump stars in the J band are smaller, or more reliably determined than those for the K band.

G. Pietrzynski; W. Gieren

2002-08-07T23:59:59.000Z

179

An Interactive System for Analysis of Global Cloud Imagery  

Science Conference Proceedings (OSTI)

Synoptic images of the global cloud pattern composited from six contemporaneous satellites provide an unprecedented view of the global cloud field. Having horizontal resolution of about 0.5 and temporal resolution of 3 h, the global cloud ...

Karen Woodberry; Ken Tanaka; Harry Hendon; Murry Salby

1991-10-01T23:59:59.000Z

180

Determination of Rainfall Rates from GOES Satellite Images by a Pattern Recognition Technique  

Science Conference Proceedings (OSTI)

Radiances from clouds observed in visible and infrared images obtained from the SMS-2, GOES-2, and GOES-4 satellites have been used to estimate rainfall by means of a pattern recognition algorithm that was applied to single images. The algorithm ...

Rongzhang Wu; James A. Weinman; Roland T. Chin

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cloud Detection with MODIS. Part II: Validation  

Science Conference Proceedings (OSTI)

An assessment of the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask algorithm for Terra and Aqua satellites is presented. The MODIS cloud mask algorithm output is compared with lidar observations from ground [...

S. A. Ackerman; R. E. Holz; R. Frey; E. W. Eloranta; B. C. Maddux; M. McGill

2008-07-01T23:59:59.000Z

182

Thin Cloud Length Scales Using CALIPSO and CloudSat Data  

E-Print Network (OSTI)

Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates the study of these clouds. Using one of these joint cloud products, 2B-GEOPROF-Lidar, and a post-processing algorithm designed to find horizontally continuous thin clouds within the cloud product, the locations, length scales, and vertical distributions by length of thin clouds are determined. It is found that thin clouds vary in length from a few km to over 2900 km and tend to be longer in the tropical upper troposphere than lower in the atmosphere and at higher latitudes. In the upper troposphere between 0 and 40N, over 20% of all thin cloud measurements in the 2B-GEOPROF-Lidar product are contributed by thin clouds that are longer than 500 km. In fact, in this latitude range, over 65% of all thin cloud measurements are contributed by clouds longer than 100 km. Also, thin cloud length and frequency differ between the four seasons in the year of data used here.

Solbrig, Jeremy E.

2009-08-01T23:59:59.000Z

183

ARM - Measurement - Cloud droplet size  

NLE Websites -- All DOE Office Websites (Extended Search)

droplet size droplet size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor MIRAI : JAMSTEC Research Vessel Mirai PDI : Phase Doppler Interferometer UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager

184

Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earths surface is covered by stratocumulus clouds than by any ...

Robert Wood

2012-08-01T23:59:59.000Z

185

Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy  

SciTech Connect

The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

Koc,H.; Wetzel, D.

2008-01-01T23:59:59.000Z

186

TWP Island Cloud Trail Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Island Cloud Trail Studies Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site. Figure 1 shows a comparison on two consecutive days in December 2000. The day for which a cloud trail developed was more moist and cooler at the altitude the cloud developed (about 600 m) and there was very little

187

Polarization-dependent wavelength-selective structures for multispectral polarimetric infrared imaging  

E-Print Network (OSTI)

The need for compact, rugged, low-cost multispectral-polarimetric filtering technology exists in both the civilian and defense communities. Such technology can be used for object detection, object recognition, and image ...

Dunmeyer, David Richard, 1978-

2007-01-01T23:59:59.000Z

188

3. New Cloud Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cloud Climatology New Cloud Climatology Computed for the summers (May-Au- gust) 2000 through 2004 (Berg and Kassianov 2008). Uses ARSCL VAP, Total Sky Imager, and radar wind profiler. * * Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site Larry Berg, William Gustafson, and Evgueni Kassianov Pacific Northwest National Laboratory 1. Motivation Shallow clouds are poorly predicted by current global and regional scale models. A new parameterization has been devel- oped that links the boundary-layer turbu- lence and the shallow clouds. 2. The CuP Parameterization The Cumulus Potential (CuP) param- eterization uses Probability Density Functions (PDFs) of temperature and moisture to represent the subgrid scale

189

Relating Satellite-Observed Cloud Properties from MODIS to Meteorological Conditions for Marine Boundary Layer Clouds  

Science Conference Proceedings (OSTI)

This study examines 6 yr of cloud properties observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra satellite in five prominent marine boundary layer (MBL) cloud regions (California, Peru, Canary, Angola, ...

Guang J. Zhang; Andrew M. Vogelmann; Michael P. Jensen; William D. Collins; Edward P. Luke

2010-03-01T23:59:59.000Z

190

On the Scattering Greenhouse Effect of CO2 Ice Clouds  

Science Conference Proceedings (OSTI)

The authors offer some remarks on the greenhouse effect due to high clouds that reflect thermal infrared radiation, but do not absorb or emit it. Such clouds are an idealization of the CO2 ice clouds that are thought to have existed early in the ...

R. T. Pierrehumbert; C. Erlick

1998-05-01T23:59:59.000Z

191

Droplet Growth in Warm Water Clouds Observed by the A-Train. Part II: A Multisensor View  

Science Conference Proceedings (OSTI)

Hydrometeor droplet growth processes are inferred from a combination of Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) cloud particle size observations and CloudSat/Cloud Profiling Radar (CPR) observations of warm water clouds. This ...

Takashi Y. Nakajima; Kentaroh Suzuki; Graeme L. Stephens

2010-06-01T23:59:59.000Z

192

AMI OBSERVATIONS OF THE ANOMALOUS MICROWAVE EMISSION IN THE PERSEUS MOLECULAR CLOUD  

SciTech Connect

We present observations of the known anomalous microwave emission region, G159.6-18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159.6-18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 {mu}m from the Spitzer Space Telescope, we investigate the existence of a microwave-infrared correlation on angular scales of {approx}2'. We find that the overall correlation appears to increase toward shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave-infrared correlation peaks at 24 {mu}m (6.7{sigma}), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons.

Tibbs, C. T. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Scaife, A. M. M. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Dickinson, C.; Davies, R. D.; Davis, R. J.; Watson, R. A. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Paladini, R. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Grainge, K. J. B., E-mail: ctibbs@ipac.caltech.edu [Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2013-05-10T23:59:59.000Z

193

OPTICAL DESIGN AND PERFORMANCE OF THE ODIN UV/VISIBLE SPECTROGRAPH AND INFRARED IMAGER INSTRUMENT  

E-Print Network (OSTI)

by mercury and sodium street lights. Radiometric calibration is not provided internally. V. Details of IR excellent spectral imaging performance and stray-light rejection. This paper first briefly describes will provide important contributions to stratospheric ozone research. The scientific analysis

Saskatchewan, University of

194

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties and their effects on the Earth ...

William B. Rossow; Andrew A. Lacis

1990-11-01T23:59:59.000Z

195

Probing the nuclear obscuration in radio-galaxies with near infrared imaging  

E-Print Network (OSTI)

We present the first near-infrared (K'-band) homogeneous observations of a complete sub-sample of the 3CR radio catalogue comprising all High Excitation Galaxies (HEGs) at znuclear K'-band excess in all but two HEGs -- most likely directly associated to their nuclear emission -- and we measure the corresponding 2.12 $\\mu$m nuclear luminosities. Within the frame of the unification scheme for radio-loud active galactic nuclei, it appears that obscuration alone is not able to account for the different nuclear properties of the majority of the HEGs and Broad Line Radio Galaxies (BLRGs), and also scattering of the (optically) hidden nuclear light from a compact region must be invoked. More precisely, for ~70% of the HEGs the observed point-like optical emission is dominated by the scattered component, while in the K'-band both scattered and direct light passing through the torus contribute to the observed nuclear luminosity. The estimated fraction of scattered light ranges from a few tenths to a few percent, while the torus extinction is between 15

Danilo Marchesini; Alessandro Capetti; Annalisa Celotti

2004-12-15T23:59:59.000Z

196

ARM - Measurement - Cloud ice particle  

NLE Websites -- All DOE Office Websites (Extended Search)

ice particle ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MET : Surface Meteorological Instrumentation Field Campaign Instruments REPLICATOR : Balloon-borne Ice Crystal Replicator CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments

197

Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region  

Science Conference Proceedings (OSTI)

The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the ...

Jung Hyo Chae; Steven C. Sherwood

2010-01-01T23:59:59.000Z

198

Cloud Chmabers  

NLE Websites -- All DOE Office Websites (Extended Search)

Video - (Requires Windows Media Player) Build your own cloud chamber - Instructions Project Contact: Tom Jordan Web Maintainer: qnet-webmaster@fnal.gov Last Update: May 31, 2011...

199

Exploration of the MODIS Cloud-Top Property Products for the Investigation of Equatorial Wave Systems  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS) observations provide an unprecedented opportunity for studying cloud macrophysical (cloud-top pressure, temperature, height, and phase), microphysical (effective particle size), and ...

Yue Li; Gerald R. North; Ping Yang; Bryan A. Baum

2010-09-01T23:59:59.000Z

200

Intercomparison of Cloud Imagery from the DMSP OLS, NOAA AVHRR, GOES VISSR, and Landsat MSS  

Science Conference Proceedings (OSTI)

Concurrent visible and infrared imagery from four satellite sensors (DMSP OLS, NOAA AVHRR, GOES VISSR, Landsat MSS) have been intercompared. Inherent differences in observed cloud properties and cloud field analyses are noted due to individual ...

R. G. Isaacs; J. C. Barnes

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Scale Dependence of the Thermodynamic Forcing of Tropical Monsoon Clouds: Results from TRMM Observations  

Science Conference Proceedings (OSTI)

Clouds exert a thermodynamic forcing on the oceanatmosphere column through latent heating, owing to the production of rain, and through cloud radiative forcing, owing to the absorption of terrestrial infrared energy and the reflection of solar ...

Eric M. Wilcox; V. Ramanathan

2001-04-01T23:59:59.000Z

202

A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x  

Science Conference Proceedings (OSTI)

The naive Bayesian methodology has been applied to the challenging problem of cloud detection with NOAAs Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/AVHRR and CloudAerosol Lidar and Infrared Pathfinder ...

Andrew K. Heidinger; Amato T. Evan; Michael J. Foster; Andi Walther

2012-06-01T23:59:59.000Z

203

Cellular clouds  

Science Conference Proceedings (OSTI)

This paper progresses an analysis of what it means to be a cellular network operator and what form the ownership and control of future cellular networks may take. Alternative modes of ownership may allow for the creation of more flexible cellular networking ... Keywords: Cellular Cloud, Cellular network, Cloud Computing, Cognitive radio, DSA, LTE, MVNO, Services, Utility Cellular Network

Tim Forde; Linda Doyle

2013-03-01T23:59:59.000Z

204

Optical-to-Near-Infrared Simultaneous Observations for the Hot Uranus GJ3470b: A Hint for Cloud-free Atmosphere  

E-Print Network (OSTI)

We present optical (g', R_c, and I_c) to near-infrared (J) simultaneous photometric observations for a primary transit of GJ3470b, the second lowest-mass planet among transiting planets around nearby M dwarfs, by using the 50-cm MITSuME telescope and the 188-cm telescope both at Okayama Astrophysical Observatory. From these data, we derive the planetary mass, radius, and density as 14.1 \\pm 1.3 M_earth, 4.32^{+0.21}_{-0.10} R_earth, and 0.94 \\pm 0.12 g cm^{-3}, respectively, thus confirming the low density that was reported by Demory et al. based on the Spitzer/IRAC 4.5-micron photometry (0.72^{+0.13}_{-0.12} g cm^{-3}). Although the planetary radius is about 10% smaller than that reported by Demory et al., this difference does not alter their conclusion that the planet possesses a hydrogen-rich envelope whose mass is approximately 10% of the planetary total mass. On the other hand, we find that the planet-to-star radius ratio (R_p/R_s) in the J band (0.07577^{+0.00072}_{-0.00075}) is smaller than that in the...

Fukui, Akihiko; Kurosaki, Kenji; Ikoma, Masahiro; Yanagisawa, Kenshi; Kuroda, Daisuke; Shimizu, Yasuhiro; Takahashi, Yasuhiro H; Ohnuki, Hiroshi; Onitsuka, Masahiro; Hirano, Teruyuki; Suenaga, Takuya; Kawauchi, Kiyoe; Nagayama, Shogo; Ohta, Kouji; Yoshida, Michitoshi; Kawai, Nobuyuki; Izumiura, Hideyuki

2013-01-01T23:59:59.000Z

205

Nighttime Cloud Detection Over the Arctic Using AVHRR Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Detection Over the Arctic Cloud Detection Over the Arctic Using AVHRR Data D. A. Spangenberg, D. R. Doelling, and V. Chakrapani Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Hampton, Virginia T. Uttal National Oceanic and Atmospheric Administration Boulder, Colorado Introduction Clouds play an important role in the Arctic energy budget. The magnitude and significance of the radiative impact of polar clouds, however, are not well known. Polar nocturnal clouds are often warmer or at the same temperature as the background snow surface, complicating cloud detection. Also, these clouds tend to be thin, with lower emittances than clouds occurring during the summer. Using only the infrared (IR) channels of satellite data to characterize cloud amount and distribution in the Arctic is

206

A Simple Parameterization Scheme for Joint Statistics of Cloud Field Morphology and Physical Parameters  

Science Conference Proceedings (OSTI)

A simple parameterization scheme for the joint statistics of cloud field morphology and other cloud parameters is discussed. The statistics of the cloud field morphology an obtained from the NOAA-9 AVHRR using the Hit or Miss image ...

T. J. Davis

1990-08-01T23:59:59.000Z

207

High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS Multispectral Band Measurements  

Science Conference Proceedings (OSTI)

A method for automated classification of surface and cloud types using Moderate Resolution Imaging Spectroradiometer (MODIS) radiance measurements has been developed. The MODIS cloud mask is used to define the training sets. Surface and cloud-...

Jun Li; W. Paul Menzel; Zhongdong Yang; Richard A. Frey; Steven A. Ackerman

2003-02-01T23:59:59.000Z

208

Roundness and Aspect Ratio of Particles in Ice Clouds  

Science Conference Proceedings (OSTI)

The frequency of occurrence of the aspect ratio and roundness of particles in ice clouds from aircraft observations have been examined. Images of cloud particles were measured by a cloud particle imager (CPI) at 2.3-?m resolution, installed on ...

Alexei Korolev; George Isaac

2003-08-01T23:59:59.000Z

209

Multiwavelength Observations of a Developing Cloud System: The FIRE II 26 November 1991 Case Study  

Science Conference Proceedings (OSTI)

Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the ...

J. M. Intrieri; W. L. Eberhard; T. Uttal; J. A. Shaw; J. B. Snider; Y. Han; B. W. Orr; S. Y. Matrosov

1995-12-01T23:59:59.000Z

210

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

211

MODIS Cloud-Top Property Refinements for Collection 6  

Science Conference Proceedings (OSTI)

This paper summarizes the Collection-6 refinements in the Moderate Resolution Imaging Spectroradiometer (MODIS) operational cloud-top properties algorithm. The focus is on calibration improvements and on cloud macrophysical properties including ...

Bryan A. Baum; W. Paul Menzel; Richard A. Frey; David C. Tobin; Robert E. Holz; Steve A. Ackerman; Andrew K. Heidinger; Ping Yang

2012-06-01T23:59:59.000Z

212

Use of Holography for Airborne Cloud Physics Measurements  

Science Conference Proceedings (OSTI)

The use of the holographic cloud particle imaging system developed by the Cloud Physics Branch of the Meteorological Office and carried on the C-130 Hercules aircraft of the Meteorological Research Flight (MRF) has hitherto been limited by the ...

Philip R. A. Brown

1989-04-01T23:59:59.000Z

213

Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds  

Science Conference Proceedings (OSTI)

The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick and ice particle size increases monotonically towards cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases towards cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this study suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods.

Zhang, Zhibo; Platnick, Steven; Yang, Ping; Heidinger, Andrew K.; Comstock, Jennifer M.

2010-09-03T23:59:59.000Z

214

Diagnosis of the Warm Rain Process in Cloud-Resolving Models Using Joint CloudSat and MODIS Observations  

Science Conference Proceedings (OSTI)

This study examines the warm rain formation process in global and regional cloud-resolving models. Methodologies developed to analyze CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations are employed to ...

Kentaroh Suzuki; Graeme L. Stephens; Susan C. van den Heever; Takashi Y. Nakajima

2011-11-01T23:59:59.000Z

215

Particle Growth and Drop Collection Efficiency of Warm Clouds as Inferred from Joint CloudSat and MODIS Observations  

Science Conference Proceedings (OSTI)

This study describes an approach for combining CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations to investigate the microphysical processes of warm clouds on the global scale. MODIS column optical thickness ...

