Powered by Deep Web Technologies
Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

RISK-INFORMED SAFETY MARGIN CHARACTERIZATION  

SciTech Connect (OSTI)

The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system’s “loading” and its “capacity”, plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons.

Nam Dinh; Ronaldo Szilard

2009-07-01T23:59:59.000Z

2

Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization  

SciTech Connect (OSTI)

The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.

Curtis Smith

2014-06-01T23:59:59.000Z

3

Safety Margin Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Risk-Informed Safety Margin Characterization (RISMC) Pathway Curtis L. Smith RISMC Pathway Lead Idaho National Laboratory Light Water Reactor Sustainability (LWRS) Program Goals...

4

Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

Curtis Smith; Diego Mandelli

2013-03-01T23:59:59.000Z

5

Risk-Informed Safety Margin Characterization Methods Development Work  

SciTech Connect (OSTI)

This report summarizes the research activity developed during the Fiscal year 2014 within the Risk Informed Safety Margin and Characterization (RISMC) pathway within the Light Water Reactor Sustainability (LWRS) campaign. This research activity is complementary to the one presented in the INL/EXT-??? report which shows advances Probabilistic Risk Assessment Analysis using RAVEN and RELAP-7 in conjunction to novel flooding simulation tools. Here we present several analyses that prove the values of the RISMC approach in order to assess risk associated to nuclear power plants (NPPs). We focus on simulation based PRA which, in contrast to classical PRA, heavily employs system simulator codes. Firstly we compare, these two types of analyses, classical and RISMC, for a Boiling water reactor (BWR) station black out (SBO) initiating event. Secondly we present an extended BWR SBO analysis using RAVEN and RELAP-5 which address the comments and suggestions received about he original analysis presented in INL/EXT-???. This time we focus more on the stochastic analysis such probability of core damage and on the determination of the most risk-relevant factors. We also show some preliminary results regarding the comparison between RELAP5-3D and the new code RELAP-7 for a simplified Pressurized Water Reactors system. Lastly we present some conceptual ideas regarding the possibility to extended the RISMC capabilities from an off-line tool (i.e., as PRA analysis tool) to an online-tool. In this new configuration, RISMC capabilities can be used to assist and inform reactor operator during real accident scenarios.

Smith, Curtis L; Ma, Zhegang; Tom Riley; Mandelli, Diego; Nielsen, Joseph W; Alfonsi, Andrea; Rabiti, Cristian

2014-09-01T23:59:59.000Z

6

Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization FY 2010 Report  

SciTech Connect (OSTI)

The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, is founded on probabilistic characterizations of SSC performance.

Robert W Youngblood

2010-09-01T23:59:59.000Z

7

Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

2012-08-01T23:59:59.000Z

8

Risk-Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment to Be Subjected to Environmental Qualification  

SciTech Connect (OSTI)

The Risk-Informed Safety Margin Characterization (RISMC) pathway of the DOE’s Light Water Reactor Sustainability (LWRS) program focuses on advancing the state of the art in safety analysis and risk assessment to support decision-making on nuclear power plant operation well beyond the originally designed lifetime of the plants (i.e., beyond 60 years). Among the issues being addressed in RISMC is the significance of SSC aging and how confident we are about our understanding of its impact on the margin between the loads SSCs are expected to see during normal operation and accident conditions, and the SSC capacities (their ability to resist those loads) as the SSCs age. In this paper, a summary is provided of a case study that examines SSC aging from an environmental qualification (EQ) perspective. The case study illustrates how the state of knowledge regarding SSC margin can be characterized given the overall integrated plant design, and was developed to demonstrate a method for deciding on which cables to focus, which cables are not so important from an environmental qualification margin standpoint, and what plant design features or operating characteristics determine the role that environmental qualification plays in establishing a safety case on which decisions regarding margin can be made. The selection of cables for which demonstration of margin with respect to aging and environmental challenges uses a technique known as Prevention Analysis. Prevention Analysis is a Boolean method for optimal selection of SSCs (that is, those combinations of SSCs both necessary and sufficient to meet a predetermined selection criterion) in a manner that allows demonstration that plant-level safety can be demonstrated by the collection of selected SSCs alone. Choosing the set of SSCs that is necessary and sufficient to satisfy the safety objectives, and demonstrating that the safety objectives can be met effectively, determines where resources are best allocated to assure SSC performance margin. The paper describes the resulting component types that were selected by Prevention Analysis and identifies the accident sequence characteristics that cause these component types to be important from an EQ and aging perspective (and, hence, worthwhile evaluating the extent of safety margin). In addition, component types not selected as needing significant margin from an EQ and aging perspective are discussed and an engineering rationale is developed justifying the lack of need to apply resources to demonstrating margin for these component types. This rationale is in terms of design features of the plant and operating characteristics that make these component types less important from an EQ and aging perspective. While the case study focuses on EQ and aging of equipment and cables located inside the containment of this PWR, the prevention analysis method is demonstrated to be an effective technique for identification of minimal collections of components that would be effective in managing safety for a variety of issues associated with aging and long-term operation of the fleet of plants.

D. P. Blanchard; R. W. Youngblood

2014-06-01T23:59:59.000Z

9

Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification  

SciTech Connect (OSTI)

In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional level, at the barrier level, at the component level), and where margin is thin or perhaps just degrading. If the plant is safe, it tells the decision-maker why the plant is safe and where margin needs to be maintained, and perhaps where the plant can afford to relax.

R. Youngblood; D. Blanchard

2011-09-01T23:59:59.000Z

10

Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification  

SciTech Connect (OSTI)

In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional level, at the barrier level, at the component level), and where margin is thin or perhaps just degrading. If the plant is safe, it tells the decision-maker why the plant is safe and where margin needs to be maintained, and perhaps where the plant can afford to relax.

D. Blanchard; R. Youngblood

2012-04-01T23:59:59.000Z

11

Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

Curtis Smith; Cristian Rabiti; Richard Martineau

2012-11-01T23:59:59.000Z

12

On the quantification of safety margins  

E-Print Network [OSTI]

The nuclear industry has relied on the concept of Defense in Depth (DID) and traditional safety margins to deal with the uncertainties associated with the design and operation of nuclear facilities. These concepts were ...

Pagani, Lorenzo P

2004-01-01T23:59:59.000Z

13

Safety Information for Families  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Information for Families Checking your home for hazards 22 safety items no home should be without Home Safety Checklists Helpful links Home Safety Council Hunter Safety:...

14

Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program  

SciTech Connect (OSTI)

The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

2012-09-20T23:59:59.000Z

15

Building a "Margin of Safety" Into Renewable Energy  

E-Print Network [OSTI]

Building a "Margin of Safety" Into Renewable Energy Procurements: A Review of Experience purchasers and electricity regulators must confront the reality that signed renewable energy contracts will not always yield operational projects on the timeline given in the contracts themselves. Renewable energy

16

Subsystem fragility: Seismic Safety Margins Research Program (Phase I)  

SciTech Connect (OSTI)

Seismic fragility levels of safety related equipment are developed for use in a seismic oriented Probabilistic Risk Assessment (PRA) being conducted as part of the Seismic Safety Margins Research Program (SSMRP). The Zion Nuclear Power Plant is being utilized as a reference plant and fragility descriptions are developed for specific and generic safety related equipment groups in Zion. Both equipment fragilities and equipment responses are defined in probabilistic terms to be used as input to the SSMRP event tree/fault tree models of the Zion systems. 65 refs., 14 figs., 11 tabs.

Kennedy, R. P.; Campbell, R. D.; Hardy, G.; Banon, H.

1981-10-01T23:59:59.000Z

17

Seismic Safety Margins Research Program: a concluding look  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) was started in 1978 with the goal of developing tools and data bases to compute the probability of earthquake - caused radioactive release from commercial nuclear power plants. These tools and data bases were to help NRC to assess seismic safety at nuclear plants. The methodology to be used was finalized in 1982 and applied to the Zion Nuclear Power Station. The SSMRP will be completed this year with the development of a more simplified method of analysis and a demonstration of its use on Zion. This simplified method is also being applied to a boiling-water-reactor, LaSalle.

Cummings, G.E.

1984-01-01T23:59:59.000Z

18

Nuclear Safety Information Dashboard | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

19

Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process  

SciTech Connect (OSTI)

The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE?STD?3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do not involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.

Beaulieu, R. A.

2013-10-03T23:59:59.000Z

20

Safety Staff Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterials (CRM) |Safety

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Seismic Safety Margins Research Program. Phase I, final report. Major structure response (Project IV). Volume 5  

SciTech Connect (OSTI)

Task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain.

Benda, B. J.; Johnson, J. J.; Lo, T. Y.

1981-05-01T23:59:59.000Z

22

Seismic Safety Margins Research Program. Phase I. Interim definition of terms  

SciTech Connect (OSTI)

This report documents interim definitions of terms in the Seismic Safety Margins Research Program (SSMRP). Intent is to establish a common-based terminology integral to the probabilistic methods that predict more realistically the behavior of nuclear power plants during an earthquake. These definitions are a response to a request by the Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards at its meeting held November 15-16, 1979.

Smith, P.D.; Dong, R.G.

1980-12-19T23:59:59.000Z

23

Development of the seismic input for use in the seismic safety margins research program  

SciTech Connect (OSTI)

This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.

Bernreuter, D.L.; Chung, D.H.

1980-01-29T23:59:59.000Z

24

Seismic safety margins research program. Project I SONGS 1 AFWS Project  

SciTech Connect (OSTI)

The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values.

Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

1981-02-24T23:59:59.000Z

25

Structure/piping sensitivity studies for the US NRC Seismic Safety Margins Research Program. [PWR; BWR  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) is a NRC-funded, multi-year program conducted by Lawrence Livermore National Laboratory (LLNL). One of the goals of the program is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I, a probabilistic computational procedure was developed for the seismic safety assessment. In Phase II, sensitivity studies were performed, codes and models were improved, and analysis of the Zion plant was completed.

Shieh, L.C.; O'Connell, W.J.; Johnson, J.J.

1983-01-01T23:59:59.000Z

26

Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

1983-12-01T23:59:59.000Z

27

Reactor operation safety information document  

SciTech Connect (OSTI)

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

28

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan Funds Revolving LoanA l i c e L i p p e

29

Risk Informed Safety Margin Characterization Case Study: Selection of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan Funds Revolving LoanA l i c e L i p p

30

Safety Policy Arrangement 23-2003 (rev. 2007) Health and Safety Information for New Staff  

E-Print Network [OSTI]

Safety Policy Arrangement 23-2003 (rev. 2007) Health and Safety Information for New Staff Statement The University of Dundee recognises the importance of every staff member receiving a staff health and safety leaflet referring them to the Safety Services health and safety information on the University web site

Davidson, Fordyce A.

31

Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public.

Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

1982-08-02T23:59:59.000Z

32

Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management  

SciTech Connect (OSTI)

The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

Curtis Smith; James Knudsen; Bentley Harwood

2013-08-01T23:59:59.000Z

33

Nuclear safety information sharing agreement between NRC and...  

Office of Environmental Management (EM)

for DOE and NRC to exchange information related to safety issues associated with non-reactor nuclear facilities. The NRC-DOE Inter-Agency nuclear safety information sharing...

34

Marginal Abatement Cost Tool (MACTool) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan, Kansas:Margaretta High School

35

Using Temporal Information in an Automated Classification of Summer, Marginal Ice Zone Imagery*  

E-Print Network [OSTI]

Using Temporal Information in an Automated Classification of Summer, Marginal Ice Zone Imagery, even with the human eye. BackScatter instability causu the intensities of the fiistyear ice, multiyear ice, and open water classes to intermix, thus making an intensity-based classification invalid

Kansas, University of

36

SSI sensitivity studies and model improvements for the US NRC Seismic Safety Margins Research Program. Rev. 1  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) is a US NRC-funded program conducted by Lawrence Livermore National Laboratory. Its goal is to develop a complete fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. In Phase II of the SSMRP, the methodology was applied to the Zion nuclear power plant. Three topics in the SSI analysis of Zion were investigated and reported here - flexible foundation modeling, structure-to-structure interaction, and basemat uplift. The results of these investigations were incorporated in the SSMRP seismic risk analysis. 14 references, 51 figures, 13 tables.

Johnson, J.J.; Maslenikov, O.R.; Benda, B.J.

1984-10-01T23:59:59.000Z

37

SAFETY MARGINS CONFIDENCE ESTIMATION FOR A PASSIVE RESIDUAL HEAT REMOVAL SYSTEM  

E-Print Network [OSTI]

are traditionally performed for the verification of the safety performance of a Nuclear Power Plant (NPP) under, Italy enrico.zio@polimi.it 2 INET, Institute of Nuclear and New Energy Technology Tsinghua University, Beijing,100084, China ABSTRACT For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must

Boyer, Edmond

38

Transactions of the nineteenth water reactor safety information meeting  

SciTech Connect (OSTI)

This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

Weiss, A.J. (comp.)

1991-10-01T23:59:59.000Z

39

Safety Basis Information System | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1  470.4-7 |Safety Basis

40

THE NICOLSON MUSEUM Venue and Safety Information for School Excursions  

E-Print Network [OSTI]

THE NICOLSON MUSEUM Venue and Safety Information for School Excursions Venue Name: The Nicholson Museum, Sydney University Museums Location: Quadrangle A14, The University of Sydney NSW 2006 Phone Number: (02) 9351 2812 Fax Number: (02) 9351 7305 Web Address: www.usyd.edu.au/museums Sydney University

Viglas, Anastasios

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

THE MACLEAY MUSEUM Venue and Safety Information for School Excursions  

E-Print Network [OSTI]

THE MACLEAY MUSEUM Venue and Safety Information for School Excursions Venue Name: The Macleay Museum, Sydney University Museums Location: Macleay Building A12, The University of Sydney NSW 2006 Phone Number: (02) 9036 5253 Fax Number: (02) 9351 7305 Web Address: www.usyd.edu.au/museums Sydney University

Viglas, Anastasios

42

Fire and Life Safety Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and EventsFiberFire

43

Laser Safety Web Resources The web links below represent varied resources for laser safety information and  

E-Print Network [OSTI]

Laser Safety Web Resources The web links below represent varied resources for laser safety endorsement by Georgia Tech. Please contact the Laser Safety Officer if you know of any helpful resources of Laser Physics and Technology, http://www.rp- photonics.com/encyclopedia.html Kentek, http

Houston, Paul L.

44

The Criticality Safety Information Resource Center at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

1997-05-01T23:59:59.000Z

45

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

46

Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental  

E-Print Network [OSTI]

1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

Huennekens, John

47

Safety First Safety Last Safety Always Safety Tip #22  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Tip #22 Mowing Operations Mowing unsafely just doesn for out-of-control vehicles. Wear hearing protection and a safety vest. Wear a hard hat and safety goggles of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

48

Safety and Health Regulatory and Policy Response Line- General Information  

Broader source: Energy.gov [DOE]

The DOE Worker Safety and Health Standards Response Line, established in 1992, is a service that responds to questions DOE, DOE contractor, and DOE subcontractor personnel regarding DOE-adopted and -prescribed standards and directives. These responses may not represent official OSHA policies.

