Sample records for informed safety margin

  1. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    SciTech Connect (OSTI)

    Nam Dinh; Ronaldo Szilard

    2009-07-01T23:59:59.000Z

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system’s “loading” and its “capacity”, plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons.

  2. Risk Informed Margins Management as part of Risk Informed Safety Margin Characterization

    SciTech Connect (OSTI)

    Curtis Smith

    2014-06-01T23:59:59.000Z

    The ability to better characterize and quantify safety margin is important to improved decision making about Light Water Reactor (LWR) design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the Risk Informed Safety Margin Characterization (RISMC) Pathway provides methods and tools that enable mitigation options known as risk informed margins management (RIMM) strategies.

  3. A risk-informed approach to safety margins analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-07-01T23:59:59.000Z

    The Risk Informed Safety Margins Characterization (RISMC) Pathway is a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. The model has been tested on the Advanced Test Reactor (ATR) at Idaho National Lab.

  4. Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-03-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

  5. Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization FY 2010 Report

    SciTech Connect (OSTI)

    Robert W Youngblood

    2010-09-01T23:59:59.000Z

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, is founded on probabilistic characterizations of SSC performance.

  6. Risk-Informed Safety Margin Characterization Methods Development Work

    SciTech Connect (OSTI)

    Smith, Curtis L; Ma, Zhegang; Tom Riley; Mandelli, Diego; Nielsen, Joseph W; Alfonsi, Andrea; Rabiti, Cristian

    2014-09-01T23:59:59.000Z

    This report summarizes the research activity developed during the Fiscal year 2014 within the Risk Informed Safety Margin and Characterization (RISMC) pathway within the Light Water Reactor Sustainability (LWRS) campaign. This research activity is complementary to the one presented in the INL/EXT-??? report which shows advances Probabilistic Risk Assessment Analysis using RAVEN and RELAP-7 in conjunction to novel flooding simulation tools. Here we present several analyses that prove the values of the RISMC approach in order to assess risk associated to nuclear power plants (NPPs). We focus on simulation based PRA which, in contrast to classical PRA, heavily employs system simulator codes. Firstly we compare, these two types of analyses, classical and RISMC, for a Boiling water reactor (BWR) station black out (SBO) initiating event. Secondly we present an extended BWR SBO analysis using RAVEN and RELAP-5 which address the comments and suggestions received about he original analysis presented in INL/EXT-???. This time we focus more on the stochastic analysis such probability of core damage and on the determination of the most risk-relevant factors. We also show some preliminary results regarding the comparison between RELAP5-3D and the new code RELAP-7 for a simplified Pressurized Water Reactors system. Lastly we present some conceptual ideas regarding the possibility to extended the RISMC capabilities from an off-line tool (i.e., as PRA analysis tool) to an online-tool. In this new configuration, RISMC capabilities can be used to assist and inform reactor operator during real accident scenarios.

  7. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  8. Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

    SciTech Connect (OSTI)

    R. W. Youngblood

    2010-10-01T23:59:59.000Z

    The concept of “margin” has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of “margin” have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out with in a systematically conservative fashion. This means that the effectiveness of the application of the margin concept is determined in part by the original choice of surrogates, and is limited in any case by the degree of conservatism imposed on the evaluation. In the RISMC project, which is part of the Department of Energy’s “Light Water Reactor Sustainability Program” (LWRSP), we are developing a risk-informed characterization of safety margin. Beginning with the traditional discussion of “margin” in terms of a “load” (a physical challenge to system or component function) and a “capacity” (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system response. For example, the probabilistic load spectrum will reflect the frequency of challenges of a particular severity. Such a characterization is required if decision-making is to be informed optimally. However, in order to enable the quantification of probabilistic load spectra, existing analysis capability needs to be extended. Accordingly, the INL is working on a next-generation safety analysis capability whose design will allow for much more efficient parameter uncertainty analysis, and will enable a much better integration of reliability-related and phenomenology-related aspects of margin.

  9. Risk-Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment to Be Subjected to Environmental Qualification

    SciTech Connect (OSTI)

    D. P. Blanchard; R. W. Youngblood

    2014-06-01T23:59:59.000Z

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the DOE’s Light Water Reactor Sustainability (LWRS) program focuses on advancing the state of the art in safety analysis and risk assessment to support decision-making on nuclear power plant operation well beyond the originally designed lifetime of the plants (i.e., beyond 60 years). Among the issues being addressed in RISMC is the significance of SSC aging and how confident we are about our understanding of its impact on the margin between the loads SSCs are expected to see during normal operation and accident conditions, and the SSC capacities (their ability to resist those loads) as the SSCs age. In this paper, a summary is provided of a case study that examines SSC aging from an environmental qualification (EQ) perspective. The case study illustrates how the state of knowledge regarding SSC margin can be characterized given the overall integrated plant design, and was developed to demonstrate a method for deciding on which cables to focus, which cables are not so important from an environmental qualification margin standpoint, and what plant design features or operating characteristics determine the role that environmental qualification plays in establishing a safety case on which decisions regarding margin can be made. The selection of cables for which demonstration of margin with respect to aging and environmental challenges uses a technique known as Prevention Analysis. Prevention Analysis is a Boolean method for optimal selection of SSCs (that is, those combinations of SSCs both necessary and sufficient to meet a predetermined selection criterion) in a manner that allows demonstration that plant-level safety can be demonstrated by the collection of selected SSCs alone. Choosing the set of SSCs that is necessary and sufficient to satisfy the safety objectives, and demonstrating that the safety objectives can be met effectively, determines where resources are best allocated to assure SSC performance margin. The paper describes the resulting component types that were selected by Prevention Analysis and identifies the accident sequence characteristics that cause these component types to be important from an EQ and aging perspective (and, hence, worthwhile evaluating the extent of safety margin). In addition, component types not selected as needing significant margin from an EQ and aging perspective are discussed and an engineering rationale is developed justifying the lack of need to apply resources to demonstrating margin for these component types. This rationale is in terms of design features of the plant and operating characteristics that make these component types less important from an EQ and aging perspective. While the case study focuses on EQ and aging of equipment and cables located inside the containment of this PWR, the prevention analysis method is demonstrated to be an effective technique for identification of minimal collections of components that would be effective in managing safety for a variety of issues associated with aging and long-term operation of the fleet of plants.

  10. Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification

    SciTech Connect (OSTI)

    R. Youngblood; D. Blanchard

    2011-09-01T23:59:59.000Z

    In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional level, at the barrier level, at the component level), and where margin is thin or perhaps just degrading. If the plant is safe, it tells the decision-maker why the plant is safe and where margin needs to be maintained, and perhaps where the plant can afford to relax.

  11. Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification

    SciTech Connect (OSTI)

    D. Blanchard; R. Youngblood

    2012-04-01T23:59:59.000Z

    In general, the margins-based safety case helps the decision-maker manage plant margins most effectively. It tells the plant decision-maker such things as what margin is present (at the plant level, at the functional level, at the barrier level, at the component level), and where margin is thin or perhaps just degrading. If the plant is safe, it tells the decision-maker why the plant is safe and where margin needs to be maintained, and perhaps where the plant can afford to relax.

  12. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  13. On the quantification of safety margins

    E-Print Network [OSTI]

    Pagani, Lorenzo P

    2004-01-01T23:59:59.000Z

    The nuclear industry has relied on the concept of Defense in Depth (DID) and traditional safety margins to deal with the uncertainties associated with the design and operation of nuclear facilities. These concepts were ...

  14. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20T23:59:59.000Z

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  15. Building a "Margin of Safety" Into Renewable Energy

    E-Print Network [OSTI]

    Building a "Margin of Safety" Into Renewable Energy Procurements: A Review of Experience purchasers and electricity regulators must confront the reality that signed renewable energy contracts will not always yield operational projects on the timeline given in the contracts themselves. Renewable energy

  16. Subsystem fragility: Seismic Safety Margins Research Program (Phase I)

    SciTech Connect (OSTI)

    Kennedy, R. P.; Campbell, R. D.; Hardy, G.; Banon, H.

    1981-10-01T23:59:59.000Z

    Seismic fragility levels of safety related equipment are developed for use in a seismic oriented Probabilistic Risk Assessment (PRA) being conducted as part of the Seismic Safety Margins Research Program (SSMRP). The Zion Nuclear Power Plant is being utilized as a reference plant and fragility descriptions are developed for specific and generic safety related equipment groups in Zion. Both equipment fragilities and equipment responses are defined in probabilistic terms to be used as input to the SSMRP event tree/fault tree models of the Zion systems. 65 refs., 14 figs., 11 tabs.

  17. Seismic Safety Margins Research Program: a concluding look

    SciTech Connect (OSTI)

    Cummings, G.E.

    1984-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) was started in 1978 with the goal of developing tools and data bases to compute the probability of earthquake - caused radioactive release from commercial nuclear power plants. These tools and data bases were to help NRC to assess seismic safety at nuclear plants. The methodology to be used was finalized in 1982 and applied to the Zion Nuclear Power Station. The SSMRP will be completed this year with the development of a more simplified method of analysis and a demonstration of its use on Zion. This simplified method is also being applied to a boiling-water-reactor, LaSalle.

  18. Nuclear Safety Information Dashboard | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

  19. Seismic Safety Margins Research Program. Phase I, final report - overview

    SciTech Connect (OSTI)

    Smith, P. D.; Dong, R. G.; Bernreuter, D. L.; Bohn, M. P.; Chuang, T. Y.; Cummings, G. E.; Johnson, J. J.; Mensing, R. W.; Wells, J. E.

    1981-03-06T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. 66 refs., 29 figs., 10 tabs.

  20. Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process

    SciTech Connect (OSTI)

    Beaulieu, R. A.

    2013-10-03T23:59:59.000Z

    The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE?STD?3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do not involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.

  1. Caldera Rim Margins | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass Facility80 Jump370Caldera Rim Margins

  2. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM) | U.S.Safety

  3. Seismic Safety Margins Research Program. Phase I, final report. Major structure response (Project IV). Volume 5

    SciTech Connect (OSTI)

    Benda, B. J.; Johnson, J. J.; Lo, T. Y.

    1981-05-01T23:59:59.000Z

    Task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain.

  4. Seismic Safety Margins Research Program. Phase I. Interim definition of terms

    SciTech Connect (OSTI)

    Smith, P.D.; Dong, R.G.

    1980-12-19T23:59:59.000Z

    This report documents interim definitions of terms in the Seismic Safety Margins Research Program (SSMRP). Intent is to establish a common-based terminology integral to the probabilistic methods that predict more realistically the behavior of nuclear power plants during an earthquake. These definitions are a response to a request by the Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards at its meeting held November 15-16, 1979.

  5. Development of the seismic input for use in the seismic safety margins research program

    SciTech Connect (OSTI)

    Bernreuter, D.L.; Chung, D.H.

    1980-01-29T23:59:59.000Z

    This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.

  6. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    SciTech Connect (OSTI)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01T23:59:59.000Z

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities.

  7. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect (OSTI)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  8. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    SciTech Connect (OSTI)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-02-24T23:59:59.000Z

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values.

  9. Structure/piping sensitivity studies for the US NRC Seismic Safety Margins Research Program. [PWR; BWR

    SciTech Connect (OSTI)

    Shieh, L.C.; O'Connell, W.J.; Johnson, J.J.

    1983-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a NRC-funded, multi-year program conducted by Lawrence Livermore National Laboratory (LLNL). One of the goals of the program is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I, a probabilistic computational procedure was developed for the seismic safety assessment. In Phase II, sensitivity studies were performed, codes and models were improved, and analysis of the Zion plant was completed.

  10. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    Oliver, Douglas L.

    to emergencies such as fire, chemical spill, electrical outage, communication system failure, etc. 2. RESEARCH Drugs 8 Communication Systems 9 Compliance Issues 10 Compressed Gas Cylinders 11 Electrical Safety 12 Electrical Power Failure 13 Emergency Procedures 14 Fire Safety 15 Hazard Reporting 16 Laser Safety 17

  11. MNSR transient analyses and thermal-hydraulic safety margins for HEU and LEU cores using PARET

    SciTech Connect (OSTI)

    Olson, Arne P. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States); Jonah, S.A. [Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)

    2008-07-15T23:59:59.000Z

    Thermal-hydraulic performance characteristics of Miniature Neutron Source Reactors under long-term steady-state and transient conditions are investigated. Safety margins and limiting conditions attained during these events are determined. Modeling extensions are presented that enable the PARET/ANL code to realistically track primary loop heatup, heat exchange to the pool, and heat loss from the pool to air over the pool. Comparisons are made of temperature predictions for HEU and LEU fueled cores under transient conditions. Results are obtained using three different natural convection heat transfer correlations: the original (PARET/ANL version 5), Churchill-Chu, and an experiment- based correlation from the China Institute of Atomic Energy (CIAE). The MNSR, either fueled by HEU or by LEU, satisfies the design limits for long-term transient operation. (author)

  12. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  13. Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L i p p e r t S e n i

  14. Risk Informed Safety Margin Characterization Case Study: Selection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L i p p e r t S e n

  15. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    SciTech Connect (OSTI)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-08-02T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public.

  16. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    SciTech Connect (OSTI)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01T23:59:59.000Z

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  17. Using Temporal Information in an Automated Classification of Summer, Marginal Ice Zone Imagery*

    E-Print Network [OSTI]

    Kansas, University of

    Using Temporal Information in an Automated Classification of Summer, Marginal Ice Zone Imagery, even with the human eye. BackScatter instability causu the intensities of the fiistyear ice, multiyear ice, and open water classes to intermix, thus making an intensity-based classification invalid

  18. SSI sensitivity studies and model improvements for the US NRC Seismic Safety Margins Research Program. Rev. 1

    SciTech Connect (OSTI)

    Johnson, J.J.; Maslenikov, O.R.; Benda, B.J.

    1984-10-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a US NRC-funded program conducted by Lawrence Livermore National Laboratory. Its goal is to develop a complete fully coupled analysis procedure for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. In Phase II of the SSMRP, the methodology was applied to the Zion nuclear power plant. Three topics in the SSI analysis of Zion were investigated and reported here - flexible foundation modeling, structure-to-structure interaction, and basemat uplift. The results of these investigations were incorporated in the SSMRP seismic risk analysis. 14 references, 51 figures, 13 tables.