Kentaroh Suzuki; Takashi Y. Nakajima; Graeme L. Stephens

2010-09-01T23:59:59.000Z

216

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds  

Science Conference Proceedings (OSTI)

A Learjet research aircraft was used to collect microphysical data, including cloud particle imager (CPI) measurements of ice particle size and shape, in 22 midlatitude cirrus clouds. The dataset was collected while the aircraft flew 104 ...

R. Paul Lawson; Brad Baker; Bryan Pilson; Qixu Mo

2006-12-01T23:59:59.000Z

217

STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?  

SciTech Connect

We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan)] [Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagayama, Takumi; Sunada, Kazuyoshi [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)] [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujisawa, Kenta [Department of Physics and Informatics, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 (Japan)] [Department of Physics and Informatics, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512 (Japan); Nakano, Makoto [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan)] [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan); Sekido, Mamoru, E-mail: james@milkyway.sci.kagoshima-u.ac.jp [Kashima Space Research Center, National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501 (Japan)] [Kashima Space Research Center, National Institute of Information and Communications Technology, 893-1 Hirai, Kashima, Ibaraki 314-8501 (Japan)

2013-01-01T23:59:59.000Z

218

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

219

Assimilation of Satellite Imager Data and Surface Observations to Improve Analysis of Circulations Forced by Cloud Shading Contrasts  

Science Conference Proceedings (OSTI)

An assimilation system that performs continuous assimilation of satellite imager data and intermittent assimilation of hourly surface observations is described. The system was applied to a case study of the southeast United States that was ...

Frank H. Ruggiero; George D. Modica; Alan E. Lipton

2000-02-01T23:59:59.000Z

220

A Comparison of Ground and Satellite Observations of Cloud Cover  

Science Conference Proceedings (OSTI)

A processing scheme that determines cloud height and amount based on radiances from the Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) using a CO2 absorption technique has been installed on the National Environmental Satellite ...

Anthony J. Schreiner; Kathy I. Strabala; David A. Unger; W. Paul Menzel; Gary P. Ellrod; Jackson L. Pellet

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radiative Properties of Cirrus Clouds Derived from Surface Interferometric Measurements  

Science Conference Proceedings (OSTI)

Beam transmittance, emittance, reflectance, and outgoing radiance are inferred from interferometric measurements in the infrared window region for 14 temperate continental and 12 subtropical cirrus cloud cash observed during FIRE II at Parsons, ...

Gordon H. Beck; John M. Davis; S. K. Cox

1996-08-01T23:59:59.000Z

222

Radiance and Cloud Analyses from GOES-VAS Dwell Soundings  

Science Conference Proceedings (OSTI)

An analysis technique for Geostationary Operational Environmental Satellite-VISSR (Visible and Infrared Spin Scan Radiometer) Atmospheric Sounder (GOES-VAS) sounder data was developed to extract cloud and clear radiance information. This ...

Donald P. Wylie; Harold M. Woolf

2000-09-01T23:59:59.000Z

223

Relationships between Arctic Sea Ice and Clouds during Autumn  

Science Conference Proceedings (OSTI)

The connection between sea ice variability and cloud cover over the Arctic seas during autumn is investigated by analyzing the 40-yr ECMWF Re-Analysis (ERA-40) products and the Television and Infrared Observation Satellite (TIROS) Operational ...

Axel J. Schweiger; Ron W. Lindsay; Steve Vavrus; Jennifer A. Francis

2008-09-01T23:59:59.000Z

224

Eight Years of High Cloud Statistics Using HIRS  

Science Conference Proceedings (OSTI)

Over the last 8 yr frequency and location of cloud observations have been compiled using multispectral High Resolution Infrared Radiation Sounder (HIRS) data from the National Oceanic and Atmospheric Administration polar-orbiting satellites; this ...

Donald P. Wylie; W. Paul Menzel

1999-01-01T23:59:59.000Z

225

Cloud computing beyond objects: seeding the cloud  

Science Conference Proceedings (OSTI)

Cloud computing is an emerging computing milieu which dynamically enables scalable and virtually unlimited resources. This panel will discuss emerging tools, skills and technologies that will ""seed the cloud"" - enabling improved interoperability, security, ... Keywords: cloud computing, skills, technologies, tools

Steven Fraser; Robert Biddle; Scott Jordan; Kate Keahey; Bob Marcus; E. Michael Maximilien; Dave Thomas

2009-10-01T23:59:59.000Z

226

The Effect of Shape and Spatial Distribution of Cumulus Clouds on Longwave Irradiance  

Science Conference Proceedings (OSTI)

In the longwave part of the spectrum, clouds are generally modeled in GCMs as flat black plates. The true effective cloud cover for transmittance of infrared radiation may be larger or smaller than the fractional cloud cover normal to the surface ...

Rosemary M. Killen; Robert G. Ellingson

1994-07-01T23:59:59.000Z

227

Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)  

E-Print Network (OSTI)

A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference is used to restrict the application of the geophysical retrieval algorithms which are developed to handle specific atmospheric absorptive situations. An improved semi-empirical sea surface emissivity model is integrated into this refined D-matrix procedure that is being developed for the Advanced Microwave Sounding Radiometer (AMSR). The purpose of this work is to test the refined geophysical parameter retrieval methods using data from the Special Sensor Microwave / Imager (SSM/I). When comparing the statistical performance of the TIWV, WS, and CLW retrieval methods presented to the statistical performance of published retrieval methods for each geophysical parameter, the retrieval methods developed for this study perform only slightly better. However, it is demonstrated that the new retrieval methods are more physically valid than the comparison retrieval methods. The utilization of the polarization difference of the 85 GHZ channels to restrict the application of specifically-derived retrieval algorithms proves to be a valuable and reliable geophysical parameter retrieval tool.

Manning, Norman Willis William

1997-01-01T23:59:59.000Z

228

THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH  

SciTech Connect

We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

2012-12-15T23:59:59.000Z

229

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

230

ARM - Measurement - Cloud particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

size distribution size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments CPI : Cloud Particle Imager CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties

231

MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS  

Science Conference Proceedings (OSTI)

The near-infrared colors of the planets directly imaged around the A star HR 8799 are much redder than most field brown dwarfs of the same effective temperature. Previous theoretical studies of these objects have concluded that the atmospheres of planets b, c, and d are unusually cloudy or have unusual cloud properties. Some studies have also found that the inferred radii of some or all of the planets disagree with expectations of standard giant planet evolution models. Here, we compare the available data to the predictions of our own set of atmospheric and evolution models that have been extensively tested against observations of field L and T dwarfs, including the reddest L dwarfs. Unlike some previous studies, we require mutually consistent choices for effective temperature, gravity, cloud properties, and planetary radius. This procedure thus yields plausible values for the masses, effective temperatures, and cloud properties of all three planets. We find that the cloud properties of the HR 8799 planets are not unusual but rather follow previously recognized trends, including a gravity dependence on the temperature of the L to T spectral transition-some reasons for which we discuss. We find that the inferred mass of planet b is highly sensitive to whether or not we include the H- and the K-band spectrum in our analysis. Solutions for planets c and d are consistent with the generally accepted constraints on the age of the primary star and orbital dynamics. We also confirm that, like in L and T dwarfs and solar system giant planets, non-equilibrium chemistry driven by atmospheric mixing is also important for these objects. Given the preponderance of data suggesting that the L to T spectral type transition is gravity dependent, we present an exploratory evolution calculation that accounts for this effect. Finally we recompute the bolometric luminosity of all three planets.

Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Cushing, Michael [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Ackerman, Andrew S. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Freedman, Richard, E-mail: Mark.S.Marley@NASA.gov, E-mail: dsaumon@lanl.gov, E-mail: michael.cushing@utoledo.edu, E-mail: andrew.ackerman@nasa.gov, E-mail: jfortney@ucolick.org, E-mail: freedman@darkstar.arc.nasa.gov [SETI Institute and NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)

2012-08-01T23:59:59.000Z

232

Cloud Computing Operations Research  

Science Conference Proceedings (OSTI)

This paper argues that the cloud computing industry faces many decision problems where operations research OR could add tremendous value. To this end, we provide an OR perspective on cloud computing in three ways. First, we compare the cloud computing ... Keywords: cloud IT, cloud computing, green IT, operations research, supply chain

Ilyas Iyoob, Emrah Zarifoglu, A. B. Dieker

2013-06-01T23:59:59.000Z

233

Nailing Down Ice in a Cloud Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Nailing Down Ice in a Cloud Model Nailing Down Ice in a Cloud Model For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight A research team led by scientists at Pacific Northwest National Laboratory identified specific strengths and weaknesses of four different ice cloud retrieval algorithms. Their comparisons tested the ability of the algorithms to obtain cloud properties from radar and lidar observational measurements. The team noted the sometimes large variances in heating/cooling measurements compared to the observed data. Identifying specific weaknesses will help scientists improve our understanding of cloud properties in the atmosphere, which can be used for climate model development and evaluation. "Measuring the effective size and mass of ice crystals impacts our understanding

234

Radiosonde observations at Pt. Reyes and cloud properties retrieved from  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiosonde observations at Pt. Reyes and cloud properties retrieved from Radiosonde observations at Pt. Reyes and cloud properties retrieved from GOES-WEST Inoue, Toshiro MRI/JMA Category: Field Campaigns Low-level cloud formed off the west coast of continents plays an important role in general circulation and climate. Marine Stratus Radiation Aerosol and Drizzle (MASRAD) was conducted at the ARM mobile site deployed at Pt Reyes, California during April to September. Here, we studied the relationship between meteorological parameters observed by GPS sonde and cloud properties observed from GOES-WEST during the MASRAD intensive operational period. Cloud properties are retrieved from VISST (Visible Infrared Solar-infrared Split window Technique). The vertical profile of stability, relative humidity (RH) and wind speed observed by GPS sonde are

235

Effects of Radiation and Turbulence on the Diabatic Heating and Water Budget of the Stratiform Region of a Tropical Cloud Cluster  

Science Conference Proceedings (OSTI)

A two-dimensional, kinematic model, incorporating ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment, is used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds ...

Dean D. Churchill; Robert A. Houze Jr.

1991-04-01T23:59:59.000Z

236

Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE  

Science Conference Proceedings (OSTI)

This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution ...

M. Chiriaco; H. Chepfer; P. Minnis; M. Haeffelin; S. Platnick; D. Baumgardner; P. Dubuisson; M. McGill; V. Nol; J. Pelon; D. Spangenberg; S. Sun-Mack; G. Wind

2007-03-01T23:59:59.000Z

237

Cloud Condensation Nuclei  

Science Conference Proceedings (OSTI)

The state of knowledge of the particles upon which liquid droplets condense to form atmospheric water clouds is presented. The realization of cloud condensation nuclei (CCN) as a distinct aerosol subset originated with the cloud microphysical ...

James G. Hudson

1993-04-01T23:59:59.000Z

238

Forecasting of Supercooled Clouds  

Science Conference Proceedings (OSTI)

Using parameterizations of cloud microphysics, a technique to forecast supercooled cloud events is suggested. This technique can be coupled on the mesoscale with a prognostic equation for cloud water to improve aircraft icing forecasts. The ...

Andr Tremblay; Anna Glazer; Wanda Szyrmer; George Isaac; Isztar Zawadzki

1995-07-01T23:59:59.000Z

239

Stratocumulus Cloud Field Reflected Fluxes: The Effect of Cloud Shape  

Science Conference Proceedings (OSTI)

Reflected fluxes are calculated for stratocumulus cloud fields as a function of sky cover, cloud aspect ratio, and cloud shape. Cloud liquid water volume is held invariant as cloud shape is varied so that the results can be utilized more ...

R. M. Welch; B. A. Wielicki

1984-11-01T23:59:59.000Z

240

Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes  

Science Conference Proceedings (OSTI)

Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. ...

B. A. Tinsley; R. P. Rohrbaugh; M. Hei; K. V. Beard

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Glossary Term - Cloud Chamber  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceres Previous Term (Ceres) Glossary Main Index Next Term (Composition of the Earth's Atmosphere) Composition of the
Earth's Atmosphere Cloud Chamber A cloud chamber showing the...

242

ARM - Measurement - Cloud phase  

NLE Websites -- All DOE Office Websites (Extended Search)

property that captures the state o f the hydrometeors within a cloud (liquid, ice, or mixed-phase). This is distinct from cloud type that involves property descriptors...

243

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

244

In-scene atmospheric correction of hyperspectral thermal infrared images with nadir, horizontal, and oblique view angles  

Science Conference Proceedings (OSTI)

Atmospheric corrections for hyperspectral thermal images acquired with nadir, horizontal, and oblique views have typically relied on atmospheric modelling software, such as Moderate Resolution Atmospheric Transmission MODTRAN, to estimate atmospheric ...

MattR. Smith; AlanR. Gillespie; Hugau Mizzon; LeeK. Balick; Juan Carlos Jimnez-Muoz; JoseA. Sobrino

2013-05-01T23:59:59.000Z

245

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

246

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models  

DOE Green Energy (OSTI)

OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the

Kuo-Nan Liou

2003-12-29T23:59:59.000Z

247

Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging  

Science Conference Proceedings (OSTI)

Healthy wheat kernels and wheat kernels damaged by the feeding of the insects: rice weevil (Sitophilus oryzae), lesser grain borer (Rhyzopertha dominica), rusty grain beetle (Cryptolestes ferrugineus), and red flour beetle (Tribolium castaneum) were ... Keywords: Grain quality, Hyperspectral imaging, Machine vision, NIR

Chandra B. Singh; Digvir S. Jayas; Jitendra Paliwal; Noel D. G. White

2010-08-01T23:59:59.000Z

248

W51 IRS 2: A Massive Jet Emerging from a Molecular Cloud into an H II Region  

E-Print Network (OSTI)

We have mapped [Ne II] (12.8um) and [S IV] (10.5um) emission from W51 IRS 2 with TEXES on Gemini North, and we compare these data to VLA free-free observations and VLT near-infrared images. With 0.5" spatial and 4 km/s spectral resolution we are able to separate the ionized gas into several components: an extended H II region on the front surface of the molecular cloud, several embedded compact H II regions, and a streamer of high velocity gas. We interpret the high velocity streamer as a precessing or fan-like jet, which has emerged from the molecular cloud into an OB star cluster where it is being ionized.

J. H. Lacy; D. T. Jaffe; Q. Zhu; M. J. Richter; M. A. Bitner; T. K. Greathouse; K. Volk; T. R. Geballe; D. M. Mehringer

2007-02-13T23:59:59.000Z

249

Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology  

Science Conference Proceedings (OSTI)

This paper demonstrates that the split-window approach for estimating cloud properties can improve upon the methods commonly used for generating cloud temperature and emissivity climatologies from satellite imagers. Because the split-window ...

Andrew K. Heidinger; Michael J. Pavolonis

2009-06-01T23:59:59.000Z

250

DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS  

Science Conference Proceedings (OSTI)

We present a new set of high-resolution dust extinction maps of the nearby and essentially starless Pipe Nebula molecular cloud. The maps were constructed from a concerted deep near-infrared imaging survey with the ESO-VLT, ESO-NTT, CAHA 3.5 m telescopes, and 2MASS data. The new maps have a resolution three times higher than the previous extinction map of this cloud by Lombardi et al. and are able to resolve structures down to 2600 AU. We detect 244 significant extinction peaks across the cloud. These peaks have masses between 0.1 and 18.4 M{sub sun}, diameters between 1.2 and 5.7 x 10{sup 4} AU (0.06 and 0.28 pc), and mean densities of about 10{sup 4} cm{sup -3}, all in good agreement with previous results. From the analysis of the mean surface density of companions we find a well-defined scale near 1.4 x 10{sup 4} AU below which we detect a significant decrease in structure of the cloud. This scale is smaller than the Jeans length calculated from the mean density of the peaks. The surface density of peaks is not uniform but instead it displays clustering. Extinction peaks in the Pipe Nebula appear to have a spatial distribution similar to the stars in Taurus, suggesting that the spatial distribution of stars evolves directly from the primordial spatial distribution of high-density material.

Roman-Zuniga, Carlos G. [Centro Astronomico Hispano Aleman Instituto de Astrofisica de AndalucIa (IAA-CSIC), Glorieta de la Astronomia, S/N, Granada 18008 (Spain); Alves, Joao F. [Institute of Astronomy, University of Vienna, Tuerkenschanzstr. 17, 1180 Vienna (Austria); Lada, Charles J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lombardi, Marco [European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching 85748 (Germany)

2010-12-20T23:59:59.000Z

251

Development of a Cloud-Top Height Estimation Method by Geostationary Satellite Split-Window Measurements Trained with CloudSat Data  

Science Conference Proceedings (OSTI)

Lookup tables for estimating the cloud-top height and visible optical thickness of upper-tropospheric clouds by the infrared brightness temperature TB at 10.8 ?m (T11) and its difference from TB at 12 ?m (?T1112) measured by a geostationary ...