49

University Fire Marshal's Office Holiday Fire Safety Information  

E-Print Network [OSTI]

festive space heaters... As you un-box those lights, wires and bearers of holiday warmth, it is also heaters. Now is the time--as you set them up--to ensure that you do so providing for the safety of your must be kept in water at all times to slow the natural drying process. Approved Tree Lots ­ Licensed

Straight, Aaron

50

Institute for Business and Home Safety (IBHS) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels JumpSafety (IBHS) Jump to:

51

Transactions of the twenty-fifth water reactor safety information meeting  

SciTech Connect (OSTI)

This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

Monteleone, S. [comp.

1997-09-01T23:59:59.000Z

52

Transactions of the Twenty-First Water Reactor Safety Information Meeting  

SciTech Connect (OSTI)

This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

Monteleone, S. [comp.

1993-10-01T23:59:59.000Z

53

Guidelines for nuclear power plant safety issue prioritization information development. Supplement 4  

SciTech Connect (OSTI)

This is the fifth in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues (NUREG/CR-2800, Andrews et al. 1983). This report contains results of issue-specific analyses for 23 issues. Each issue was considered within the constraints of available information as of winter 1986, and two staff-weeks of labor. The results are referenced, as one consideration in setting priorities for reactor safety issues, in NUREG-0933, ''A Prioritization of Generic Safety Issues.''

Tabatabai, A.S.; Fecht, B.A.; Powers, T.B.; Bickford, W.E.; Andrews, W.B.; Gallucci, R.H.V.; Bian, S.H.; Daling, P.M.; Eschbach, E.J.; Allen, C.H.

1986-07-01T23:59:59.000Z

54

Informational meeting on new environmental health and safety master's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLYInfluenceInformation3Information for|

55

Communication Information Structures and Contents for Enhanced Safety of Highway Vehicle  

E-Print Network [OSTI]

in developing intelligent transporta- tion systems. By autonomous or semi-autonomous vehicle con- trol and inter-vehicle, autonomous vehicles. I. INTRODUCTION Highway platooning of vehicles has been identified as a promising1 Communication Information Structures and Contents for Enhanced Safety of Highway Vehicle Platoons

Zhang, Hongwei

56

September 2011 APPENDIX A: Summary of Workplace Safety and Environmental Protection (WSEP) Information  

E-Print Network [OSTI]

) to assist in managing HSE issues on campus. Please find below information on what our College is doing consciousness. The University is implementing a Health, Safety and Environment Management System (HSEMS HSE training courses, as related to their job responsibilities. We are also working to develop

Saskatchewan, University of

57

Embrittlement Database from the Radiation Safety Information Computational Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Embrittlement Data Base (EDB) is a comprehensive collection of data from surveillance capsules of U.S. commercial nuclear power reactors and from experiments in material test reactors. The collected data are contained in either the Power Reactor Embrittlement Data Base (PR-EDB) or the Test Reactor Embrittlement Data Base (TR-EDB). The EDB work includes verification of the quality of the EDB, provision for user-friendly software to access and process the data, exploration and/or confirmation of embrittlement prediction models, provision for rapid investigation of regulatory issues, and provision for the technical bases for voluntary consensus standards or regulatory guides. The EDB is designed for use with a personal computer. The data are collected into "raw data files." Traceability of all data is maintained by including complete references along with the page numbers. External data verification of the PR-EDB is the responsibility of the vendors, who were responsible for the insertion and testing of the materials in the surveillance capsules. Internal verification is accomplished by checking against references and checking for inconsistencies. Examples of information contained in the EDBs are: Charpy data, tensile data, reactor type, irradiation environments, fracture toughness data, instrumented Charpy data, pressure-temperature (P-T) data, chemistry data, and material history. The TR-EDB additionally has annealing Charpy data. The current version of the PR-EDB contains the test results from 269 Charpy capsules irradiated in 101 reactors. These results include 320 plate data points, 123 forging data points, 113 standard reference materials (SRMS) or correlation monitor (CM) points, 244 weld material data points, and 220 heat-affected-zone (HAZ) material data points. Similarly, the TR-EDB contains information for 290 SRM or CM points, 342 plate data points, 165 forging data points, 378 welds, and 55 HAZ materials. [copied from http://rsicc.ornl.gov/RelatedLinks.aspx?t=edb

58

seismic margin  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National Carbon Capture Center, i ,&;i,,rtsp

59

New Methods and Tools to Perform Safety Analysis within RISMC  

SciTech Connect (OSTI)

The Risk Informed Safety Margins Characterization (RISMC) Pathway uses a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. What differentiates the RISMC approach from traditional probabilistic risk assessment (PRA) is the concept of safety margin. In PRA, a safety metric such as core damage frequency (CDF) is generally estimated using static fault-tree and event-tree models. However, it is not possible to estimate how close we are to physical safety limits (say peak clad temperature) for most accident sequences described in the PRA. In the RISMC approach, what we want to understand is not just the frequency of an event like core damage, but how close we are (or not) to this event and how we might increase our safety margin through margin management strategies in a Dynamic PRA (DPRA) fashion. This paper gives an overview of methods that are currently under development at the Idaho National Laboratory (INL) with the scope of advance the current state of the art of dynamic PRA.

Diego Mandelli; Curtis Smith; Cristian Rabiti; Andrea Alfonsi; Robert Kinoshita; Joshua Cogliati

2013-11-01T23:59:59.000Z

60

Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base  

SciTech Connect (OSTI)

A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities  

SciTech Connect (OSTI)

This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

2011-03-13T23:59:59.000Z

62

Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis  

SciTech Connect (OSTI)

As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

Smith, Curtis L; Mandelli, Diego; Zhegang Ma

2014-11-01T23:59:59.000Z

63

Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)  

SciTech Connect (OSTI)

This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

Fatell, L.B.; Woolsey, G.B.

1993-04-15T23:59:59.000Z

64

RISK-INFORMED BALANCING OF SAFETY, NONPROLIFERATION, AND ECONOMICS FOR THE SFR  

SciTech Connect (OSTI)

A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards, particularly concerning seismic and aircraft impactrelated risks. Most importantly, within the context of the TNF historical SFR safety concerns about energetic core disruptive accidents are seen to be unimportant, but those of rare scenarios mentioned above are seen to be of dominant concern. In terms of proliferation risks the SFR energy system is seen not to be of considerably greater concern than with other nuclear power technologies, providing that highly effective safeguards are employed. We find the economic performance of proposed SFRs likely, due to the problems of using sodium as a coolant, to be inferior to those of LWRs unless they can be credited for services to improve nuclear waste disposal, nuclear fuel utilization and proliferation risk reductions. None of the design innovations investigated offers the promise to reverse this conclusion. The most promising innovation investigated is that of improving the plant's thermodynamic efficiency via use of the supercritical CO{sub 2} (rather than steam Rankine) power conversion system. We were unable to reach conclusions about the economic and proliferation risk implications of competing nuclear fuel processing methods, as available designs are too little developed to justify any such results. Overall, we find the SFR to be a promising alternative to LWRs should the conditions governing the valuation change substantially from current ones.

George Apostolakis; Michael Driscoll; Michael Golay; Andrew Kadak; Neil Todreas; Tunc Aldmir; Richard Denning; Michael Lineberry

2011-10-20T23:59:59.000Z

65

Waste isolation safety assessment program. Task 4. Third contractor information meeting  

SciTech Connect (OSTI)

The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

Not Available

1980-06-01T23:59:59.000Z

66

Analysis of gain margins and phase margins of a nonlinear reactor control system  

SciTech Connect (OSTI)

By using the gain-phase margin tester, the parameter-plane method for the nonlinear control system is extended to frequency-domain related to gain margin and phase margin. The stability and self-excited oscillation are investigated with respect to the adjustable parameters. The useful information concerning the effect of adjustable parameters can be obtained, after the describing function curves and the boundaries of constant gain margin and constant phase margin are plotted in the parameter plane. Some interesting consequences are offered by employing the practical control system of a material testing reactor.

Chang, C.H.; Chang, M.K. (Chung Cheng Inst. of Technology, Tao-Yuan (Taiwan, Province of China))

1994-08-01T23:59:59.000Z

67

Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)  

SciTech Connect (OSTI)

With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

NONE

1986-12-01T23:59:59.000Z

68

Gain margin and phase margin analysis of a nuclear reactor control system with multiple transport lags  

SciTech Connect (OSTI)

In this paper a method for finding the boundaries of constant gain margin and phase margin of control systems with transport lags and adjustable parameters is presented. The considered systems are first modified by adding a gain-phase margin tester, then the characteristic equations are formulated, and finally the stability equations are used to find the boundaries of constant gain margin and phase margin. The main advantage of the proposed method is to obtain complete information about the effects of adjustable parameters on gain margin and phase margin and their corresponding crossover frequencies. In order to show the usefulness of the proposed method a nuclear reactor control system with multiple transport lags is chosen as one of the examples.

Chang, C.H. (Institute of Electronics, National Chiao-Tung Univ. (TW)); Han, K.W. (Chung-Shan Institute and National Chiao-Tung Univ., Hsinchu (TW))

1989-08-01T23:59:59.000Z

69

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

70

Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks  

SciTech Connect (OSTI)

This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

Not Available

1990-07-01T23:59:59.000Z

71

Nuclear criticality safety guide  

SciTech Connect (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

72

Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis  

SciTech Connect (OSTI)

The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

Curtis Smith; Diego Mandelli; Cristian Rabiti

2013-11-01T23:59:59.000Z

73

Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics  

SciTech Connect (OSTI)

This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

1993-03-01T23:59:59.000Z

74

Loading margin Stable operating  

E-Print Network [OSTI]

Linear approximation at p1 Actual loading margin Loadingmargin Parameter p p1 p2 p3 IEEE Transactions collapse. Linear and quadratic estimates to the variation of the loading margin with respect to any sys power support, wheeling, load model param- eters, line susceptance, and generator dispatch. The accuracy

75

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Broader source: Energy.gov [DOE]

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

76

ENVIRONMENTAL, HEALTH AND SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

California at Davis, University of

77

Materials Safety Data Sheets  

E-Print Network [OSTI]

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

78

RESEARCH SAFETY RADIATION SAFETY  

E-Print Network [OSTI]

RESEARCH SAFETY RADIATION SAFETY ENVIRONMENTAL PROGRAMS HAZARDOUS MATERIALS CONTROLLED SUBSTANCES INTEGRATED WASTE MANAGEMENT LABORATORY SAFETY AUDITS & COMPLIANCE BIOSAFETY and ENVIRONMENTAL HEALTH EMERGENCY MANAGEMENT and MISSION CONTINUITY FIRE PREVENTION and LIFE SAFETY GENERAL SAFETY TRAINING

79

Safety First Safety Last Safety Always OSHA has developed extensive regulations detailing operator  

E-Print Network [OSTI]

Safety First Safety Last Safety Always OSHA has developed extensive regulations detailing operator Operation Safety Tip #3 Chance takers are accident makers. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from reading the information

Minnesota, University of

80

September 2013 Laboratory Safety Manual Appendix C Templates for Lab-Specific Information  

E-Print Network [OSTI]

, or location if filed separately from this Plan Standard Operating Procedures (SOPs), or location if filed reference materials, University or departmental safety rules that apply to us, equipment maintenance manuals

Wilcock, William

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory  

E-Print Network [OSTI]

Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement...

Selvage, Ronald Derek

1995-01-01T23:59:59.000Z

82

Form Name Form description Form URL Laboratory Safety General Information on Laboratory Safety at Penn State http://www.ehs.psu.edu/occhealth/labsafety.cfm  

E-Print Network [OSTI]

Safety Standard Operating Procedure (SOP) Example/Template SOP that must be approved by Laser Safety's safe for maintenance to work on http://www.ehs.psu.edu/occhealth/SafetyClearance.pdf Bloodborne from all lab personnel. http://www.ehs.psu.edu/occhealth/unit_specific_plan_form.pdf Procedures

Maroncelli, Mark

83

Safety First Safety Last Safety Always Three soil types, plus rock, determine the slope or  

E-Print Network [OSTI]

Safety First Safety Last Safety Always · Three soil types, plus rock, determine the slope or safety to be at least 2 feet from the edge. Excavation Requirements Safety Tip #10 If you see a mistake and don't fix it on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

84

Safety First Safety Last Safety Always Over the years, many techniques and methods have been  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Over the years, many techniques and methods have been, especially to the lower back. DON'T TWIST! Safe Lifting Techniques Safety Tip #6 Don't learn safety of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

85

Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle-mounted  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle, if they can be installed safely. Aerial Lifts Safety Tip #11 A spill, a slip, a hospital trip #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet

Minnesota, University of

86

Safety First Safety Last Safety Always When using warning line systems, comply with the following  

E-Print Network [OSTI]

Safety First Safety Last Safety Always When using warning line systems, comply with the following into the work area. Warning Lines Safety Tip #17 Don't put your life on the line. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

Minnesota, University of

87

Safety First Safety Last Safety Always Construction employers are required to provide medical  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Construction employers are required to provide medical at Construction Job Sites Safety Tip #7 Falling objects can be brutal if you don't protect your noodle. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

Minnesota, University of

88

Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision of an  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Scaffolds may only be erected under the supervision displacement. Scaffolding 101: The Basics Safety Tip #9 A safer you is a safer me. #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet. Please refrain from

Minnesota, University of

89

Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days the victim liquids to drink. Treat for shock until professional medical help arrives. Heat Stress Safety Tip the information provided on the reverse side of this safety tip sheet. Please refrain from reading the information

Minnesota, University of

90

Safety First Safety Last Safety Always Personal fall-protection systems include a body harness (safe-  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Personal fall-protection systems include a body harness so they will not be damaged. Personal Fall-Protection Systems Safety Tip #8 Just because you always;Additional Information for Presenters Review the information provided on the reverse side of this safety tip

Minnesota, University of

91

contingency Nominal loading margin  

E-Print Network [OSTI]

is estimated. First a nose curve is computed by continuation to obtain a nominal loading margin. Then linear and the very fast computation of the linear estimates. Keywords: Power system security, contingency analy- sis formulas derived in [4]. The computations are summarized: 1 A pattern of load increase, generator dispatch

92

167 Prospectus California Margin  

E-Print Network [OSTI]

. Each of the three transects across the California Current will compare deep-water sites near the core), for those sites that require it, can be obtained from the following World Wide Web site: http margin, Deep Sea Drilling Project (DSDP) Leg 63, occurred immediately before the first deployment

93

Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995  

SciTech Connect (OSTI)

This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

Monteleone, S. [comp.