  19. SAFETY MARGINS CONFIDENCE ESTIMATION FOR A PASSIVE RESIDUAL HEAT REMOVAL SYSTEM

    E-Print Network [OSTI]

    Boyer, Edmond

    , Italy enrico.zio@polimi.it 2 INET, Institute of Nuclear and New Energy Technology Tsinghua University, Beijing,100084, China ABSTRACT For licensing purposes, safety cases of Nuclear Power Plants (NPPs) must are traditionally performed for the verification of the safety performance of a Nuclear Power Plant (NPP) under

  20. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Office of Environmental Management (EM)

    Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment,...

  1. Laser Safety Web Resources The web links below represent varied resources for laser safety information and

    E-Print Network [OSTI]

    Houston, Paul L.

    Laser Safety Web Resources The web links below represent varied resources for laser safety information and equipment. The inclusion or exclusion of any given resource is not meant to reflect endorsement by Georgia Tech. Please contact the Laser Safety Officer if you know of any helpful resources

  2. Transactions of the nineteenth water reactor safety information meeting

    SciTech Connect (OSTI)

    Weiss, A.J. (comp.)

    1991-10-01T23:59:59.000Z

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  3. Safety Basis Information System | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental AssignmentAprilAND POWERADVANCEDSafeguardsSafety

  4. THE NICOLSON MUSEUM Venue and Safety Information for School Excursions

    E-Print Network [OSTI]

    Viglas, Anastasios

    THE NICOLSON MUSEUM Venue and Safety Information for School Excursions Venue Name: The Nicholson Museum, Sydney University Museums Location: Quadrangle A14, The University of Sydney NSW 2006 Phone Number: (02) 9351 2812 Fax Number: (02) 9351 7305 Web Address: www.usyd.edu.au/museums Sydney University

  5. THE MACLEAY MUSEUM Venue and Safety Information for School Excursions

    E-Print Network [OSTI]

    Viglas, Anastasios

    THE MACLEAY MUSEUM Venue and Safety Information for School Excursions Venue Name: The Macleay Museum, Sydney University Museums Location: Macleay Building A12, The University of Sydney NSW 2006 Phone Number: (02) 9036 5253 Fax Number: (02) 9351 7305 Web Address: www.usyd.edu.au/museums Sydney University

  6. Public Health and Safety | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolumeInformationpeopleOpenPublic

  7. Nuclear safety information sharing agreement between NRC and...

    Energy Savers [EERE]

    3116 Public Meeting Summaries - July 2007 Fifth National Report for the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management...

  8. MNSR transient analyses and thermal hydraulic safety margins for HEU and LEU cores using the RELAP5-3D code

    SciTech Connect (OSTI)

    Dunn, F.E.; Thomas, J.; Liaw, J.; Matos, J.E. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2008-07-15T23:59:59.000Z

    For safety analyses to support conversion of MNSR reactors from HEU fuel to LEU fuel, a RELAP5-3D model was set up to simulate the entire MNSR system. This model includes the core, the beryllium reflectors, the water in the tank and the water in the surrounding pool. The MCNP code was used to obtain the power distributions in the core and to obtain reactivity feedback coefficients for the transient analyses. The RELAP5-3D model was validated by comparing measured and calculated data for the NIRR-1 reactor in Nigeria. Comparisons include normal operation at constant power and a 3.77 mk rod withdrawal transient. Excellent agreement was obtained for core coolant inlet and outlet temperatures for operation at constant power, and for power level, coolant inlet temperature, and coolant outlet temperature for the rod withdrawal transient. In addition to the negative reactivity feedbacks from increasing core moderator and fuel temperatures, it was necessary to calculate and include positive reactivity feedback from temperature changes in the radial beryllium reflector and changes in the temperature and density of the water in the tank above the core and at the side of the core. The validated RELAP5-3D model was then used to analyze 3.77 mk rod withdrawal transients for LEU cores with two UO{sub 2} fuel pin designs. The impact of cracking of oxide LEU fuel is discussed. In addition, steady-state power operation at elevated power levels was evaluated to determine steady-state safety margins for onset of nucleate boiling and for onset of significant voiding. (author)

  9. Importance of Management Information Increased price volatility and narrow profit margins in

    E-Print Network [OSTI]

    in production agriculture underscore the importance of sound record-keeping and management information for farm their financial record-keeping and analysis capabilities, allowing them to make better management decisions and High Plains areas. Economic Impact Sound financial records allow producers to make better management

  10. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

    1997-05-01T23:59:59.000Z

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

  11. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06T23:59:59.000Z

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  12. TITLE: RELEASING PROTECTED HEALTH INFORMATION TO PREVENT A SERIOUS THREAT TO HEALTH OR SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    TITLE: RELEASING PROTECTED HEALTH INFORMATION TO PREVENT A SERIOUS THREAT TO HEALTH OR SAFETY the patient's authorization in order to prevent a serious threat to health or safety. PURPOSE The purpose will release a patient's PHI without the patient's authorization to prevent a serious threat to health

  13. Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental

    E-Print Network [OSTI]

    Huennekens, John

    1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

  14. Development of the Nuclear Safety Information Dashboard- September 2012

    Broader source: Energy.gov [DOE]

    A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria.

  15. Safety and Health Regulatory and Policy Response Line- General Information

    Broader source: Energy.gov [DOE]

    The DOE Worker Safety and Health Standards Response Line, established in 1992, is a service that responds to questions DOE, DOE contractor, and DOE subcontractor personnel regarding DOE-adopted and -prescribed standards and directives. These responses may not represent official OSHA policies.

  16. University Fire Marshal's Office Holiday Fire Safety Information

    E-Print Network [OSTI]

    Straight, Aaron

    festive space heaters... As you un-box those lights, wires and bearers of holiday warmth, it is also heaters. Now is the time--as you set them up--to ensure that you do so providing for the safety of your must be kept in water at all times to slow the natural drying process. Approved Tree Lots ­ Licensed

  17. Transactions of the twenty-fifth water reactor safety information meeting

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1997-09-01T23:59:59.000Z

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

  18. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1993-10-01T23:59:59.000Z

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  19. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 2

    SciTech Connect (OSTI)

    Andrews, W.B.; Gallucci, R.H.V.; Konzek, G.J.; Heaberlin, S.W.; Fecht, B.A.; Allen, C.H.; Allen, R.D.; Bickford, W.E., Carbaugh, E.H.; Lewis, J.R.

    1983-12-01T23:59:59.000Z

    This is the third in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues (NUREG/CR-2800, Andrews et al. 1983). This report contains results of issue-specific analyses for 31 issues. Each issue was considered within the constraints of available information as of summer 1983, and two staff-weeks of labor. The results are referenced, as one consideration in setting priorities for reactor safety issues, in NUREG-0933, A Prioritization of Generic Safety Issues.

  20. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 4

    SciTech Connect (OSTI)

    Tabatabai, A.S.; Fecht, B.A.; Powers, T.B.; Bickford, W.E.; Andrews, W.B.; Gallucci, R.H.V.; Bian, S.H.; Daling, P.M.; Eschbach, E.J.; Allen, C.H.

    1986-07-01T23:59:59.000Z

    This is the fifth in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues (NUREG/CR-2800, Andrews et al. 1983). This report contains results of issue-specific analyses for 23 issues. Each issue was considered within the constraints of available information as of winter 1986, and two staff-weeks of labor. The results are referenced, as one consideration in setting priorities for reactor safety issues, in NUREG-0933, ''A Prioritization of Generic Safety Issues.''

  1. FTCP Site Specific Information - Chief of Nuclear Safety | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartment ofEnergy Chief of Nuclear Safety

  2. September 2013 Laboratory Safety Manual Appendix C Templates for Lab-Specific Information

    E-Print Network [OSTI]

    Wilcock, William

    your lab's Chemical Hygiene Plan (CHP). These templates are also available as documents which can's CHP consists of the generic UW Laboratory Safety Manual plus your lab's laboratory- specific knows is the location of the laboratory-specific information for your CHP. If you keep electronic copies

  3. Communication Information Structures and Contents for Enhanced Safety of Highway Vehicle

    E-Print Network [OSTI]

    Zhang, Hongwei

    in developing intelligent transporta- tion systems. By autonomous or semi-autonomous vehicle con- trol and inter-vehicle, autonomous vehicles. I. INTRODUCTION Highway platooning of vehicles has been identified as a promising1 Communication Information Structures and Contents for Enhanced Safety of Highway Vehicle Platoons

  4. Embrittlement Database from the Radiation Safety Information Computational Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Embrittlement Data Base (EDB) is a comprehensive collection of data from surveillance capsules of U.S. commercial nuclear power reactors and from experiments in material test reactors. The collected data are contained in either the Power Reactor Embrittlement Data Base (PR-EDB) or the Test Reactor Embrittlement Data Base (TR-EDB). The EDB work includes verification of the quality of the EDB, provision for user-friendly software to access and process the data, exploration and/or confirmation of embrittlement prediction models, provision for rapid investigation of regulatory issues, and provision for the technical bases for voluntary consensus standards or regulatory guides. The EDB is designed for use with a personal computer. The data are collected into "raw data files." Traceability of all data is maintained by including complete references along with the page numbers. External data verification of the PR-EDB is the responsibility of the vendors, who were responsible for the insertion and testing of the materials in the surveillance capsules. Internal verification is accomplished by checking against references and checking for inconsistencies. Examples of information contained in the EDBs are: Charpy data, tensile data, reactor type, irradiation environments, fracture toughness data, instrumented Charpy data, pressure-temperature (P-T) data, chemistry data, and material history. The TR-EDB additionally has annealing Charpy data. The current version of the PR-EDB contains the test results from 269 Charpy capsules irradiated in 101 reactors. These results include 320 plate data points, 123 forging data points, 113 standard reference materials (SRMS) or correlation monitor (CM) points, 244 weld material data points, and 220 heat-affected-zone (HAZ) material data points. Similarly, the TR-EDB contains information for 290 SRM or CM points, 342 plate data points, 165 forging data points, 378 welds, and 55 HAZ materials. [copied from http://rsicc.ornl.gov/RelatedLinks.aspx?t=edb

  5. Guidelines for nuclear power plant safety issue prioritization information development. Supplement 5

    SciTech Connect (OSTI)

    Daling, P.M.; Lavender, J.C. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-07-01T23:59:59.000Z

    This is the sixth in a series of reports to document the development and use of a methodology developed by the Pacific Northwest Laboratory (PNL) to calculate, for prioritization purposes, the risk, dose, and cost impacts of implementing potential resolutions to reactor safety issues (see NUREG/CR-2800, Andrews, et al., 1983). This report contains the results of issue-specific analyses for 34 generic issues. Each issue was considered within the constraints of available information at the time the issues were examined and approximately 2 staff-weeks of labor. The results are referenced as one consideration in NUREG-0933, A Prioritization of Generic Safety Issues (Emrit, et al., 1983).

  6. New Methods and Tools to Perform Safety Analysis within RISMC

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Cristian Rabiti; Andrea Alfonsi; Robert Kinoshita; Joshua Cogliati

    2013-11-01T23:59:59.000Z

    The Risk Informed Safety Margins Characterization (RISMC) Pathway uses a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. What differentiates the RISMC approach from traditional probabilistic risk assessment (PRA) is the concept of safety margin. In PRA, a safety metric such as core damage frequency (CDF) is generally estimated using static fault-tree and event-tree models. However, it is not possible to estimate how close we are to physical safety limits (say peak clad temperature) for most accident sequences described in the PRA. In the RISMC approach, what we want to understand is not just the frequency of an event like core damage, but how close we are (or not) to this event and how we might increase our safety margin through margin management strategies in a Dynamic PRA (DPRA) fashion. This paper gives an overview of methods that are currently under development at the Idaho National Laboratory (INL) with the scope of advance the current state of the art of dynamic PRA.

  7. seismic margin

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation SummaryTECHNICAL REPORT,m, iC lo

  8. Printed copies of the WSU Spokane Annual Security/Fire Safety Report can be obtained at the Office of Security and Public Safety. Information prepared by the Office of Security and Public

    E-Print Network [OSTI]

    Collins, Gary S.

    of Security and Public Safety. Information prepared by the Office of Security and Public Safety at WSU Spokane and Security Department Information 3 Reporting, Access and Programs 3-5 Policies and Procedures 6Printed copies of the WSU Spokane Annual Security/Fire Safety Report can be obtained at the Office

  9. Liquid-metal fast-breeder reactors: Preliminary safety and environmental information document. Volume VI

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning LMFBR design characteristics; uranium-plutonium/uranium recycle homogeneous core; uranium-plutonium/uranium spiked recycle heterogeneous core; uranium-plutonium/uranium spiked recycle homogeneous core; uranium-plutonium/thorium spiked recycle heterogeneous core; uranium-plutonium/thorium spiked recycle homogeneous core; thorium-plutonium/thorium spiked recycle homogeneous core; denatured uranium-233/thorium cycle homogeneous core; safety consideration for the LMFBR; and environmental considerations.

  10. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    SciTech Connect (OSTI)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01T23:59:59.000Z

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  11. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    SciTech Connect (OSTI)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01T23:59:59.000Z

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  12. Analysis of gain margins and phase margins of a nonlinear reactor control system

    SciTech Connect (OSTI)

    Chang, C.H.; Chang, M.K. (Chung Cheng Inst. of Technology, Tao-Yuan (Taiwan, Province of China))

    1994-08-01T23:59:59.000Z

    By using the gain-phase margin tester, the parameter-plane method for the nonlinear control system is extended to frequency-domain related to gain margin and phase margin. The stability and self-excited oscillation are investigated with respect to the adjustable parameters. The useful information concerning the effect of adjustable parameters can be obtained, after the describing function curves and the boundaries of constant gain margin and constant phase margin are plotted in the parameter plane. Some interesting consequences are offered by employing the practical control system of a material testing reactor.