Atsushi Hamada; Noriyuki Nishi

2010-09-01T23:59:59.000Z

252

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

253

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

254

The 2728 October 1986 FIRE Cirrus Case Study: Retrieval of Cloud Particle Sizes and Optical Depths from Comparative Analyses of Aircraft and Satellite-based Infrared Measurements  

Science Conference Proceedings (OSTI)

Infrared radiance measurements were acquired from a narrow-field nadir-viewing radiometer based on the NASA ER-2 aircraft during a coincident Landsat 5 overpass on 28 October 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. ...

Philip D. Hammer; Francisco P. J. Valero; Stefan Kinne

1991-07-01T23:59:59.000Z

255

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earths Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

The Clouds and Earths Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith

2005-04-01T23:59:59.000Z

256

Global Circuit Model with Clouds  

Science Conference Proceedings (OSTI)

Cloud data from the International Satellite Cloud Climatology Project (ISCCP) database have been introduced into the global circuit model developed by Tinsley and Zhou. Using the cloud-top pressure data and cloud type information, the authors ...

Limin Zhou; Brian A. Tinsley

2010-04-01T23:59:59.000Z

257

Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA  

Science Conference Proceedings (OSTI)

A new technique for ascertaining the thermodynamic cloud phase from high-spectral-resolution ground-based infrared measurements made by the Atmospheric Emitted Radiance Interferometer (AERI) is presented. This technique takes advantage of the ...

D. D. Turner; S. A. Ackerman; B. A. Baum; H. E. Revercomb; P. Yang

2003-06-01T23:59:59.000Z

258

The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks  

Science Conference Proceedings (OSTI)

The authors investigate the extent to which the contrast brightness of ship tracks, that is, the relative change in observed solar reflectance, in visible and near-infrared imagery can be explained by the microphysics of the background cloud in ...

S. Platnick; P. A. Durkee; K. Nielsen; J. P. Taylor; S.-C. Tsay; M. D. King; R. J. Ferek; P. V. Hobbs; J. W. Rottman

2000-08-01T23:59:59.000Z

259

Comparison of the Climatologies of High-Level Clouds from HIRS and ISCCP  

Science Conference Proceedings (OSTI)

Comparison of individually matched analyses of high-level cloudiness from the High-Resolution Infrared Sounder (HIRS) CO2-slicing analysis and the International Satellite Cloud Climatology Project (ISCCP) analysis of satellite data for 4 months ...

Yao Jin; William B. Rossow; Don P. Wylie

1996-11-01T23:59:59.000Z

260

Application of Wavelet Transform to Meteosat-Derived Cold Cloud Index Data over South America  

Science Conference Proceedings (OSTI)

Cold cloud index (CCI) data derived from Meteosat infrared imagery are used to detect periodicities in convective activity in South America. The generally used Fourier transform (FT) cannot provide time-localized information but gives information ...

Srinivasa Rao Chapa; Vadlamudi Brahmananda Rao; Gannabathula Sri Sesha Durga Prasad

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ground-Based and Satellite Observations of Cloud Fields in the Netherlands  

Science Conference Proceedings (OSTI)

A study is performed on the combination of ground-based and satellite observations for the derivation of cloud properties. Ground-based measurements from a lidar ceilometer and an infrared radiometer were combined with measurements of the NOAA ...

Arnout Feut; Andr van Lammeren

1996-09-01T23:59:59.000Z

262

Effect of Marine Stratocumulus Clouds on the Ocean-Surface Heat Budget  

Science Conference Proceedings (OSTI)

The mixed-layer stratocumulus model first developed by Lilly is extended to include liquid-water-dependent solar optical properties and infrared radiative fluxes. The ocean-surface heat budget under these clouds is discussed as a function of ...

Howard P. Hanson; Patricia L. Gruber

1982-04-01T23:59:59.000Z

263

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part I: Sensitivity of Analysis  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties. In this first paper in a ...

William B. Rossow; Leonid C. Garder; Andrew A. Lacis

1989-05-01T23:59:59.000Z

264

Characteristics of the NOAA/NESDIS Cloud Retrieval Algorithm Using HIRS-MSU Radiance Measurements  

Science Conference Proceedings (OSTI)

A cloud retrieval algorithm using NOAA/National Environmental Satellite, Data and Information Service High-Resolution Infrared Radiation Sounder 2 Microwave Sounding Unit measurements from a polar-orbiting satellite, described in McMillin et al., ...

Shi-Keng Yang; Si-Song Zhou; Larry M. Mcmillin; Ken A. Campana

1996-11-01T23:59:59.000Z

265

The Impact of Polar Stratospheric Clouds on the Heating Rates of the Winter Polar Stratosphere  

Science Conference Proceedings (OSTI)

We have computed the perturbation to the infrared radiative heating rates of the lower stratosphere due to the occurrence of polar stratospheric clouds (PSCs) during the winter season in the Antarctic and Arctic regions. The calculations were ...

James B. Pollack; Christopher P. McKay

1985-02-01T23:59:59.000Z

266

A Satellite-Based Summer Convective Cloud Frequency Analysis over the Southeastern United States  

Science Conference Proceedings (OSTI)

A convective cloud (CC) analysis is performed over the southeastern United States (SEUS) during June, July, and August 2006 and 2007, using data from the Geostationary Operational Environmental Satellite (GOES) visible and infrared sensors as ...

Laci D. Gambill; John R. Mecikalski

2011-08-01T23:59:59.000Z

267

A 10-Year Climatology of Northern Hemisphere Tropical Cloud Plumes and Their Composite Flow Patterns  

Science Conference Proceedings (OSTI)

A 10-year cool season climatology of tropical cloud plumes in the Northern Hemisphere was generated by visual inspection of infrared satellite imagery. The sample included 1062 plume events during the months of October to May for the years 1974 ...

Haig Iskenderian

1995-06-01T23:59:59.000Z

268

Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B  

Science Conference Proceedings (OSTI)

Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral ...

C. J. Stubenrauch; A. Chdin; G. Rdel; N. A. Scott; S. Serrar

2006-11-01T23:59:59.000Z

269

Absorption of Solar Radiation by Stratocumulus Clouds: Aircraft Measurements and Theoretical Calculations  

Science Conference Proceedings (OSTI)

Aircraft observations of shortwave radiative properties of stratocumulus clouds were carried out over the western North Pacific Ocean during January 1991. Two aircraft were equipped with a pair of pyranometers and near-infrared pyranometers. ...

Tadahiro Hayasaka; Nobuyuki Kikuchi; Masayuki Tanaka

1995-05-01T23:59:59.000Z

270

Cloud Computing Forum & Workshop II  

Science Conference Proceedings (OSTI)

Cloud Computing Forum & Workshop II. Purpose: On May 20, 2010, NIST hosted the first Cloud Computing Forum & Workshop. ...

2013-08-07T23:59:59.000Z

271

Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels  

Science Conference Proceedings (OSTI)

This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (?). These histograms were generated by the International Satellite Cloud ...

Mark D. Zelinka; Stephen A. Klein; Dennis L. Hartmann

2012-06-01T23:59:59.000Z

272

ISCCP Cloud Algorithm Intercomparison  

Science Conference Proceedings (OSTI)

The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive an experimental climatology of cloud radiative properties from these radiances. A pilot study to ...

W. B. Rossow; F. Mosher; E. Kinsella; A. Arking; M. Desbois; E. Harrison; P. Minnis; E. Ruprecht; G. Seze; C. Simmer; E. Smith

1985-09-01T23:59:59.000Z

273

Automated cloud resource orchestration  

Science Conference Proceedings (OSTI)

Realizing Infrastructure-as-a-Service (IaaS) cloud requires a control platform for orchestrating the provisioning, configuration, management and decommissioning of a distributed set of diverse cloud resources (i.e., compute, storage, network) serving ...

Changbin Liu / Boon Thau Loo

2012-01-01T23:59:59.000Z

274

ARM - Measurement - Cloud type  

NLE Websites -- All DOE Office Websites (Extended Search)

type ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud type Cloud type such as...

275

Entrainment in Cumulus Clouds  

Science Conference Proceedings (OSTI)

Entrainment of dry air into cumulus clouds influences the development of the clouds in a major way. The many aspects of the entrainment process are examined in this paper by critically reviewing the literature from the time when investigations ...

Alan M. Blyth

1993-04-01T23:59:59.000Z

276

Clouds in Tropical Cyclones  

Science Conference Proceedings (OSTI)

Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within ...

Robert A. Houze Jr.

2010-02-01T23:59:59.000Z

277

North Australian Cloud Lines  

Science Conference Proceedings (OSTI)

A satellite classification and climatology of propagating mesoscale cloud fines in northern Australia is presented. These cloud fines range from long, narrow lines of shallow convection to extensive deep convective squall lines with mesoscale ...

W. Drosdowsky; G. J. Holland

1987-11-01T23:59:59.000Z

278

Clouds in Tropical Cyclones  

Science Conference Proceedings (OSTI)

Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within the ...

Robert A. Houze Jr.

2010-02-01T23:59:59.000Z

279

Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and intercomparison of cirrus retrievals from a-train instruments  

E-Print Network (OSTI)

This dissertation consists of three parts, each devoted to a particular issue of significant importance for satellite-based remote sensing of cirrus clouds. In the first part, we develop and present a fast infrared radiative transfer model on the basis of the adding-doubling principle. The model aims to facilitate the radiative transfer computations involved in hyperspectral remote sensing applications. The model is applicable to a variety of cloud conditions, including vertically inhomogeneous or multilayered clouds. It is shown that for hyperspectral applications the model is two order-of-magnitude faster than the well-known discrete ordinate transfer (DISORT) model, while maintains a similar accuracy. The second part is devoted to the investigation of uncertainties in the FSSP (Forward Scattering Spectrometer Probe) measurement of cloud extinction by small ice particles. First, the single-scattering properties of small ice particles in cirrus clouds are derived and compared to those of equivalent spheres according to various definitions. It is found that, although small ice particles in cirrus clouds are often quasi-spherical, their scattering phase functions and asymmetry factors are significant different from those of ice spheres. Such differences may lead to substantial underestimation of cloud extinction in FSSP measurement, if small ice particles are assumed to be spheres. In the third part, we present a comparison of cirrus cloud optical thickness retrievals from two important instruments, MODIS (Moderate Resolution Imaging Spectrometer) and POLDER (Polarization and Directionality of Earths Reflection), on board NASAs A-train satellite constellation. The comparison reveals a large difference. Several possible reasons are discussed. It is found that much of the difference is attributable to the difference between the MODIS and POLDER retrieval algorithm in the assumption of cirrus cloud bulk scattering properties. Potential implications of the difference for climate studies are investigated. An important finding is that the use of an unrealistic cirrus bulk scattering model might introduce artificial seasonal variation of cirrus optical thickness and shortwave radiative forcing into the retrieval.

Zhang, Zhibo

2008-08-01T23:59:59.000Z

280

Cloud Computing at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Computing Energy Efficient Computing Exascale Computing Performance & Monitoring Tools Petascale Initiative Science Gateway Development Storage and IO Technologies Testbeds...

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rope Cloud over Land  

Science Conference Proceedings (OSTI)

Satellite imagery is used to document several rope clouds over the southeastern Unites States. Surface and upper-air data are examined for one of the rope clouds and possible reasons for the development and maintenance of this type cloud line are ...

Von S. Woods

1983-03-01T23:59:59.000Z

282

User Centric Community Clouds  

Science Conference Proceedings (OSTI)

With the evolution in cloud technologies, users are becoming acquainted with seamless service provision. Nevertheless, clouds are not a user centric technology, and users become completely dependent on service providers. We propose a novel concept for ... Keywords: Cloud infrastructure, Identity management, User-centric systems

Joo Paulo Barraca; Alfredo Matos; Rui L. Aguiar

2011-05-01T23:59:59.000Z

283

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

284

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

285

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

286

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

287

Turbulent molecular clouds  

E-Print Network (OSTI)

Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star--formation rates.

Hennebelle, Patrick

2012-01-01T23:59:59.000Z

288

In Vivo Near-Infrared Spectroscopy and Magnetic Resonance Imaging Monitoring of Tumor Response to Combretastatin A-4-Phosphate Correlated With Therapeutic Outcome  

Science Conference Proceedings (OSTI)

Purpose: To develop a combination treatment consisting of combretastatin A-4-phosphate (CA4P) with radiation based on tumor oxygenation status. Methods and Materials: In vivo near-infrared spectroscopy (NIRS) and diffusion-weighted (DW) magnetic resonance imaging (MRI) were applied to noninvasively monitor changes in tumor blood oxygenation and necrosis induced by CA4P (30 mg/kg) in rat mammary 13762NF adenocarcinoma, and the evidence was used to optimize combinations of CA4P and radiation treatment (a single dose of 5 Gy). Results: NIRS showed decreasing concentrations of tumor vascular oxyhemoglobin and total hemoglobin during the first 2 h after CA4P treatment, indicating significant reductions in tumor blood oxygenation and perfusion levels (p < 0.001). Twenty-four hours later, in response to oxygen inhalation, significant recovery was observed in tumor vascular and tissue oxygenation according to NIRS and pimonidazole staining results, respectively (p < 0.05). DW MRI revealed significantly increased water diffusion in tumors measured by apparent diffusion coefficient at 24 h (p < 0.05), suggesting that CA4P-induced central necrosis. In concordance with the observed tumor oxygen dynamics, we found that treatment efficacy depended on the timing of the combined therapy. The most significant delay in tumor growth was seen in the group of tumors treated with radiation while the rats breathed oxygen 24 h after CA4P administration. Conclusions: Noninvasive evaluation of tumor oxygen dynamics allowed us to rationally enhance the response of syngeneic rat breast tumors to combined treatment of CA4P with radiation.

Zhao Dawen, E-mail: Dawen.Zhao@UTSouthwestern.ed [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Chang Chenghui [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Kim, Jae G.; Liu Hanli [Joint Program in Biomedical Engineering, University of Texas Arlington and University of Texas Southwestern Medical Center, Arlington, Texas (United States); Mason, Ralph P. [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Joint Program in Biomedical Engineering, University of Texas Arlington and University of Texas Southwestern Medical Center, Arlington, Texas (United States)

2011-06-01T23:59:59.000Z

289

Cloud displays for mobile users in a display cloud  

Science Conference Proceedings (OSTI)

The display cloud model allows users to select local and remote programmable displays, and add them to a user specific cloud display where the user can arrange them freely. On a cloud display, the abstraction representing remote graphical content is ... Keywords: cloud displays, display clouds, ubiquitous displays

Lars Tiede; John Markus Bjrndalen; Otto J. Anshus

2013-02-01T23:59:59.000Z

290

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address...

291

The Effects of Clouds on the Light Produced by Lightning  

Science Conference Proceedings (OSTI)

A Monte Carlo method has been used to simulate the transport of visible (0.45 ?m) and near-infrared (0.87 ?m) photons which are produced by transient light sources, such as lightning, within cubic, spherical and cylindrical clouds. Computations ...

L. W. Thomson; E. P. Krider

1982-09-01T23:59:59.000Z

292

Assimilation of AIRS Radiances Affected by Mid- to Low-Level Clouds  

Science Conference Proceedings (OSTI)

An approach to make use of Atmospheric Infrared Sounder (AIRS) cloud-affected infrared radiances has been developed at Mto-France in the context of the global numerical weather prediction model. The method is based on (i) the detection and the ...

Thomas Pangaud; Nadia Fourrie; Vincent Guidard; Mohamed Dahoui; Florence Rabier

2009-12-01T23:59:59.000Z

293

Cloud Properties Working Group Low Clouds Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Properties Working Group Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments 90/150 GHz microwave radiometer 90/150 GHz microwave radiometer Deployed during COPS AMF Deployed during COPS AMF Exploring calibration w/ DPR ( Exploring calibration w/ DPR ( Crewell Crewell & & L L ö ö hnert hnert ) ) See COPS Breakout, Wednesday evening See COPS Breakout, Wednesday evening 183 GHz (GVR) deployed at the NSA 183 GHz (GVR) deployed at the NSA Neural network algorithm to retrieve PWV & LWP (Maria Neural network algorithm to retrieve PWV & LWP (Maria Cadeddu Cadeddu ) ) Potential VAP candidate (RPWG) Potential VAP candidate (RPWG)

294

ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA  

NLE Websites -- All DOE Office Websites (Extended Search)

g-meter, the Pilewskie Solar Spectral Flux Radiometer (SSFR), the NASA-GoddardU. of Wash. Spectral Scanning Radiometer, and the SPEC Inc. Cloud Particle Imager. This was the...

295

Fragmentation of Freezing Drops in Shallow Maritime Frontal Clouds  

Science Conference Proceedings (OSTI)

Images of frozen drops with pieces missing were collected on two days of airborne sampling in shallow supercooled stratiform frontal clouds in the coastal waters of Washington State. In those limited regions where ice appeared to be newly formed, ...