1995-09-01T23:59:59.000Z

94

Pipeline safety. Information on gas distribution system operators reporting unaccounted for gas  

SciTech Connect (OSTI)

According to Department of Transportation records, 92 of the 1491 gas distribution system operators reported high levels of unaccounted for gas (unaccounted for gas is the difference between the amount of gas purchased and sold) for 1984, the latest year for which data were available. Of the 92 gas system operators, 64 were municipals (gas systems owned by a governmental entity, such as a city or county) and 28 were nonmunicipals. Based on the data we reviewed, these 92 gas systems did not report any accidents during calendar year 1984. Part I provides more details on the unaccounted for gas of municipal gas systems. Federal and industry officials consider that unaccounted for gas in excess of 15% of gas purchases high and worthy of investigation. High levels of unaccounted for gas can occur for a number of reasons, including errors in metering and billing, not accounting for gas used by city or company facilities, and leaking gas pipelines. While it may, a leak does not always indicate a safety problem. For example, a slow leak in an open area may not be a safety hazard. The Secretary has the authority to regulate any liquid deemed hazardous when transported by pipeline, and therefore could regulate hazardous liquids not currently regulated including methanol and carbon dioxide. However, the Department of Transportation has no plans to regulate any additional liquids. Part II provides more details. 4 figs., 2 tabs.

Not Available

1986-02-01T23:59:59.000Z

95

_____________________________ Environment, Health, & Safety _________ __________________ Training Program  

E-Print Network [OSTI]

, training requirements, work planning and control, traffic safety, Building 76 emergency information be applied · Recognize who is accountable for safety · Describe the purpose of a work authorization · Recall11/22/2011 _____________________________ Environment, Health, & Safety

Eisen, Michael

96

Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII  

SciTech Connect (OSTI)

Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

Not Available

1980-01-01T23:59:59.000Z

97

Margins up; consumption down  

SciTech Connect (OSTI)

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

98

Aerial Work Platform Safety Program  

E-Print Network [OSTI]

Aerial Work Platform Safety Program Updated: July 22, 2013 #12;Aerial Work Platform Safety Program ..........................................................................................................11 #12;Aerial Work Platform Safety Program 1 The official version of this information will only for establishing and maintaining the Aerial Work Platform Safety Program. Appropriate safety equipment (e

Holland, Jeffrey

99

E-Print Network 3.0 - aging safety assessment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Group Collection: Computer Technologies and Information Sciences ; Engineering 3 Safety Policy Safety Services Summary: considering health and safety...

100

Safety First Safety Last Safety Always The term competent person comes up often in the  

E-Print Network [OSTI]

Safety First Safety Last Safety Always The term competent person comes up often in the Occupational Safety and Health Administration (OSHA) construction regulations. OSHA defines a competent person as "one Person Safety Tip #13 Being safe is like breathing. You never want to stop. #12;Additional Information

Minnesota, University of

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

102

Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits to  

E-Print Network [OSTI]

Safety First Safety Last Safety Always In every building or structure, arrange and maintain exits it is not immediately visible to the occupants. Means of Egress Safety Tip #15 Ignoring a warning can cause much of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

103

High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV  

SciTech Connect (OSTI)

Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

Not Available

1980-01-01T23:59:59.000Z

104

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

105

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

106

Quantification of design margins/safety factors based on the prediction uncertainty in tritium production rate from fusion integral experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics  

SciTech Connect (OSTI)

Various engineering-oriented fusion integral experiments were performed within the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics during the last decade. The objectives of this ten-year program were: (a) to establish new experimental techniques for design-related neutronics experiments, (b) to provide experimental data on local and integrated parameters such as tritium production rate, nuclear heating, and activation for the purpose of assessing the accuracies of present nuclear data and calculational methods, and (c) to provide designers with design margin for important responses. Tritium breeding rate (TPR) has the prime focus among other reactions. The program consisted of three phases in which local and integrated measurements inside a Li{sub 2}O test assembly that has various engineering features of a prototypical blanket (e.g. SS FW, H{sub 2}O coolant channels, beryllium multiplier). The analysis of the experiments were performed independently by the US and JAERI using their own codes/databases. A wide range of the calculated-to-experimental (C/E) values were observed in all these experiments for local TPR from Li-6 (T{sub 6}), from Li-7 (T{sub 7}), and from Li-natural (T{sub n}). In this paper, the experimental and calculational data sets of local TPR in each experiment were interpreted to give estimate to the prediction uncertainty, u{sub i}, of the line-integrated TPR and its standard deviation, {sigma}{sub i}.

Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

107

Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and  

E-Print Network [OSTI]

Reliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power

108

PAT-1 safety analysis report addendum author responses to request for additional information.  

SciTech Connect (OSTI)

The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

2010-09-01T23:59:59.000Z

109

RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019  

SciTech Connect (OSTI)

SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

Szilard, Ronaldo H; Smith, Curtis L

2014-09-01T23:59:59.000Z

110

Safety First Safety Last Safety Always Safety Shoes  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Shoes and Boots Safety Tip #21 Don't let your day guards) can be used in conjunction with standard safety shoes. Safety boots Safety boots come in many varieties, and which you will use will depend on the specific hazards you face. Boots offer more protection

Minnesota, University of

111

Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281  

SciTech Connect (OSTI)

With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and the effective pooling and exchange of knowledge and experience can only be of benefit to all participants to help complete the cleanup mission more quickly and more cost effectively. This paper examines in detail the tools and processes used to promote information exchange and the progress made to date. It also discusses the challenges and issues involved and proposes recommendations to others who are involved in similar activities. (authors)

Seed, Ian; James, Paula [Cogentus Consulting (United States)] [Cogentus Consulting (United States); Mathieson, John [NDA United Kingdom (United Kingdom)] [NDA United Kingdom (United Kingdom); Judd, Laurie [NuVision Engineering, Inc. (United States)] [NuVision Engineering, Inc. (United States); Elmetti-Ramirez, Rosa; Han, Ana [US DOE (United States)] [US DOE (United States)

2013-07-01T23:59:59.000Z

112

DOE handbook electrical safety  

SciTech Connect (OSTI)

Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

NONE

1998-01-01T23:59:59.000Z

113

Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior  

SciTech Connect (OSTI)

This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

Monteleone, S. [comp.

1995-04-01T23:59:59.000Z

114

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

115

The safety valve and climate policy  

E-Print Network [OSTI]

In discussions of a cap-and-trade system for implementation of Kyoto Protocol-type quantity targets, a "safety valve" was proposed where, by government sales of emissions permits at a fixed price, the marginal cost of the ...

Jacoby, Henry D.; Ellerman, A. Denny.

116

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

117

Caldera Rim Margins | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera Depression Jump to:

118

Safety First Safety Last Safety Always General site safety  

E-Print Network [OSTI]

Safety First Safety Last Safety Always General site safety During the course of construction barrier at least 5 feet (1.5m) high having a fire-resistance rating of at least one half hour. Site Safety and Clean-up Safety Tip #20 Safety has no quitting time. All contractors should clean up their debris, trash

Minnesota, University of

119

Maximal rank of extremal marginal tracial states  

E-Print Network [OSTI]

States on coupled quantum system whose restrictions to each subsystems are normalized traces are called marginal tracial states. We investigate extremal marginal tracial states and maximal rank of such states. Diagonal marginal tracial states are also considered.

Hiromichi Ohno

2009-11-18T23:59:59.000Z

120

Safety Staff Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and Security Systems5,Updates- DOESafety

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Safety Staff Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and Security Systems5,Updates-

122

Safety Staff Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterials (CRM)

123

2015 DOE Safety and Security Enforcement Workshop - Badging and...  

Office of Environmental Management (EM)

2015 DOE Safety and Security Enforcement Workshop - Badging and Facility Information 2015 DOE Safety and Security Enforcement Workshop - Badging and Facility Information January...

124

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety. The safety checklist also helps you to establish due diligence under Federal and Provincial safety laws

Northern British Columbia, University of

125

Toolbox Safety Talk Ladder Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Ladder Safety Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry elevated work tasks. Like any tool, ladders must be used properly to ensure employee safety. GENERAL

Pawlowski, Wojtek

126

Safety First Safety Last Safety Always Wear a protective helmet if you work in areas where there is  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Wear a protective helmet if you work in areas where meet the specifications contained in American National Standards Institute, Z89.1-1969, Safety the requirements. Hard Hats Safety Tip #16 Use your head: Wear a helmet. #12;Additional Information for Presenters

Minnesota, University of

127

Safety First Safety Last Safety Always Accessible areas within the swing radius of the rear of the  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Accessible areas within the swing radius of the rear is permissible to meet the OSHA barricade requirement. Crane Swing Radius Safety Tip #12 Better to be dead sure on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

128

Safety First Safety Last Safety Always Ladders come in all shapes and sizes, so choose the proper  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Ladders come in all shapes and sizes, so choose the proper aluminum ladders near them. Ladders Safety Tip #5 While on a ladder, never step back to admire your work of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

129

Thermal reactor safety  

SciTech Connect (OSTI)

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

Not Available

1980-06-01T23:59:59.000Z

130

Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings  

SciTech Connect (OSTI)

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)] [comp.; Brookhaven National Lab., Upton, NY (United States)

1994-04-01T23:59:59.000Z

131

Sixteenth water reactor safety information meeting: Proceedings: Volume 5, NUREG-1150, accident managment, recent advances in severe accident research, TMI-2, BWR Mark l shell failure  

SciTech Connect (OSTI)

This five-volume report contains 141 papers out of the 175 that were presented at the Sixteenth Water Reactor Safety Information Meeting held at the National Institute of Standards and Technology, Gaithersburg, Maryland, during the week of October 24--27, 1988. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included twenty different papers presented by researchers from Germany, Italy, Japan, Sweden, Switzerland, Taiwan and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This document, Volume 5, discusses NUREG-1150, Accident Management, Recent Advances in Severe Accident Research, BWR Mark I Shell Failure, and the Three Mile Island-2 Reactor.

Weiss, A.J. (comp.)

1989-03-01T23:59:59.000Z

132

JLF Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan Target Chamber The JupiterJLF Safety

133

Safety First Safety Last Safety Always Requirements for employers  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Requirements for employers · Fallprotectionsandproperuseofrelated-safety equipmentsuchaslifelines,harness · Properuseofdangeroustools,thenecessaryprecautionstotake,andtheuseof theprotectiveandemergencyequipmentrequired. Safety Training and Education Safety Tip #18 Get smart. Use safety from the start. All

Minnesota, University of

134

Lift truck safety review  

SciTech Connect (OSTI)

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

135

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety to remain safe here at UNBC. The safety checklist also helps you to establish due diligence under Federal

Northern British Columbia, University of

136

DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011  

Broader source: Energy.gov [DOE]

PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

137

Last revised 3 October 2014. For revisions since this date and for further information, please refer to the Health & Safety section at  

E-Print Network [OSTI]

and outlines responsibilities and arrangements for ensuring your safety. It is provided to help you work safely and controlled. As required by the management of Health and Safety at Work Regulations and other regulations refer to the Health & Safety section at: http://www.zoo.cam.ac.uk/zooonly/safety/index.htm SAFETY

138

MMU Health and Safety Policy  

E-Print Network [OSTI]

/Further information Health Protection Agency ­ www.hpa.org.uk Health and Safety Executive ­ www.hse.gov.uk Health and safety management system and details the commitment the University has for maintaining and improving are properly controlled through an effective health and safety management system and commitment at all levels

139

Toolbox Safety Talk Safety Data Sheets (SDS)  

E-Print Network [OSTI]

Toolbox Safety Talk Safety Data Sheets (SDS) Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. Chemical manufacturers are required to produce Safety Data Sheets (SDS) for all chemicals produced. "Safety Data Sheets", previously referred

Pawlowski, Wojtek

140

Summary of the contractor information exchange meeting for improving the safety of Soviet-Designed Nuclear Power Plants, February 19, 1997  

SciTech Connect (OSTI)

This report summarizes a meeting held on February 19, 1997, in Washington, D.C. The meeting was held primarily to exchange information among the contractors involved in the U.S. Department of Energy`s efforts to improve the safety of Soviet-designed nuclear power plants. Previous meetings have been held on December 5-6, 1995, and May 22, 1996. The meetings are sponsored by the U.S. Department of Energy and coordinated by the Pacific Northwest National Laboratory. The U.S. Department of Energy works with countries to increase the level of safety at 63 Soviet-designed nuclear reactors operating in Armenia, Bulgaria, the Czech Republic, Hungary, Lithuania, Russia, Slovakia, and Ukraine. The work is implemented largely by commercial companies and individuals who provide technologies and services to the countries with Soviet-designed nuclear power plants. Attending the meeting were 71 representatives of commercial contractors, the U.S. Department of Energy, the U.S. Department of State, national laboratories, and other federal agencies. The presentations and discussions that occurred during the exchange are summarized in this report. While this report captures the general presentation and discussion points covered at the meeting, it is not a verbatim, inclusive record. To make the report useful, information presented at the meeting has been expanded to clarify issues, respond to attendees` requests, or place discussion points in a broader programmatic context. Appendixes A through F contain the meeting agenda, list of attendees, copies of presentation visuals and handouts, the Strategy Document discussed at the meeting, and a summary of attendees` post-meeting evaluation comments. As with past information exchanges, the participants found this meeting valuable and useful. In response to the participant`s requests, a fourth information exchange will be held later in 1997.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Preservation of FFTF Data Related to Passive Safety Testing  

SciTech Connect (OSTI)

One of the goals of the Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). A key area deserving special attention for preservation is the data relating to passive safety testing that was conducted in FFTF and EBR-II during the 1980’s. Accidents at Unit 4 of the Chernobyl Station and Unit 2 at Three Mile Island changed the safety paradigm of the nuclear power industry. New emphasis was placed on assured safety based on intrinsic plant characteristics that protect not only the public, but the significant investment in the plant as well. Plants designated to perform in this manner are considered to be passively safe since no active sensor/alarm system or human intervention is required to bring the reactor to a safe shutdown condition. The liquid metal reactor (LMR) has several key characteristics needed for a passively safe reactor: reactor coolant with superior heat transfer capability and very high boiling point, low (atmospheric) system pressures, and reliable negative reactivity feedback. The credibility of the design for a passively safe LMR rests on two issues: the validity of analytic methods used to predict passive safety performance and the availability of relevant test data to calibrate design tools. Safety analysis methods used to analyze LMRs under the old safety paradigm were focused on calculating the source term for the Core Disruptive Accident. Passive safety design requires refined analysis methods for transient events because treatment of the detailed reactivity feedbacks is important in predicting the response of the reactor. Similarly, analytic tools should be calibrated against actual test experience in existing LMR facilities. The principal objectives of the combined FFTF natural circulation and Passive Safety Testing program were: 1) to verify natural circulation as a reliable means to safely remove decay heat, 2) to extend passive safety experience to a large-size LMR and obtain data for validating design analysis computer codes, and 3) to develop and test passive safety enhancements that might be used for future LMRs. These tests were designed to provide data sufficient to allow separation of fuel temperature effects from structural temperature effects. The data developed through this testing program were used to verify the predictive capability of passive safety analysis methods as well as provide a data base for calibrating design tools such as the SASSYS/SAS4A codes. These tests were instrumental in improving understanding of reactivity feedback mechanisms in LMRs and demonstrating passive safety margins available in an LMR. Knowledge preservation at the FFTF is focused on the areas of design, construction, startup, and operation of the reactor. This information may be of potential use for international exchanges with other LMR programs around the world. This information provides the basis for creating benchmarks for validating and testing large scale computer programs. All information preserved to date is now being stored and categorized consistent with the IAEA international standardized taxonomy. The test results information exists in several different formats depending upon the final stage of the test evaluation. Over 100 documents relevant to passive safety testing have been identified and are being recovered, scanned, and catalogued. Attempts to recover plant data tapes are also in progress. Documents related to passive safety testing are now being categorized consistent with internationally agreed upon IAEA standards. Documents are being converted to electronic format compatible with a general search engine being developed by INL. The data from the FFTF passive safety tests provides experimental verification of structural reactivity effects that should be very useful to innovative designers seeking to optimize passive safety in the design of new LMRs.

Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.

2010-10-01T23:59:59.000Z

142

Landscape Evolution at an Active Plate Margin  

E-Print Network [OSTI]

Landscape Evolution at an Active Plate Margin edited and compiled by David R. Jessey and Robert E;32009 Desert Symposium Table of contents Landscape evolution at an active plate margin: a field trip

de Lijser, Peter

143

Long-Term Mitigation Strategies and Marginal Abatement Cost Curves: A Case Study on Brazil  

E-Print Network [OSTI]

Long-Term Mitigation Strategies and Marginal Abatement Cost Curves: A Case Study on Brazil Adrien abatement targets need to decide which abatement mea- sures to implement, and in which order. This paper investigates the ability of marginal abatement cost (MAC) curves to inform this decision, reanalyzing a MAC

Paris-Sud XI, Université de

144

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 1, Plenary sessions, reactor licensing topics, NUREG-1150, risk analysis/PRA applications, innovative concepts for increased safety of advanced power reactors, severe accident modeling and analysis  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 1, discusses the following: plenary sessions; reactor licensing; NUREG-1150; risk analysis; innovative concepts for increased safety of advanced power reactors; and severe accident modeling and analysis. Thirty-two reports have been cataloged separately.

Weiss, A.J. (comp.)

1988-02-01T23:59:59.000Z

145

Seismic margins and calibration of piping systems  

SciTech Connect (OSTI)

The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

1985-01-01T23:59:59.000Z

146

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

147

South Atlantic margins of Africa. page 1 South Atlantic continental margins of Africa  

E-Print Network [OSTI]

South Atlantic margins of Africa. page 1 South Atlantic continental margins of Africa: a comparison The South Atlantic continental passive margins of Africa comprise the major depocentres on the African plate of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins Michel

Paris-Sud XI, Université de

148

Marginal Lands: Concept, Assessment and Management  

SciTech Connect (OSTI)

Marginal lands have received wide attention for their potential to improve food security and support bioenergy production. However, environmental, ecosystem service, and sustainability concerns have been widely raised over the use of marginal land. Knowledge of the extent, location, and quality of marginal lands as well as their assessment and management are limited and diverse. This paper provides a review of the historical development of marginal concept, its application and assessment. Limitations and priority research needs of marginal land assessment and management were discussed.

Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Bandaru, Vara Prasad [ORNL; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL

2013-01-01T23:59:59.000Z

149

The Fast Flux Test Facility built on safety  

SciTech Connect (OSTI)

No other high-tech industry has grown as fast as the nuclear industry. The information available to the general public has not kept pace with the rapid growth of nuclear data---its growth has outpaced its media image and the safety of nuclear facilities has become a highly debated issue. This book is an attempt to bridge the gap between the high-tech information of the nuclear industry and its understanding by the general public. It explains the three levels of defense at the Fast Flux Test Facility (FFTF) and why these levels provide an acceptable margin to protect the general public and on-site personnel, while achieving FFTF's mission to provide research and development for the US Department of Energy (DOE).

Not Available

1989-01-01T23:59:59.000Z

150

Tag: Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8all en Best Practices Workshop for Safety Culture http:www.y12.doe.goveshbest-practices-workshop-safety-culture

151

Biological Safety  

Broader source: Energy.gov [DOE]

The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

152

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

153

Informational Purposes Only - DOE Directives, Delegations, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Weapon Surety Program (Informational Purposes Only) Acquisition Career Management Program (Informational Purposes Only) Facility Safety (For Informational Purposes Only)...

154

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

155

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

156

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

157

Marginal vitiligo: an unusual depigmenting disorder  

E-Print Network [OSTI]

including marginal vitiligo, DLE, and hypopigmented MF.Direct immunofluorescence DLE: Discoid lupus erythematosusdiagnosis of IVRB includes DLE. In fact, the patches of

Trikha, Ritika; McCowan, Nancye; Brodell, Robert

2015-01-01T23:59:59.000Z

158

Assessment of seismic margin calculation methods  

SciTech Connect (OSTI)

Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

1989-03-01T23:59:59.000Z

159

Environment, Safety, and Health Reporting Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 231.1, ENVIRONMENT, SAFETY AND HEALTH REPORTING, which establishes management objectives and requirements for reporting environment, safety and health information. Chg 1, 11-7-96.

1996-11-07T23:59:59.000Z

160

Environment Safety and Health Reporting Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. Does not cancel other directives.

1995-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

: FS Vancouver: Ops CHEMICAL SAFETY 27265 CONTRACTOR SAFETY 23867 EARLY RETURN TO WORK 23011 EMERGENCYENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION SIMON FRASER UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY DEPARTMENT Discovery Park - MTF 8888 University Drive Burnaby, British Columbia Canada V5

162

SafeCert 2008 Deriving Safety Cases for the Formal Safety  

E-Print Network [OSTI]

SafeCert 2008 Deriving Safety Cases for the Formal Safety Certification of Automatically Generated Southampton, SO17 1BJ, UK Abstract We present an approach to systematically derive safety cases for automatically generated code from information collected during a formal, Hoare-style safety certification

163

Safety Values  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Work-related injuries, illnesses and environmental incidents are preventable. * A just culture exists where safety and environmental concerns are brought forward without fear of...

164

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations *...

165

Forrestal Security and Safety Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish uniform procedures for the security and safety of the Forrestal Building and to inform all personnel of precautionary measures. This directive does not cancel another directive. Canceled by DOE N 251.11.

1983-02-02T23:59:59.000Z

166

Experts are partnering in Tampa, the Lightning Capital of the U.S., to provide safety information about the dangers of lightning and promote  

E-Print Network [OSTI]

this free event to learn more about the national Lightning Safety Awareness Campaign to protect your family about the dangers of lightning and promote risk reduction and lightning protection education. Attend safety & protection resources FEATURED GUESTS INCLUDE: · Tampa Mayor Bob Buckhorn · Tampa Fire Chief

167

Northwestern University Office for Research Safety  

E-Print Network [OSTI]

Northwestern University Office for Research Safety ISIS User Manual ISIS (pronounced -ss) is Northwestern University's Integrated Safety Information System. ISIS is the on-line web application by which PIs submit applications and registrations for review. ISIS also builds a laboratory's Safety Profile

Shull, Kenneth R.

168

Toolbox Safety Talk Waste Anesthetic Gas (WAG)  

E-Print Network [OSTI]

Toolbox Safety Talk Waste Anesthetic Gas (WAG) Environmental Health & Safety Facilities Safety into the surrounding room during medical or research procedures are considered waste anesthetic gas (WAG). These gases. Please refer to the EHS Waste Anesthetic Gas Standard Operating Procedure for complete information

Pawlowski, Wojtek

169

Marginal, Erodible Land Retirement Policy (Minnesota)  

Broader source: Energy.gov [DOE]

It is state policy to encourage the retirement of marginal, highly erodible land, particularly land adjacent to public waters and drainage systems, from crop production and to reestablish a cover...

170

Wholesale marginal prices in competitive generation markets  

SciTech Connect (OSTI)

Wholesale marginal electricity prices are being used in several actual competitive generation markets worldwide, both to remunerate generators and to charge consumption. These prices must account not only for energy, but also for guarantee of supply in the long and the short term. This paper: (a) provides a sound conceptual and quantitative foundation for wholesale pricing based on generation services, where any existing restrictions in operation or planning in real power markets are accounted for, (b) clearly establishes the relationship between short term marginal costs, long term marginal costs and optimal wholesale electricity prices, and (c) identifies the reasons for mismatches in cost recovery with marginal generation prices. The theoretical results are verified with a detailed realistic power system model.

Perez-Arriaga, I.J. [National Electric Regulatory Commission, Madrid (Spain)] [National Electric Regulatory Commission, Madrid (Spain); Meseguer, C. [Univ. Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica] [Univ. Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica

1997-05-01T23:59:59.000Z

171

Safety for Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is Safety for

172

Safety | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is Safety

173

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

174

Idaho National Laboratory Safety Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Hand Tool Safety * Protect Your Hearing * Water Safety * Home Firearms Safety * Bicycle Safety * Pedestrian Safety * Others Outdoor Survival Safety (K-Middle School) What to...

175

Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium  

SciTech Connect (OSTI)

Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

Lau, C. W.; Demaziere, C. [Dept. of Applied Physics, Div. of Nuclear Engineering, Chalmers Univ. of Technology, 412 96 Gothenburg (Sweden); Nylen, H.; Sandberg, U. [Ringhals AB, 432 85 Vaeroebacka (Sweden)

2012-07-01T23:59:59.000Z

176

Sandia National Laboratories: NASA Award for Marginal Ice Zone...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECClimateAnalysisNASA Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) NASA Award for Marginal Ice Zone Observations and Process Experiment...

177

Safety Bulletin  

Broader source: Energy.gov (indexed) [DOE]

in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

178

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

179

Toolbox Safety Talk Hot Work Safety Procedures  

E-Print Network [OSTI]

Toolbox Safety Talk Hot Work Safety Procedures Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. "Hot Work" is defined as any temporary WORK Obtain a hot work permit from your supervisor or safety rep. Ensure fire/smoke detection

Pawlowski, Wojtek

180

Toolbox Safety Talk Machine Shop Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Machine Shop Safety Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University be taken seriously. Many of the most frequently cited OSHA safety standards pertain to machine safeguarding

Pawlowski, Wojtek

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

Maroncelli, Mark

182

LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

Houston, Paul L.

183

Winter Safety Information & Tips  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and AnalysisDepartment of

184

Safety, Security & Fire Report  

E-Print Network [OSTI]

2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

Straight, Aaron

185

Lessons Learned from Safety Events  

SciTech Connect (OSTI)

The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database, its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety. [1,2] Since 2009, continuing work has not only highlighted the value of safety lessons learned, but enhanced how the database provides access to another safety knowledge tool, Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learnings from around the world. This paper updates recent progress, highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting, analyzing and using safety event information.

Weiner, Steven C.; Fassbender, Linda L.

2012-11-01T23:59:59.000Z

186

ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH & SAFETY ORIENTATION HANDBOOK Environmental Health and Safety Office safety & Safety Office 494-2495 (Phone) 494-2996 (Fax) Safety.Office@dal.ca (E-mail) www.dal.ca/safety (Web) Radiation Safety Office 494-1938 (Phone) 494-2996 (Fax) Melissa.Michaud@dal.ca (E-mail) University

Brownstone, Rob

187

Efficient Model Checking of PSL Safety Properties Tuomas Launiainen  

E-Print Network [OSTI]

to be checked are safety properties. This work presents an efficient approach to model check safety properties properties. In this work we present an approach for model checking of safety properties expressed in PSLEfficient Model Checking of PSL Safety Properties Tuomas Launiainen Department of Information

Heljanko, Keijo

188

Toolbox Safety Talk Welding & Metal Work Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

Pawlowski, Wojtek

189

Proceedings of the US Nuclear Regulatory Commission fourteenth water reactor safety information meeting: Volume 1, Plenary session, Severe accident sequence analysis, Risk analysis/PRA applications, Reference plant risk analysis - NUREG-1150, Innovative concepts for increased safety of advanced power reactors  

SciTech Connect (OSTI)

This six-volume report contains 156 papers out of the 175 that were presented at the Fourteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 27-31, 1986. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-four different papers presented by researchers from Canada, Czechoslovakia, Finland, Germany, Italy, Japan, Mexico, Spain, Sweden, Switzerland and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

Weiss, A.J. (comp.)

1987-02-01T23:59:59.000Z

190

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

191

Electrical Safety Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL Electrical Safety Page DOE Electrical Safety Handbook General Statement Home & Office Equipment Statement APS Electrical Safety Update Guidelines for Working on Voltages < 240...

192

Safety Overview Committee (SOC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(SOC) Charter 1. Purpose The Safety Overview Committee establishes safety policies and ad hoc safety committees. 2. Membership Membership will include the following individuals:...

193

Nuclear Safety Regulatory Framework  

Broader source: Energy.gov (indexed) [DOE]

overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

194

E-Print Network 3.0 - achieving inherent safety Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 2 The Goal Structuring Notation A Safety Argument Notation Tim Kelly and Rob Weaver Summary: that their systems achieve acceptable levels of safety. These...

195

Asymptotic Safety  

E-Print Network [OSTI]

Asymptotic safety is a set of conditions, based on the existence of a nontrivial fixed point for the renormalization group flow, which would make a quantum field theory consistent up to arbitrarily high energies. After introducing the basic ideas of this approach, I review the present evidence in favor of an asymptotically safe quantum field theory of gravity.

R. Percacci

2008-11-18T23:59:59.000Z

196

Gallium Safety in the Laboratory  

SciTech Connect (OSTI)

A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

Lee C. Cadwallader

2003-06-01T23:59:59.000Z

197

Gallium Safety in the Laboratory  

SciTech Connect (OSTI)

A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

Cadwallader, L.C.

2003-05-07T23:59:59.000Z

198

Focus on Venezuelan heavy crude: refining margins  

SciTech Connect (OSTI)

Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

Not Available

1984-01-25T23:59:59.000Z

199

CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)  

SciTech Connect (OSTI)

The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

TOFFER, H.

2005-05-02T23:59:59.000Z

200

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS  

E-Print Network [OSTI]

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS · Safety glasses with side shields distance away from moving machine parts, work pieces, and cutters. · Use hand tools for their designed to oil, clean, adjust, or repair any machine while it is running. Stop the machine and lock the power

Veiga, Pedro Manuel Barbosa

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

OCCUPATIONAL SAFETY and HEALTH  

E-Print Network [OSTI]

MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM Complaints about State Program administration may be made to Regional Administrator, Occupational Safety

Weaver, Harold A. "Hal"

202

OCCUPATIONAL HEALTH AND SAFETY  

E-Print Network [OSTI]

OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

203

Intrusion Margins and Associated Fractures | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewable Energy Council

204

ECN GHG Marginal Abatement Cost curves (NAMAC) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon Transition Jump to:

205

Environment, Safety and Health Reporting  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

2012-01-01T23:59:59.000Z

206

Safety harness  

DOE Patents [OSTI]

A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

1993-01-01T23:59:59.000Z

207

Safety valve  

DOE Patents [OSTI]

The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

Bergman, Ulf C. (Malmoe, SE)

1984-01-01T23:59:59.000Z

208

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

209

System Design and the Safety Basis  

SciTech Connect (OSTI)

The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination & decommissioning (D&D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities.

Ellingson, Darrel

2008-05-06T23:59:59.000Z

210

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

211

Incorporating safety risk in early system architecture trade studies  

E-Print Network [OSTI]

Ideally, safety should be a part of the early decision making used in conceptual system design. However, effectively evaluating safety risk3 early enough to inform the early trade studies is not possible with current ...