  13. Customized Computed Tomography-Based Boost Volumes in Breast-Conserving Therapy: Use of Three-Dimensional Histologic Information for Clinical Target Volume Margins

    SciTech Connect (OSTI)

    Hanbeukers, Bianca [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Borger, Jacques; Ende, Piet van den [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Ent, Fred van der [Department of Surgery, Maasland Hospital, Sittard (Netherlands); Houben, Ruud [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Jager, Jos [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Keymeulen, Kristien [Department of Surgery, Maastricht University Medical Center, Maastricht (Netherlands); Murrer, Lars [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Sastrowijoto, Suprapto [Department of Pathology, Maasland Hospital, Sittard (Netherlands); Vijver, Koen van de [Department of Pathology, Maastricht University Medical Center, Maastricht (Netherlands); Boersma, Liesbeth, E-mail: liesbeth.boersma@maastro.n [Department of Radiation Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands)

    2009-11-01T23:59:59.000Z

    Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes. Patients and Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV{sub sim} that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV{sub sim}. Results: The irradiated volume (volume receiving >=95% of the prescribed dose [V{sub 95}]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV{sub sim}: 228 cm{sup 3} vs. 147 cm{sup 3} (p < .001). For the 17 patients with a PTV with anisotropic CTV margins, the V{sub 95} was similar to the V{sub 95} for the PTV{sub sim} (190 cm{sup 3} vs. 162 cm{sup 3}; p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029). Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.

  14. RISK-INFORMED BALANCING OF SAFETY, NONPROLIFERATION, AND ECONOMICS FOR THE SFR

    SciTech Connect (OSTI)

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-10-20T23:59:59.000Z

    A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards, particularly concerning seismic and aircraft impactrelated risks. Most importantly, within the context of the TNF historical SFR safety concerns about energetic core disruptive accidents are seen to be unimportant, but those of rare scenarios mentioned above are seen to be of dominant concern. In terms of proliferation risks the SFR energy system is seen not to be of considerably greater concern than with other nuclear power technologies, providing that highly effective safeguards are employed. We find the economic performance of proposed SFRs likely, due to the problems of using sodium as a coolant, to be inferior to those of LWRs unless they can be credited for services to improve nuclear waste disposal, nuclear fuel utilization and proliferation risk reductions. None of the design innovations investigated offers the promise to reverse this conclusion. The most promising innovation investigated is that of improving the plant's thermodynamic efficiency via use of the supercritical CO{sub 2} (rather than steam Rankine) power conversion system. We were unable to reach conclusions about the economic and proliferation risk implications of competing nuclear fuel processing methods, as available designs are too little developed to justify any such results. Overall, we find the SFR to be a promising alternative to LWRs should the conditions governing the valuation change substantially from current ones.

  15. Gain margin and phase margin analysis of a nuclear reactor control system with multiple transport lags

    SciTech Connect (OSTI)

    Chang, C.H. (Institute of Electronics, National Chiao-Tung Univ. (TW)); Han, K.W. (Chung-Shan Institute and National Chiao-Tung Univ., Hsinchu (TW))

    1989-08-01T23:59:59.000Z

    In this paper a method for finding the boundaries of constant gain margin and phase margin of control systems with transport lags and adjustable parameters is presented. The considered systems are first modified by adding a gain-phase margin tester, then the characteristic equations are formulated, and finally the stability equations are used to find the boundaries of constant gain margin and phase margin. The main advantage of the proposed method is to obtain complete information about the effects of adjustable parameters on gain margin and phase margin and their corresponding crossover frequencies. In order to show the usefulness of the proposed method a nuclear reactor control system with multiple transport lags is chosen as one of the examples.

  16. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

  17. Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)

    SciTech Connect (OSTI)

    NONE

    1986-12-01T23:59:59.000Z

    With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

  18. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  19. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01T23:59:59.000Z

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

  20. Coastal ocean margins program

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    The marine research program supported by the Office of Energy Research, Ecological Research Division, is focused to provide scientific information on major environmental issues facing development and expansion of most energy technologies and energy policy. These issues include waste disposal, siting/operations, and possible long term effects on global systems. The research is concentrated along the United States coastal margins where marine waters provide abundant food and resources while assimilating discharges from atmospheric, terrestrial, and aquatic sources. The program focuses on the formation and transport of particles within the waters of the continental shelf and the fate of these particles, whether on the shelf, on the slope, or in the open ocean. The program is conducted with multidisciplinary teams of researchers who investigate water mass movements, biological productivity, and naturally forming particles, as well as contaminant transport, to develop a clear understanding of the exchanges of contaminants and other materials that take place between continental shelf and open ocean waters. Seventy-five percent of the projects are funded to university grantees and twenty-five percent to National Laboratories.

  1. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  2. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect (OSTI)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  4. 167 Prospectus California Margin

    E-Print Network [OSTI]

    . Each of the three transects across the California Current will compare deep-water sites near the core), for those sites that require it, can be obtained from the following World Wide Web site: http margin, Deep Sea Drilling Project (DSDP) Leg 63, occurred immediately before the first deployment

  5. contingency Nominal loading margin

    E-Print Network [OSTI]

    Member Member Fellow Electrical and Computer Engineering Department University of Wisconsin, Madison WI 53706 USA Abstract: The change in the loading margin to voltage collapse when line outages occur the line outages of the IEEE 118 bus system. The results show the effective ranking of contingencies

  6. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01T23:59:59.000Z

    Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement...

  7. Form Name Form description Form URL Laboratory Safety General Information on Laboratory Safety at Penn State http://www.ehs.psu.edu/occhealth/labsafety.cfm

    E-Print Network [OSTI]

    Maroncelli, Mark

    Safety Standard Operating Procedure (SOP) Example/Template SOP that must be approved by Laser Safety's safe for maintenance to work on http://www.ehs.psu.edu/occhealth/SafetyClearance.pdf Bloodborne from all lab personnel. http://www.ehs.psu.edu/occhealth/unit_specific_plan_form.pdf Procedures

  8. Guidelines for nuclear-power-plant safety-issue-prioritization information development

    SciTech Connect (OSTI)

    Andrews, W.B.; Gallucci, R.H.V.; Heaberlin, S.W.; Bickford, W.E.; Konzek, G.J.; Strenge, D.L.; Smith, R.I.; Weakley, S.A.

    1983-02-01T23:59:59.000Z

    Pacific Northwest Laboratory has developed a methodology, with examples, to calculate - to an approximation serviceable for prioritization purposes - the risk, dose and cost impacts of implementing resolutions to reactor safety issues. This report is an applications guide to issue-specific calculations. A description of the approach, mathematical models, worksheets and step-by-step examples are provided. Analysis using this method is intended to provide comparable results for many issues at a cost of two staff-weeks per issue. Results will be used by the NRC to support decisions related to issue priorities in allocation of resources to complete safety issue resolutions.

  9. Margins up; consumption down

    SciTech Connect (OSTI)

    Mantho, M.

    1983-09-01T23:59:59.000Z

    The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

  10. Approved Module Information for CE1007, 2014/5 Module Title/Name: Health, Safety & the Environment Module Code: CE1007

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Module Code: CE1007 School: Engineering and Applied Science Module Type: Standard Module New ModuleApproved Module Information for CE1007, 2014/5 Module Title/Name: Health, Safety & the Environment? No Module Credits: 10 Module Management Information Module Leader Name George Drahun Email Address j

  11. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1995-09-01T23:59:59.000Z

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  12. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  13. Gas-cooled fast reactors: preliminary safety and environmental information document. Volume V

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning a homogeneous plutonium/uranium oxide core with thorium oxide axial and radial blankets and spiked recycle.

  14. Pipeline safety. Information on gas distribution system operators reporting unaccounted for gas

    SciTech Connect (OSTI)

    Not Available

    1986-02-01T23:59:59.000Z

    According to Department of Transportation records, 92 of the 1491 gas distribution system operators reported high levels of unaccounted for gas (unaccounted for gas is the difference between the amount of gas purchased and sold) for 1984, the latest year for which data were available. Of the 92 gas system operators, 64 were municipals (gas systems owned by a governmental entity, such as a city or county) and 28 were nonmunicipals. Based on the data we reviewed, these 92 gas systems did not report any accidents during calendar year 1984. Part I provides more details on the unaccounted for gas of municipal gas systems. Federal and industry officials consider that unaccounted for gas in excess of 15% of gas purchases high and worthy of investigation. High levels of unaccounted for gas can occur for a number of reasons, including errors in metering and billing, not accounting for gas used by city or company facilities, and leaking gas pipelines. While it may, a leak does not always indicate a safety problem. For example, a slow leak in an open area may not be a safety hazard. The Secretary has the authority to regulate any liquid deemed hazardous when transported by pipeline, and therefore could regulate hazardous liquids not currently regulated including methanol and carbon dioxide. However, the Department of Transportation has no plans to regulate any additional liquids. Part II provides more details. 4 figs., 2 tabs.

  15. Heavy-water reactors: preliminary safety and environmental information document. Volume II

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning the modifications relative to the CANDU reactor; and a once-through fuel cycle with 1.2% enriched uranium-235 and a burnup of 20,000 MWd/MT.

  16. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  17. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  18. Quantification of design margins/safety factors based on the prediction uncertainty in tritium production rate from fusion integral experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics

    SciTech Connect (OSTI)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    Various engineering-oriented fusion integral experiments were performed within the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics during the last decade. The objectives of this ten-year program were: (a) to establish new experimental techniques for design-related neutronics experiments, (b) to provide experimental data on local and integrated parameters such as tritium production rate, nuclear heating, and activation for the purpose of assessing the accuracies of present nuclear data and calculational methods, and (c) to provide designers with design margin for important responses. Tritium breeding rate (TPR) has the prime focus among other reactions. The program consisted of three phases in which local and integrated measurements inside a Li{sub 2}O test assembly that has various engineering features of a prototypical blanket (e.g. SS FW, H{sub 2}O coolant channels, beryllium multiplier). The analysis of the experiments were performed independently by the US and JAERI using their own codes/databases. A wide range of the calculated-to-experimental (C/E) values were observed in all these experiments for local TPR from Li-6 (T{sub 6}), from Li-7 (T{sub 7}), and from Li-natural (T{sub n}). In this paper, the experimental and calculational data sets of local TPR in each experiment were interpreted to give estimate to the prediction uncertainty, u{sub i}, of the line-integrated TPR and its standard deviation, {sigma}{sub i}.

  19. Post this advisory as necessary to keep our community informed. Campus Safety

    E-Print Network [OSTI]

    Miami, University of

    materials from a conex storage box on the MTLSS construction site. An additional vehicle of interest was also observed in the area during the incident. VEHICLE INFORMATION Suspect Vehicle #1 ­ Possible FL Tag OCT### Suspect Vehicle #2 ­ FL Tag 660HMP SUSPECT DESCRIPTION Vehicle #1 ­ Driver ­ Black Male, 5

  20. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  1. Light-water breeder reactors: preliminary safety and environmental information document. Volume III

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning prebreeder and breeder reactors based on light-water-breeder (LWBR) Type 1 modules; light-water backfit prebreeder supplying advanced breeder; light-water backfit prebreeder/seed-blanket breeder system; and light-water backfit low-gain converter using medium-enrichment uranium, supplying a light-water backfit high-gain converter.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01T23:59:59.000Z

    SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

  5. PAT-1 safety analysis report addendum author responses to request for additional information.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01T23:59:59.000Z

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

  6. Light-water reactors: preliminary safety and environmental information document. Volume I

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning the reference PWR reactor system; once-through, low-enrichment uranium-235 fuel, 30 MWD per kilogram (PWR LEU(5)-OT); once-through, low-enrichment, high-burnup uranium fuel (PWR LEU(5)-Mod OT); self-generated plutonium spiked recycle (PWR LEU(5)-Pu-Spiked Recycle); denatured uranium-233/thorium cycle (PWR DU(3)-Th Recycle DU(3)); and plutonium/thorium cycle (Pu/ThO/sub 2/ Burner).

  7. Preparation is the best protection against the dangers of a hurricane. The information below is taken from the American Red Cross Hurricane Safety Checklist.

    E-Print Network [OSTI]

    Varela, Carlos

    Preparation is the best protection against the dangers of a hurricane. The information below is taken from the American Red Cross Hurricane Safety Checklist. What should I do? Check your disaster, lawn furniture). Close windows, doors and hurricane shutters. If you do not have hurricane shutters

  8. Information on DOE O 420.1C, Facility Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information for Department

  9. The safety valve and climate policy

    E-Print Network [OSTI]

    Jacoby, Henry D.; Ellerman, A. Denny.

    In discussions of a cap-and-trade system for implementation of Kyoto Protocol-type quantity targets, a "safety valve" was proposed where, by government sales of emissions permits at a fixed price, the marginal cost of the ...

  10. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    SciTech Connect (OSTI)

    Seed, Ian; James, Paula [Cogentus Consulting (United States)] [Cogentus Consulting (United States); Mathieson, John [NDA United Kingdom (United Kingdom)] [NDA United Kingdom (United Kingdom); Judd, Laurie [NuVision Engineering, Inc. (United States)] [NuVision Engineering, Inc. (United States); Elmetti-Ramirez, Rosa; Han, Ana [US DOE (United States)] [US DOE (United States)

    2013-07-01T23:59:59.000Z

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchange through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and the effective pooling and exchange of knowledge and experience can only be of benefit to all participants to help complete the cleanup mission more quickly and more cost effectively. This paper examines in detail the tools and processes used to promote information exchange and the progress made to date. It also discusses the challenges and issues involved and proposes recommendations to others who are involved in similar activities. (authors)

  11. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  12. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1995-04-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  13. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    SciTech Connect (OSTI)

    Weiss, A. J. [comp.

    1988-02-01T23:59:59.000Z

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  14. Sandia National Laboratories: critical marginal ice zone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marginal ice zone NASA Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) On February 24, 2015, in Analysis, Climate, Modeling & Analysis, Monitoring, News,...