Arthur L. Rangno

2008-04-01T23:59:59.000Z

296

Optimization of an Instance-Based GOES Cloud Classification Algorithm  

Science Conference Proceedings (OSTI)

An instance-based nearest-neighbor algorithm was developed for a Geostationary Operational Environmental Satellite (GOES) cloud classifier. Expert-labeled samples serve as the training sets for the various GOES image classification scenes. The ...

Richard L. Bankert; Robert H. Wade

2007-01-01T23:59:59.000Z

297

Automatic Estimation of Cloud Amount Using Computer Vision  

Science Conference Proceedings (OSTI)

A study was carried out to establish the feasibility of using computer vision to estimate cloud amount. Various techniques were investigated and optimum diagnostic parameters derived. These were then applied to a number of images representing a ...

Gordon B. Davis; David J. Griggs; Geoffrey D. Sullivan

1992-02-01T23:59:59.000Z

298

Radiative and Convective Driving of Tropical High Clouds  

Science Conference Proceedings (OSTI)

Using satellite cloud data from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and collocated precipitation rates from the Advanced Microwave Scanning Radiometer (AMSR), it is shown that rain rate is closely related to the amount ...

Terence L. Kubar; Dennis L. Hartmann; Robert Wood

2007-11-01T23:59:59.000Z

299

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

300

Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery  

Science Conference Proceedings (OSTI)

A technique is described for the detection of fog and low clouds at night using multispectral infrared (IR) imagery from Geostationary Operational Environmental Satellites (GOES). The technique requires subtraction and enhancement of digital data ...

Gary P. Ellrod

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BNL | Cloud Lifecycle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Life Cycle Infrastructure Cloud Life Cycle Infrastructure An important component of any long-term atmospheric measurement program is the quality control and maintenance of the datastreams from instrument systems. Further, the raw measurements from atmospheric remote sensing instrumentation are not directly useable by the majority of the scientific community. These raw measurements must be interpreted and converted to geophysical quantities that can be more readily used by a greater number of scientists to address important questions regarding the Earth's climate system. The cloud life cycle infrastructure group at BNL is led by Dr. Michael Jensen and is responsible for the development and production of cloud-related value-added products (VAPs). The cloud life cycle infrastructure group also provides mentorships for the millimeter cloud

302

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data  

Science Conference Proceedings (OSTI)

Three cloud-phase determination algorithms from passive satellite imagers are explored to assess their suitability for climate monitoring purposes in midlatitude coastal climate zones. The algorithms are the Moderate Resolution Imaging ...

Erwin L. A. Wolters; Robert A. Roebeling; Arnout J. Feijt

2008-06-01T23:59:59.000Z

303

The Dependence of Cirrus Cloud-Property Retrievals on Size-Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

The Dependence of Cirrus Cloud-Property Retrievals on Size-Distribution The Dependence of Cirrus Cloud-Property Retrievals on Size-Distribution Shape d'Entremont, Robert Atmospheric and Environmental Research, Inc. Mitchell, David Desert Research Institute Category: Cloud Properties Our project has focused on using satellite- and ground-based passive thermal infrared radiance observations to retrieve cirrus cloud properties, most importantly ice water path (IWP), effective particle size (Deff), and visible extinction optical thickness (tau). During this past year we began comparing our cirrus retrieval results with aircraft observations at the ARM CART site, and we are participating in a summary intercomparison study with other retrieval algorithms as a member of the high-clouds working group. Our passive-infrared retrieval scheme, based on different wavelength

304

BNL | Cloud Lifecycle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to be one of the major sources of uncertainty in numerical simulations of climate and weather. Improvement of the representation of clouds in numerical models requires fundamental...

305

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

306

Dispersion of Cloud Droplet Size Distributions, Cloud Parameterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Upton, New York Introduction Most studies of the effect of aerosols on cloud radiative properties have considered only changes in the cloud droplet...

307

Infrared Cooling in Cloudy Atmospheres: Precision of Grid Point Selection for Numerical Models  

Science Conference Proceedings (OSTI)

The infrared layer temperature change in a cloudy atmosphere normally shows warming at the base of the cloud and intense cooling at the top of the cloud. In a model that uses broad-band radiative transfer to calculate atmospheric temperature ...

L. P. Stearns

1983-07-01T23:59:59.000Z

308

Cloud Classification Before Luke Howard  

Science Conference Proceedings (OSTI)

A brief outline of the history of cloud painting prior to the first cloud classification schemes of Luke Howard and Lamarck is presented. It is shown that European painters had accurately represented most of the different cloud forms between ...

Stanely David Gedzelman

1989-04-01T23:59:59.000Z

309

Radar Reflectivity of Cumulus Clouds  

Science Conference Proceedings (OSTI)

The relationships between the radar reflectivity factor Z and significant physical cloud parameters are studied from a dataset collected with an instrumented aircraft in non- or very weakly precipitating warm clouds. The cloud droplet populations ...

Henri Sauvageot; Jilani Omar

1987-06-01T23:59:59.000Z

310

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

311

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

312

Cloud Computing Forum & Workshop IV  

Science Conference Proceedings (OSTI)

Cloud Computing Forum & Workshop IV. ... NIST announces the Cloud Computing Forum & Workshop IV to be held on November 2, 3 and 4, 2011. ...

2013-08-07T23:59:59.000Z

313

Cirrus Cloud Properties from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations  

Science Conference Proceedings (OSTI)

Cloud radar data collected at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains site were used to evaluate the properties of cirrus clouds that occurred in a cloud-resolving model (CRM) simulation of the 29-day summer ...

Yali Luo; Steven K. Krueger; Gerald G. Mace; Kuan-Man Xu

2003-02-01T23:59:59.000Z

314

a prospective for new mid-infrared medical endoscopy  

Science Conference Proceedings (OSTI)

It is shown that chalcogenide glass fiberoptics could underpin new mid-infrared medical endoscopic systems for real-time molecular sensing, imaging and...

315

Posters Cloud Microphysical and Radiative Properties Measured  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Cloud Microphysical and Radiative Properties Measured by Combined Lidar, Radar, and Infrared Radiometer W. L. Eberhard and J. M. Intrieri National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. P. Chan and G. Feingold Cooperative Institute for Research in Environmental Sciences Boulder, Colorado also an order of magnitude smaller. These features make simple approximations in scattering calculations adequate for some applications, e.g., Eberhard (1993a). They also provide some unique capabilities, especially the technique described below for measuring drop sizes. One of the four IDP tasks is to characterize cloud signatures obtained by CO 2 lidar. For instance, our earlier work discovered that depolarization from ice particles was almost

316

CONTRIBUTED Green Cloud Computing  

E-Print Network (OSTI)

widely dis- cussed, the shift in energy usage in a cloud computing model has received little attention cloud computing services typically operate. We consider energy consumption models of the transport of energy per bit also allows the results to be easily scaled to any usage level. We consider both public

Tucker, Rod

317

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

318

ARM - Measurement - Cloud extinction  

NLE Websites -- All DOE Office Websites (Extended Search)

extinction extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption and/or scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NEPHELOMETER : Nephelometer Field Campaign Instruments CEP : Cloud Extinction Probe CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters

319

Combined Atmospheric Sounding/Cloud ImageryA New Forecasting Tool  

Science Conference Proceedings (OSTI)

A method for displaying sounding and cloud information in a composite image is described. Examples are shown to illustrate how a forecaster may use a time sequence of these images to monitor changes in atmospheric moisture and stability ...

William L. Smith; Gary S. Wade; Harold M. Woolf

1985-02-01T23:59:59.000Z

320

Cloud Computing Forensic Science Workshop  

Science Conference Proceedings (OSTI)

Cloud Computing Forensic Science Workshop. Purpose: The New Frontiers in IT and Measurement Science Rapid advances ...

2013-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A marketplace for cloud resources  

Science Conference Proceedings (OSTI)

Cloud computing is an emerging paradigm aimed to offer users pay-per-use computing resources, while leaving the burden of managing the computing infrastructure to the cloud provider. We present a new programming and pricing model that gives the cloud ... Keywords: cloud computing, iaas, large-scale scheduling, pricing models, worst-case execution time

Thomas A. Henzinger; Anmol V. Singh; Vasu Singh; Thomas Wies; Damien Zufferey

2010-10-01T23:59:59.000Z

322

Anisotropy in Broken Cloud Fields Over Oklahoma from Ladsat Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Anisotropy in Broken Cloud Fields Over Oklahoma Anisotropy in Broken Cloud Fields Over Oklahoma from Landsat Data L. M. Hinkelman National Institute of Aerospace Hampton, Virginia K. F. Evans University of Colorado Boulder, Colorado Introduction Previously, it was shown (Hinkelman et al. 2002) that anisotropy, or the existence of a preferred direction, in cumulus fields significantly affects solar radiative transfer through these fields. In this poster, we investigate the occurrence of anisotropy in broken cloud fields near the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site imaged by the Landsat 7 enhanced thematic mapper (ETM). Method Sample Landsat scenes of cumuloform clouds with different types of organization over Central Oklahoma, including the ARM Cloud and Radiation Testbed site to the northeast, were obtained from

323

Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors  

DOE Patents (OSTI)

Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

1999-01-01T23:59:59.000Z

324

Absorption Approximation with Scattering Effect for Infrared Radiation  

Science Conference Proceedings (OSTI)

A scheme that can handle cloud infrared scattering based on the absorption approximation is developed. In a two-stream mode, the new scheme produces more accurate results than those from the modified two-stream discrete ordinate method. For low ...

J. Li; Qiang Fu

2000-09-01T23:59:59.000Z

325

Distribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year  

NLE Websites -- All DOE Office Websites (Extended Search)

and Validation of Cloud Cover and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. A. Spangenberg and V. Chakrapani Analytical Services and Materials, Inc. Hampton, Virginia Introduction Determination of cloud radiation interactions over large areas of the Arctic is possible only with the use of data from polar orbiting satellites. Cloud detection using satellite data is difficult in the Arctic due to the minimal contrast between clouds and the underlying snow surface in visible and infrared wavelengths. Polar clouds are frequently warmer or at the same brightness temperature as the background surface, complicating cloud detection. The brightness temperature differences between the

326

CDIAC Cloud Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Period of Record A Gridded Climatology of Clouds over Land (1971-1996) and Ocean (1954-2008) from Surface Observations Worldwide (CDIAC NDP-026E) C.J. Hahn and S.G. Warren...

327

Cloud Transmissivities for Canada  

Science Conference Proceedings (OSTI)

Transmissivities are determined for different cloud types using nine years of hourly irradiance measurements under overcast skies at six Canadian stations. Values for individual stations and for pooled data using irradiances uncorrected for ...

J. A. Davies; M. Abdel-Wahab; J. E. Howard

1985-03-01T23:59:59.000Z

328

FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION  

SciTech Connect

Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

Inoue, Tsuyoshi [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan); Fukui, Yasuo, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

2013-09-10T23:59:59.000Z

329

On the Annual Cycle, Variability, and Correlations of Oceanic Low-Topped Clouds with Large-Scale Circulation Using Aqua MODIS and ERA-Interim  

Science Conference Proceedings (OSTI)

Eight years of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud data in conjunction with collocated Interim ECMWF Re-Analysis are used to investigate relationships between isolated low-topped cloud fraction (LCF) and ...

Terence L. Kubar; Duane E. Waliser; J.-L. Li; Xianan Jiang

2012-09-01T23:59:59.000Z

330

Marine Cloud Brightening  

Science Conference Proceedings (OSTI)

The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

2012-09-07T23:59:59.000Z

331

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

332

Snow/Cloud Discrimination with Multispectral Satellite Measurements  

Science Conference Proceedings (OSTI)

An algorithm is developed and evaluated for discriminating between clouds, snow-covered land and snow-free land in satellite image data. The multispectral technique uses daytime images of NOAA AVHRR channels 1 (0.63 ?m), 3 (3.7 ?m), and 4 (11.0 ...

Robert C. Allen Jr.; Philip A. Durkee; Carlyle H. Wash

1990-10-01T23:59:59.000Z

333

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations  

SciTech Connect

A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

Turner, David D.

2003-06-01T23:59:59.000Z

334

Sampling Errors and Bias in Satellite-Derived Fractional Cloud Cover Estimates from Exponential and Deterministic Cloud Fields as a Consequence of Instrument Pixel Size and Number  

Science Conference Proceedings (OSTI)

The proposed European Space Agencys cloud profiling radar Millimetre Active Cloud Structure Imaging Mission is a nadir-pointing radar with a 1-km footprint; it will need to integrate the received signal power for a reasonable amount of time (1.4...

Ivan Astin

1997-10-01T23:59:59.000Z

335

Original paper: Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis  

Science Conference Proceedings (OSTI)

Fusarium damage in wheat reduces the quality and safety of food and feed products. In this study, the use of hyperspectral imaging was investigated to detect fusarium damaged kernels (FDK) in Canadian wheat samples. Eight hundred kernels of Canada Western ... Keywords: Fusarium damage, Spectral imaging, Wheat

Muhammad A. Shahin; Stephen J. Symons

2011-01-01T23:59:59.000Z

336

A BUBBLING NEARBY MOLECULAR CLOUD: COMPLETE SHELLS IN PERSEUS  

SciTech Connect

We present a study of the shells (and bubbles) in the Perseus molecular cloud using the COMPLETE survey large-scale {sup 12}CO(1-0) and {sup 13}CO(1-0) maps. The 12 shells reported here are spread throughout most of the Perseus cloud and have circular or arc-like morphologies with a range in radius of about 0.1-3 pc. Most of them have not been detected before most likely because maps of the region lacked the coverage and resolution needed to distinguish them. The majority of the shells are coincident with infrared nebulosity of similar shape and have a candidate powering source near the center. We suggest that they are formed by the interaction of spherical or very wide angle winds powered by young stars inside or near the Perseus molecular cloud-a cloud that is commonly considered to be forming mostly low-mass stars. Two of the 12 shells are powered by high-mass stars close to the cloud, while the others appear to be powered by low- or intermediate-mass stars in the cloud. We argue that winds with a mass loss rate of about 10{sup -8} to 10{sup -6} M{sub Sun} yr{sup -1} are required to produce the observed shells. Our estimates indicate that the energy input rate from these stellar winds is similar to the turbulence dissipation rate. We conclude that in Perseus the total energy input from both collimated protostellar outflows and powerful spherical winds from young stars is sufficient to maintain the turbulence in the molecular cloud. Large-scale molecular line and IR continuum maps of a sample of clouds will help determine the frequency of this phenomenon in other star-forming regions.

Arce, Hector G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Borkin, Michelle A. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Pineda, Jaime E. [ESO, 85748 Garching (Germany); Beaumont, Christopher N., E-mail: hector.arce@yale.edu, E-mail: michelle_borkin@harvard.edu, E-mail: agoodman@cfa.harvard.edu, E-mail: jaime.pineda@manchester.ac.uk, E-mail: beaumont@ifa.hawaii.edu, E-mail: cbeaumont@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-01T23:59:59.000Z

337

ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsColorado: The Storm Peak Lab Cloud Property Validation govCampaignsColorado: The Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Campaign Links STORMVEX Website Related Campaigns Colorado: CFH/CMH Deployment to StormVEx 2011.02.01, Mace, AMF Colorado: SP2 Deployment at StormVEx 2010.11.15, Sedlacek, AMF Colorado : Cavity Attenuated Phase Shift 2010.11.15, Massoli, AMF Colorado: Infrared Thermometer (IRT) 2010.11.15, Mace, AMF Colorado: StormVEX Aerosol Size Distribution 2010.11.15, Hallar, AMF Colorado: Direct Measurements of Snowfall 2010.11.15, McCubbin, AMF Colorado: Thunderhead Radiative Flux Analysis Campaign 2010.11.15, Long, AMF Colorado: Ice Nuclei and Cloud Condensation Nuclei Characterization 2010.11.15, Cziczo, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA.

338

Apparent spatial blurring and displacement of a point optical source due to cloud scattering  

Science Conference Proceedings (OSTI)

A Monte Carlo algorithm is used to determine the apparent spatial blurring of a terrestrial 1.07 micron optical point source due to cloud scattering as seen from space. The virtual image of a point source over a virtual source plane area 22.4 x 22.4 square kilometers arising from cloud scattering was determined for stratus clouds (NASA cloud number 5) and altostratus clouds optical source arises from photon scattering by cloud water droplets. Displacement of the virtual source is due to the apparent illumination of the cloud top region directly about the actual source which when viewed at a nonzero look angle gives a projected displacement of the apparent source relative to the actual source. These features are quantified by an analysis of the Monte Carlo computational results.

Brower, K.L.

1997-09-01T23:59:59.000Z

339

Comparisons of CCN with Supercooled Clouds  

Science Conference Proceedings (OSTI)

More than 140 supercooled clouds were compared with corresponding out-of-cloud cloud condensation nuclei (CCN) measurements. In spite of significant differences in altitude, temperature, distances from cloud base, updraft velocity (W), ...