Dulac, Nicholas

212

Light Water Reactor Safety Technology Program. Quarterly report, October-December 1979  

SciTech Connect (OSTI)

Information on LWR safety is presented concerning the Technology Management Center support programs; risk methods utilization; improved safety systems;man-machine interaction; safety data; and progress reports for each of the research project areas.

None

1980-06-01T23:59:59.000Z

213

Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory  

SciTech Connect (OSTI)

Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

Goen, L.K. [Los Alamos National Lab., NM (United States); Salmon, M.W. [EQE International, Irwine, CA (United States)

1995-12-01T23:59:59.000Z

214

Environment, Safety, and Health Reporting  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

2003-08-19T23:59:59.000Z

215

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

216

Environmental Health and Instructional Safety Employee Safety  

E-Print Network [OSTI]

Environmental Health and Instructional Safety #12;Employee Safety Page 1 To our University an environment for students, faculty, staff, and visitors that will not adversely affect their health and safety task that is unsafe or hazardous. Environmental Health and Instructional Safety can assist departments

de Lijser, Peter

217

Safety Share from National Safety Council  

Broader source: Energy.gov [DOE]

Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

218

Geophysical study of the East African margin  

E-Print Network [OSTI]

's passive rifted continental margins (Talwani and Eldholm, 1972, 1973; Luyendyk and Bunce, 1973; Rabinowitz, 1974, 1977; Konig and Talwani, 1977). These include: 1) a free-air gravity high over continental shelf break and low over continental slope...Brecque (1977) and Veevers (1977) who propose that thick oceanic crust forms during the initial rifting stage of continental separation. Rabinowitz and LaBrecque (1977) further suggest this zone of thickened crust to be approximately 150 km wide. Numerous...

Matthias, Paul Kulman

2012-06-07T23:59:59.000Z

219

Shear measurements across the northern margin of Whillans Ice Stream  

E-Print Network [OSTI]

Field measurements of surface deformation across the northern shear margin of Whillans Ice Stream, West Antarctica, were analyzed to better understand the processes controlling the position and migration of this margin. Four lines of poles extending...

Van Der Veen, C.J.; Jezek, K.; Stearns, Leigh

2007-01-01T23:59:59.000Z

220

Safety, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radiation Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 RS-PO-0001-001.docW. J:.EnergySafety Home

222

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department  

E-Print Network [OSTI]

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department Environmental Safety Division University of Georgia Adapted from the Safety Guidelines for Field Researchers published by the Office of Environment, Health & Safety at University of California, Berkeley #12;Safety Guidelines

Arnold, Jonathan

223

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect (OSTI)

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

224

Safety - 88-Inch Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is a Prioty

225

Safety for Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is

226

SCHOOL OF EDUCATION SAFETY STATEMENT  

E-Print Network [OSTI]

................................................................... 13 #12;HEALTH & SAFETY Health & Safety is important. The Safety, Health and Welfare at Work Act 1989SCHOOL OF EDUCATION SAFETY STATEMENT March 2009 1 #12;2 Health & Safety Statement Contents HEALTH & SAFETY................................................................... 3 EMERGENCY DETAILS

O'Mahony, Donal E.

227

Campus Public Safety Office Michael Soto, Director of Public Safety  

E-Print Network [OSTI]

Campus Public Safety Office Michael Soto, Director of Public Safety Service Resource, teaching, research and service. Michael D. Soto Director of Public Safety Public Safety Office Service

Bertini, Robert L.

228

National Safety Council Safety Share | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety Council Safety Share National Safety Council Safety Share May 16, 2013 Presenter: Joe Yanek, Fluor Government Group, Washington, D.C. Topics Covered: The Campbell Institute...

229

EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

Page | 0 EMPLOYEE SAFETY ORIENTATION _________________ Risk, Safety & Security 3333 University Way to be acquainted with the safety program, welcome! Risk, Safety & Security at UNBC is dynamic. With more than 3 worksite and safe work procedures which pertain to your job. The role of the Risk and Safety Office

Bolch, Tobias

230

University of Pittsburgh Safety Manual  

E-Print Network [OSTI]

: ELECTRICAL SAFETY Effective Date 5/6/13 Page 2 of 4 1.10 Lockout/Tagout procedures must be followed when equipment is de-energized. Call EH&S for more information on the University's Lockout/Tagout Program. 1

Sibille, Etienne

231

Marginal Energy Prices - RECS97 Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel: FeCrAl Claddingand AprilMarginal

232

Sandia National Laboratories: marginal sea ice zone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative time under loadmarginal sea

233

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND  

E-Print Network [OSTI]

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND RADIATION SAFETY MANUAL UNIVERSITY OF MARYLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Radiation Safety Committee (RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Radiation Safety Office (RSO

Rubloff, Gary W.

234

Idaho National Laboratory Fusion Safety Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Information: Brad Merrill 208-526-0395 Email Contact Fusion Safety Program Thermonuclear fusion powers the Sun and the stars and is the most powerful energy source known....

235

Acceptable NSLS Safety Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

236

Monthly Analysis of Electrical Safety Occurrences – June 2011  

Broader source: Energy.gov [DOE]

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

237

Monthly Analysis of Electrical Safety Occurrences – August 2011  

Broader source: Energy.gov [DOE]

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

238

Monthly Analysis of Electrical Safety Occurrences – July 2011  

Broader source: Energy.gov [DOE]

An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

239

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

240

Pipeline Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Unreviewed Safety Question Requirements  

Broader source: Energy.gov (indexed) [DOE]

Unreviewed Safety Question Requirements FUNCTIONAL AREA GOAL: A fully compliant Unreviewed Safety Question (USQ) program is implemented and maintained across the site....

242

Dam Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

243

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office  

E-Print Network [OSTI]

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office 130 DeSoto Street G-7 Parran with sources of ionizing radiation are required to be instructed in the basic principles of radiation protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide

Sibille, Etienne

244

Hot Cell Facility (HCF) Safety Analysis Report  

SciTech Connect (OSTI)

This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

2000-11-01T23:59:59.000Z

245

Nuclear reactor safety heat transfer  

SciTech Connect (OSTI)

Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

Jones, O.C.

1982-07-01T23:59:59.000Z

246

SHSD Manager Safety Engineering Group Manager  

E-Print Network [OSTI]

Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

247

SAFETY AND THE Office of Environmental Health and Instructional Safety  

E-Print Network [OSTI]

SAFETY AND THE SUPERVISOR Office of Environmental Health and Instructional Safety #12;Safety to University safety, health, and environmental compliance strategies. Every employee is entitled to a safe standard practices, and administering your overall safety, health, and environmental responsibilities

de Lijser, Peter

248

Safety Alerts  

Broader source: Energy.gov [DOE]

Documents downloaded from the password-protected areas of this web site may be made available to the DOE Federal and contractor community and to the military. These documents are not permitted to be made available to the general public via an Internet web site. All parties with access to the password-protected areas of the EHSS web site are to exercise due diligence to maintain control of information.

249

MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS  

SciTech Connect (OSTI)

A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

Mason M. Medizade; John R. Ridgely; Donald G. Nelson

2004-11-01T23:59:59.000Z

250

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety EHS-FORM-022 v.1.1 Page 1 of 1 Laboratory safety self NA Radioactive materials [MNI Radiation Safety Manua ]l MNI: contact Christian Janicki christian.janicki@mcgill.ca 8888-43866 ANSI (American National Standards Institute) Class 3b or 4 lasers Biological safety

Shoubridge, Eric

251

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code J. Pannell ECE Support Engineer x Ken Jodrey E-Shops, for B. Wilson x * co-chairs Brad Hayes Safety, no report. Pending C. Safety Day Planning Committee Planning for Safety Days on Sept. 10 & 11 continues

Saskatchewan, University of

252

Effectiveness Safety Committee  

E-Print Network [OSTI]

Increase the Effectiveness of Your Safety Committee Lisa Tobiason An equal opportunity educator 302 Acres. ­ East Campus 338 Acres. #12;UNL Safety Committees · Chancellors University Safety Committee (CUSC). · Unit Safety Committees. ­ Thirty-two active committees representing Lincoln campuses

Farritor, Shane

253

SAFETY MANUAL ENVIRONMENTAL  

E-Print Network [OSTI]

HAZARDOUS MATERIALS SAFETY MANUAL ENVIRONMENTAL HEALTH & SAFETY #12;Emergency Phone Numbers Newark-800-722-7112 National .....................................1-800-222-1222 July 2007 Environmental Health and Safety://www.udel.edu/ehs #12;University Of Delaware Safety Policy Number 7-1 The policy of the University of Delaware

Firestone, Jeremy

254

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code-Shops Tech x R. Dahlgren Safety Resources x L. Wilson (support) Dean's Office x D. Hart Safety Resources x T involving chemicals. C. Safety Day Planning Committee L. Roth reported that the schedule of speakers

Saskatchewan, University of

255

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

256

active continental margin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HMMs, On-line handwrit- ing recognition, Off Do,Trinh-Minh-Tri 336 Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Energy Storage, Conversion...

257

EOCENE BIRDS FROM THE WESTERN MARGIN OF SOUTHERNMOST SOUTH AMERICA .  

E-Print Network [OSTI]

??This study presents the first record of Eocene birds from the western margin of southernmost South America. Three localities in Magallanes, southern Chile, have yielded… (more)

Sallaberry, Michel

2010-01-01T23:59:59.000Z

258

Tank farms criticality safety manual  

SciTech Connect (OSTI)

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

259

2011 Annual Criticality Safety Program Performance Summary  

SciTech Connect (OSTI)

The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

Andrea Hoffman

2011-12-01T23:59:59.000Z

260

Assessment of Biomass Resources from Marginal Lands in APEC Economies  

SciTech Connect (OSTI)

The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

Milbrandt, A.; Overend, R. P.

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets  

E-Print Network [OSTI]

Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Haifeng Liu restructured wholesale power markets, the detailed derivation of LMPs as actually used in industry practice Operator (MISO). Keywords: Locational marginal pricing, wholesale power market, AC optimal power flow, DC

Tesfatsion, Leigh

262

CRAD, Nuclear Safety Delegations for Documented Safety Analysis...  

Office of Environmental Management (EM)

Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD...

263

Environment, Safety and Health Reporting  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12, cancels DOE O 231.1B.

2011-06-27T23:59:59.000Z

264

Environment, Safety and Health Reporting  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12.

2011-06-27T23:59:59.000Z

265

Seismic Safety Margins Research Program. Phase I, Final report: subsystem response (Project V). Volume 6  

SciTech Connect (OSTI)

This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response.

Shieh, L. C.; Chuang, T. Y.; O'Connell, W. J.

1981-07-01T23:59:59.000Z

266

Aviation Safety Reporting System 625 Ellis St. Suite 305 Mountain View California 94043  

E-Print Network [OSTI]

of the event. Those who work to improve aviation safety have long recognized that incident reporting fromAviation Safety Reporting System 625 Ellis St. Suite 305 Mountain View California 94043 Cabin Crew Safety Information Article Presented at the 17th International Aircraft Cabin Safety Symposium by Linda

267

Safety Case Construction and Reuse using Patterns T P Kelly, J A McDermid  

E-Print Network [OSTI]

Safety Case Construction and Reuse using Patterns T P Kelly, J A McDermid High Integrity Systems of common structures in safety case arguments through their documentation as `Safety Case Patterns'. Problems with the existing, informal and ad-hoc approaches to safety case material reuse are highlighted

Kelly, Tim

268

Who can help me? The Safety Office offers ergonomic assessments for  

E-Print Network [OSTI]

Who can help me? The Safety Office offers ergonomic assessments for all University of Winnipeg employees. Call 786.9894 to arrange an appointment. For more information on ergonomics, visit the Safety Office website at www. uwinnipeg.ca/index/safety-safety. ERGONOMICS OFFICE What is ergonomics? Ergonomics

Martin, Jeff

269

Review of recent safety programs at the Hanford Site for new in-tank equipment  

SciTech Connect (OSTI)

The general safety criteria are reviewed; examples of several different safety programs are illustrated; cost and schedule information are presented; and outlines of general safety considerations and specific safety design requirements and solutions are listed. A suggested program approach is covered in some detail.

Berglin, E.J.; Johansen, F.P., Westinghouse Hanford

1996-10-31T23:59:59.000Z

270

Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments  

SciTech Connect (OSTI)

Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.

Pevey, Ronald E.

2005-09-15T23:59:59.000Z

271

Health & Safety Plan Last Updated  

E-Print Network [OSTI]

Health & Safety Plan Last Updated March 2008 1 #12;A. SCOPE AND RESPONSIBILITY....................................................................................................................................... 3 2. Safety and Health Policy...................................................................................................................... 3 4. Safety Coordinator

Anderson, Richard

272

INL Fusion Safety Program - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brad Merrill Fusion Safety Program Group Leader Group Leader for the Fusion Safety Program. Technical lead for computer code development for fusion safety. Work in licensing,...

273

Nuclear Safety Research and Development...  

Energy Savers [EERE]

Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

274

Magnetic Field Safety Magnetic Field Safety  

E-Print Network [OSTI]

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

275

Safety Case Depictions vs. Safety Cases Would the Real Safety Case Please Stand Up?  

E-Print Network [OSTI]

Safety Case Depictions vs. Safety Cases ­ Would the Real Safety Case Please Stand Up? Ibrahim Habli York, UK ibrahim.habli@cs.york.ac.uk, tim.kelly@cs.york.ac.uk Keywords: Safety Cases, Safety Arguments, GSN, Safety Assurance, Certification Abstract The integrity of the safety case depends primarily

Kelly, Tim

276

Modular HTGR Safety Basis and Approach  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

Thomas Hicks

2011-08-01T23:59:59.000Z

277

Environment, Safety, and Health Reporting Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. (Paragraphs 2a, 2a(1), 2a(2), 2b, 2b(1), 2b(2), and 2i(3)(a) through 2i(3)(d) of Chapter II, and Appendix A canceled by DOE N 231.1; Chapter IV canceled by DOE O 470.2A.)

2000-01-28T23:59:59.000Z

278

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

279

Dam Safety (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

280

Dam Safety Program (Maryland)  

Broader source: Energy.gov [DOE]

The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Engineer (Criticality Safety)  

Broader source: Energy.gov [DOE]

This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

282

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

283

General Engineer (Nuclear Safety)  

Broader source: Energy.gov [DOE]

The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

284

Annual Security and Fire Safety Report | 2010 public safety  

E-Print Network [OSTI]

Annual Security and Fire Safety Report | 2010 col u m bia univer sity public safety #12;Contents A Message from the Vice President for Public Safety.............................................1 The Clery .............................................................................................................2 The Department of Public Safety

Kim, Philip

285

HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)  

SciTech Connect (OSTI)

The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

EVANS, C B

2004-12-21T23:59:59.000Z

286

Electrical safety guidelines  

SciTech Connect (OSTI)

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

287

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

288

Earth Sciences Safety Handbook  

E-Print Network [OSTI]

Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

Cambridge, University of

289

Earth Sciences Safety Handbook  

E-Print Network [OSTI]

Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

Cambridge, University of

290

Health, Safety & Wellbeing Policy  

E-Print Network [OSTI]

Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

Mottram, Nigel

291

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety Approved by Document No. Version Date Replaces Page EHS EHS-FORM-072 1.0 15-May-2008 N/A 1 of 4 Laboratory Safety Orientation Checklist Name (Print) Department Supervisor Date (DD/MM/YY) A Laboratory Safety Orientation Checklist should be completed within one month

Shoubridge, Eric

292

SYSTEM SAFETY PROGRESS REPORT,  

E-Print Network [OSTI]

SYSTEM SAFETY PROGRESS REPORT, ALSEP Array E NO. ATM 1034 1 PAGE REV. NO. OF 3 DATE 26 July 1971 This A TM documents the progress of the System Safety Program for ALSEP Array E. -~/ Prepared by: · /~t:A~.., Approved by: W. · Lavin, Jr System Safety Engineer / /' J. P. ~/ es, Supervisor · , ALSEF Support

Rathbun, Julie A.