  15. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  16. Safety and Security Enfrocment Process Overview

    Office of Environmental Management (EM)

    are to enhance and protect worker safety and health, nuclear safety, and classified information security by fostering a culture that seeks to attain and sustain compliance...

  17. Interdisciplinary: Industrial Hygienist/Safety Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Worker Safety and Health Assessments that conducts assessments to provide critical feedback and objective information on occupational safety and health...

  18. Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    improvement in safety based on Institute of Nuclear Power Operations (INPO) performance indicatorsReliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139

  19. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03T23:59:59.000Z

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  20. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >- DOESafety

  1. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-

  2. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM) |

  3. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene

  4. Request for Investigation or Inspection of Safety or Classified...

    Energy Savers [EERE]

    Request for Investigation or Inspection of Safety or Classified Information Security Violations Request for Investigation or Inspection of Safety or Classified Information Security...

  5. Subsystem response review. Seismic Safety Margins Research Program

    SciTech Connect (OSTI)

    Kennedy, R. P.; Campbell, R. D.; Wesley, D. A.; Kamil, H.; Gantayat, A.; Vasudevan, R.

    1981-02-01T23:59:59.000Z

    A study was conducted to document the state of the art in seismic qualification of nuclear power plant components and subsystems by analysis and testing and to identify the sources and magnitude of the uncertainties associated with analysis and testing methods. The uncertainties are defined in probabilistic terms for use in probabilistic seismic risk studies. Recommendations are made for the most appropriate subsystem response analysis methods to minimize response uncertainties. Additional studies, to further quantify testing uncertainties, are identified. Although the general effect of non-linearities on subsystem response is discussed, recommendations and conclusions are based principally on linear elastic analysis and testing models.

  6. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  7. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    SciTech Connect (OSTI)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)] [comp.; Brookhaven National Lab., Upton, NY (United States)

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  8. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Broader source: Energy.gov [DOE]

    PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  9. Seismic margins and calibration of piping systems

    SciTech Connect (OSTI)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  10. Dynamics of the continental margins

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  12. Sandia National Laboratories: Marginal Ice Zone Observations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marginal Ice Zone Observations and Processes Experiment mission Sierra Unmanned Aerial Vehicle to Begin Flights Over Arctic Sea Ice On July 25, 2013, in Climate, Customers &...

  13. Marginal vitiligo: an unusual depigmenting disorder

    E-Print Network [OSTI]

    Trikha, Ritika; McCowan, Nancye; Brodell, Robert

    2015-01-01T23:59:59.000Z

    including marginal vitiligo, DLE, and hypopigmented MF.Direct immunofluorescence DLE: Discoid lupus erythematosusdiagnosis of IVRB includes DLE. In fact, the patches of

  14. Assessment of seismic margin calculation methods

    SciTech Connect (OSTI)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01T23:59:59.000Z

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  15. Informational Purposes Only - DOE Directives, Delegations, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Weapon Surety Program (Informational Purposes Only) Acquisition Career Management Program (Informational Purposes Only) Facility Safety (For Informational Purposes Only)...

  16. Office of Worker Safety and Health Assessments | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Worker Safety and Health Assessments conducts assessments to provide critical feedback and objective information on occupational safety and health programs and performance....

  17. Large margin classification in infinite neural networks

    E-Print Network [OSTI]

    Saul, Lawrence K.

    Large margin classification in infinite neural networks Youngmin Cho and Lawrence K. Saul, CA 92093-0404 Abstract We introduce a new family of positive-definite kernels for large margin classi- fication in support vector machines (SVMs). These kernels mimic the computation in large neural networks

  18. MARGIN AND SENSITIVITY METHODS SECURITY ANALYSIS

    E-Print Network [OSTI]

    MARGIN AND SENSITIVITY METHODS FOR SECURITY ANALYSIS OF ELECTRIC POWER SYSTEMS by Scott Greene the amount by which system loads or power transfers can change before a security violation, such as an overloaded transmission line, is encountered. This thesis shows how to efficiently compute security margins

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  20. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  4. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-07T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 231.1, ENVIRONMENT, SAFETY AND HEALTH REPORTING, which establishes management objectives and requirements for reporting environment, safety and health information. Chg 1, 11-7-96.

  5. Environment Safety and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-30T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. Does not cancel other directives.

  6. Slideshow, National Safety Month- June 2013

    Broader source: Energy.gov [DOE]

    National Safety Month is recognized by employers, employees, and safety and health professionals throughout the country. During the month of June, HSS provided information, activities, and events pertaining to weekly themes.

  7. The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including

    E-Print Network [OSTI]

    The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including: Chemical characteristics; Physical and health hazards, including relevant exposure limits; Precautions for safe handling

  8. Integral fast reactor safety features

    SciTech Connect (OSTI)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  9. Wholesale marginal prices in competitive generation markets

    SciTech Connect (OSTI)

    Perez-Arriaga, I.J. [National Electric Regulatory Commission, Madrid (Spain)] [National Electric Regulatory Commission, Madrid (Spain); Meseguer, C. [Univ. Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica] [Univ. Pontificia Comillas, Madrid (Spain). Inst. de Investigacion Tecnologica

    1997-05-01T23:59:59.000Z

    Wholesale marginal electricity prices are being used in several actual competitive generation markets worldwide, both to remunerate generators and to charge consumption. These prices must account not only for energy, but also for guarantee of supply in the long and the short term. This paper: (a) provides a sound conceptual and quantitative foundation for wholesale pricing based on generation services, where any existing restrictions in operation or planning in real power markets are accounted for, (b) clearly establishes the relationship between short term marginal costs, long term marginal costs and optimal wholesale electricity prices, and (c) identifies the reasons for mismatches in cost recovery with marginal generation prices. The theoretical results are verified with a detailed realistic power system model.

  10. Marginal, Erodible Land Retirement Policy (Minnesota)

    Broader source: Energy.gov [DOE]

    It is state policy to encourage the retirement of marginal, highly erodible land, particularly land adjacent to public waters and drainage systems, from crop production and to reestablish a cover...

  11. Estimation of Highway Maintenance Marginal Cost under Multiple Maintenance Activities

    E-Print Network [OSTI]

    Anani, Shadi B.; Madanat, Samer M

    2010-01-01T23:59:59.000Z

    Marginal costs for road maintenance and operation - a cost2010-01) Estimation of Highway Maintenance Marginal Costunder Multiple Maintenance Activities Shadi B. Anani and

  12. ITP Steel: Steel Industry Marginal Opportunity Study September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 steelmarginalopportunity.pdf More Documents &...

  13. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect (OSTI)

    Lau, C. W.; Demaziere, C. [Dept. of Applied Physics, Div. of Nuclear Engineering, Chalmers Univ. of Technology, 412 96 Gothenburg (Sweden); Nylen, H.; Sandberg, U. [Ringhals AB, 432 85 Vaeroebacka (Sweden)

    2012-07-01T23:59:59.000Z

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  14. Forrestal Security and Safety Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-02-02T23:59:59.000Z

    To establish uniform procedures for the security and safety of the Forrestal Building and to inform all personnel of precautionary measures. This directive does not cancel another directive. Canceled by DOE N 251.11.

  15. pamphlet2014.docx Office of Research Safety

    E-Print Network [OSTI]

    Kim, Duck O.

    Control Center (24 hrs) 3456 Epidemiology 4376 Employee Health Service 2893 Emergency Department 2588 4 Biological Safety/Bloodborne Pathogen/TB 5 TB Exposure Control 6 Chemical Safety 7 Radiation 31 Confined Space 32 Asbestos Awareness 33 UCHC Safety Information/Policies 34 Chemical Inventory #12

  16. Northwestern University Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Northwestern University Office for Research Safety ISIS User Manual ISIS (pronounced -ss) is Northwestern University's Integrated Safety Information System. ISIS is the on-line web application by which PIs submit applications and registrations for review. ISIS also builds a laboratory's Safety Profile

  17. Toolbox Safety Talk Articulating Boom Work Platforms

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Articulating Boom Work Platforms Environmental Health & Safety Facilities sign-in sheet to Environmental Health & Safety for recordkeeping. Articulating boom work platforms platforms and provides tips to prevent injuries, death, and equipment damage. More information can be found

  18. Electromagnetic exploration of the Exmouth and Vøring rifted margins

    E-Print Network [OSTI]

    Myer, David Gerard

    2012-01-01T23:59:59.000Z

    continental margin; seismic interpretation, stratigraphy,CSEM, and seismic interpretation; (c) investigate the effect

  19. Experts are partnering in Tampa, the Lightning Capital of the U.S., to provide safety information about the dangers of lightning and promote

    E-Print Network [OSTI]

    this free event to learn more about the national Lightning Safety Awareness Campaign to protect your family about the dangers of lightning and promote risk reduction and lightning protection education. Attend safety & protection resources FEATURED GUESTS INCLUDE: · Tampa Mayor Bob Buckhorn · Tampa Fire Chief

  20. LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Houston, Paul L.

    LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

  1. ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL

    E-Print Network [OSTI]

    Maroncelli, Mark

    ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

  2. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  4. Winter Safety Information & Tips

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S.Department of EnergyToday,January 2007 1

  5. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect (OSTI)

    Not Available

    1984-01-25T23:59:59.000Z

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  6. Department of Energy Cites Bechtel Jacobs for Classified Information...

    Office of Environmental Management (EM)

    Jacobs for Classified Information Security and Worker Safety and Health Violations Department of Energy Cites Bechtel Jacobs for Classified Information Security and Worker Safety...

  7. Toolbox Safety Talk Ladder Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry and construction worker injuries. Falls cause 15% of all accidental deaths, and are second only to motor vehicle

  8. Lessons Learned from Safety Events

    SciTech Connect (OSTI)

    Weiner, Steven C.; Fassbender, Linda L.

    2012-11-01T23:59:59.000Z

    The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database, its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety. [1,2] Since 2009, continuing work has not only highlighted the value of safety lessons learned, but enhanced how the database provides access to another safety knowledge tool, Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learnings from around the world. This paper updates recent progress, highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting, analyzing and using safety event information.

  9. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  10. Intrusion Margins and Associated Fractures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESInterval Data Systems IncInc

  11. ECN GHG Marginal Abatement Cost curves (NAMAC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbHEAEC Power UKECN

  12. Marginal Abatement Cost Tool (MACTool) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History ViewDatasetsIIMarginal

  13. Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Goen, L.K. [Los Alamos National Lab., NM (United States); Salmon, M.W. [EQE International, Irwine, CA (United States)

    1995-12-01T23:59:59.000Z

    Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

  14. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  15. Shear measurements across the northern margin of Whillans Ice Stream

    E-Print Network [OSTI]

    Van Der Veen, C.J.; Jezek, K.; Stearns, Leigh

    2007-01-01T23:59:59.000Z

    Field measurements of surface deformation across the northern shear margin of Whillans Ice Stream, West Antarctica, were analyzed to better understand the processes controlling the position and migration of this margin. Four lines of poles extending...

  16. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  17. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  18. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  19. CRITICALITY SAFETY TRAINING AT FLUOR HANFORD (FH)

    SciTech Connect (OSTI)

    TOFFER, H.

    2005-05-02T23:59:59.000Z

    The Fluor Hanford Criticality Safety engineers are extensively trained. The objectives and requirements for training are derived from Department of Energy (DOE) and American National Standards Institute/American Nuclear Society Standards (ANSI/ANS), and are captured in the Hanford Criticality Safety Program manual, HNF-7098. Qualification cards have been established for the general Criticality Safety Engineer (CSE) analyst, CSEs who support specific facilities, and for the facility Criticality Safety Representatives (CSRs). Refresher training and continuous education in the discipline are emphasized. Weekly Brown Bag Sessions keep the criticality safety engineers informed of the latest developments and historic perspectives.

  20. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-01T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

  1. Laser Safety Introduction

    E-Print Network [OSTI]

    McQuade, D. Tyler

    use Integrated Safety Management here at the lab to reduce risk and work to improve the quality and safety of the work? #12;Integrated Safety Management Use (greater in size than wavelength) #12;Integrated Safety Management Remember, we

  2. Light Water Reactor Safety Technology Program. Quarterly report, October-December 1979

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    Information on LWR safety is presented concerning the Technology Management Center support programs; risk methods utilization; improved safety systems;man-machine interaction; safety data; and progress reports for each of the research project areas.

  3. System Design and the Safety Basis

    SciTech Connect (OSTI)

    Ellingson, Darrel

    2008-05-06T23:59:59.000Z

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination & decommissioning (D&D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities.

  4. Incorporating safety risk in early system architecture trade studies

    E-Print Network [OSTI]

    Dulac, Nicholas

    Ideally, safety should be a part of the early decision making used in conceptual system design. However, effectively evaluating safety risk3 early enough to inform the early trade studies is not possible with current ...

  5. Hierarchical Marginal Land Assessment for Land Use Planning

    SciTech Connect (OSTI)

    Kang, Shujiang [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Nichols, Dr Jeff A [ORNL; Bandaru, Vara Prasad [ORNL

    2013-01-01T23:59:59.000Z

    Marginal land provides an alternative potential for food and bioenergy production in the face of limited land resources; however, effective assessment of marginal lands is not well addressed. Concerns over environmental risks, ecosystem services and sustainability for marginal land have been widely raised. The objective of this study was to develop a hierarchical marginal land assessment framework for land use planning and management. We first identified major land functions linking production, environment, ecosystem services and economics, and then classified land resources into four categories of marginal land using suitability and limitations associated with major management goals, including physically marginal land, biologically marginal land, environmental-ecological marginal land, and economically marginal land. We tested this assessment framework in south-western Michigan, USA. Our results indicated that this marginal land assessment framework can be potentially feasible on land use planning for food and bioenergy production, and balancing multiple goals of land use management. We also compared our results with marginal land assessment from the Conservation Reserve Program (CRP) and land capability classes (LCC) that are used in the US. The hierarchical assessment framework has advantages of quantitatively reflecting land functions and multiple concerns. This provides a foundation upon which focused studies can be identified in order to improve the assessment framework by quantifying high-resolution land functions associated with environment and ecosystem services as well as their criteria are needed to improve the assessment framework.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  7. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01T23:59:59.000Z

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  8. Environment, Safety, and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

  9. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  10. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01T23:59:59.000Z

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  11. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P. [British Nuclear Group Ltd, Daresbury, Warrington (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  12. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety, Security

  13. Your Safety and at Syracuse University

    E-Print Network [OSTI]

    Raina, Ramesh

    programs to disclose campus crime statistics and security information. A 1998 amendment renamed the lawYour Safety and Security at Syracuse University A comprehensive report on campus security and fire and security measures on and around our campus. The need for security encompasses more than personal safety

  14. Your Safety and Security at Syracuse University

    E-Print Network [OSTI]

    Raina, Ramesh

    programs to disclose campus crime statistics and security information. A 1998 amendment renamed the lawYour Safety and Security at Syracuse University A comprehensive report on campus security and fire and security measures on and around our campus. The need for security encompasses more than personal safety

  15. 2011 WSU SPOKANE ANNUAL Security/Fire Safety

    E-Print Network [OSTI]

    Collins, Gary S.