James G. Hudson; Stephen Noble; Vandana Jha

2010-09-01T23:59:59.000Z

340

Effects of CCN Concentrations on Stratus Clouds  

Science Conference Proceedings (OSTI)

Comparisons between cloud-base CCN concentrations and cloud droplet concentrations in stratus clouds over San Diego and 100 km out to sea showed a positive correlation. The supersaturation in these clouds, as derived from the matching of the CCN ...

James G. Hudson

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cirrus Clouds. Part I: A Cirrus Cloud Model  

Science Conference Proceedings (OSTI)

A two-dimensional (x, z), time-dependent, numerical cloud model is developed for the purpose of investigating the role of various physical processes involved in the maintenance of cirriform clouds. In addition to accounting for dynamic and ...

David O'C. Starr; Stephen K. Cox

1985-12-01T23:59:59.000Z

342

On the Use of Cloud Forcing to Estimate Cloud Feedback  

Science Conference Proceedings (OSTI)

Uncertainty in cloud feedback is the leading cause of discrepancy in model predictions of climate change. The use of observed or model-simulated radiative fluxes to diagnose the effect of clouds on climate sensitivity requires an accurate ...

Brian J. Soden; Anthony J. Broccoli; Richard S. Hemler

2004-10-01T23:59:59.000Z

343

Diurnal Variations and Modulation by Easterly Waves of the Size Distribution of Convective Cloud Clusters over West Africa and the Atlantic Ocean  

Science Conference Proceedings (OSTI)

Using Metecosat satellite data in the atmospheric infrared window, the authors study short time-scale fluctuations of the size distribution of tropical convective cloud clusters for July to September 1989. A cluster at a given brightness-...

L. A. Toledo Machado; J-Ph Duvel; M. Desbois

1993-01-01T23:59:59.000Z

344

Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI)  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) observes spectrally resolved downwelling radiance emitted by the atmosphere in the infrared portion of the electromagnetic spectrum. Profiles of temperature and water vapor, and cloud liquid ...

D.D. Turner; U. Lhnert

345

Diurnal Variability of Regional Cloud and Clear-Sky Radiative Parameters Derived from GOES Data. Part III: November 1978 Radiative Parameters  

Science Conference Proceedings (OSTI)

The diurnal variability of the radiation emitted and reflected from the earth-atmosphere is investigated at the regional scale using November 1978 GOES-East visible and infrared data and GOES-derived cloud information. Narrowband GOES data are ...

Patrick Minnis; Edwin F. Harrison

1984-07-01T23:59:59.000Z

346

The Magellan Final Report on Cloud Computing  

E-Print Network (OSTI)

resources. 1. Finding Tropical Cyclones on a Cloud Computing2010 2. Finding Tropical Cyclones on Clouds, D. Hasenkamp

Coghlan, Susan

2013-01-01T23:59:59.000Z

347

Cloud mapping with ground-based photogrammetric cameras  

Science Conference Proceedings (OSTI)

Ground-based digital imager systems in the visible and near infrared region of the solar spectrum have the potential to nicely complement existing instruments and observation networks of National Weather Services with very accurate, high spatial and ...

G. Seiz; J. Shields; U. Feister; E. P. Baltsavias; A. Gruen

2007-04-01T23:59:59.000Z

348

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

349

ETSI CLOUD - initial standardization requirements for cloud services  

Science Conference Proceedings (OSTI)

While the technological basis for cloud services is relatively mature, the development of the market is still at an early stage. There is considerable potential, but also a number of widely held concerns which are inhibiting mainstream adoption of cloud ... Keywords: ETSI, cloud services, standardization

Karsten Oberle; Mike Fisher

2010-08-01T23:59:59.000Z

350

More Observations of Small Funnel Clouds and Other Tubular Clouds  

Science Conference Proceedings (OSTI)

In this brief contribution, photographic documentation is provided of a variety of small, tubular-shaped clouds and of a small funnel cloud pendant from a convective cloud that appears to have been modified by flow over high-altitude mountains in ...

Howard B. Bluestein

2005-12-01T23:59:59.000Z

351

Observations of Cloud-Top Entrainment in Marine Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

Measurements of the thermodynamic and dynamic properties of entrainment events in marine stratocumulus are used to explain why cloud-top entrainment instability may not lead to the breakup of the clouds and to define the role of cloud-top ...

Qing Wang; Bruce A. Albrecht

1994-06-01T23:59:59.000Z

352

Understanding the AIRS, ARM, and MODIS cloud products by cross-comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the AIRS, ARM, and MODIS cloud products by cross-comparison Understanding the AIRS, ARM, and MODIS cloud products by cross-comparison Kahn, Brian Jet Propulsion Laboratory Eldering, Annmarie Jet Propulsion Laboratory Category: Cloud Properties We present comparisons of the Atmospheric Infrared Sounder (AIRS) operational cloud top height (CTH) to the active surface-based measurements of the Atmospheric Radiation Measurement (ARM) program sites in the tropical Western Pacific. The agreement is found to be consistent to other comparisons of passive IR-derived CTH from other measurement platforms despite the nominal footprint size of 45 km at nadir view. Independent comparisons of CTH to the millimeter-wave cloud radar at Manus Island and the micropulse lidar at Nauru Island indicate that the CTH retrieved by AIRS is statistically significant at the 5% level or less for cirrus cases

353

How Representative are the Cloud Regimes at the TWP Sites? … An ISCCP Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

How Representative are the Cloud Regimes at the How Representative are the Cloud Regimes at the TWP Sites? - An ISCCP Perspective C. Jakob Bureau of Meteorology Research Centre Melbourne, Australia G. Tselioudis National Aeronautic and Space Administration Goddard Institute for Space Studies Columbia University New York Introduction The Atmospheric Radiation Measurement (ARM) Program has established comprehensive cloud and radiation observatories in various locations across the globe with the aim of collecting measurements and developing models to better understand the processes that control solar and thermal infrared radiative transfer in clouds and at the surface. The locales of the individual ARM sites were chosen because they represent typical cloud regimes occurring in various climate regimes (Stokes and Schwartz

354

Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds Harrington, Jerry The Pennsylvania State University Category: Modeling Mixed-phase stratus clouds are dominant in the Arctic during much of the year. These clouds typically have liquid tops that precipitate ice. Time scales for the complete glaciation of such clouds (the Bergeron process) are typically computed using the classical mass growth equations for crystals and liquid drops. However, mixed phase arctic stratus have significant infrared cooling and solar heating (during the warm season) rates that can affect the growth of water drops and ice crystals, and therefore the strength of the Bergeron process. To examine the influence of radiative heating and cooling on the Bergeron process, we incorporate a

355

ARM - Measurement - Hydrometeor image  

NLE Websites -- All DOE Office Websites (Extended Search)

image image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor image Images of hydrometeors from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager UAV-PROTEUS : UAV Proteus

356

Internet ware cloud computing :Challenges  

E-Print Network (OSTI)

After decades of engineering development and infrastructural investment, Internet connections have become commodity product in many countries, and Internet scale "cloud computing" has started to compete with traditional software business through its technological advantages and economy of scale. Cloud computing is a promising enabling technology of Internet ware Cloud Computing is termed as the next big thing in the modern corporate world. Apart from the present day software and technologies, cloud computing will have a growing impact on enterprise IT and business activities in many large organizations. This paper provides an insight to cloud computing, its impacts and discusses various issues that business organizations face while implementing cloud computing. Further, it recommends various strategies that organizations need to adopt while migrating to cloud computing. The purpose of this paper is to develop an understanding of cloud computing in the modern world and its impact on organizations and businesse...

Qamar, S; Singh, Mrityunjay

2010-01-01T23:59:59.000Z

357

Mechanisms of Banner Cloud Formation  

Science Conference Proceedings (OSTI)

Banner clouds are clouds in the lee of steep mountains or sharp ridges. Their formation has previously been hypothesized as due to three different mechanisms: (i) vertical uplift in a lee vortex (which has a horizontal axis), (ii) adiabatic ...

Matthias Voigt; Volkmar Wirth

2013-11-01T23:59:59.000Z

358

A Computer for the Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer for the Clouds A Computer for the Clouds August 1, 2008 By PHILIP E. ROSS Columnist IEEE Spectrum: Inside Technology In May an IBM-built supercomputer called Roadrunner...

359

Supersaturation Intermittency in Turbulent Clouds  

Science Conference Proceedings (OSTI)

It is hypothesized that bursts of high supersaturation are produced in turbulent, convective clouds through interactions between cloud droplets and the small-scale structure of atmospheric turbulence. This hypothesis is based on the observation ...

Raymond A. Shaw

2000-10-01T23:59:59.000Z

360

Ash cloud aviation advisories  

SciTech Connect

During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

1992-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NIST Cloud Computing Related Publications  

Science Conference Proceedings (OSTI)

... Challenging Security Requirements for US Government Cloud Computing Adoption", December 2012 C. Dabrowski and K. Mills, "VM Leakage and ...

2013-07-31T23:59:59.000Z

362

Intercomparison of Deep Convection over the Tibetan PlateauAsian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data  

Science Conference Proceedings (OSTI)

Deep convection in the Tibetan Plateausouthern Asian monsoon region (TPSAMR) is analyzed using CloudSat and CloudAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (JuneAugust) from 2006 to ...

Yali Luo; Renhe Zhang; Weimiao Qian; Zhengzhao Luo; Xin Hu

2011-04-01T23:59:59.000Z

363

Contract RBAC in cloud computing  

Science Conference Proceedings (OSTI)

Cloud computing is a fast growing field, which is arguably a new computing paradigm. In cloud computing, computing resources are provided as services over the Internet and users can access resources based on their payments. The issue of access control ... Keywords: Cloud computing, Contract, Contract RBAC, Datacenter, RBAC

Hsing-Chung (Jack) Chen, Marsha Anjanette Violetta, Cheng-Ying Yang

2013-11-01T23:59:59.000Z

364

Improving Utilization of Infrastructure Clouds  

Science Conference Proceedings (OSTI)

A key advantage of infrastructure-as-a-service (IaaS) clouds is providing users on-demand access to resources. To provide on-demand access, however, cloud providers must either significantly overprovision their infrastructure (and pay a high price for ... Keywords: Cloud Computing, Infrastructure-as-a-Service, High Throughput Computing

Paul Marshall; Kate Keahey; Tim Freeman

2011-05-01T23:59:59.000Z

365

Parameterizing Vertically Coherent Cloud Distributions  

Science Conference Proceedings (OSTI)

A parameterization for specifying subgrid-scale cloud distributions in atmospheric models is developed. The fractional area of a grid-scale column in which clouds from two levels overlap (i.e., the cloud overlap probability) is described in terms ...

John W. Bergman; Philip J. Rasch

2002-07-01T23:59:59.000Z

366

Cumulus Cloud Properties Derived Using Landsat Satellite Data  

Science Conference Proceedings (OSTI)

Landsat Multispectral Scanner (MSS) digital data are used to remotely sense cumulus cloud properties such as cloud fraction and cloud reflectance, along with the distribution of cloud number and cloud fraction as a function of cloud size. The ...

Bruce A. Wielicki; Ronald M. Welch

1986-03-01T23:59:59.000Z

367

ARM - Field Campaign - IR Cloud Camera Feasibility Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsIR Cloud Camera Feasibility Study govCampaignsIR Cloud Camera Feasibility Study Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : IR Cloud Camera Feasibility Study 2010.12.06 - 2010.12.13 Lead Scientist : Kyle Leesman For data sets, see below. Description During December 2010, a prototype LWIR cloud camera system was deployed at the Southern Great Plains Guest Instrument Facility (SGP-GIF). The system consisted of a microbolometer camera (~7-15 ìm) to capture sky imagery, a blackbody calibration source, and a GPS receiver used to estimate atmospheric column water vapor and constrain atmospheric compensation. The camera system collected calibrated sky radiance images co-incident with the SGP Central Facility with the goal of quantitatively assessing its ability

368

The Use of Euclidean Geometric Distance on RGB Color Space for the Classification of Sky and Cloud Patterns  

Science Conference Proceedings (OSTI)

The current work describes the use of multidimensional Euclidean geometric distance (EGD) and Bayesian methods to characterize and classify the sky and cloud patterns present in image pixels. From specific images and using visualization tools, it ...

Sylvio Luiz Mantelli Neto; Aldo von Wangenheim; Enio Bueno Pereira; Eros Comunello

2010-09-01T23:59:59.000Z

369

Simulation of Lidar Return Signals Associated with Water Clouds  

E-Print Network (OSTI)

We revisited an empirical relationship between the integrated volume depolar- ization ratio, oacc, and the effective multiple scattering factor, -n, on the basis of Monte Carlo simulations of spaceborne lidar backscatter associated with homogeneous wa- ter clouds. The relationship is found to be sensitive to the extinction coefficient and to the particle size. The layer integrated attenuated backscatter is also obtained. Comparisons made between the simulations and statistics derived relationships of the layer integrated depolarization ratio, oacc, and the layer integrated attenuated backscatter, -n, based on the measurement by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite show that a cloud with a large effective size or a large extinction coefficient has a relatively large integrated backscatter and a cloud with a small effective size or a large extinction coefficient has a large integrated volume depolarization ratio. The present results also show that optically thin water clouds may not obey the empirical relationship derived by Y. X. Hu. and co-authors.

Lu, Jianxu

2009-08-01T23:59:59.000Z

370

A Smooth Cloud Model  

Science Conference Proceedings (OSTI)

In this paper a large-eddy smooth cloud (SC) model will be presented with smooth implying that the entire model converges under a Newton-based solution procedure or that time scales within the SC model are being resolved. Besides ensuring that ...

J. M. Reisner; C. A. Jeffery

2009-06-01T23:59:59.000Z

371

The Shape of Large Tropospheric Clouds, or Very Like a Whale  

Science Conference Proceedings (OSTI)

Lovejoy (1982) analyzed radar and satellite images of convective clouds and rainbands extending over an area range from 10 to 106 km2 and found the fractal cloud-perimeter dimension to equal 1.35, indicating the presence of a Richardson, three-...

F. A. Gifford

1989-05-01T23:59:59.000Z

372

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

373

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

374

Mapping of a reactor coolant effluent ground disposal test using an infrared imaging system and ground water potential and temperature measurements  

SciTech Connect

The concept of reactor effluent disposal to ground in infiltration trenches was proposed by Nelson and Alkire in 1963. At that time the available data indicated that radionuclide infiltration rates were probably adequate for trench disposal and that decontamination factors of 10 to 100 should be obtainable. Field tests at 100-F Area 1965 and 100-D Area 1967 have indicated that the infiltration rates are adequate and DF`s of from 2.5 for {sup 51}Cr to 7276 for {sup 65}Zn were obtained during the 100-D test. The purpose of this report is to present the results and interpretations of data from studies conducted over a reactor coolant effluent disposal test site. Data presented in this report were collected over the 100-C Area test in which a significant percentage of the reactor coolant effluent was disposed to an existing trench for a five-month period. Results of infrared thermal surveys and ground water temperature and potential measurements collected during this test are presented.

Eliason, J.R.

1969-04-10T23:59:59.000Z

375

A Cloud-Resolving Model with an Adaptive Vertical Grid for Boundary Layer Clouds  

Science Conference Proceedings (OSTI)

Accurate cloud-resolving model simulations of cloud cover and cloud water content for boundary layer clouds are difficult to achieve without vertical grid spacing well below 100 m, especially for inversion-topped stratocumulus. The need for fine ...

Roger Marchand; Thomas Ackerman

2011-05-01T23:59:59.000Z

376

Statistical cloud coverage as a function of cloud optical thickness  

Science Conference Proceedings (OSTI)

The time-averaged, daylight fractional statistical cloud coverages as a function of cloud optical thickness and selected values of cloud transmission were determined for various geographic areas using D1 data from the International Satellite Cloud Climatology Project (ISCCP). The regions of interest chosen for this report are: global earth, global sea, global land, global coast, and the six 30{degree}-latitude bands over sea, over land, and over coast with longitude 0{degree}--360{degree}. This statistical information is deduced from data determined from satellite measurements of terrestrial, atmospheric and cloud properties by the International Satellite Cloud Climatology Project. In particular the results are based on the ISCCP D1 data base.

Brower, K.L.

1998-07-01T23:59:59.000Z

377

Preliminary definition of Barstow standard cloud model  

DOE Green Energy (OSTI)

The motion of cloud shadows across a collector field for a central receiver solar power plant can affect the design of such a facility. Cloud models were developed to be used for basis of design in technology areas. The first effect, that of the temperature gradient, is simulated by postulating the worst case cloud situation. The cyclic effects require realistic cloud shadow time histories for simulation. Cloud shadow models were developed to determine probable cloud type, the cloud area and shape, cloud velocity and cloud-to-cloud spacing. The probability of cloud occurrence is estimated. A collector field computer program is run to determine the effect of cloud variables on collector field power delivery capability. Recommendation of cloud models to be used for basis of design are then made.

None

1978-04-05T23:59:59.000Z

378

The Application of Time Series Models to Cloud Field Morphology Analysis  

Science Conference Proceedings (OSTI)

A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series ...