293

Environmental Health & Safety  

E-Print Network [OSTI]

Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

294

Annual Fire Safety Report  

E-Print Network [OSTI]

2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

Loudon, Catherine

295

[Cover page, Margins: Left 1 in  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National Carbon Capture Center at2/316 Photovoltaic Materials

296

September 2013 Laboratory Safety Manual Section 7 -Safety Training  

E-Print Network [OSTI]

September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

Wilcock, William

297

Center for Intermodal Transportation Safety  

E-Print Network [OSTI]

Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

Fernandez, Eduardo

298

Radiation Safety (Revised March 2010)  

E-Print Network [OSTI]

Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated Environmental Health and Safety, Stanford University, Stanford California #12; CREDITS This Radiation Safety

Kay, Mark A.

299

Ideas underlying quantification of margins and uncertainties(QMU): a white paper.  

SciTech Connect (OSTI)

This report describes key ideas underlying the application of Quantification of Margins and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions at Sandia National Laboratories. While QMU is a broad process and methodology for generating critical technical information to be used in stockpile management, this paper emphasizes one component, which is information produced by computational modeling and simulation. In particular, we discuss the key principles of developing QMU information in the form of Best Estimate Plus Uncertainty, the need to separate aleatory and epistemic uncertainty in QMU, and the risk-informed decision making that is best suited for decisive application of QMU. The paper is written at a high level, but provides a systematic bibliography of useful papers for the interested reader to deepen their understanding of these ideas.

Helton, Jon Craig; Trucano, Timothy Guy; Pilch, Martin M.

2006-09-01T23:59:59.000Z

300

Total safety: A new safety culture to integrate nuclear safety and operational safety  

SciTech Connect (OSTI)

The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Safety Manual Prepared by the  

E-Print Network [OSTI]

IMS Safety Manual Prepared by the IMS Safety Committee January 1991 (revised 1/2009) Institute 2 Introduction 3 IMS Laboratory Safety Reporting Policy 4 IMS Safety Committee 5 Fire Safety and Emergency Procedures 6 First Aid and Emergency Response 8 General Laboratory Safety 10 Chemical Spills

Alpay, S. Pamir

302

Global-local Structural Optimization Using Response Surfaces of Local Optimization Margins  

E-Print Network [OSTI]

1 Global-local Structural Optimization Using Response Surfaces of Local Optimization Margins Boyang optimization problems. First, a large number of component optimizations for maximization of margins are performed. Response surface approximations (RSA) for maximum margins of component optimization

Neumaier, Arnold

303

Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many  

E-Print Network [OSTI]

Safety First Safety AlwaysSafety Last Using abrasive wheel equipment exposes you to many potential and strength and meet all manufacturer specifications. Abrasive Wheel Machinery and Tools Safety Tip #1

Minnesota, University of

304

asian marginal seas: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which somewhat surprisingly turned out to be classically stable. This was called marginal stability, as moving along one of its zero-modes, two of the stable modes turn...

305

asian monsoonal margin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional Climate Model, ... Im, Eun-Soon 242 From Marginal Deformations to Confinement HEP - Theory...

306

Geotechnical characterization of sediments from Hydrate Ridge, Cascadia Continental Margin  

E-Print Network [OSTI]

Eight whole core sediment samples were obtained from ODP Site 1244, Hydrate Ridge, Cascadia Continental Margin with the goal of understanding the stress history, consolidation behavior and strength characteristics of the ...

Tan, Brian B. (Brian Bautista), 1979-

2004-01-01T23:59:59.000Z

307

Traffic Safety Culture Center for Transportation Safety  

E-Print Network [OSTI]

generally opposed to raising the state's gasoline tax to pay for new roads or to make the roads safer. The Texas Traffic Safety Culture Survey was conducted at ten driver license stations operated by the Texas

308

Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20  

SciTech Connect (OSTI)

This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

Not Available

1994-09-01T23:59:59.000Z

309

Chemical Hygiene and Safety Plan  

SciTech Connect (OSTI)

The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

Berkner, K.

1992-08-01T23:59:59.000Z

310

Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves at an unsafe speed · Failure to check mirrors often Fleet Safety: Backing Accidents Safety Tip #2 Accidents hurt-- safety doesn't. All backing accidents are preventable. The key is to plan ahead to avoid backing

Minnesota, University of

311

E-Print Network 3.0 - adjacent continental margin Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

adjacent to the margin. The lack of these features is also characteristic of modern transform margins... -early Paleozoic southern Lau- rentian continental ... Source: Huerta,...

312

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model  

E-Print Network [OSTI]

Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

Morris, Jennifer

313

Innovative safety features of the modular HTGR  

SciTech Connect (OSTI)

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant's operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency's Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant's response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

314

Innovative safety features of the modular HTGR  

SciTech Connect (OSTI)

The Modular High Temperature Gas-Cooled Reactor (MHTGR) is an advanced reactor concept under development through a cooperative program involving the US Government, the nuclear industry, and the utilities. Near-term development is focused on electricity generation. The top-level safety requirement is that the plant`s operation not disturb the normal day-to-day activities of the public. Quantitatively, this requires that the design meet the US Environmental Protection Agency`s Protective Action Guides at the site boundary and hence preclude the need for sheltering or evacuation of the public. To meet these stringent safety requirements and at the same time provide a cost competitive design requires the innovative use of the basic high temperature gas-cooled reactor features of ceramic fuel, helium coolant, and a graphite moderator. The specific fuel composition and core size and configuration have been selected to the use the natural characteristics of these materials to develop significantly higher margins of safety. In this document the innovative safety features of the MHTGR are reviewed by examining the safety response to events challenging the functions relied on to retain radionuclides within the coated fuel particles. A broad range of challenges to core heat removal are examined, including a loss of helium pressure of a simultaneous loss of forced cooling of the core. The challenges to control of heat generation consider not only the failure to insert the reactivity control systems but also the withdrawal of control rods. Finally, challenges to control of chemical attack of the ceramic-coated fuel are considered, including catastrophic failure of the steam generator, which allows water ingress, or failure of the pressure vessels, which allows air ingress. The plant`s response to these extreme challenges is not dependent on operator action, and the events considered encompass conceivable operator errors.

Silady, F.A.; Simon, W.A.

1992-01-01T23:59:59.000Z

315

Electronic DOE Information Security System (eDISS) PIA, Office...  

Office of Environmental Management (EM)

DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

316

Coiled Tubing Safety Manual  

SciTech Connect (OSTI)

This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

Crow, W.

1999-04-06T23:59:59.000Z

317

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

318

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

319

Dam Safety Program (Florida)  

Broader source: Energy.gov [DOE]

Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

320

Mine Safety & Health Specialist  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Carlsbad Field Office (CBFO) Mine Safety & Health Specialist and is primarily responsible for inspecting and evaluating the performance...

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

and effectively implemented, with line management responsibility for control of safety. (Old Core Requirement 11) Criteria 1. Operations and support personnel fully...

322

Aviation Management and Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

2011-06-15T23:59:59.000Z

323

Gas Safety Law (Florida)  

Broader source: Energy.gov [DOE]

This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

324

Intrastate Pipeline Safety (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

325

DOE Explosives Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

1996-03-29T23:59:59.000Z

326

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 10: Laser Safety  

E-Print Network [OSTI]

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 10: Laser Safety Laser Service Subcontractor Work is unavailable), and the subcontractor. 2 Procedures The LSO will review the work plans, provide safety oversight that on-site work will be done that requires Site-specific safety plan (SSSP) and job safety analysis

Wechsler, Risa H.

327

Safety Criteria and Safety Lifecycle for Artificial Neural Networks  

E-Print Network [OSTI]

Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical applications. However, many of these techniques provide inadequate forms of safety arguments required

Kelly, Tim

328

Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS  

E-Print Network [OSTI]

2011- 2012 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS of aviation safety. Endings signal new beginnings and new beginnings mean evolving challenges for safety. This was the world in which the USC Aviation Safety and Security Program was born in 1952 and this is the world

Wang, Hai

329

Public Safety Team (PST) Organizational Structure for Public Safety Management  

E-Print Network [OSTI]

Public Safety Team (PST) President Organizational Structure for Public Safety Management for public safety· Coordinates public communications, legal,· and IT support for public safety Maintains· response to safety issues involving individual students and student behavior Ensures appropriate

330

Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS  

E-Print Network [OSTI]

2010- 2011 Aviation Safety + Security Program GLOBAL EXPERTS IN SAFETY MANAGEMENT SYSTEMS Relevance and currency -- that is what drives the Aviation Safety and Security Program of the USC Viterbi that our core course, Aviation Safety Management Systems, is so necessary in ensuring the safety

Wang, Hai

331

Food Safety and Technology Food Safety and Technology  

E-Print Network [OSTI]

Food Safety and Technology Food Safety and Technology Institute for Food Safety and Health IIT Program Manager: Renee McBrien The Institute for Food Safety and Health (IFSH), with IIT faculty, U ground for individuals seeking graduate edu- cation in food safety and technology and food process

Heller, Barbara

332

SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014  

E-Print Network [OSTI]

SEAS Safety Program SEAS SAFETY PROGRAM 2013-2014 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

333

SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103  

E-Print Network [OSTI]

SEAS Safety Program SEAS SAFETY PROGRAM 2012-2103 Program Structure and Responsibilities Dr. Anas Chalah #12;SEAS Safety Program SEAS Safety Program Structure We have developed a great model of collaboration among · EHSEM · SEAS Safety Program · SEAS Facilities which accounts for the regulatory component

334

Software Safety Tutorial Status Update 1 Software Safety Tutorial  

E-Print Network [OSTI]

Software Safety Tutorial Status Update 1 Software Safety Tutorial (Status Update) Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 Topics · Project Overview · Software Safety Overview · Project Tasks/Schedule/Progress Jeff Tian August 31, 2007 #12;Software Safety Tutorial Status Update 2 What Is Software Safety

Tian, Jeff

335

Laboratory Safety Manual Office of Environment, Health and Safety  

E-Print Network [OSTI]

Prevention Plan is a key step in strengthening the safety culture in laboratories. The UCLA Injury#12;Laboratory Safety Manual Office of Environment, Health and Safety December 201 #12;UCLA Laboratory Safety Manual Introduction Laboratory safety is an integral part of laboratory research

Jalali. Bahram

336

Information Safety in University Chemistry Courses  

E-Print Network [OSTI]

at the workplace 13 2.3.3 Food, drink and smoking 13 2.3.4 Cleaning and prophylactic skin care 13 3 Handling 52 8.1.1 Rules for handling radioactive substances 52 8.1.2 Protection from external irradiation 53 8.1.3 Protection from internal irradiation 53 8.1.4 Protection from contamination 54 8.2 Working with X-rays 55 8

Berlin,Technische Universität

337

Ladder Safety Information Sheet | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2 LNG

338

Nuclear Safety Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based, applied engineeringTVA Watts BarIdaho

339

Facility Safety (For Informational Purposes Only)  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This draft has been scheduled for final review before the Directives Review Board on 12/18/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 12/16/2014.

2014-12-04T23:59:59.000Z

340

Safety and Operational Guidelines | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power PlantCenterDistrictSaddle River

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Public Order and Safety | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp JumpProterraIntegralesEnergyOpen

342

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal  

E-Print Network [OSTI]

(DSO) determines distribution locational marginal prices (DLMPs) by solving the social welfare, distribution locational marginal prices (DLMPs), distribution locational marginal pricing (DLMP), distribution at node . System locational marginal price (LMP) at time period for the node feeding the distribution grid

Oren, Shmuel S.

343

Safety & Environment | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is a Prioty at

344

APS Safety Guidelines for Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical109)LongAPSlist ofSafety

345

Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information to assist in the implementation and interpretation of Title 10 Code of Federal Regulations (CFR) Part 830.203, Unreviewed Safety Question Process, of the Nuclear Safety Management Rules for applicable nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Canceled by DOE N 251.93.

2001-10-24T23:59:59.000Z

346

Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information to assist in implementation of Title 10 Code of Federal Regulations Part 830.203, "Unreviewed Safety Question Process," of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy, including the National Nuclear Security Administration. Cancels DOE G 424.1-1.

2006-07-24T23:59:59.000Z

347

ANNUAL FIRE SAFETY REPORT 2014 Ithaca, NY Campus  

E-Print Network [OSTI]

://sp.ehs.cornell.edu/firesafetyreport Environmental Health and Safety Building East Hill Office Building 201 Palm Road 395 Pine Tree Rd, Suite 210 with important information about fire safety on campus. You may obtain a copy of this report and the NYS Kerry

348

ANNUAL FIRE SAFETY REPORT 2013 Ithaca, NY Campus  

E-Print Network [OSTI]

://sp.ehs.cornell.edu/firesafetyreport Environmental Health and Safety Building East Hill Office Building 201 Palm Road 395 Pine Tree Rd, Suite 210 with important information about fire safety on campus. You may obtain a copy of this report and the NYS Kerry

Chen, Tsuhan

349

Public Safety at Yale University publicsafety.yale.edu  

E-Print Network [OSTI]

Public Safety at Yale University publicsafety.yale.edu #12;contact information 2 Connect with us.com/YPD1 https://twitter.com/YaleSecuritySys To request a Public Safety orientation, please e-mail safe of New Haven, a vibrant city with all the arts, culture and rich diversity of experience that city life

Lee, Daeyeol

350

Ris-R-1019(EN) Nuclear Safety Research  

E-Print Network [OSTI]

.2 Severe accidents 7 2.3 Decommissioning of research reactors 9 2.4 Nuclear information 10 3 RadiationRisø-R-1019(EN) Nuclear Safety Research and Facilities Department Annual Report 1997 Edited by B of the work of the Nuclear Safety Research and Facilities Department in 1997. The department´s research

351

Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach  

SciTech Connect (OSTI)

Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

David Petti; Jim Kinsey; Dave Alberstein

2014-01-01T23:59:59.000Z

352

Laboratory Safety 46 Blackstone Street, Cambridge, MA 02139 | T: 617.496.3797 | F: 617.496.5509  

E-Print Network [OSTI]

Aerosol-proof rotors and safety cups for centrifuges Other safety equipment 8 Safe work Practices and PPE of pertinent federal and state government regulations, information about safe work practices, safety equipmentLaboratory Safety 46 Blackstone Street, Cambridge, MA 02139 | T: 617.496.3797 | F: 617.496.5509 www

353

SEAS LABORATORY SAFETY OFFICER ORIENTATION  

E-Print Network [OSTI]

Investigators. Safety Officers work to develop safety procedures, educate research personnel, identify safety who no longer work in lab Note: Online General Lab Safety and Lab Biosafety courses replace classroom) #12;If assigned by PI, work with other experienced personnel in lab to conduct lab-specific safety

354

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

. Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. ALDRICH - M80806 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government

Choi, Kyu Yong

355

Systems Issues in Nuclear Reactor Safety  

E-Print Network [OSTI]

regulations 2 Traditional regulations Probabilistic Risk Assessment Risk-informed decision making Human-in-Depth is an element of the NRC's safety philosophy that employs successive compensatory measures 6 philosophy in the worst possible place. #12;Technological Risk Assessment (Reactors) · Study the system as an integrated

de Weck, Olivier L.