    Security/Fire Safety Report can be obtained at the Office of Security and Public Safety. Information Information and Preparation of Statistics 1 Director's Letter 2 Mission Statement and Security Department INFORMATION The Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act (also

  16. 2012 WSU SPOKANE ANNUAL Security/Fire Safety

    E-Print Network [OSTI]

    Collins, Gary S.

    Security/Fire Safety Report can be obtained at the Office of Security and Public Safety. Information Information and Preparation of Statistics 1 Director's Letter 2 Mission Statement and Security Department INFORMATION The Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act (also

  17. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval -...

  18. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect (OSTI)

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01T23:59:59.000Z

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  19. University of Pittsburgh Safety Manual

    E-Print Network [OSTI]

    Sibille, Etienne

    : ELECTRICAL SAFETY Effective Date 5/6/13 Page 2 of 4 1.10 Lockout/Tagout procedures must be followed when equipment is de-energized. Call EH&S for more information on the University's Lockout/Tagout Program. 1

  20. Idaho National Laboratory Fusion Safety Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: Brad Merrill 208-526-0395 Email Contact Fusion Safety Program Thermonuclear fusion powers the Sun and the stars and is the most powerful energy source known....

  1. african continental margin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Palaeocene extension on the Lofoten and Vring margins, and the additional Eocene subsidence and faulting, implies that Nick Kusznir; Alan Roberts; Rob Hunsdale 183...

  2. Front and Center: Bringing Marginalized Girls into Focus in STEM...

    Office of Environmental Management (EM)

    federal government employees who are STEM professionals with teachers and middle school students to share their passion, including some of the most marginalized students....

  3. active continental margin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HMMs, On-line handwrit- ing recognition, Off Do,Trinh-Minh-Tri 336 Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Energy Storage, Conversion...

  4. Nuclear Safety Basis Program Review Overview and Management Oversight...

    Broader source: Energy.gov (indexed) [DOE]

    This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal...

  5. Monthly Analysis of Electrical Safety Occurrences – July 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  6. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  7. Natural Gas Vehicle Cylinder Safety, Training and Inspection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    any proprietary or confidential information 22808 Purpose of Work Assure the safety of natural gas vehicle fuel systems in order to... Help encourage the use of natural gas...

  8. Monthly Analysis of Electrical Safety Occurrences – June 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  9. Office of Information Management

    Broader source: Energy.gov [DOE]

    The Office of Information Management provides a broad range of information technology services in support of the Associate Under Secretary for the Office of Environment, Health, Safety and Security (AU).

  10. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  11. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  12. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01T23:59:59.000Z

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  13. Dam Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

  14. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  15. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  16. SHSD Manager Safety Engineering Group Manager

    E-Print Network [OSTI]

    Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

  17. Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Haifeng Liu restructured wholesale power markets, the detailed derivation of LMPs as actually used in industry practice Operator (MISO). Keywords: Locational marginal pricing, wholesale power market, AC optimal power flow, DC

  18. Assessment of Biomass Resources from Marginal Lands in APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2009-08-01T23:59:59.000Z

    The goal of this study is to examine the marginal lands in Asia-Pacific Economic Cooperation (APEC) economies and evaluate their biomass productivity potential. Twelve categories of marginal lands are identified using the Global Agro-Ecological Zones system of the United Nations Food and Agriculture Organization.

  19. Automatic Model Complexity Control Using Marginalized Discriminative Growth Functions

    E-Print Network [OSTI]

    Hain, Thomas

    Automatic model complexity control . Most LVCSR systems are trained on large amounts of data. . ManyAutomatic Model Complexity Control Using Marginalized Discriminative Growth Functions X. Liu & M. J. J. F. Gales: Automatic Model Complexity Control Using Marginalized Discriminative Growth Functions

  20. Environmental Health and Safety Fire and Life Safety Laboratory Assessment

    E-Print Network [OSTI]

    Environmental Health and Safety Fire and Life Safety Laboratory Assessment PI or environmental concerns were identified. B. Items of safety or environmental concerns were identified. C. Uncorrected repeated safety or environmental items were identified. Safety Equipment # Compliance Items

  1. Safety Alerts

    Broader source: Energy.gov [DOE]

    Documents downloaded from the password-protected areas of this web site may be made available to the DOE Federal and contractor community and to the military. These documents are not permitted to be made available to the general public via an Internet web site. All parties with access to the password-protected areas of the EHSS web site are to exercise due diligence to maintain control of information.

  2. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  3. Seismic Safety Margins Research Program. Phase I, Final report: subsystem response (Project V). Volume 6

    SciTech Connect (OSTI)

    Shieh, L. C.; Chuang, T. Y.; O'Connell, W. J.

    1981-07-01T23:59:59.000Z

    This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response.

  4. Pressure safety program Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Borzileri, C.; Traini, M.

    1992-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  5. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01T23:59:59.000Z

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  6. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  7. Who can help me? The Safety Office offers ergonomic assessments for

    E-Print Network [OSTI]

    Martin, Jeff

    Who can help me? The Safety Office offers ergonomic assessments for all University of Winnipeg employees. Call 786.9894 to arrange an appointment. For more information on ergonomics, visit the Safety Office website at www. uwinnipeg.ca/index/safety-safety. ERGONOMICS OFFICE What is ergonomics? Ergonomics

  8. Ideas underlying quantification of margins and uncertainties(QMU): a white paper.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Trucano, Timothy Guy; Pilch, Martin M.

    2006-09-01T23:59:59.000Z

    This report describes key ideas underlying the application of Quantification of Margins and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions at Sandia National Laboratories. While QMU is a broad process and methodology for generating critical technical information to be used in stockpile management, this paper emphasizes one component, which is information produced by computational modeling and simulation. In particular, we discuss the key principles of developing QMU information in the form of Best Estimate Plus Uncertainty, the need to separate aleatory and epistemic uncertainty in QMU, and the risk-informed decision making that is best suited for decisive application of QMU. The paper is written at a high level, but provides a systematic bibliography of useful papers for the interested reader to deepen their understanding of these ideas.

  9. Global-local Structural Optimization Using Response Surfaces of Local Optimization Margins

    E-Print Network [OSTI]

    Neumaier, Arnold

    1 Global-local Structural Optimization Using Response Surfaces of Local Optimization Margins Boyang optimization problems. First, a large number of component optimizations for maximization of margins are performed. Response surface approximations (RSA) for maximum margins of component optimization

  10. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    SciTech Connect (OSTI)

    Pevey, Ronald E.

    2005-09-15T23:59:59.000Z

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.

  11. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12, cancels DOE O 231.1B.

  12. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12.

  13. asian monsoonal margin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model (MRCM) in simulating the West African monsoon. The MRCM is built on the Regional Climate Model, ... Im, Eun-Soon 242 From Marginal Deformations to Confinement HEP - Theory...

  14. adeep ocean margin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portions of Volume 146, Part 1 (Cascadia Margin), of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by "A1 22...

  15. Large-margin Gaussian mixture modeling for automatic speech recognition

    E-Print Network [OSTI]

    Chang, Hung-An, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Discriminative training for acoustic models has been widely studied to improve the performance of automatic speech recognition systems. To enhance the generalization ability of discriminatively trained models, a large-margin ...

  16. asian marginal seas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which somewhat surprisingly turned out to be classically stable. This was called marginal stability, as moving along one of its zero-modes, two of the stable modes turn...

  17. Voltage Collapse Margin Sensitivity Methods applied to the Power System

    E-Print Network [OSTI]

    Greene Ian Dobson Electrical & Computer Engineering Department University of Wisconsin-Madison 1415 Outages causing at least 75 MW reduction in loading margin . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Radial Line Outages . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Non-radial Line

  18. Geotechnical characterization of sediments from Hydrate Ridge, Cascadia Continental Margin

    E-Print Network [OSTI]

    Tan, Brian B. (Brian Bautista), 1979-

    2004-01-01T23:59:59.000Z

    Eight whole core sediment samples were obtained from ODP Site 1244, Hydrate Ridge, Cascadia Continental Margin with the goal of understanding the stress history, consolidation behavior and strength characteristics of the ...

  19. Design of miniature floating platform for marginal fields

    E-Print Network [OSTI]

    Miao, Sha, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis presents the design of a novel type of miniature floating offshore platforms with a heave plate attached at the keel, suitable for developing deep-water marginal fields. This design features a small displacement, ...

  20. Victorian Queer: Marginality and Money in Nineteenth-Century Literature 

    E-Print Network [OSTI]

    Choi, Jung Sun

    2013-05-01T23:59:59.000Z

    ..................................... 66? Victorian Eccentricity: The Identity of the Extra-Ordinary ..... 72? Valentine Blyth?s Eccentricity and Respectability at Risk ...... 77? In Defense of Eccentricity I: Victorian Man?s Economic Ability... as extraordinary. Valentine Blyth is a figure of queer marginality that Collins takes an interest in for fostering his notion of social toleration of differences. Jane Eyre is also a representative marginal figure, in this case one used by Charlotte Bront...

  1. Modular HTGR Safety Basis and Approach

    SciTech Connect (OSTI)

    Thomas Hicks

    2011-08-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) capable of producing electricity and/or high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) process, as recommended in the NGNP Licensing Strategy - A Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy [DOE/NRC 2008]. Nuclear Regulatory Commission (NRC) licensing of the NGNP plant utilizing this process will demonstrate the efficacy for licensing future HTGRs for commercial industrial applications. This information paper is one in a series of submittals that address key generic issues of the priority licensing topics as part of the process for establishing HTGR regulatory requirements. This information paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach with the NRC staff and public stakeholders. The NGNP project does not expect to receive comments on this information paper because other white papers are addressing key generic issues of the priority licensing topics in greater detail.

  2. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-01-28T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. (Paragraphs 2a, 2a(1), 2a(2), 2b, 2b(1), 2b(2), and 2i(3)(a) through 2i(3)(d) of Chapter II, and Appendix A canceled by DOE N 231.1; Chapter IV canceled by DOE O 470.2A.)

  3. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Douglas S. Swanson; Michael A. Thieme

    2003-06-01T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  4. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Swanson, D.S.; Thieme, M.A.

    2003-06-16T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  5. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  6. Criteria for safety-related operator actions

    SciTech Connect (OSTI)

    Gray, L.H.; Haas, P.M.

    1983-01-01T23:59:59.000Z

    The Safety-Related Operator Actions (SROA) Program was designed to provide information and data for use by NRC in assessing the performance of nuclear power plant (NPP) control room operators in responding to abnormal/emergency events. The primary effort involved collection and assessment of data from simulator training exercises and from historical records of abnormal/emergency events that have occurred in operating plants (field data). These data can be used to develop criteria for acceptability of the use of manual operator action for safety-related functions. Development of criteria for safety-related operator actions are considered.

  7. Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

    E-Print Network [OSTI]

    Morris, Jennifer

    Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

  8. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  9. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    SciTech Connect (OSTI)

    EVANS, C B

    2004-12-21T23:59:59.000Z

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  10. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  11. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  12. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  13. Dam Safety Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

  14. Dam Safety (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

  15. [Cover page, Margins: Left 1 in

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation Summary Big*Theea2/316 Photovoltaic

  16. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  17. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  18. Department of Environmental Health & Safety Emergency Management

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational & General Safety Management Environmental Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational Values A Note from the Director Environmental Management Fire & Life Safety Lab Safety & Industrial

  19. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal

    E-Print Network [OSTI]

    Oren, Shmuel S.

    (DSO) determines distribution locational marginal prices (DLMPs) by solving the social welfare, distribution locational marginal prices (DLMPs), distribution locational marginal pricing (DLMP), distribution at node . System locational marginal price (LMP) at time period for the node feeding the distribution grid

  20. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  1. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  2. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  3. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  4. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  5. Safety Manual Prepared by the

    E-Print Network [OSTI]

    Alpay, S. Pamir

    -3113 Emergency maintenance to report a water leak, electrical outage, non-working fume hood, etc. after normal Radiation and Laser Safety 19 Laser Safety 21 Compressed Gas and Cryogenic Safety 22 Electrical Safety 24

  6. A neural network mode inference engine for the advisory system for training and safety

    E-Print Network [OSTI]

    Nguyen, Thinh Xuan

    1996-01-01T23:59:59.000Z

    To improve the safety record of the private general aviation sector, the Advisory System for Training and Safety (ASTRAS) was conceived. The ASTRAS software provides timely information to the pilot, assisting him in properly configuring the aircraft...

  7. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  8. Tank safety screening data quality objective. Revision 1

    SciTech Connect (OSTI)

    Hunt, J.W.