Roland T. Chin; Jack Y. C. Jau; James A. Weinman

1987-03-01T23:59:59.000Z

379

Using MODIS to Estimate Cloud Contamination of the AVHRR Data Record  

Science Conference Proceedings (OSTI)

A study of the improvement in cloud-masking capability of data from a Moderate Resolution Imaging Spectroradiometer (MODIS) relative to data from an Advanced Very High Resolution Radiometer (AVHRR) is performed. MODIS offers significant advances ...

Andrew K. Heidinger; Venkata Rao Anne; Charles Dean

2002-05-01T23:59:59.000Z

380

Normalization and Calibration of Geostationary Satellite Radiances for the international Satellite Cloud Climatology Project  

Science Conference Proceedings (OSTI)

Procedures are described for normalizing the radiometric calibration of image radiances obtained from the suite of geostationary weather satellites that contributed data to the international Satellite Cloud Climatology Project. The key step is ...

Yves Desormeaux; William B. Rossow; Christopher L. Brest; G. Garrett Campbell

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Satellite-Based Imagery Techniques for Daytime Cloud/Snow Delineation from MODIS  

Science Conference Proceedings (OSTI)

This paper presents two multispectral enhancement techniques for distinguishing between regions of cloud and snow cover using optical spectrum passive radiometer satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS)...

Steven D. Miller; Thomas F. Lee; Robert L. Fennimore

2005-07-01T23:59:59.000Z

382

Evaluating Satellite-Based Cloud Persistence and Displacement Nowcasting Techniques over Complex Terrain  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellites allows roughly for the same region of Earth to be sampled twice in a nowcasting time frame. Using the MODIS cloud mask at 5-km resolution and ...

Eric M. Guillot; Thomas H. Vonder Haar; John M. Forsythe; Steven J. Fletcher

2012-04-01T23:59:59.000Z

383

Broken Cloud Biases in Albedo and Surface Insolation Derived from Satellite Imagery Data  

Science Conference Proceedings (OSTI)

Radiative transfer calculations for a one-dimensional column model of the atmosphere containing a plane-parallel, homogeneous cloud are used to show that the common procedure of assuming that fields of view for high resolution satellite imagers ...

James A. Coakley Jr.; Takahisa Kobayashi

1989-07-01T23:59:59.000Z

384

The Potential for Improved Boundary Layer Cloud Optical Depth Retrievals from the Multiple Directions of MISR  

Science Conference Proceedings (OSTI)

The Multiangle Imaging Spectroradiometer (MISR) views the earth with nine cameras, ranging from a 70 zenith angle viewing forward through nadir to 70 viewing aft. MISR does not have an operational cloud optical depth retrieval algorithm, but ...

K. Franklin Evans; Alexander Marshak; Tams Vrnai

2008-10-01T23:59:59.000Z

385

Spatial Variability of Liquid Water Path in Marine Low Cloud: The Importance of Mesoscale Cellular Convection  

Science Conference Proceedings (OSTI)

Liquid water path (LWP) mesoscale spatial variability in marine low cloud over the eastern subtropical oceans is examined using two months of daytime retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra ...

Robert Wood; Dennis L. Hartmann

2006-05-01T23:59:59.000Z

386

A Fractal Dimensional Analysis on the Cloud Shape Parameters of Cumulus over Land  

Science Conference Proceedings (OSTI)

High-resolution Landsat thematic mapper image data were employed in the present study to estimate the influence of regional wind systems on the macrophysical properties of cumulus clouds, such as perimeter fractal dimension, orientation angle, ...

Kazuo Gotoh; Yasuhiko Fujii

1998-10-01T23:59:59.000Z

387

Hupmobile cloud chamber parameters  

SciTech Connect

The accompanying table lists the presently selected parameters for the twelve cloud chambers. The chambers are numbered consecutively from 4 through 15 as they are lined up in the bunker. The lowest number is closest to the source. All except the first chamber have some thin metal filters to attenuate the flux and harden the spectrum. Cloud chambers 10, 12, and 14 are shielded by a collimator with about 200 pinholes in it. The flux in these chambers is attenuated by the ratio of the pinhole area to total beam area which is a factor of 50. Various gases and gas pressures are used to obtain suitable track lengths and interaction cross sections. Neon, argon, and krypton are used to obtain photo electrons. Hydrogen is used to obtain Compton electrons.

Hansen, N. E.

1967-09-28T23:59:59.000Z

388

CloudCast: Cloud Computing for Short-Term Weather Forecasts  

Science Conference Proceedings (OSTI)

CloudCast provides clients with personalized short-term weather forecasts based on their current location using cloud services

Dilip Kumar Krishnappa; David Irwin; Eric Lyons; Michael Zink

2013-01-01T23:59:59.000Z

389

Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP,  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, MISR, and MODIS Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas Pacific Northwest National Laboratory Category: Cloud Properties Joint histograms of Cloud Top Height (CTH) and Optical Depth (OD) derived by the International Satellite Cloud Climatology Project (ISCCP) are being widely used by the climate modeling community in evaluating global climate models. Similar joint histograms of CTH-OD are now being produced by the NASA Multi-angle Imaging Spectro-Radiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. There are notable differences in the histograms being produced by these three projects. In this poster we analyze some of the differences and discuss how the

390

Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals  

E-Print Network (OSTI)

on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

Stoffelen, Ad

391

Cumulus Clouds and Reflected Sunlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumulus Clouds and Reflected Sunlight Cumulus Clouds and Reflected Sunlight from Landsat ETM+ G. Wen and L. Oreopoulos National Aeronautics and Space Administration Goddard Space Flight Center University of Maryland Baltimore County Joint Center of Earth System Technology Greenbelt, Maryland R. F. Cahalan and S. C. Tsay National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Cumulus clouds attenuate solar radiation casting shows on the ground. Cumulus clouds can also enhance solar radiation in the clear region nearby. The enhancement of down-welling solar radiation has been observed at the ground level in the clear region near cumulus clouds (Mims and Frederick 1994). The additional diffuse radiation source from cumulus clouds makes the clear gaps appear to be

392

Size of Cloud from Shadow  

NLE Websites -- All DOE Office Websites (Extended Search)

Size of Cloud from Shadow Size of Cloud from Shadow Name: mike Status: other Grade: other Location: N/A Country: USA Date: Summer 2011 Question: I see a cloud and I see its shadow in a field - knowing high sun angles - is there a way of telling how far away the cloud is or how big? - I am thinking if the shadow is 30' wide and the sun is at 2:00 pm- ? Replies: Hi Mike, Try this, draw a small circle representing the Sun. Somewhere below this circle and maybe to the right, draw an oblong, make this oblong bigger than the circle. Now connect the leftmost edge of the circle with the leftmost edge of the oblong with a straight line. Do the same for the rightmost edges. The oblong now represent the shadow of a cloud on the ground, and the lines represent the rays of the sun passing along the edges of the cloud.

393

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

394

Nearest Neighbor Spacing of Fair Weather Cumulus Clouds  

Science Conference Proceedings (OSTI)

Histograms of nearest neighbor spacings of fair weather cumulus at 15 locations Over the world's oceans are presented based on the analysis of high resolution LANDSAT 3 Multispectral Scanner images for amounts of cloud cover ranging from 0.6% to ...

Joachim H. Joseph; Robert F. Cahalan

1990-08-01T23:59:59.000Z

395

Persistent Nanophosphors for In-vivo Optical Imaging  

Science Conference Proceedings (OSTI)

Abstract Scope, Optical imaging requires more sensitive tools intended for biomedical research and medical applications. Near-infrared persistent luminescence...

396

TC_CLOUD_REGIME.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical cloud properties as a function of regime Regimes? Monsoon versus Break * Different synoptic vertical velocity profiles - Changes convective inhibition, corresponding...

397

Service Availability in Cloud Computing.  

E-Print Network (OSTI)

?? Cloud computing provides access to on-demand computing resources and storage space, whereby applications and data are hosted with data centers managed by third parties, (more)

Adegoke, Adekunle

2013-01-01T23:59:59.000Z

398

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

399

Cloud Fluctuation Statistics  

Science Conference Proceedings (OSTI)

A space-time statistical analysis of total outgoing infrared radiation (derived from the 10.512.5 ?m window measurements of the NOAA operational satellites) is used to determine the gross features of day-to-day cloudiness fluctuations over the ...

R. F. Cahalan; D. A. Short; G. R. North

1982-01-01T23:59:59.000Z

400

Resonant-cavity-enhanced multispectral infrared photodetectors for monolithic integration on silicon  

E-Print Network (OSTI)

Multispectral infrared (IR) detection has been widely employed for numerous applications including hyperspectral imaging, IR spectroscopy, and target identification. Traditional multispectral detection technology is based ...

Wang, Jianfei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure  

SciTech Connect

The Tropical Warm Pool International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

2011-10-04T23:59:59.000Z

402

Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites  

SciTech Connect

Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

2011-11-10T23:59:59.000Z

403

Cloud Microphysical Relationships in California Marine Stratus  

Science Conference Proceedings (OSTI)

Cloud microphysical measurements off the southern California coast are presented and compared with in situ airborne measurements of cloud condensation nuclei (CCN) spectra. Large-scale variations in cloud droplet concentrations were due to CCN ...

James G. Hudson; Gunilla Svensson

1995-12-01T23:59:59.000Z

404

Statistical Description of Radiation Transfer in Clouds  

Science Conference Proceedings (OSTI)

The statistical characteristics of simulated cloud fields constructed based on Poisson point fluxes are studied. The input parameters of mathematical models of cloudiness include the cloud fraction and the mean horizontal size of clouds ...

Georgi A. Titov

1990-01-01T23:59:59.000Z

405

Radiative Effects of Cloud-Type Variations  

Science Conference Proceedings (OSTI)

Radiative flux changes induced by the occurrence of different cloud types are investigated using International Satellite Cloud Climatology Project cloud data and a refined radiative transfer model from National Aeronautics and Space ...

Ting Chen; William B. Rossow; Yuanchong Zhang

2000-01-01T23:59:59.000Z

406

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm  

Science Conference Proceedings (OSTI)

The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (...

Yongxiang Hu; David Winker; Mark Vaughan; Bing Lin; Ali Omar; Charles Trepte; David Flittner; Ping Yang; Shaima L. Nasiri; Bryan Baum; Robert Holz; Wenbo Sun; Zhaoyan Liu; Zhien Wang; Stuart Young; Knut Stamnes; Jianping Huang; Ralph Kuehn

2009-11-01T23:59:59.000Z

407

The Visualization of Cloud Droplet Spectra  

Science Conference Proceedings (OSTI)

This paper draws attention to the use of readily available, wire cage graphics for inspecting cloud droplet spectra measured using a Forward Light-Scattering Spectrometer Probe. The high resolution cloud droplet spectra from two different clouds ...

Robert R. Czys

1989-02-01T23:59:59.000Z

408

A Survey on Cloud Provider Security  

E-Print Network (OSTI)

A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

409

NIST Joint Cloud and Big Data Workshop  

Science Conference Proceedings (OSTI)

NIST Joint Cloud and Big Data Workshop. Purpose: ... The second and third days of the workshop focused on the intersection of Cloud and Big Data. ...

2013-01-31T23:59:59.000Z

410

6.1 Cloud Management Broker  

Science Conference Proceedings (OSTI)

... the cloud-management-broker programming or human interface, and ... broker notifies cloud-user with error specifics or ... Transient errors can be retried ...

2010-11-02T23:59:59.000Z

411

Radiative Effects of Cloud Inhomogeneity and  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud-overlap assumptions and optical property approximations (Del Genio et al. 1996; Fowler and Randall 1996; Liang and Wang 1997). While GCMs require convection and cloud...

412

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

413

Cloud Computing Towards Technological Convergence  

Science Conference Proceedings (OSTI)

With the popularization and improvement of social and industrial IT development, information appears to explosively increase, and people put much higher expectations on the services of computing, communication and network. Today's public communication ... Keywords: Architectural Strategies, Cloud Computing, Cloud Environments, Communication Network, Computing, Convergence

P. Sasikala

2011-10-01T23:59:59.000Z

414

Enabling cloud interoperability with COMPSs  

Science Conference Proceedings (OSTI)

The advent of Cloud computing has given to researchers the ability to access resources that satisfy their growing needs, which could not be satisfied by traditional computing resources such as PCs and locally managed clusters. On the other side, such ... Keywords: PaaS, cloud computing, data mining, parallel programming models

Fabrizio Marozzo; Francesc Lordan; Roger Rafanell; Daniele Lezzi; Domenico Talia; Rosa M. Badia

2012-08-01T23:59:59.000Z

415

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

416

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

417

ARM - Measurement - Cloud base height  

NLE Websites -- All DOE Office Websites (Extended Search)

base height base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments BLC : Belfort Laser Ceilometer MPL : Micropulse Lidar MWRP : Microwave Radiometer Profiler RL : Raman Lidar VCEIL : Vaisala Ceilometer External Instruments NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC

418

ARM - Measurement - Cloud condensation nuclei  

NLE Websites -- All DOE Office Websites (Extended Search)

condensation nuclei condensation nuclei ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud condensation nuclei Small particles (typically 0.0002 mm, or 1/100 th the size of a cloud droplet) about which cloud droplets coalesce. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter Field Campaign Instruments AOS : Aerosol Observing System

419

Cloud Computing: Exploring the scope  

E-Print Network (OSTI)

Cloud computing refers a paradigm shift to overall IT solutions while raising the accessibility, scalability and effectiveness through its enabling technologies. However, migrated cloud platforms and services cost benefits as well as performances are neither clear nor summarized. Globalization and the recessionary economic times have not only raised the bar of a better IT delivery models but also have given access to technology enabled services via internet. Cloud computing has vast potential in terms of lean Retail methodologies that can minimize the operational cost by using the third party based IT capabilities, as a service. It will not only increase the ROI but will also help in lowering the total cost of ownership. In this paper we have tried to compare the cloud computing cost benefits with the actual premise cost which an organization incurs normally. However, in spite of the cost benefits, many IT professional believe that the latest model i.e. "cloud computing" has risks and security concerns. This ...

Pandey, Abhinav; Tandon, Ankit; Maurya, Brajesh Kr; Kushwaha, Upendra

2010-01-01T23:59:59.000Z

420

Convective Activity over Africa and the Tropical Atlantic Inferred from 20 Years of Geostationary Meteosat Infrared Observations  

Science Conference Proceedings (OSTI)

A 20-yr (19862005) time series of Meteosat Visible and Infrared Imager (MVIRI) geostationary infrared observations was used to study deep convection over Africa and the tropical Atlantic. The 20-yr time period is covered by six consecutive ...

Ralf Bennartz; Marc Schroeder

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Zenith Radiance Retrieval of Cloud Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

retrievals of cloud properties retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud fraction * Cloud effective drop size, r eff * Cloud optical depth τ - the great unknown * Radiative cloud fraction * Cloud effective drop size, r eff τ = 3 2 LWP r eff r eff in μm, LWP in g/m 2 The 2-ch narrow-field-of-view radiometer (2NFOV) The 2-ch narrow-field-of-view radiometer

422

TWO POPULATIONS OF MOLECULAR CLOUDS IN THE ANTENNAE GALAXIES  

SciTech Connect

Super star clusters-extremely massive clusters found predominately in starburst environments-are essential building blocks in the formation of galaxies and thought to dominate star formation in the high-redshift universe. However, the transformation from molecular gas into these ultracompact star clusters is not well understood. To study this process, we used the Submillimeter Array and the Plateau de Bure Interferometer to obtain high angular resolution ({approx}1.''5 or 160 pc) images of the Antennae overlap region in CO(2-1) to search for the molecular progenitors of the super star clusters. We resolve the molecular gas distribution into a large number of clouds, extending the differential cloud mass function down to a 5{sigma} completeness limit of 3.8 Multiplication-Sign 10{sup 5} M{sub Sun }. We identify a distinct break in the mass function around log M{sub mol}/M{sub Sun} Almost-Equal-To 6.5, which separates the molecular clouds into two distinct populations. The smaller, less massive clouds reside in more quiescent areas in the region, while the larger, more massive clouds cluster around regions of intense star formation. A broken power-law fit to the mass function yields slopes of {alpha} = -1.39 {+-} 0.10 and {alpha} = -1.44 {+-} 0.14 for the low- and high-mass cloud population, well matched to the mass function found for super star clusters in the Antennae galaxies. We find large velocity gradients and velocity dispersions at the locations of intense star formation, suggestive of compressive shocks. It is likely that these environmental factors contribute to the formation of the observed massive molecular clouds and super star clusters in the Antennae galaxies.

Wei, Lisa H.; Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

2012-05-10T23:59:59.000Z

423

Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data  

Science Conference Proceedings (OSTI)

Cold cloud features (CCFs) are defined by grouping six full years of Tropical Rainfall Measuring Mission (TRMM) infrared pixels with brightness temperature at 10.8-?m wavelength (TB11) less than or equal to 210 and 235 K. Then the precipitation ...