356

Tritium radioluminescent devices, Health and Safety Manual  

SciTech Connect (OSTI)

This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information.

Traub, R.J.; Jensen, G.A.

1995-06-01T23:59:59.000Z

357

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety  

E-Print Network [OSTI]

Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

Machel, Hans

358

Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

None

2009-04-01T23:59:59.000Z

359

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

360

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

362

Integrated Safety Management Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

2011-04-25T23:59:59.000Z

363

Facility Safety - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

364

Office of Nuclear Facility Safety Programs  

Broader source: Energy.gov [DOE]

The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

365

SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC  

E-Print Network [OSTI]

SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-24 VISITOR AND CONTRACTOR SAFETY DIRECTOR, ENVIRONMENTAL, HEALTH, SAFETY & SECURITY Angela Sutton

Weston, Ken

366

K Basin safety analysis  

SciTech Connect (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

367

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

368

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

369

CRAD, Facility Safety- Unreviewed Safety Question Requirements  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.

370

CRAD, Facility Safety- Technical Safety Requirements  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

371

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

372

Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Here is a partial list of safeguards for explosive actuated the design requirements in "American National Standards Institute Safety Requirements for Explosive Actuated on the other side. Portable Power Tools Safety Tip #14 Don't be a fool. Inspect your tools. Operators

Minnesota, University of

373

Safety Reports Series No. 11, Developing Safety Culture in Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities:...

374

Institutional glovebox safety committee (IGSC) annual report FY2010  

SciTech Connect (OSTI)

The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

2011-01-04T23:59:59.000Z

375

Department of Energy Cites Bechtel Jacobs for Classified Information...  

Office of Environmental Management (EM)

Bechtel Jacobs for Classified Information Security and Worker Safety and Health Violations Department of Energy Cites Bechtel Jacobs for Classified Information Security and Worker...

376

Quench margin measurement in Nb3Sn quadrupole magnet  

SciTech Connect (OSTI)

One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

2008-08-01T23:59:59.000Z

377

Safety and Security Interface Technology Initiative  

SciTech Connect (OSTI)

Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. “Supporting Excellence in Operations Through Safety Analysis,” (workshop theme) includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is “Safeguards/Security Integration with Safety.” This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared ‘tool box’ of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems’ essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.

Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

2007-05-01T23:59:59.000Z

378

Occupational Health and Safety Manual  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Addressing Health and Safety Concerns and Resolution of Work RefusalsOccupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs

379

TRADE UNION APPOINTED SAFETY RESPRESENTATIVES  

E-Print Network [OSTI]

representatives. The guidance note will focus on the Safety Representatives and Safety Committees Regulations within the workplace. The HSC and the Health and Safety Executive (HSE) make it clear that employers

380

Normalization of Process Safety Metrics  

E-Print Network [OSTI]

and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

Wang, Mengtian

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Field Labeling to Ensure the Electrical Safety of Production Equipment  

E-Print Network [OSTI]

not including equipment that is designed for use in hazardous locations. This publication provides compressive information on how to apply electrical components, wiring and control systems to both ensure safety of personnel and aid in the delivery..., by delivering safe products at a reasonable price a company will not be eliminated as a potential equipment supplier by being viewed in a negative light as a result of a poor safety evaluation. OSHA posts information on their website detailing the number...

Mills, Todd

2012-05-11T23:59:59.000Z

382

E-Print Network 3.0 - assess safety criteria Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 2 A Systematic Approach to Safety Case Management Dr Tim Kelly Summary: -55 expresses many individual requirements concerning the development and...

383

E-Print Network 3.0 - activity safety aspects Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 2 A Systematic Approach to Safety Case Management Dr Tim Kelly Summary: . The following are important aspects of the above definition: argument'...

384

Waste Isolation Pilot Plant Safety Analysis Report  

SciTech Connect (OSTI)

The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

NONE

1995-11-01T23:59:59.000Z

385

Industrial Safety | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, building design and code review, fire safety, and...

386

www.ku.edu/safety The Clery Act Annual Security Report  

E-Print Network [OSTI]

attain maximum effectiveness unless everyone contributes to making it work. Safety and security are bothwww.ku.edu/safety The Clery Act Annual Security Report The Annual Fire Report Calendar Year 2012 of drug and liquor laws In this report you will find information about: Reporting Crime Safety

387

RADIATION SAFETY POLICY MANUAL Prepared and issued under the auspices of  

E-Print Network [OSTI]

RADIATION SAFETY POLICY MANUAL Prepared and issued under the auspices of THE RADIATION SAFETY COMMITTEE June 1996 For additional information, contact THE RADIATION SAFETY OFFICER Radiological Health Department 260 S Central Campus Drive, Room 100 581-6141 #12;i Foreword Ionizing radiation provides

Tipple, Brett

388

Specification of advanced safety modeling requirements (Rev. 0).  

SciTech Connect (OSTI)

The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will target leadership-class computing architectures for massively-parallel high-fidelity computations while providing continued support for rapid prototyping using modest fidelity computations on multiple-core desktop platforms.

Fanning, T. H.; Tautges, T. J.

2008-06-30T23:59:59.000Z

389

RADIO EMISSION FROM INSTABILITIES IN SPACE PLASMAS: MARGINAL STABILITY,  

E-Print Network [OSTI]

I t RADIO EMISSION FROM INSTABILITIES IN SPACE PLASMAS: MARGINAL STABILITY, 4TOCHASTIC GROWTH emission, hich is an indirect emission process first discussed by Ginaburg and Zhe/eznyakoe, 9581, and electron cyclotron maser emission (ECME), which is a direct emission ess first discussed in the presently

Melrose, Don

390

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

1 The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas Sch surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Gustafsson, Fredrik

391

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas B surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Schön, Thomas

392

Mesozoic evolution of northeast African shelf margin, Libya and Egypt  

SciTech Connect (OSTI)

The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desert basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.

Aadland, R.K.; Schamel, S.

1989-03-01T23:59:59.000Z

393

Distance Metric Learning for Large Margin Nearest Neighbor Classification  

E-Print Network [OSTI]

Distance Metric Learning for Large Margin Nearest Neighbor Classification Kilian Q. Weinberger}@cis.upenn.edu Abstract We show how to learn a Mahanalobis distance metric for k-nearest neigh- bor (kNN) classification in kNN classification--for example, achieving a test error rate of 1.3% on the MNIST handwritten digits

Weinberger, Kilian

394

Sustainable bioenergy production from marginal lands in the US Midwest  

SciTech Connect (OSTI)

Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

2013-01-24T23:59:59.000Z

395

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety  

E-Print Network [OSTI]

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety Non-green Work Laboratory Environment, Safety, Health, and Quality Division Chapter 42 | Non-green Work Procedure Step is classified as green, follows the Subcontractor Safety: Green Work Procedure. If not, continues

Wechsler, Risa H.

396

Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY  

E-Print Network [OSTI]

Radiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual ­ Dec 2012 Page 1 Table of Contents Introduction Chapter I: Radiation Safety Program A. Program

Grishok, Alla

397

Safety Lifecycle for Developing Safety Critical Artificial Neural Networks  

E-Print Network [OSTI]

Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly. There are many techniques that aim to improve the performance of neural networks for safety-critical systems. Consequently, their role in safety-critical applications, if any, is typically restricted to advisory systems

Kelly, Tim

398

Safety-Oriented Design of Component Assemblies using Safety Interfaces  

E-Print Network [OSTI]

FACS 2006 Safety-Oriented Design of Component Assemblies using Safety Interfaces Jonas Elmqvist¨oping, Sweden Abstract This paper promotes compositional reasoning in the context of safety-critical systems, and demonstrates a safety-oriented component model using an application from the automotive industry: an Adaptive

399

Safety and Security What do Safety/Security work with?  

E-Print Network [OSTI]

Safety and Security on campus #12;Agenda · What do Safety/Security work with? · If something happens · Opening hours · Remember · Website · How to find us #12;The Section for Safety and Security work with Police reports · Education in "First medical aid" · Education in laboratory safety #12;If something

400

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;Radiation Safety Department, University of Tennessee Purpose: To provide basic radiation safety training to the users of sealed sources located

Dai, Pengcheng

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radiation Safety Training Basic Radiation Safety Training for  

E-Print Network [OSTI]

Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Modern Physics Laboratory Spring 2007 #12;#12;Radiation Safety Department, University of Tennessee Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers

Dai, Pengcheng

402

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

403

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

404

Reliability and Safety  

Broader source: Energy.gov [DOE]

DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

405

Phenomenology of asymptotic safety   

E-Print Network [OSTI]

In this work we explore the collider prospects for the asymptotic safety scenario being realized as a quantum theory of gravity. Testing gravity at colliders becomes a real possibility in the case of extra dimensional ...

Gerwick, Erik

2011-11-23T23:59:59.000Z

406

Wildland Fire Safety Enhancements  

Broader source: Energy.gov (indexed) [DOE]

OPERATIONS OFFICE MANAGERS DOE FUXD OFFICE MANAGERS BILL RIcHARDsoN L%@ WILDLAND FIRE SAFETY ENHAN&MENTS By memorandum dated October 22000, I directed several actions & part of a...

407

Safety in Buildings   

E-Print Network [OSTI]

Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

Hutcheon, N. B.

408

Dam Safety Regulation (Mississippi)  

Broader source: Energy.gov [DOE]

The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

409

Dam Safety (North Carolina)  

Broader source: Energy.gov [DOE]

North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

410

ENVIRONMENTAL, HEALTH AND SAFETY  

E-Print Network [OSTI]

Professonal Education Showcase New! Professional Concentration in Environmental Management for Industry HEALTH AND SAFETY PROGRAMS #12;NEW Professional Concentration in Environmental Management for Industry management, air quality, water quality and hazardous materials transportation. Acquire the knowledge to help

California at Davis, University of

411

High Voltage Safety Act  

Broader source: Energy.gov [DOE]

The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

412

Complete Experiment Safety Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

413

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

1995-09-27T23:59:59.000Z

414

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

1995-09-27T23:59:59.000Z

415

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

1996-10-02T23:59:59.000Z

416

Carbon Monoxide Safety Tips  

E-Print Network [OSTI]

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

417

Promulgating Nuclear Safety Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

1996-05-15T23:59:59.000Z

418

Aviation Management and Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B. Admin Chg 1, dated 6-22-11, cancels DOE O 440.2C.

2011-06-15T23:59:59.000Z

419

Nuclear Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

420

Laser Safety Introduction  

E-Print Network [OSTI]

Laser Safety #12;Introduction · A Laser is a device that controls the way energized atoms release photons. · LASER is an acronym for "Light Amplification by Stimulated Emission of Radiation" · The light emitted by a laser is non

McQuade, D. Tyler

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

2006-06-12T23:59:59.000Z

422

Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.  

SciTech Connect (OSTI)

Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.

Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

1999-02-17T23:59:59.000Z

423

FIRE SAFETY PROGRAM TABLE OF CONTENTS  

E-Print Network [OSTI]

FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

Lin, Zhiqun

424

FLINDERS UNIVERSITY Guidelines for Contractor Safety  

E-Print Network [OSTI]

FLINDERS UNIVERSITY Guidelines for Contractor Safety INTRODUCTION............................................................................................................3 PERMITS TO WORK.........................................................................................4 SAFETY SIGNS

425

Laser Safety Management Policy Statement ............................................................................................................1  

E-Print Network [OSTI]

Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

Davidson, Fordyce A.

426

Safety Basis Report  

SciTech Connect (OSTI)

As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

R.J. Garrett

2002-01-14T23:59:59.000Z

427

Radiological Emergency Response Health and Safety Manual  

SciTech Connect (OSTI)

This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

D. R. Bowman

2001-05-01T23:59:59.000Z

428

CAHNRS Safety Committee Meeting Minutes  

E-Print Network [OSTI]

that although the law states that PIs are responsible for the safety of all employees in their work siteCAHNRS Safety Committee Meeting Minutes December 10, 2013 Present: Daniel Edge-Garza, Rick Rupp lab safety specialist, replacing Sarah Greer. Tom will eventually be the lab safety manager. He

Collins, Gary S.

429

Toolbox Safety Talk Woodworking Machines  

E-Print Network [OSTI]

Toolbox Safety Talk Woodworking Machines Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University for many student courses and elective activities. Woodworking machines can pose a myriad of hazards

Pawlowski, Wojtek

430

Food Safety and Meat Microbiology  

E-Print Network [OSTI]

Food Safety and Meat Microbiology School July 17-19, 2012 Master Meat Crafter Program Department) and the University of Wisconsin-Madison Meat Science Laboratory are again hosting the Food Safety and Meat your food safety systems and the safety of your products. Topics will include microbiology, sanitation

Sheridan, Jennifer

431

Food Safety Policy December 2011  

E-Print Network [OSTI]

Food Safety Policy December 2011 #12;www.surrey.ac.uk2 Food Safety Policy Some Useful Telephone) Security Extension Number: 2002 or from external phones: (01483) 682002 Health and Safety Department the line to be put through to an operator. www.surrey.ac.uk 3 Food Safety Policy Contents Page 1

Doran, Simon J.

432

Toolbox Safety Talk Articulating Boom Work Platforms  

E-Print Network [OSTI]

Toolbox Safety Talk Articulating Boom Work Platforms Environmental Health & Safety Facilities sign-in sheet to Environmental Health & Safety for recordkeeping. Articulating boom work platforms Articulating Boom Work Platforms Environmental Health & Safety Facilities Safety & Health Section 395 Pine Tree

Pawlowski, Wojtek

433

Environment/Health/Safety (EHS): Laser Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment, SafetyEHS Radiation

434

Applying insights from repository safety assessments.  

SciTech Connect (OSTI)

Despite decades of international consensus that deep geological disposal is the best option for permanent management of long-lived high-level radioactive wastes, no repositories for used nuclear fuel or high-level waste are in operation. Detailed long-term safety assessments have been completed worldwide for a wide range of repository designs and disposal concepts, however, and valuable insights from these assessments are available to inform future decisions about managing radioactive wastes. Qualitative comparisons among the existing safety assessments for disposal concepts in clay, granite, salt, and unsaturated volcanic tuff show how different geologic settings can be matched with appropriate engineered barrier systems to provide a high degree of confidence in the long-term safety of geologic disposal. Review of individual assessments provides insights regarding the release pathways and radionuclides that are most likely to contribute to estimated doses to humans in the far future for different disposal concepts, and can help focus research and development programs to improve management and disposal technologies. Lessons learned from existing safety assessments may be particularly relevant for informing decisions during the process of selecting potential repository sites.