    1995-04-27T23:59:59.000Z

    The Tank Safety Screening Data Quality Objective (DQO) will be used to classify 149 single shell tanks and 28 double shell tanks containing high-level radioactive waste into safety categories for safety issues dealing with the presence of ferrocyanide, organics, flammable gases, and criticality. Decision rules used to classify a tank as ``safe`` or ``not safe`` are presented. Primary and secondary decision variables used for safety status classification are discussed. The number and type of samples required are presented. A tabular identification of each analyte to be measured to support the safety classification, the analytical method to be used, the type of sample, the decision threshold for each analyte that would, if violated, place the tank on the safety issue watch list, and the assumed (desired) analytical uncertainty are provided. This is a living document that should be evaluated for updates on a semiannual basis. Evaluation areas consist of: identification of tanks that have been added or deleted from the specific safety issue watch lists, changes in primary and secondary decision variables, changes in decision rules used for the safety status classification, and changes in analytical requirements. This document directly supports all safety issue specific DQOs and additional characterization DQO efforts associated with pretreatment and retrieval. Additionally, information obtained during implementation can assist in resolving assumptions for revised safety strategies, and in addition, obtaining information which will support the determination of error tolerances, confidence levels, and optimization schemes for later revised safety strategy documentation.

  9. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  10. Electronic DOE Information Security System (eDISS) PIA, Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

  11. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An

    E-Print Network [OSTI]

    Zhuang, Qianlai

    ÀChampaign, Urbana, IL 61801, USA Abstract Growing biomass feedstocks from marginal lands is becoming an increasingly

  12. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  13. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01T23:59:59.000Z

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  14. Quench margin measurement in Nb3Sn quadrupole magnet

    SciTech Connect (OSTI)

    Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2008-08-01T23:59:59.000Z

    One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

  15. Engineering index : a metric for assessing margin in engineered systems

    SciTech Connect (OSTI)

    Dolin, Ronald M.

    2002-01-01T23:59:59.000Z

    Inherent in most engineered products is some measure of margin or over design. Engineers often do not retain design and performance knowledge so they can quantify uncertainties and estimate how much margin their product possesses. When knowledge-capture and quantification is neither possible, nor permissible, engineers rely on cultural lore and institutionalised practices to assign nominal conditions and tolerances. Often what gets lost along the way is design intent, product requirements, and their relationship with the product's intended application. The Engineering Index was developed to assess the goodness or quality of a product.

  16. The marginal leakage of some dental cements in humans: a PIXE-microbeam approach

    SciTech Connect (OSTI)

    Zadro, A.; Passi, P. [Dental School, Department of Dental Materials, University of Padua (Italy); Cavalleri, G. [Dental School, Department of Restorative Dentistry, University of Verona (Italy); Galassini, S.; Moschini, G.; Rossi, P. [INFN, Laboratori Nazionali di Legnaro (Italy)

    1999-06-10T23:59:59.000Z

    The marginal leakage and water absorption of dental cements and restorative materials has been investigated by many authors with several techniques, some of which led to valid results. However, no technique could give, by itself, information both on leakage and water absorption, as these measurements usually need different investigations. PIXE micro beam offers the possibility of investigating these two aspects at the same time, since it is possible to map a proper marker element. In the present study, cavities were made on 50 extracted human molars, then filled with five different temporary cements (IRM, Cavit W, Kalsogen, Fermit N, SuperEBA). The filled teeth were placed into a 5% silver nitrate solution, and after three days, one, two, three and four weeks were examined. The samples for microPIXE were prepared after embedding the teeth in epoxy resin, and sectioning and grinding them down to a thickness of about 1 mm. The sections were placed on metal holders, and examined with a scanning proton {mu}beam, in Legnaro (Italy) at the AN2000 LAB of INFN National Laboratories. The beam consisted of 2.4 MeV protons, it had a cross section of 1.5 micron in diameter and typical currents of the order of some {mu}A were used. The maps were obtained by an 'ad hoc' software with a McIntosh personal computer. Mapping of silver allowed to evaluate both the marginal leakage and the water absorption for each cement. The samples filled with Cavit W showed a great infiltration, as the tracing element was found in the cement bulk, along the margins and inside the cavity, while those filled with IRM and Kalsogen presented only a deposition of the tracing solution on the cement surface. SuperEBA showed a poor resistance against microleakage, because the marker element was only detected along the cavity margins. Fermit N showed the best marginal integrity, and on its surface no traces of siver were found. In this case the better resistance may be due to the resin present in the composition of the material.

  17. A Review of Information for Managing Aging in Nuclear Power Plants

    SciTech Connect (OSTI)

    WC Morgan; JV Livingston

    1995-09-01T23:59:59.000Z

    Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates of degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.

  18. ANNUAL FIRE SAFETY REPORT 2014 Ithaca, NY Campus

    E-Print Network [OSTI]

    ://sp.ehs.cornell.edu/firesafetyreport Environmental Health and Safety Building East Hill Office Building 201 Palm Road 395 Pine Tree Rd, Suite 210 with important information about fire safety on campus. You may obtain a copy of this report and the NYS Kerry

  19. ANNUAL FIRE SAFETY REPORT 2013 Ithaca, NY Campus

    E-Print Network [OSTI]

    Chen, Tsuhan

    ://sp.ehs.cornell.edu/firesafetyreport Environmental Health and Safety Building East Hill Office Building 201 Palm Road 395 Pine Tree Rd, Suite 210 with important information about fire safety on campus. You may obtain a copy of this report and the NYS Kerry

  20. Ris-R-1019(EN) Nuclear Safety Research

    E-Print Network [OSTI]

    .2 Severe accidents 7 2.3 Decommissioning of research reactors 9 2.4 Nuclear information 10 3 RadiationRisø-R-1019(EN) Nuclear Safety Research and Facilities Department Annual Report 1997 Edited by B of the work of the Nuclear Safety Research and Facilities Department in 1997. The department´s research

  1. UNIVERSITY OF CALIFORNIA, SAN FRANCISCO RADIATION SAFETY TRAINING MANUAL

    E-Print Network [OSTI]

    Lim, Wendell

    for the protection of personnel. #12;RADIATION SAFETY TRAINING MANUAL TABLE OF CONTENTS SECTION DESCRIPTION PAGE` #12;#12;UNIVERSITY OF CALIFORNIA, SAN FRANCISCO RADIATION SAFETY TRAINING MANUAL SEPTEMBER, 1996 This information is being provided in accordance with the following State requirements: CALIFORNIA RADIATION

  2. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-24T23:59:59.000Z

    This Guide provides information to assist in the implementation and interpretation of Title 10 Code of Federal Regulations (CFR) Part 830.203, Unreviewed Safety Question Process, of the Nuclear Safety Management Rules for applicable nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Canceled by DOE N 251.93.

  3. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-07-24T23:59:59.000Z

    This Guide provides information to assist in implementation of Title 10 Code of Federal Regulations Part 830.203, "Unreviewed Safety Question Process," of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy, including the National Nuclear Security Administration. Cancels DOE G 424.1-1.

  4. Distance Metric Learning for Large Margin Nearest Neighbor Classification

    E-Print Network [OSTI]

    Weinberger, Kilian

    Distance Metric Learning for Large Margin Nearest Neighbor Classification Kilian Q. Weinberger}@cis.upenn.edu Abstract We show how to learn a Mahanalobis distance metric for k-nearest neigh- bor (kNN) classification in kNN classification--for example, achieving a test error rate of 1.3% on the MNIST handwritten digits

  5. Contaminated identities: Mercury and marginalization in Ghana's artisanal mining sector

    E-Print Network [OSTI]

    Singha, Kamini

    mining; Political ecology; Ecohealth; Environmental justice; Ghana 1. Introduction Artisanal and smallContaminated identities: Mercury and marginalization in Ghana's artisanal mining sector Petra and multifaceted policy problem that underlies the current conflictual aspects in the small-scale mining sector

  6. Large Margin Taxonomy Embedding with an Application to Document Categorization

    E-Print Network [OSTI]

    Weinberger, Kilian

    Large Margin Taxonomy Embedding with an Application to Document Categorization Kilian Weinberger that the topics are not just discrete classes, but are nodes in a complex taxonomy with rich inter-topic relationships. For example, web pages can be categorized into the Yahoo! web taxonomy or medical journals can

  7. The world's offshore continental margins contain vast reserves of

    E-Print Network [OSTI]

    Texas at Austin, University of

    The world's offshore continental margins contain vast reserves of gas hydrate, a frozen form of nat-seafloor geology. Increasing use of marine multicomponent seismic technol- ogy by oil and gas companies now allows seafloor strata over distances of several kilometers across the Green Canyon area of the Gulf of Mexico

  8. RADIO EMISSION FROM INSTABILITIES IN SPACE PLASMAS: MARGINAL STABILITY,

    E-Print Network [OSTI]

    Melrose, Don

    I t RADIO EMISSION FROM INSTABILITIES IN SPACE PLASMAS: MARGINAL STABILITY, 4TOCHASTIC GROWTH emission, hich is an indirect emission process first discussed by Ginaburg and Zhe/eznyakoe, 9581, and electron cyclotron maser emission (ECME), which is a direct emission ess first discussed in the presently

  9. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    SciTech Connect (OSTI)

    Aadland, R.K.; Schamel, S.

    1989-03-01T23:59:59.000Z

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desert basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.

  10. Sustainable bioenergy production from marginal lands in the US Midwest

    SciTech Connect (OSTI)

    Gelfand, Ilya; Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gross, Katherine L.; Robertson, G. P.

    2013-01-24T23:59:59.000Z

    Long-term measurements of global warming impact coupled with spatially explicit modeling suggests that both climate benefits and the production potential of cellulosic crops grown on marginal lands of the US North Central region are substantial but will be insufficient to meet long-term biofuel needs.

  11. The Marginalized Particle Filter for Automotive Tracking Applications

    E-Print Network [OSTI]

    Schön, Thomas

    The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas B surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

  12. The Marginalized Particle Filter for Automotive Tracking Applications

    E-Print Network [OSTI]

    Gustafsson, Fredrik

    1 The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas Sch surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

  13. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15T23:59:59.000Z

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  14. Information Safety in University Chemistry Courses

    E-Print Network [OSTI]

    Berlin,Technische Universität

    at the workplace 13 2.3.3 Food, drink and smoking 13 2.3.4 Cleaning and prophylactic skin care 13 3 Handling 52 8.1.1 Rules for handling radioactive substances 52 8.1.2 Protection from external irradiation 53 8.1.3 Protection from internal irradiation 53 8.1.4 Protection from contamination 54 8.2 Working with X-rays 55 8

  15. User Site Safety Orientation Emergency Information

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ­ contact LCLS Floor Coordinator if needed Fire or other emergency evacuation Follow building residents out/room number (LCLS Building 950 Near Experimental Hall). Call Security at x5555 to notify of the 911 call. #12 LOS Bldg. 137 Main Control LCLS NEH Bldg 950 PEP Ring Road Alpine Gate Open Monday-Friday 6 am-6 pm

  16. Fire and Life Safety Information - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, Programs and EventsFiberFire

  17. Facility Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-04T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 12/18/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 12/16/2014.

  18. Ladder Safety Information Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLEDControl Concept | Department

  19. Safety and Operational Guidelines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions JumpFacility | OpenSacketsSadaOperational

  20. Nuclear Safety Information | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76Safeguards and Security

  1. Public Order and Safety | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This

  2. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect (OSTI)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01T23:59:59.000Z

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  3. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  4. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  5. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  6. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  7. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  8. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  9. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  10. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  11. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  12. Gas Safety Law (Florida)

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

  13. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  14. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  15. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  16. Let The People Know the Facts: Can Government Information Removed From the Internet Be Reclaimed?

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Acting Director of the Information Security Oversight OfficeActing Director, Information Security Oversight Office,Chemical Safety Information, Site Security and Fuels

  17. EM Health and Safety Plan Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document contains information about the Health and Safety Plan Guidelines. Topics discussed include: Regulatory framework; key personnel; hazard assessment; training requirements; personal protective equipment; extreme temperature disorders or conditions; medical surveillance; exposure monitoring/air sampling; site control; decontamination; emergency response/contingency plan; emergency action plan; confined space entry; and spill containment.

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    . Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. ALDRICH - M80806 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government

  19. Safety Issues for High Temperature Gas Reactors

    E-Print Network [OSTI]

    Risk Informed Safety Profile #12;LEVELS OF DEFENCE IN DEPTH (From INSAG-10) Control, limiting (reactivity insertion) ­ Loss of Load ­ Rod Ejection (more significant in block reactors) ­ Failure of reactor effects and chemical attack on graphite · Blow down loads and timing of accident event sequences

  20. Tritium radioluminescent devices, Health and Safety Manual

    SciTech Connect (OSTI)

    Traub, R.J.; Jensen, G.A.

    1995-06-01T23:59:59.000Z

    This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information.

  1. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect (OSTI)

    None

    2009-04-01T23:59:59.000Z

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

  2. affecting probabilistic safety: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10.4204EPTCS.28.8 2010-01-01 2 Safety Analysis of an Airbag System using Probabilistic FMEA and Probabilistic Counter Examples Computer Technologies and Information Sciences...

  3. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

  4. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  5. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  6. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  7. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  8. SECURITY AND FIRE SAFETY

    E-Print Network [OSTI]

    Barrash, Warren

    ANNUAL SECURITY AND FIRE SAFETY REPORT 2014 #12;2 Boise State University 2014 Annual Security and Fire Safety Report From the Vice President for Campus Operations and General Counsel At Boise State University, we are committed to providing a safe and secure environment for students, staff

  9. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  10. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  11. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  12. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  13. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk (most common ­ personal hygiene very important); d) storage ­ leaks; and e) waste ­ storage and disposal

  14. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  15. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  16. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  17. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  18. Specification of advanced safety modeling requirements (Rev. 0).

    SciTech Connect (OSTI)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30T23:59:59.000Z

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will target leadership-class computing architectures for massively-parallel high-fidelity computations while providing continued support for rapid prototyping using modest fidelity computations on multiple-core desktop platforms.

  19. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  20. Adaptive control design with guaranteed margins for nonlinear plants

    E-Print Network [OSTI]

    Jang, Jinho, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Adaptive control is one of the technologies that improve both performance and safety as controller parameters can be redesigned autonomously in the presence of uncertainties. Considerable research has been accomplished in ...