Chuntao Liu; Edward J. Zipser; Stephen W. Nesbitt

2007-02-01T23:59:59.000Z

424

DOE Research and Development Accomplishments Tag Cloud  

Office of Scientific and Technical Information (OSTI)

Database Tag Cloud Database Tag Cloud This tag cloud is a specific type of weighted list that provides a quick look at the content of the DOE R&D Accomplishments database. It can be easily browsed because terms are in alphabetical order. With this tag cloud, there is a direct correlation between font size and quantity. The more times a term appears in the bibliographic citations, the larger the font size. This tag cloud is also interactive. Clicking on a term will activate a search for that term. Search results will then be received. absorption Accelerator Accelerators Acid Acids AEC air Alpha Analysis Angular Applications Applied Argonne Aspects atmospheric Atom Atomic atoms Background Basic Batteries Beam Beams Beta Biological Biology BNL Brookhaven Calculations Calvin Capture carbon Cells CH Change changes Chemical Chemistry CHLORINE climate Coal Collisions complex Complexes Compounds computed Computerized conditions Conservation Conversion Cosmic Cosmology Cross Crystal current cycle data Decay density design Detection detectors development Devices Diagnostic Diffraction Dioxide Discovery distribution DNA Effect Effects Efficiency Electric electricity Electromagnetic Electron Electrons Element elementary elements Emission Energy Environmental Equations even Exchange Experiment Experimental experiments Fermi field fields First Fission Fossil Free fuel fuels Fusion Future Gamma Gas Genome global greenhouse group Hadron Health heat Heating heavy high Historical history Human Hydrocarbons Hydrogen Imaging impacts important Information Institute Interaction Interactions International Invariance ion Ions Isotope Isotopes Kinetics large laser Lawrence LBL LBNL lepton level light Linear Lithium Livermore living LLNL long low Magnetic Mass material Materials mathematics Matter Measurement measurements Mechanics mechanism medical Medicine Mesons Metabolism Method methods Model Models Molecular Molecules momentum mu Nambu Neutral Neutrino Neutrinos Neutron neutrons Nuclear Nuclei Nucleon Odd Organic ORNL Oxides oxygen Particle Particles path PET Photosynthesis physical Physics pi Plants Plasma Plutonium Policy Polymers Positron Power problem processes production program Programs progress Properties Proton Protons Quantum Quark Radiation Radioactive Radioisotopes range Ratio ray Reaction Reactions Reactor Reactors Renewable report Research resolution Resonance results Review RTG scattering science Sciences scientific Seaborg Separation Solar Source Sources Space Spectra Spectroscopy spectrum Spin Stability state States storage Strong Structure Studies study supernovae symmetry Symposium Synthesis system Systems Tau technical Techniques technologies Technology Teller Temperature theoretical Theories Theory Therapy Thermal Thermoelectric Thin Time Tomography Top Tracer Transfer Transport type types Upton Uranium uses Velocity Water Weak Wigner yields

425

Mathematical Aspects in Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part II: Analysis of Spatial and Temporal Continuity of Spectral Measurements from the GOES-8 Sounder  

Science Conference Proceedings (OSTI)

The spatial and temporal continuity of the infrared measurements from the Geostationary Operational Environmental Satellite (GOES)-8 sounder data are investigated, and an experimental processing approach is presented. Spatial filtering and cloud ...

Youri Plokhenko; W. Paul Menzel; Gail Bayler; Timothy J. Schmit

2003-06-01T23:59:59.000Z

426

Discussion of Intelligent Cloud Computing System  

Science Conference Proceedings (OSTI)

Cloud Computing System (CCS) aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user Quality of Service (QoS) requirements. Huge investments ... Keywords: cloud computing system, intelligent cloud computing system, data warehouse, cloud computing management information system

Yu Hua Zhang; Jian Zhang; Wei Hua Zhang

2010-10-01T23:59:59.000Z

427

Cloud Droplet Size Distributions in Low-Level Stratiform Clouds  

Science Conference Proceedings (OSTI)

A database of stratus cloud droplet (diameter <50 ?m) size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their ...

Natasha L. Miles; Johannes Verlinde; Eugene E. Clothiaux

2000-01-01T23:59:59.000Z

428

Icebergs in the clouds: the other risks of cloud computing  

Science Conference Proceedings (OSTI)

Cloud computing is appealing from management and efficiency perspectives, but brings risks both known and unknown. Well-known and hotly-debated information security risks, due to software vulnerabilities, insider attacks, and side-channels for example, ...

Bryan Ford

2012-06-01T23:59:59.000Z

429

The Role of Cloud Top Entrainment in Cumulus Clouds  

Science Conference Proceedings (OSTI)

The entrainment process and its resultant effects on the microphysics and dynamics within cumuli are not yet clearly understood. This research was undertaken to discover the role which cloud top plays in the entrainment process and to determine ...

Joey F. Boatman; August H. Auer Jr.

1983-06-01T23:59:59.000Z

430

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

431

Direct imaging of exoEarths embedded in clumpy debris disks  

E-Print Network (OSTI)

The inner solar system, where the terrestrial planets formed and evolve, is populated by small grains of dust produced by collisions of asteroids and outgassing comets. At visible and infrared wavelengths, this dust cloud ...

Stark, C.

432

Millimeter Wave Cloud Radar (MMCR) Handbook  

SciTech Connect

The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

KB Widener; K Johnson

2005-01-30T23:59:59.000Z

433

Comparison of an Experimental NOAA AVHRR Cloud Dataset with Other Observed and Forecast Cloud Datasets  

Science Conference Proceedings (OSTI)

CLAVR [cloud from AVHRR (Advanced Very High Resolution Radiometer)] is a global cloud dataset under development at NOAA/NESDIS (National Environmental Satellite, Data, and Information Service). Total cloud amount from two experimental cases, 9 ...

Yu-Tai Hou; Kenneth A. Campana; Kenneth E. Mitchell; Shi-Keng Yang; Larry L. Stowe

1993-12-01T23:59:59.000Z

434

ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations  

Science Conference Proceedings (OSTI)

Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), stage C1, for an 8-yr period (198391) to relate cloud optical ...

Carole J. Hahn; William B. Rossow; Stephen G. Warren

2001-01-01T23:59:59.000Z

435

Cloud-Resolving Simulation of Low-Cloud Feedback to an Increase in Sea Surface Temperature  

Science Conference Proceedings (OSTI)

This study investigates the physical mechanisms of the low cloud feedback through cloud-resolving simulations of cloud-radiative equilibrium response to an increase in sea surface temperature (SST). Six pairs of perturbed and control simulations ...

Kuan-Man Xu; Anning Cheng; Minghua Zhang

2010-03-01T23:59:59.000Z

436

Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina  

Science Conference Proceedings (OSTI)

Documentation during January and February 2000 of the structure of severe convective storms in Mendoza, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the ?45C isotherm level is reported. ...

Daniel Rosenfeld; William L. Woodley; Terrence W. Krauss; Viktor Makitov

2006-09-01T23:59:59.000Z

437

The Experimental Cloud Lidar Pilot Study (ECLIPS) for CloudRadiation Research  

Science Conference Proceedings (OSTI)

The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and ...

C. M. Platt; S. A. Young; A. I. Carswell; S. R. Pal; M. P. McCormick; D. M. Winker; M. DelGuasta; L. Stefanutti; W. L. Eberhard; M. Hardesty; P. H. Flamant; R. Valentin; B. Forgan; G. G. Gimmestad; H. Jger; S. S. Khmelevtsov; I. Kolev; B. Kaprieolev; Da-ren Lu; K. Sassen; V. S. Shamanaev; O. Uchino; Y. Mizuno; U. Wandinger; C. Weitkamp; A. Ansmann; C. Wooldridge

1994-09-01T23:59:59.000Z

438

Estimation of Cloud Physical Parameters from Airborne Solar Spectral Reflectance Measurements for Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

A new method is proposed to retrieve various cloud physical parameters of water clouds from the solar-flux reflectances at four wavelengths measured by using the airborne Multi-channel Cloud Pyranometer (MCP) system. The MCP system was designed ...

Shoji Asano; Masataka Shiobara; Akihiro Uchiyama

1995-10-01T23:59:59.000Z

439

Kinetics of Cloud Drop Formation and Its Parameterization for Cloud and Climate Models  

Science Conference Proceedings (OSTI)

To study the kinetics of drop nucleation in clouds, the integrodifferential equation for integral water supersaturation in cloud is derived and analyzed. Solving the supersaturation equation with an algebraic form of the cloud condensation ...

Vitaly I. Khvorostyanov; Judith A. Curry

2008-09-01T23:59:59.000Z

440

Observed Relationships between Arctic Longwave Cloud Forcing and Cloud Parameters Using a Neural Network  

Science Conference Proceedings (OSTI)

A neural network technique is used to quantify relationships involved in cloudradiation feedbacks based on observations from the Surface Heat Budget of the Arctic (SHEBA) project. Sensitivities of longwave cloud forcing (CFL) to cloud parameters ...

Yonghua Chen; Filipe Aires; Jennifer A. Francis; James R. Miller

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Field Campaign - Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCloud IOP govCampaignsCloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cloud IOP 1998.04.27 - 1998.05.17 Lead Scientist : Gerald Mace For data sets, see below. Summary Monday, April 27, 1998 IOP Opening Activities: Heavy rain (nearly 2.5" since 12Z 4/26/98) at the central facility (CF) dominated the first day of the Cloud Physics/Single Column Model IOP and limited the daily activities. A 1430 GMT sonde launch commenced the 3-hour sonde launch schedule at the CF and 4 boundary facilities (BFs). Scientists/Instrumentation on Site: Citation: Has arrived and is located at the Ponca City Airport. No flights are currently planned. Flights are tentatively planned for stratus sampling when precipitation ends.

442

Clouds, Aerosols and Precipitation in  

NLE Websites -- All DOE Office Websites (Extended Search)

the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 May 2009-December 2010 Rob Wood, University of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager CAP-MBL Proposal Team Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate sensitivity? Cli t F db k

443

NIST Cloud Computing Standards Roadmap  

Science Conference Proceedings (OSTI)

... in this clause is a natural extension to the ... which take advantage of the homogeneity and power of cloud ... such as WS-I) and grid standards (such as ...

2013-08-07T23:59:59.000Z

444

Fractal Statistics of Cloud Fields  

Science Conference Proceedings (OSTI)

Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data, with 80 and 30 m spatial resolution, respectively, have been employed to study the spatial structure of boundary-layer and intertropical convergence zone (ITCZ) clouds. The ...

Robert F. Cahalan; Joachim H. Joseph

1989-02-01T23:59:59.000Z

445

Cloud Cover and Climate Sensitivity  

Science Conference Proceedings (OSTI)

This study discusses how the sensitivity of climate may be affected by the variation of cloud cover based on the results from numerical experiments with a highly simplified, three-dimensional model of the atmospheric general circulation. The ...

Richard T. Wetherald; Syukuro Manabe

1980-07-01T23:59:59.000Z

446

Cloud computing for dynamic systems  

Science Conference Proceedings (OSTI)

Cloud computing is a fast emerging model for enabling dynamic on-demand computing and IT-based services. It promotes dynamic properties and characteristics such as scalability, agility, flexibility, virtualised and distributed on-demand computing. However, ...

Khaled Sabry

2011-11-01T23:59:59.000Z

447

Breaking the Cloud Parameterization Deadlock  

Science Conference Proceedings (OSTI)

A key factor limiting the reliability of simulations of anthropogenic climate change is the inability to accurately represent the various effects of clouds on climate. Despite the best efforts of the community, the problem has resisted solution ...

David Randall; Marat Khairoutdinov; Akio Arakawa; Wojciech Grabowski

2003-11-01T23:59:59.000Z

448

The Hercules-Aquila Cloud  

E-Print Network (OSTI)

We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.

Belokurov, V; Bell, E F; Irwin, M J; Hewett, P C; Koposov, S; Rockosi, C M; Gilmore, G; Zucker, D B; Fellhauer, M; Wilkinson, M I; Bramich, D M; Vidrih, S; Rix, H W; Beers, T C; Schneider, D P; Barentine, J C; Brewington, H; Brinkmann, J; Harvanek, M; Krzesnski, J; Long, D; Pan, K; Snedden, S A; Malanushenko, O; Malanushenko, V

2007-01-01T23:59:59.000Z

449

The Hercules-Aquila Cloud  

E-Print Network (OSTI)

We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.

V. Belokurov; N. W. Evans; E. F. Bell; M. J. Irwin; P. C. Hewett; S. Koposov; C. M. Rockosi; G. Gilmore; D. B. Zucker; M. Fellhauer; M. I. Wilkinson; D. M. Bramich; S. Vidrih; H. -W. Rix; T. C. Beers; D. P. Schneider; J. C. Barentine; H. Brewington; J. Brinkmann; M. Harvanek; J. Krzesinski; D. Long; K. Pan; S. A. Snedden; O. Malanushenko; V. Malanushenko

2007-01-27T23:59:59.000Z

450

Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer (ATSR)  

Science Conference Proceedings (OSTI)

Infrared radiometric measurements of surface parameters are prone to error if clouds are present in the observation path. The along-track scanning radiometer (ATSR) with its novel dual-view feature is able to correct for absorption effects in the ...

Albin M. Zvody; Christopher T. Mutlow; David T. Llewellyn-Jones

2000-05-01T23:59:59.000Z

451

Microphysical Properties of Single and Mixed-Phase Arctic Clouds...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and...

452

An Improved Cloud Classification Algorithm Based on the SGP CART...  

NLE Websites -- All DOE Office Websites (Extended Search)

studies which need to group clouds according to cloud types, but also provides necessary information to implement different retrieval algorithms to generate integrated cloud...

453

Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime Land Surface Temperatures Using Ground-Based Meteorology Station Observations  

Science Conference Proceedings (OSTI)

Environment Canada meteorological station hourly sampled air temperatures Tair at four stations in the southwest Yukon were used to identify cloud contamination in the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra clear-sky daytime ...

Scott N. Williamson; David S. Hik; John A. Gamon; Jeffrey L. Kavanaugh; Saewan Koh

2013-03-01T23:59:59.000Z

454

An Artificial Neural Network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations  

Science Conference Proceedings (OSTI)

The Moderate Resolution Imaging Spectro-radiometer (MODIS) instrument aboard the NASA Earth Observing System (EOS) Aqua and Terra platform with 36 spectral bands provides valuable information about cloud microphysical characteristics and therefore ...

Nasrin Nasrollahi; Kuolin Hsu; Soroosh Sorooshian

455

Time Series of Daily Averaged Cloud Fractions over Landfast First-Year Sea Ice from Multiple Data Sources  

Science Conference Proceedings (OSTI)

The time series of daily averaged cloud fractions (CFs) collected from different platformstwo Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua satellites, the National Centers for Environmental Prediction (NCEP)...

Xin Jin; John M. Hanesiak; David G. Barber

2007-11-01T23:59:59.000Z

456

Remote Sensing of Multilayer Cloud-Top Pressure Using Combined Measurements of MERIS and AATSR on board Envisat  

Science Conference Proceedings (OSTI)

A novel and unique algorithm for the retrieval of multilayer cloud-top pressure is presented, relying on synergetic observations of the Medium Resolution Imaging Spectrometer (MERIS) and Advanced Along Track Scanning Radiometer (AATSR) on board ...

Rasmus Lindstrot; Rene Preusker; Jrgen Fischer

2010-06-01T23:59:59.000Z

457

Validating the Validation: The Influence of Liquid Water Distribution in Clouds on the Intercomparison of Satellite and Surface Observations  

Science Conference Proceedings (OSTI)

The intercomparison of LWP retrievals from observations by a geostationary satellite imager [Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation (MSG)] and a ground-based microwave (MW) radiometer is ...

N. A. J. Schutgens; R. A. Roebeling

2009-08-01T23:59:59.000Z

458

Rapid Daytime Estimation of Cloud Properties over a Large Area from Radiance Distributions  

Science Conference Proceedings (OSTI)

An algorithm is developed to rapidly estimate cloud properties for a large area from daytime imager data. In this context, a large area refers to a grid cell composed of many imager pixels. The algorithm assumes a gamma distribution to model the ...

Andrew K. Heidinger

2003-09-01T23:59:59.000Z

459

Towards a hybrid row-column database for a cloud-based medical data management system  

Science Conference Proceedings (OSTI)

Medical data management becomes a real exigency. The emergence of new medical imaging techniques and the necessity to access medical information at any time have led to an inevitable need to find new advanced solutions for managing these critical data. ... Keywords: DICOM, cloud computing, hybrid database, medical imaging

Baraa Mohamad; Laurent d'Orazio; Le Gruenwald

2012-08-01T23:59:59.000Z

460

High speed infrared imaging system and method  

DOE Patents (OSTI)

A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.