Swift, Peter N.

2010-03-01T23:59:59.000Z

435

Another view of the Marginality Hypothesis: presidential influence in Congress  

E-Print Network [OSTI]

, the implementation of a control variable (the legislator's level of electoral insecurity ? his marginality) in the analysis failed to reveal overall support i' or the Harginality Hypoth- esis. An interesting finding of this thesis is that the strongest sup- port...'indings which tend. to disprove the normative ideals of "delegate" representation d. id not go unchallenged, however. In a somewhat similar study of the California electorate and legisla- ture following the 1968, 1970, and 1972 general elections, Kuklin- ski...

Richard, Carl Mark

1980-01-01T23:59:59.000Z

436

Quantification Of Margins And Uncertainties: A Bayesian Approach (full Paper)  

SciTech Connect (OSTI)

Quantification of Margins and Uncertainties (QMU) is 'a formalism for dealing with the reliability of complex technical systems, and the confidence which can be placed in estimates of that reliability.' (Eardleyet al, 2005). In this paper, we show how QMU may be interpreted in the framework of Bayesian statistical inference, using a probabilistic network. The Bayesian approach clarifies the probabilistic underpinnings of the formalism, and shows how the formalism can be used for deciSion-making.

Wallstrom, Timothy C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

437

DOE explosives safety manual  

SciTech Connect (OSTI)

The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

Not Available

1991-10-01T23:59:59.000Z

438

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect (OSTI)

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

439

Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An  

E-Print Network [OSTI]

Bioenergy crop productivity and potential climate change mitigation from marginal lands bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops June 2014 Introduction Bioenergy, an important renewable energy produced from biological materials

Zhuang, Qianlai

440

Seismic Safety Guide  

SciTech Connect (OSTI)

This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

Eagling, D.G. (ed.)

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Safety | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and SecuritySafety for Users PrintSafety

442

Polished `Hoes', Dancehall Queens, and Sexual Freaks: Voices From the Margins of Caribbean Literature  

E-Print Network [OSTI]

Polished `Hoes', Dancehall Queens, and Sexual Freaks: Voices From the Margins of Caribbean is a book- length project that will examine multiply marginalized Caribbean women's narratives of resistance in the Caribbean, tends to reward normative behavior and marginalizes women who do not conform to set standards

Zhou, Yaoqi

443

Abstract--Although Locational Marginal Pricing (LMP) plays an important role in many restructured wholesale power  

E-Print Network [OSTI]

1 Abstract-- Although Locational Marginal Pricing (LMP) plays an important role in many Terms-- Locational marginal pricing, wholesale power market, AC optimal power flow, DC optimal power congestion by means of Locational Marginal Pricing (LMP), i.e., the pricing of power by the location

Tesfatsion, Leigh

444

A STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL PRICES  

E-Print Network [OSTI]

on varia- tions of Locational Marginal Prices (LMPs) in restruc- tured power markets. The process: Locational marginal prices (LMPs), Un- certainty, Power system security, Optimization meth- ods, StochasticA STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL

Stankoviæ, Aleksandar

445

Fast Prediction of Loadability Margins by Constructing a Small-Signal Stability Boundary  

E-Print Network [OSTI]

Fast Prediction of Loadability Margins by Constructing a Small-Signal Stability Boundary Based system. A novel approach is proposed in this paper for fast prediction of loadability margins to predict the loadability margins from any stable operating point along arbitrary loading directions through

Cańizares, Claudio A.

446

Integration of Environment, Safety, and Health into Facility Disposition Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

1998-05-01T23:59:59.000Z

447

Information Security  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Attachment E, Technical Surveillance Countermeasures Program, is for Official Use Only. Contact the Office of Security and Safety Performance Assurance at 301-903-3653 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A.

2005-08-26T23:59:59.000Z

448

Information Security  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Section E, Technical Surveillance Countermeasures Program, is Official Use Only. Please contact the DOE Office of Health, Safety and Security at 301-903-0292 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A

2007-06-29T23:59:59.000Z

449

Safety aspects of EB melting  

SciTech Connect (OSTI)

Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

1994-12-31T23:59:59.000Z

450

Nuclear Explosive Safety Manual - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

451

Material Safety Data Sheets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

452

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

453

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

454

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

455

Reactor safety method  

DOE Patents [OSTI]

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

456

JOB SAFETY ASSESSMENT ENVIRONMENTAL  

E-Print Network [OSTI]

/Bump Cap Respirator (air purifying/supplied air) Emergency Escape Breathing Apparatus Filters (specific/Coat Fall Protection Equipment Traction Devices Cooling Vest High Visibility Clothing/Safety Vest MSDS (for any chemicals being used) Emergency Equipment/Supplies Other:____________________________ NOTES: Use

Hartman, Chris

457

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

2010-05-14T23:59:59.000Z

458

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

2003-04-04T23:59:59.000Z

459

DOE HANDBOOK ELECTRICAL SAFETY  

E-Print Network [OSTI]

DOE HANDBOOK ELECTRICAL SAFETY U.S. Department of Energy AREA SAFT Washington, D.C. 20585 of 139 3.0 HAZARD ANALYSIS 3.1 INTRODUCTION This chapter provides tools for assessing electrical hazards). The risk of a worker to an exposed electrical hazard is determined by (a) the classification

460

EFCOG / DOE Electrical Safety  

E-Print Network [OSTI]

EFCOG / DOE Electrical Safety Improvement Project Project Area 4 ­Performance Measurement Electrical Severity Measurement Tool Revision 1 April 16, 2007 #12;Electrical Severity Measurement Tool Purpose: This tool is intended to determine the severity of an electrical energy event based

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

2009-04-14T23:59:59.000Z

462

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

463

Integrated Safety Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

2011-04-25T23:59:59.000Z

464

Module Safety Issues (Presentation)  

SciTech Connect (OSTI)

Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

Wohlgemuth, J.

2012-02-01T23:59:59.000Z

465

DOE Explosives Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

2006-01-09T23:59:59.000Z

466

Committee on Microbiological Safety  

E-Print Network [OSTI]

standards and best practices for the oversight and administration of research with recombinant or synthetic of the research are conducted in a safe manner using established biosafety standards, principles and practices, or environmental risks, including, for example, requirements for education and training and for laboratory safety

Goodrich, Lisa V.

467

Continuous improvement of the MHTGR safety and competitive performance  

SciTech Connect (OSTI)

An increase in reactor module power from 350 to 450 MW(t) would markedly improve the economics of the Modular High Temperature Gas-Cooled Reactor (MHTGR). The higher power level was recommended as the result of an in-depth cost reduction study undertaken to compete with the declining price of fossil fuel. The safety assessment confirms that the high level of safety, which relies on inherent characteristics and passive features, is maintained at the elevated power level. Preliminary systems, nuclear, and safety performance results are discussed for the recommended 450 MW(t) design. Optimization of plant parameters and design modifications accommodated the operation of the steam generator and circulator at the higher power level. Events in which forced cooling is lost, designated as conduction cooldowns are described in detail. For the depressurized conduction cooldown, without full helium inventory, peak fuel temperatures are significantly lowered. A more negative temperature coefficient of reactivity was achieved while maintaining an adequate fuel cycle and reactivity control. Continual improvement of the MHTGR delivers competitive performance without relinquishing the high safety margins demanded of the next generation of power plants.

Eichenberg, T.W.; Etzel, K.T.; Mascaro, L.L.; Rucker, R.A.

1992-05-01T23:59:59.000Z

468

Visual Arts Safety Plan: 1. Visual Arts Safety Manual  

E-Print Network [OSTI]

and guidance to help you conduct your work safely and in compliance with environmental health and safety. The Visual Arts Safety plan should be made available to all workers and all persons in your area who work for good practice. The requirements for working with Lasers can be found in SY-17. This Penn State Safety

Maroncelli, Mark

469

Arguing Safety -- A Systematic Approach to Managing Safety Cases  

E-Print Network [OSTI]

A safety case should present a clear, comprehensive and defensible argument that a system is acceptably safe to operate within a particular context. However, many existing safety cases, in their attempt to manage potentially complex arguments, are poorly structured, presented and understood. This creates problems in developing and maintaining safety cases, and in capturing successful safety arguments for use on future projects. This thesis defines and demonstrates a coherent approach to the development, presentation, maintenance and reuse of the safety arguments within a safety case. This approach is based upon a graphical technique -- the Goal Structuring Notation (GSN) -- and has three strands. Firstly, a method for the use of GSN is defined together with an approach to supporting incremental safety case development. Secondly, the thesis presents a systematic process for the maintenance of a GSN-structured safety argument. Thirdly, the concept of `Safety Case Patterns' is defined as a means of supporting and promoting the reuse of successful safety arguments between safety cases. Examples of the approach are provided throughout. Evaluation of the approach is described through tool implementation, case studies, pilot projects and industrial project applications. Through these activities the approach has been shown to be both a valid and capable tool for safety case management.

Timothy Patrick Kelly

1998-01-01T23:59:59.000Z

470

Radiation Safety Manual August 1999 UW Environmental Health and Safety  

E-Print Network [OSTI]

Page v Radiation Safety Manual August 1999 UW Environmental Health and Safety Glossary accelerator target and uncharged high-energy radiation is subsequently produced (neutrons or x-rays). ALARA - An acronym formed from the phrase "As Low as Reasonably Achievable." The phrase refers to a radiation safety

Wilcock, William

471

Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide, including its attachments, provides information to assist in the implementation of Title 10 Code of Federal Regulations (CFR) Section 830.203, “Unreviewed Safety Question Process,” of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Cancels DOE G 424.1-1A. Admin Chg 1 dated 4-12-13.

2010-04-08T23:59:59.000Z

472

Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop  

SciTech Connect (OSTI)

This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

None

2000-09-01T23:59:59.000Z

473

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

2009-04-14T23:59:59.000Z

474

FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS  

SciTech Connect (OSTI)

This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

GARVIN, L J; JENSEN, M A

2004-04-13T23:59:59.000Z

475

Gas Pipeline Safety (West Virginia)  

Broader source: Energy.gov [DOE]

The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

476

Events Beyond Design Safety Basis Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Events Beyond Design Safety Basis Analysis Events Beyond Design Safety Basis Analysis March 23, 2011 Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis This Safety...

477

An Overview of the Safety Case for Small Modular Reactors  

SciTech Connect (OSTI)

Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

Ingersoll, Daniel T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

478

Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales  

E-Print Network [OSTI]

land for plantation of Jatropha curcas as feedstocks forMarginal chinensis, 3. Jatropha grow energy plants, or landand economic constraints Jatropha curcas Marginal land ?land

Lewis, Sarah M

2014-01-01T23:59:59.000Z

479

Assessing the knowledge, attitudes and practices of street food vendors in the City of Johannesburg regarding food hygiene and safety .  

E-Print Network [OSTI]

??This study is aimed to assess the extent of street food vendor information and education on food safety. Aim: To determine the knowledge, attitudes and… (more)

Campbell, Penelope Tracy

2011-01-01T23:59:59.000Z

480

Margins in high temperature leak-before-break assessments  

SciTech Connect (OSTI)

Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

Budden, P.J.; Hooton, D.G.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "informed safety margin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Marginal Energy Prices - RECS97 Update | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturingMarginal Energy Prices - RECS97

482

Marginal Energy Price Report - July 1999 | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMA EnergyMagna1983: StrategicMarginal Energy

483

Status report on resolution of Waste Tank Safety Issues at the Hanford Site. Revision 1  

SciTech Connect (OSTI)

The purpose of this report is to provide and update the status of activities supporting the resolution of waste tank safety issues and system deficiencies at the Hanford Site. This report provides: (1) background information on safety issues and system deficiencies; (2) a description of the Tank Waste Remediation System and the process for managing safety issues and system deficiencies; (3) changes in safety issue description, prioritization, and schedules; and (4) a summary of the status, plans, order of magnitude, cost, and schedule for resolving safety issues and system deficiencies.

Dukelow, G.T.; Hanson, G.A. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States)

1995-05-01T23:59:59.000Z

484

TUFTS UNIVERSITY LASER SAFETY PROGRAM  

E-Print Network [OSTI]

with engineering controls and good work practices. The Tufts University Laser Safety Officer (LSO) along safety liaison to work with the EH&S Office and the LSO to fulfill the requirements outlined operating procedures for these laser installations, and laser safety training for persons working

Dennett, Daniel

485

Health and Safety Training Reciprocity  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

2014-04-14T23:59:59.000Z

486

CHEMICAL LABORATORY SAFETY AND METHODOLOGY  

E-Print Network [OSTI]

CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

Northern British Columbia, University of

487

LASER SAFETY POLICY Policy Statement  

E-Print Network [OSTI]

LASER SAFETY POLICY Policy Statement Each department that acquires or operates lasers for use in laboratories or research is responsible for reporting laser acquisition to the Office of Laboratory Safety, selecting a departmental deputy laser safety officer, mandating training for its laser operators

Vertes, Akos

488

COLUMBIA UNIVERSITY Radiation Safety Program  

E-Print Network [OSTI]

COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

Jia, Songtao

489

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

490

SAFETY PROCEDURE SP-19 Revision 02  

E-Print Network [OSTI]

SAFETY PROCEDURE SP-19 Page 1 Revision 02 August 6, 2007 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-19 MAGNETIC FIELD SAFETY DIRECTOR, ENVIRONMENTAL, HEALTH, SAFETY & SECURITY Angela Sutton

Weston, Ken

491

Page 1 of 13 Occupational Health & Safety  

E-Print Network [OSTI]

& Equipment __________________________________________________________10 19. Site Security and Public Safety

Liley, David

492

Mn/DOT County Road Safety Plans  

E-Print Network [OSTI]

Roads Program !! Minnesota Central Safety Funds !! Foster safety culture among county stakeholders 41 Mn/DOT County Road Safety Plans CTS Annual Research Conference April 27 & 28, 2010 Howard Preston & Objectives !! Project Overview !! Schedule, Participating Counties, Approach !! Safety Emphasis Areas

Minnesota, University of

493

SAFETY COMMITTEE ANNUAL PLAN TEMPLATE The safety committee and the unit administration work together in promoting the unit's safety and  

E-Print Network [OSTI]

SAFETY COMMITTEE ANNUAL PLAN TEMPLATE The safety committee and the unit administration work together in promoting the unit's safety and health efforts. The Safety Committee Annual Plan provides. Supervisors can review the plan with new employees during their safety orientation. 3. Safety committee

Collins, Gary S.

494

Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case  

SciTech Connect (OSTI)

Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

2014-06-01T23:59:59.000Z

495

Shock margin testing of a one-axis MEMS accelerometer.  

SciTech Connect (OSTI)

Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

2008-07-01T23:59:59.000Z

496

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

497

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

498

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

499

Independent Oversight Focused Safety Management Evaluation, Idaho...  

Office of Environmental Management (EM)

Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

500

The Front Lines of Patient Safety  

E-Print Network [OSTI]

patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

Soloveichik, David