  1. Quantification Of Margins And Uncertainties: A Bayesian Approach (full Paper)

    SciTech Connect (OSTI)

    Wallstrom, Timothy C [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Quantification of Margins and Uncertainties (QMU) is 'a formalism for dealing with the reliability of complex technical systems, and the confidence which can be placed in estimates of that reliability.' (Eardleyet al, 2005). In this paper, we show how QMU may be interpreted in the framework of Bayesian statistical inference, using a probabilistic network. The Bayesian approach clarifies the probabilistic underpinnings of the formalism, and shows how the formalism can be used for deciSion-making.

  2. Another view of the Marginality Hypothesis: presidential influence in Congress

    E-Print Network [OSTI]

    Richard, Carl Mark

    1980-01-01T23:59:59.000Z

    to test the theory that electoral marginality affects the legislative behavior of House mem- bers. ilore scec'fically, it mey affect the degree to whir h represent- atives are responsive to their constituents. 4'he cuestion of why this happens leads us... studies done which deal with the numerous influences that can affect congressional behavior. Scholars tell us that among other things, a congressman's constituency, his House col- leagues, his party identification, and the executive branch, all in...

  3. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus Training Requirements If you work with: · Biological Materials · Chemical Agents · Radiological Materials

  4. Safety Culture in Nuclear Installations

    Broader source: Energy.gov [DOE]

    IAEA-TECDOC-1329 Safety Culture in Nuclear Installations, Guidance for use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002.

  5. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, building design and code review, fire safety, and...

  6. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrical safety at the Laboratory and across the DOE complex," said Industrial Hygiene and Safety manager Theresa Cull. "I am very pleased that NNSA has recognized Lloyd's...

  7. Developed 2007 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    _________ __________________ Training Program EHS 300~ Fiber optic Safety Course Syllabus Subject Category: Industrial Hygiene Course Alignment EH&S Website: Industrial Hygiene/Laser Safety Group - http

  8. Abstract--Although Locational Marginal Pricing (LMP) plays an important role in many restructured wholesale power

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Abstract-- Although Locational Marginal Pricing (LMP) plays an important role in many Terms-- Locational marginal pricing, wholesale power market, AC optimal power flow, DC optimal power congestion by means of Locational Marginal Pricing (LMP), i.e., the pricing of power by the location

  9. A STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL PRICES

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    on varia- tions of Locational Marginal Prices (LMPs) in restruc- tured power markets. The process: Locational marginal prices (LMPs), Un- certainty, Power system security, Optimization meth- ods, StochasticA STOCHASTIC PROGRAMMING APPROACH TO QUANTIFYING EFFECTS OF CONTINGENCIES ON LOCATIONAL MARGINAL

  10. Polished `Hoes', Dancehall Queens, and Sexual Freaks: Voices From the Margins of Caribbean Literature

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Polished `Hoes', Dancehall Queens, and Sexual Freaks: Voices From the Margins of Caribbean is a book- length project that will examine multiply marginalized Caribbean women's narratives of resistance in the Caribbean, tends to reward normative behavior and marginalizes women who do not conform to set standards

  11. Fast Prediction of Loadability Margins by Constructing a Small-Signal Stability Boundary

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    Fast Prediction of Loadability Margins by Constructing a Small-Signal Stability Boundary Based system. A novel approach is proposed in this paper for fast prediction of loadability margins to predict the loadability margins from any stable operating point along arbitrary loading directions through

  12. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  13. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim. The paper also presents a safety lifecycle for artificial neural networks. This lifecycle focuses, knowledge. INTRODUCTION Artificial neural networks (ANNs) are used in many safety-related applications

  14. Health and safety plan for operations performed for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Trippet, W.A. II (IT Corp., (United States)); Reneau, M.; Morton, S.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-04-01T23:59:59.000Z

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  15. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  16. East Carolina University ENVIRONMENTAL SAFETY COMMITTEE

    E-Print Network [OSTI]

    as workers' compensation, accident prevention, industrial hygiene, occupational safety, fire and life safety

  17. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B. Admin Chg 1, dated 6-22-11, cancels DOE O 440.2C.

  18. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  19. Dam Safety Regulation (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

  20. High Voltage Safety Act

    Broader source: Energy.gov [DOE]

    The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  2. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  3. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  4. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  5. Reliability and Safety

    Broader source: Energy.gov [DOE]

    DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

  6. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  7. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  8. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

  9. Dam Safety (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

  10. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  11. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  12. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  13. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  14. Radiological Emergency Response Health and Safety Manual

    SciTech Connect (OSTI)

    D. R. Bowman

    2001-05-01T23:59:59.000Z

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  15. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  16. Radiation Safety Annual Refresher Training

    E-Print Network [OSTI]

    Thomas, David D.

    Radiation Safety Annual Refresher Training Radiation Protection Division Department of Environmental Health & Safety #12;Topics in Radiation Safety (applicable RPD Manual sections indicated) User;Topics in Radiation Safety (applicable RPD Manual sections indicated) User and Non-user topics Types

  17. Toolbox Safety Talk Lead Awareness

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Lead Awareness Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Lead based paint is commonly found in homes built before 1978 and many industrial paints today still contain lead. Lead overexposure is one of the leading causes of workplace

  18. School of Forest Safety Training

    E-Print Network [OSTI]

    Thomas, Andrew

    ) · Laboratories: ­ Material Safety Data Sheets (MSDS) for chemicals ­ Chemical hygiene plan (CHP) manual

  19. Mesozoic stratigraphy of northwestern Australian and northern Himalayan margins

    SciTech Connect (OSTI)

    Ogg, J.; Kopaskamerkel, D.C.

    1989-03-01T23:59:59.000Z

    The Mesozoic stratigraphies of the Himalayan margin, the Argo abyssal plain, and the Exmouth Plateau exhibit marked contrasts in their sedimentation histories. The sedimentary sequence on the northeastern Exmouth Plateau off Australia includes a Carnian to Rhaetian sequence of fluviodeltaic and marine clastics and carbonates, capped by a shallowing-upward sequence of platform carbonates overlain, with a major unconformity, by marine Aptian sediments deposited during rapid subsidence of the plateau. Argo abyssal plain basement is overlain by red-brown, bioturbated, inoceramid-rich quartzose claystones, bentonites, and quartz siltstones, dated by radiolarians and benthic foraminifera as lowest Cretaceous. This is overlain by red and green claystones and nannofossil chalks. The basal age indicates that sea-floor spreading began in the earliest Cretaceous, not Oxfordian as had been thought. In the Thakkola region of Nepal, uppermost Triassic through Lower Jurassic shelf and carbonate platform facies are capped by a ferruginous oolite deposit of latest Bathonian to earliest Callovian age. Sedimentation resumed in the middle Oxfordian with deposition of Berriasian( ) deep-water black organic-rich mud. Following a valanginian regression and progradation of terrigenous clastics, Aptian black shales were deposited. In geological studies of the northwestern Australian margin, the ubiquitous hiatus within the Callovian-Oxfordian has been termed the breakup unconformity. Existence of a similar-aged hiatus in the Himalayas on a margin which formed during the late Paleozoic, absence of any Jurassic on the Exmouth Plateau, and the apparent initiation of spreading in the Argo basin during the earliest Cretaceous suggest that this widespread unconformity is not associated with a continental breakup in these regions.

  20. Applying insights from repository safety assessments.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2010-03-01T23:59:59.000Z

    Despite decades of international consensus that deep geological disposal is the best option for permanent management of long-lived high-level radioactive wastes, no repositories for used nuclear fuel or high-level waste are in operation. Detailed long-term safety assessments have been completed worldwide for a wide range of repository designs and disposal concepts, however, and valuable insights from these assessments are available to inform future decisions about managing radioactive wastes. Qualitative comparisons among the existing safety assessments for disposal concepts in clay, granite, salt, and unsaturated volcanic tuff show how different geologic settings can be matched with appropriate engineered barrier systems to provide a high degree of confidence in the long-term safety of geologic disposal. Review of individual assessments provides insights regarding the release pathways and radionuclides that are most likely to contribute to estimated doses to humans in the far future for different disposal concepts, and can help focus research and development programs to improve management and disposal technologies. Lessons learned from existing safety assessments may be particularly relevant for informing decisions during the process of selecting potential repository sites.

  1. Dangerous Liouville Wave -- exactly marginal but non-conformal deformation

    E-Print Network [OSTI]

    Chiu Man Ho; Yu Nakayama

    2008-07-26T23:59:59.000Z

    We give a non-trivially interacting field theory example of scale invariant but non-conformal field theory. The model is based on the exactly solvable Liouville field theory coupled with free scalars deformed by an exactly marginal operator. We show non-vanishing of the trace of the energy-momentum tensor by using the quantum Schwinger-Dyson equation for the Liouville field theory, which is a sophistication of the quantum higher equations of motion for the Liouville field theory introduced by Alyosha Zamolodchikov. Possibly dangerous implications for the super-critical string theory will be discussed.

  2. Margins in high temperature leak-before-break assessments

    SciTech Connect (OSTI)

    Budden, P.J.; Hooton, D.G.

    1997-04-01T23:59:59.000Z

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  3. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01T23:59:59.000Z

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  4. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-29T23:59:59.000Z

    Establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Section E, Technical Surveillance Countermeasures Program, is Official Use Only. Please contact the DOE Office of Health, Safety and Security at 301-903-0292 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A

  5. Information Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    This Manual establishes security requirements for the protection and control of information and matter required to be classified or controlled by statutes, regulations, or Department of Energy directives. Attachment E, Technical Surveillance Countermeasures Program, is for Official Use Only. Contact the Office of Security and Safety Performance Assurance at 301-903-3653 if your official duties require you to have access to this part of the directive. Cancels: DOE M 471.2-1B, DOE M 471.2-1C, DOE M 471.2-4, and DOE O 471.2A.

  6. Environment/Health/Safety (EHS): Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeley LabERPEHS

  7. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  8. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect (OSTI)

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01T23:59:59.000Z

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  9. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01T23:59:59.000Z

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  10. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G. (ed.)

    1983-09-01T23:59:59.000Z

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  11. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-SafetySafety

  12. Safety in Numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)SafetySafety

  13. Safety aspects of EB melting

    SciTech Connect (OSTI)

    Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

  14. Proceedings: Decommissioning, Decontamination, ALARA, and Worker Safety Workshop

    SciTech Connect (OSTI)

    None

    2000-09-01T23:59:59.000Z

    This workshop on decontamination, ALARA, and worker safety was the sixth in a series initiated by EPRI to aid utility personnel in assessing the technologies for decommissioning nuclear power plants. The workshop focused on specific aspects of decommissioning related to the management of worker radiation exposure and safety. The information presented will help individual utilities assess benefits of programs in these areas for their projects, including their potential to reduce decommissioning costs.

  15. Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-08T23:59:59.000Z

    This Guide, including its attachments, provides information to assist in the implementation of Title 10 Code of Federal Regulations (CFR) Section 830.203, “Unreviewed Safety Question Process,” of the Nuclear Safety Management Rules for Category 1, 2, and 3 nuclear facilities owned or operated by the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA). Cancels DOE G 424.1-1A. Admin Chg 1 dated 4-12-13.

  16. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  17. Safety Interlocks Group - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Info APS Safety Page ESH Safety Manual Safety Interlocks Systems ACIS PSS FEEPS BLEPS UPS Division Links APS Organization Chart Beamlines Directory APS Engineering Support...

  18. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  19. Savannah River Site K-Reactor Probabilistic Safety Assessment

    SciTech Connect (OSTI)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp. (United States)

    1992-12-01T23:59:59.000Z

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

  20. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    SciTech Connect (OSTI)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01T23:59:59.000Z

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  1. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  2. SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training APPLIES TO: All Departments that the health and safety training program is effective and is in compliance with the applicable federal for conducting training Establish who is responsible for determining the level and type of training required

  3. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    of External and Internal Doses E. Reports and Notices to Workers Chapter VII: Radiation ProtectionRadiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual

  4. Safety and Security What do Safety/Security work with?

    E-Print Network [OSTI]

    Safety and Security on campus #12;Agenda · What do Safety/Security work with? · If something happens · Opening hours · Remember · Website · How to find us #12;The Section for Safety and Security work with; · Security revolving work environment · Handle locks, keys, alarms, surveillance · Responsible

  5. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    Software Safety Tutorial Status Update 1 Software Safety Tutorial (Status Update) Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 Topics · Project Overview · Software Safety Overview · Project Tasks competency for real-time software engineers. · Project team: Jeff Tian (SMU): Basics of SSE D.T. Huynh

  6. Safety Lifecycle for Developing Safety Critical Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly.kelly}@cs.york.ac.uk Abstract. Artificial neural networks are employed in many areas of industry such as medicine and defence a safety lifecycle for artificial neural networks. The lifecycle fo- cuses on managing behaviour

  7. Local Safety Committee Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code. Ventilation fume hoods V. Bendig and FMD report that an uninterrupted power supply will be attached to the ventilation control panel the week of Dec. 9. Action: T. Zintel and L. Harder will conduct a test the first

  8. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  9. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  10. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04T23:59:59.000Z

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  12. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14T23:59:59.000Z

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

  14. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  15. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  17. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  18. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  19. Status report on resolution of Waste Tank Safety Issues at the Hanford Site. Revision 1

    SciTech Connect (OSTI)

    Dukelow, G.T.; Hanson, G.A. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States)

    1995-05-01T23:59:59.000Z

    The purpose of this report is to provide and update the status of activities supporting the resolution of waste tank safety issues and system deficiencies at the Hanford Site. This report provides: (1) background information on safety issues and system deficiencies; (2) a description of the Tank Waste Remediation System and the process for managing safety issues and system deficiencies; (3) changes in safety issue description, prioritization, and schedules; and (4) a summary of the status, plans, order of magnitude, cost, and schedule for resolving safety issues and system deficiencies.

  20. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    SciTech Connect (OSTI)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01T23:59:59.000Z

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  1. Maximum Margin Clustering for State Decomposition of Metastable Systems

    E-Print Network [OSTI]

    Wu, Hao

    2015-01-01T23:59:59.000Z

    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that...