Zehnder, Alan T. (Ithaca, NY); Rosakis, Ares J. (Altadena, CA); Ravichandran, G. (Arcadia, CA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

462

STAR FORMATION AND DISTRIBUTIONS OF GAS AND DUST IN THE CIRCINUS CLOUD  

Science Conference Proceedings (OSTI)

We present results of a study on the Circinus cloud based on {sup 13}CO (J = 1 - 0) data as well as visual to near-infrared (JHK{sub S}) extinction maps, to investigate the distributions of gas and dust around the cloud. The global {sup 13}CO distribution of the Circinus cloud is revealed for the first time, and the total molecular mass of the cloud is estimated to be 2.5 x 10{sup 4} M{sub sun} for the assumed distance 700 pc. Two massive clumps in the cloud, called Circinus-W and Circinus-E, have a mass of {approx}5 x 10{sup 3} M{sub sun}. These clumps are associated with a number of young stellar objects (YSOs) searched for in the literature, indicating that they are the most active star-forming sites in Circinus. All of the extinction maps show good agreement with the {sup 13}CO distribution. We derived the average N({sup 13}CO)/A{sub V} ratio in the Circinus cloud to be 1.25 x 10{sup 15} cm{sup -2} mag{sup -1} by comparing the extinction maps with the {sup 13}CO data. The extinction maps also allowed us to probe into the reddening law over the Circinus cloud. We found that there is a clear change in dust properties in the densest regions of Circinus-W and Circinus-E, possibly due to grain growth in the dense cloud interior. Among the YSOs found in the literature, we attempted to infer the ages and masses of the H{alpha} emission-line stars forming in the two clumps, and found that they are likely to be younger than 1 Myr, having a relatively small mass of {approx}<2 M{sub sun} at the zero-age main sequence.

Shimoikura, Tomomi; Dobashi, Kazuhito, E-mail: ikura@u-gakugei.ac.jp [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

2011-04-10T23:59:59.000Z

463

Use of In Situ Observations to Characterize Cloud Microphysical and Radiative Properties: Application to Climate Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of In Situ Observations to Characterize Use of In Situ Observations to Characterize Cloud Microphysical and Radiative Properties: Application to Climate Studies G. M. McFarquhar and T. Nousiainen Department of Atmospheric Sciences University of Illinois Urbana, Illinois M. S. Timlin, S. F. Iacobellis, and R. C. J. Somerville Scripps Institution of Oceanography La Jolla, California Introduction Cloud radiative feedback is the most important effect determining climate response to human activity. Ice clouds reflect solar radiation and absorb thermal emission from the ground and the lower atmosphere and emit infrared radiation to space. The representation of these processes in models affects future climate predictions and there is much uncertainty in the representation of these processes. The size and

464

Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics J. Simmons, O. Lie-Svendsen, and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska The Arctic is a key element in determining the radiation budget of the earth. Within the polar regions, the net radiation (incoming solar radiation minus outgoing infrared radiation) is negative. To understand the role this energy deficit plays in the overall radiation budget, one must examine the prevalent atmospheric features of the Arctic. One such feature is a persistent layer of low-altitude, stratiform clouds found over the central Arctic predominantly from April to September (Tsay et al. 1984). These Arctic stratus clouds (ASC) modulate the earth's radiation budget

465

Carbon Dioxide and Climate: Mechanisms of Changes in Cloud  

Science Conference Proceedings (OSTI)

Changes in cloud distribution may provide a major feedback on climate change. General circulation model simulations show an upward shift of high cloud and a general reduction of free-tropospheric cloud when climate warms. The shift of high cloud ...

J. F. B. Mitchell; W. J. Ingram

1992-01-01T23:59:59.000Z

466

A Critical Review of the Australian Experience in Cloud Seeding  

Science Conference Proceedings (OSTI)

From 1947 to 1994 a number of cloud-seeding experiments were done in Australia based on the static cloud-seeding hypothesis. A critical analysis of these successive cloud-seeding experiments, coupled with microphysical observations of the clouds, ...

Brian F. Ryan; Warren D. King

1997-02-01T23:59:59.000Z

467

Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics  

Science Conference Proceedings (OSTI)

Cloud phase defines many cloud properties and determines the ways in which clouds interact with other aspects of the climate system. The occurrence fraction and characteristics of clouds distinguished by their phase are examined at three Arctic ...

Matthew D. Shupe

2011-03-01T23:59:59.000Z

468

Influence of Cloud Condensation Nuclei on Orographic Snowfall  

Science Conference Proceedings (OSTI)

Pollution aerosols acting as cloud condensation nuclei (CCN) have the potential to alter warm rain clouds via the aerosol first and second indirect effects in which they modify the cloud droplet population, cloud lifetime and size, rainfall ...

Stephen M. Saleeby; William R. Cotton; Douglas Lowenthal; Randolph D. Borys; Melanie A. Wetzel

2009-05-01T23:59:59.000Z

469

Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure  

SciTech Connect

The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

2011-06-24T23:59:59.000Z

470

Imaging Fourier transform spectrometer  

DOE Patents (OSTI)

This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

Bennett, C.L.

1993-09-13T23:59:59.000Z

471

A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations  

Science Conference Proceedings (OSTI)

An event-based method of analyzing the measurements from multiple satellite sensors is presented by using observations of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared ...

Chuntao Liu; Edward J. Zipser; Daniel J. Cecil; Stephen W. Nesbitt; Steven Sherwood

2008-10-01T23:59:59.000Z

472

Prevalence of Precipitation from Warm-Topped Clouds over Eastern Asia and the Western Pacific  

Science Conference Proceedings (OSTI)

Land and ship surface synoptic reports of nondrizzle intensity precipitation in progress were matched with 3596 nearly coincident full disk 4-km resolution infrared images from the GMS-5 geostationary satellite, covering 18 calendar months, in ...

Grant W. Petty

1999-01-01T23:59:59.000Z

473

Intercalibration of Broadband Geostationary Imagers Using AIRS  

Science Conference Proceedings (OSTI)

Geostationary simultaneous nadir observations (GSNOs) are collected for Earth Observing System (EOS) Atmospheric Infrared Sounder (AIRS) on board Aqua and a global array of geostationary imagers. The imagers compared in this study are on (...

Mathew M. Gunshor; Timothy J. Schmit; W. Paul Menzel; David C. Tobin

2009-04-01T23:59:59.000Z

474

Ice in Clouds ExperimentLayer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds  

Science Conference Proceedings (OSTI)

Heterogeneous ice nucleation is a source of uncertainty in models that represent ice clouds. The primary goal of the Ice in Clouds ExperimentLayer Clouds (ICE-L) field campaign was to determine if a link can be demonstrated between ice ...

P. R. Field; A. J. Heymsfield; B. J. Shipway; P. J. DeMott; K. A. Pratt; D. C. Rogers; J. Stith; K. A. Prather

2012-03-01T23:59:59.000Z

475

Cloud Color and Ocean Radiant Heating  

Science Conference Proceedings (OSTI)

It is well recognized that clouds regulate the flux of solar radiation reaching the sea surface. Clouds also affect the spectral distribution of incident irradiance. Observations of spectral and total incident solar irradiance made from the ...

David A. Siegel; Toby K. Westberry; J. Carter Ohlmann

1999-04-01T23:59:59.000Z

476

Near-Global Observations of Low Clouds  

Science Conference Proceedings (OSTI)

This paper analyzes several near-global datasets of low cloud cover, including the the International Satellite Cloud Climatology Project (ISCCP) satellite observations, C. J. Hahn et al. surface-derived observations, and the National Centers for ...

Bryan C. Weare

2000-04-01T23:59:59.000Z

477

Analytical Solutions for Cloud-Drop Concentration  

Science Conference Proceedings (OSTI)

This note compares and evaluates the analytical solutions of Squires and Twomey for cloud droplet concentration. Either solution is likely to be fairly accurate (30%) when the slope parameter (?) of the cloud condensation nuclei distribution is ...

David B. Johnson

1981-01-01T23:59:59.000Z

478

Comparison of ISCCP and Other Cloud Amounts  

Science Conference Proceedings (OSTI)

A new 8-year global cloud climatology has been produced by the International Satellite Cloud Climatology Project (ISCCP) that provides information every 3 h at 280-km spatial resolution covering the period from July 1983 through June 1991. If ...

William B. Rossow; Alison W. Walker; Leonid C. Garder

1993-12-01T23:59:59.000Z

479

ARM - Field Campaign - Spring Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSpring Cloud IOP govCampaignsSpring Cloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior numerical studies of solar radiation propagation through the atmosphere in the presence of clouds have been limited by the necessity to use theoretical representations of clouds. Three-dimensional representations of actual clouds and their microphysical properties, such as the distribution of ice and water, had previously not been possible

480

Ground-based Microwave Cloud Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Cloud Tomography Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation 3/30/2009 ARM RPWG 3 Typical climate model - Cloud fraction & mean water content - Horizontally uniform clouds, no side radiation - Assumption on overlap Courtesy of Bernhard Mayer Cloud structure important to radiation - Cumulus (Benner & Evans 2001, Pincus et al. 2005), deep convection (DiGiuseppe &

Note: This page contains sample records for the topic "infrared cloud imager" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Entrainment and Detrainment in Cumulus Clouds  

Science Conference Proceedings (OSTI)

Vertical redistribution of air and its properties inside convective clouds can be studied by standard thermodynamic analyses (Paluch and saturation point diagrams) if the clouds are nonprecipitating and ice free. It is shown from such analysis ...

Gregory R. Taylor; Marcia B. Baker

1991-01-01T23:59:59.000Z

482

A Focus On Mixed-Phase Clouds  

Science Conference Proceedings (OSTI)

The phase composition and microphysical structure of clouds define the manner in which they modulate atmospheric radiation and contribute to the hydrologic cycle. Issues regarding cloud phase partitioning and transformation come to bear directly ...

Matthew D. Shupe; John S. Daniel; Gijs de Boer; Edwin W. Eloranta; Pavlos Kollias; Edward P. Luke; Charles N. Long; David D. Turner; Johannes Verlinde

2008-10-01T23:59:59.000Z

483

Tropical Thermostats and Low Cloud Cover  

Science Conference Proceedings (OSTI)

The ability of subtropical stratus low cloud cover to moderate or amplify the tropical response to climate forcing such as increased CO2 is considered. Cloud radiative forcing over the subtropics is parameterized using an empirical relation ...

R. L. Miller

1997-03-01T23:59:59.000Z

484

Cloud Condensation Nuclei and Ship Tracks  

Science Conference Proceedings (OSTI)

Enhancements of droplet concentrations in clouds affected by four ships were fairly accurately predicted from ship emission factors and plume and background cloud condensation nucleus (CCN) spectra. Ship exhausts thus accounted for the increased ...

James G. Hudson; Timothy J. Garrett; Peter V. Hobbs; Scott R. Strader; Yonghong Xie; Seong Soo Yum

2000-08-01T23:59:59.000Z

485

Global Cloud Climatologies: A Historical Review  

Science Conference Proceedings (OSTI)

Accurate global cloud information is required for many climate studies, particularly for validation of climate model simulations. This paper reviews the cloud climatologies currently available, identifying and attempting to explain the ...

N. A. Hughes

1984-05-01T23:59:59.000Z

486

The Tropical Warm Pool International Cloud Experiment  

Science Conference Proceedings (OSTI)

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and Aerosol and Chemical Transport in Tropical ...

Peter T. May; James H. Mather; Geraint Vaughan; Keith N. Bower; Christian Jakob; Greg M. McFarquhar; Gerald G. Mace

2008-05-01T23:59:59.000Z

487

Simultaneous Occurrence of Different Cloud Types  

Science Conference Proceedings (OSTI)

Cloud observations from land stations and from ships in the ocean are used to investigate the frequency of observation and the co-occurrence of different cloud types, and the geographical and seasonal variations of these co-occurrences. Ground-...

Stephen G. Warren; Carole J. Hahn; Julius London

1985-07-01T23:59:59.000Z

488

Radar and Radiation Properties of Ice Clouds  

Science Conference Proceedings (OSTI)

The authors derive relations of the equivalent radar reflectivity Ze and extinction coefficient ? of ice clouds and confirm the theory by in situ aircraft observations during the First International Satellite Cloud Climatology Project Regional ...

David Atlas; Sergey Y. Matrosov; Andrew J. Heymsfield; Ming-Dah Chou; David B. Wolff

1995-11-01T23:59:59.000Z

489

Scale Localization of Cloud Particle Clustering Statistics  

Science Conference Proceedings (OSTI)

Recent work has examined the spatial distribution of droplets within a cloud. Experimentally, most studies analyze interevent times from static probes flown linearly through a cloud, allowing the spatial information to be conveyed through a time ...

Michael L. Larsen

2012-11-01T23:59:59.000Z

490

ARM - Field Campaign - Fall 1997 Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

and with surface instruments. Cloud types of interest included single-layer liquid phase, ice-phase, and mixed-phase clouds, as well as multi-layered conditions. To some degree,...

491

Cloud Particle Phase Determination with the AVHRR  

Science Conference Proceedings (OSTI)

An accurate determination of cloud particle phase is required for the retrieval of other cloud properties from satellite and for radiative flux calculations in climate models. The physical principles underlying phase determination using the ...

Jeffrey R. Key; Janet M. Intrieri

2000-10-01T23:59:59.000Z

492

Aquaplanets, Climate Sensitivity, and Low Clouds  

Science Conference Proceedings (OSTI)

Cloud effects have repeatedly been pointed out as the leading source of uncertainty in projections of future climate, yet clouds remain poorly understood and simulated in climate models. Aquaplanets provide a simplified framework for comparing ...

Brian Medeiros; Bjorn Stevens; Isaac M. Held; Ming Zhao; David L. Williamson; Jerry G. Olson; Christopher S. Bretherton

2008-10-01T23:59:59.000Z

493

Satellite Remote Sensing of Multiple Cloud Layers  

Science Conference Proceedings (OSTI)

The goals of the current study are threefold: 1) to present a multispectral, multiresolution (MSMR) methodology for analysis of scenes containing multiple cloud layers; 2) to apply the MSMR method to two multilevel cloud scenes recorded by the ...

B.A. Baum; T. Uttal; M. Poellot; T.P. Ackerman; J.M. Alvarez; J. Intrieri; D.O'C. Starr; J. Titlow; V. Tovinkere; E. Clothiaux

1995-12-01T23:59:59.000Z

494

Precipitation and Cloud Structure in Midlatitude Cyclones  

Science Conference Proceedings (OSTI)

Composite mean fields and probability distribution functions (PDFs) of rain rate, cloud type and cover, cloud-top temperature, surface wind velocity, and water vapor path (WVP) are constructed using satellite observations of midlatitude cyclones ...

Paul R. Field; Robert Wood

2007-01-01T23:59:59.000Z

495

Cloud Optical Thickness Estimation from Irradiance Measurements  

Science Conference Proceedings (OSTI)

Radiative transfer algorithms are developed to estimate the optical thickness of clouds using an irradiance detector located above, deep within, and beneath a cloud. Both monodirectional and diffuse illumination cases are considered. For each ...

H. C. Yi; N. J. McCormick; R. Sanchez

1990-11-01T23:59:59.000Z

496

Does Mixing Promote Cloud Droplet Growth?  

Science Conference Proceedings (OSTI)

A systematic examination of cloud droplet size spectra from the Cooperative Convective Precipitation Experiment (CCOPE) reveals no tendency for an increase in the maximum droplet size with increasing dilution or cloud age.

Ilga R. Paluch; Charles A. Knight

1986-09-01T23:59:59.000Z

497

Cirrus clouds in a global climate model with a statistical cirrus cloud scheme  

E-Print Network (OSTI)

supersaturation in mixed-phase clouds is the saturation vapor pressure weighted by the proportions of ice to be in the liquid phase for clouds warmer than -35ºC, and is assumed to be in the ice phase for cirrus clouds. The conversion of this detrained condensate from liquid phase into the ice phase in the mixed-phase clouds

Meskhidze, Nicholas

498

SPACE4CLOUD: a tool for system performance and costevaluation of cloud systems  

Science Conference Proceedings (OSTI)

Cloud Computing is assuming a relevant role in the world of web applications and web services. Cloud technologies allow to build dynamic systems which are able to adapt their performance to workload fluctuations delegating to the Cloud Provider the intensive ... Keywords: cloud computing, model-driven software development, performance prediction

Davide Franceschelli; Danilo Ardagna; Michele Ciavotta; Elisabetta Di Nitto

2013-04-01T23:59:59.000Z

499

ARM - Measurement - Cloud optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

optical depth optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments GOES : Geostationary Operational Environmental Satellites Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters GOES : Geostationary Operational Environmental Satellites

500

Standards Acceleration to Jumpstart Adoption of Cloud ...  

Science Conference Proceedings (OSTI)

... Standards Acceleration to Jumpstart Adoption of Cloud Computing (SAJACC). The goal of the SAJACC initiative is to drive ...

2013-07-02T23:59:59.000Z