  2. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  3. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  4. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  5. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  6. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  7. ANNUAL SECURITY FIRE SAFETY REPORT

    E-Print Network [OSTI]

    ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http://www.dartmouth.edu/~security/ #12;1 Table of Contents MESSAGE FROM THE DIRECTOR OF SAFETY AND SECURITY................................................................................................................................................................... 7 ANNUAL SECURITY REPORT

  8. TUFTS UNIVERSITY LASER SAFETY PROGRAM

    E-Print Network [OSTI]

    Dennett, Daniel

    with laser safety regulations promulgated by state, federal, and local agencies. The LSO administers and Maximum Permissible Exposures 12 X. Electrical Hazards 12 XI. General Safety Procedures 13 XII. Laser

  9. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13T23:59:59.000Z

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  10. A margin based approach to determining sample sizes via tolerance bounds.

    SciTech Connect (OSTI)

    Newcomer, Justin T.; Freeland, Katherine Elizabeth

    2013-09-01T23:59:59.000Z

    This paper proposes a tolerance bound approach for determining sample sizes. With this new methodology we begin to think of sample size in the context of uncertainty exceeding margin. As the sample size decreases the uncertainty in the estimate of margin increases. This can be problematic when the margin is small and only a few units are available for testing. In this case there may be a true underlying positive margin to requirements but the uncertainty may be too large to conclude we have sufficient margin to those requirements with a high level of statistical confidence. Therefore, we provide a methodology for choosing a sample size large enough such that an estimated QMU uncertainty based on the tolerance bound approach will be smaller than the estimated margin (assuming there is positive margin). This ensures that the estimated tolerance bound will be within performance requirements and the tolerance ratio will be greater than one, supporting a conclusion that we have sufficient margin to the performance requirements. In addition, this paper explores the relationship between margin, uncertainty, and sample size and provides an approach and recommendations for quantifying risk when sample sizes are limited.

  11. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field 

    E-Print Network [OSTI]

    Chavez Ballesteros, Luis Eladio

    2005-02-17T23:59:59.000Z

    Quantifying infill potential in marginal oil fields often involves several challenges. These include highly heterogeneous reservoir quality both horizontally and vertically, incomplete reservoir databases, considerably ...

  12. Comment on Thompson's "Complexity, Diminishing Marginal Returns and Serial Mesopotamian Fragmentation."

    E-Print Network [OSTI]

    White, Douglas R.

    Comment on Thompson's "Complexity, Diminishing Marginal Returns and Serial Mesopotamian and correlations of Thompson's Figure 5 and redraws the figure to highlight the feedback loop versus the large

  13. CONSTRUCTION SAFETY MANUAL ADMINISTRATIVE POLICIES

    E-Print Network [OSTI]

    Knowles, David William

    Revised 06/10 10.1 Subcontractor Safety Policy 10.2 Scope 10.2.1 General 10.2.2 Department of Energy 10 the integration of safety management into all construction processes. Project managers, construction managers.7 Engineered Protective Systems 10.8 Procurement of Hazardous Material 10.9 Safety Training and Education 10

  14. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  15. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

  16. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  17. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01T23:59:59.000Z

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  18. Tank farm health and safety plan. Revision 2

    SciTech Connect (OSTI)

    Mickle, G.D.

    1995-03-29T23:59:59.000Z

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  19. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  20. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  1. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  2. The Front Lines of Patient Safety

    E-Print Network [OSTI]

    Soloveichik, David

    patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

  3. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days. · Heat stroke is life threatening! Symptoms include high body temperature, red and dry skin, rapid before you get thirsty. Adequate fluid intake is the biggest key. Cool (not ice cold) water is the best

  4. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01T23:59:59.000Z

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  5. Safety review advisor

    SciTech Connect (OSTI)

    Boshers, J.A.; Alguindigue, I.E.; Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering); Burnett, C.G. (Tennessee Valley Authority, Knoxville, TN (USA))

    1989-01-01T23:59:59.000Z

    The University of Tennessee's Nuclear Engineering Department, in cooperation with the Tennessee Valley Authority (TVA), is evaluating the feasibility of utilizing an expert system to aid in 10CFR50.59 evaluations. This paper discusses the history of 10CFR50.59 reviews, and details the development approach used in the construction of a prototype Safety Review Advisor (SRA). The goals for this expert system prototype are to (1) aid the engineer in the evaluation process by directing his attention to the appropriate critical issues, (2) increase the efficiency, consistency, and thoroughness of the evaluation process, and (3) provide a foundation of appropriate Safety Analysis Report (SAR) references for the reviewer. 6 refs., 2 figs.

  6. Mars mission safety

    SciTech Connect (OSTI)

    Buden, D. (EG G Idaho, Idaho Falls (USA))

    1989-06-01T23:59:59.000Z

    Precautions that need to be taken to assure safety on a manned Mars mission with nuclear thermal propulsion are briefly considered. What has been learned from the 1955 SNAP-10A operation of a nuclear reactor in space and from the Rover/NERVA project is reviewed. The ways that radiation hazards can be dealt with at various stages of a Mars mission are examined.

  7. Health and safety

    SciTech Connect (OSTI)

    Snyder, K. (Mine Safety and Health Administration (US))

    1990-05-01T23:59:59.000Z

    This article discusses health and safety in coal mines and the primary issues in this area during 1989. Particular attention is given to the employment figures as well as the fatality statistics. According to this article, employment was up during 1989 to approximately 164,000 workers as compared to 136,000 in 1969. Attention is also given to dealing with coal mining regulations as well as a crackdown on illegal operators in the industry.

  8. Development of a public health information infrastructure for postmarket evidence

    E-Print Network [OSTI]

    Maro, Judith C

    2009-01-01T23:59:59.000Z

    Postmarket data on prescription medical product performance has historically been incomplete, underutilized, and mismanaged to inform safety and comparative clinical effectiveness. Congress has tasked the Food and Drug ...

  9. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01T23:59:59.000Z

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  10. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  11. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  12. The Case for Increasing Enrollment and Leveraging Marginal Costs: CSUN Case Study

    E-Print Network [OSTI]

    Shubin, Carol

    The Case for Increasing Enrollment and Leveraging Marginal Costs: CSUN Case Study H. Hellenbrand1 will estimate the marginal cost for increasing enrollment from a theoretical point of view. This analysis will use data from the IPEDS data base and formulae for replacement costs suggested by the Legislative

  13. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna

    E-Print Network [OSTI]

    Levin, Lisa

    Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans Oxygen minimum zone Benthos Arabian Sea Biodiversity Deep sea a b s t r a c t The Pakistan Margin where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan

  14. ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene valley

    E-Print Network [OSTI]

    Small, Eric

    1995-01-01T23:59:59.000Z

    ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene December 1994 Abstract Topographic and sedimentological evidence indicates that stagnant ice conditions position for a stagnant ice margin to develop during valley glacier retreat. In the first model, valley

  15. The Continental Margin is a Key Source of Iron to the HNLC North Pacific Ocean

    E-Print Network [OSTI]

    The Continental Margin is a Key Source of Iron to the HNLC North Pacific Ocean Phoebe J. Lam1 concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll a key source of bioavailable Fe to the HNLC North Pacific. Keywords: iron, continental margin, HNLC 1

  16. Improvement of LWR thermal margins by introducing thorium Cheuk Wah Lau a,*, Christophe Demazire a

    E-Print Network [OSTI]

    Demazière, Christophe

    Improvement of LWR thermal margins by introducing thorium Cheuk Wah Lau a,*, Christophe Demazière Keywords: Thorium PWR Thermal margins Transport calculations a b s t r a c t The use of thorium pins contain a mixture of uranium and thorium oxides, while a few fuel pins contain a mixture between

  17. Ranking Structured Documents: A Large Margin Based Approach for Patent Prior Art Search

    E-Print Network [OSTI]

    Gomes, Carla P.

    Ranking Structured Documents: A Large Margin Based Approach for Patent Prior Art Search Yunsong Guo propose an approach for automatically rank- ing structured documents applied to patent prior art search. Our model, SVM Patent Ranking (SVMP R) incorporates margin constraints that di- rectly capture

  18. Correlation of PDN Impedance with Jitter and Voltage Margin for High Speed Channels

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    Correlation of PDN Impedance with Jitter and Voltage Margin for High Speed Channels Vishal Laddha vishal.laddha@gatech.edu, madhavan.swaminathan@ece.gatech.edu Abstract: Timing margin (jitter and plane cutouts is a major source of jitter and noise introduced by the package and the printed circuit

  19. Evaluation of Travis Peak gas reservoirs, west margin of the East Texas Basin

    E-Print Network [OSTI]

    Li, Yamin

    2009-05-15T23:59:59.000Z

    for basinward extension of Travis Peak gas production along the west margin of the East Texas Basin. Along the west margin of the East Texas Basin, southeast-trending Travis Peak sandstones belts were deposited by the Ancestral Red River fluvial-deltaic system...

  20. Structural development of the western margins of the Sirte basin

    SciTech Connect (OSTI)

    Anketell, J.M.; Kumati, S.M.

    1988-08-01T23:59:59.000Z

    The Sirte basin, situated in north-central Libya, is a broad, northwest-trending embayment comprising a complex of small horsts and grabens. The basin was initiated in the early Cretaceous by collapse of the Tibisti-Sirte arch and underwent further faulting, notably in Late Cretaceous to early paleocene time and during the latter part of the Eocene. Throughout the greater part of the region, faults are obscured by Neogene cover; however, west of the Dahra-Hofra horst they are exposed. The last major phase of faulting in this region is late Lutetian to early Priabonian in age with minor reactivation during Oligocene and Miocene time. A phase of intra-Lutetian movement is also recognized. Following deposition of open marine limestones and chalks in the early Lutetian, the region was tilted toward the east-northeast with emergence and development of a complex system of east-flowing drainage channels which sculpted the emerging surface. The channels are wide but shallow, ranging up to 2 km wide and 10 m deep. This phase of movement and intraformational erosion was terminated by slow subsidence and/or transgression with development of restricted marine shales. The late Eocene faults which delineate the western margin of the Dahra horst throw down to the west and display a complex en echelon pattern. They are interpreted in terms of Riedel shear mechanics related to oblique-slip reactivation of basement shears. Counterclockwise orientation of the shears indicates they formed in response to sinistral slip.

  1. Development of a hybrid margin angle controller for HVDC continuous operation

    SciTech Connect (OSTI)

    Sato, M. [Kansai Electric Power Co., Osaka (Japan)] [Kansai Electric Power Co., Osaka (Japan); Yamaji, K. [Shikoku Electric Power Co., Takamatsu (Japan)] [Shikoku Electric Power Co., Takamatsu (Japan); Sekita, M. [Electric Power Development Co., Tokyo (Japan)] [Electric Power Development Co., Tokyo (Japan); Amano, M.; Nishimura, M.; Konishi, H.; Oomori, T. [Hitachi, Ltd. (Japan)] [Hitachi, Ltd. (Japan)

    1996-11-01T23:59:59.000Z

    The objective of this paper is to present a new hybrid margin angle control method for HVDC continuous operation under AC system fault conditions. For stable continuous operation of HVDC systems, the margin angle controller must be designed to maintain the necessary margin angle to avoid commutation failures. The proposed method uses the open loop margin angle controller (MAC) as the basic controller, and adds output from the closed loop MAC to correct the control angle. A fast voltage detection algorithm is used for open loop control, and margin angle reference correction using harmonics detection for closed loop control are also developed. The combination of open and closed loop control provides quick responses when faults occur with stable and speedy recovery after fault clearance. The effectiveness of the developed controller is confirmed through EMTP digital simulations and also with the experiments using an analogue simulator.

  2. Safety, Security & Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offsite fire emergency event support to others 3) Informational items for Volpentest HAMMER Training and Education Center 4.0 March 14, 2013 Robert Robertson Updated to...

  3. Policies,Safety&U Annual Security and Fire Safety Report

    E-Print Network [OSTI]

    Lee, Dongwon

    ................................................................................ 5 ABOUT THE PENN STATE HARRISBURG SAFETY AND POLICE SERVICES ..... 5 Role, Authority, and Training .................................................................... 7 SECURITY OF and ACCESS TO PENN STATE HARRISBURG FACILITIES ........ 8 Special Considerations

  4. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15T23:59:59.000Z

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  5. Lawn Maintenance Safety

    E-Print Network [OSTI]

    Smith, David

    2005-07-12T23:59:59.000Z

    debris and noise. ? Allow the engine to cool before returning it to a storage shed. ? Turn the power off and disconnect the spark plug wire before cleaning, inspecting, adjusting or repairing the cutting blade. Lawn Maintenance Safety ? Don?t run a... as possible to avoid being hit by passing vehicles. ? Never leave an electric- or gas-powered edger plugged in or running while unattended. ? Unplug or turn off an electric or gas-powered edger before inspecting, cleaning, adjusting or replacing the blade...

  6. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  7. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010AboutComplete Safety Training

  8. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010AboutComplete Safety

  9. Nuclear Safety Regulatory Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthBDepartment of Energy Nuclear Safety

  10. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety for

  11. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety

  12. Safety | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdatesis the FirstSafety

  13. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary Power Nuclear Fuel Cycle

  14. Integrated Safety Management Policy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | DepartmentINTEGRATED SAFETY MANAGEMENT

  15. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafety The NuclearSafety for

  16. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafety The NuclearSafety for

  17. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingthMeasurements |CompetitiveComplete Safety

  18. SSRL Safety Office Memo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4Safety Office SSO

  19. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)Safety for

  20. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)Safety

  1. ARM - ARM Safety Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACTOperationsYearSafety Policy About

  2. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTIHealth & Safety Health

  3. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Data Sheet

  4. A "joint+marginal" approach to parametric polynomial optimization

    E-Print Network [OSTI]

    Jean B. Lasserre

    2010-01-13T23:59:59.000Z

    Jan 13, 2010 ... Abstract: Given a compact parameter set $Y\\subset R^p$, we ... all information about all global optimal solutions $x^*(y)$ of $P_y$, as $y\\in Y$.

  5. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17T23:59:59.000Z

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  6. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  7. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  8. On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks

    SciTech Connect (OSTI)

    Samuel Bays; Ayodeji Alajo

    2010-05-01T23:59:59.000Z

    This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

  9. Last Updated 06-16-2011 UC Irvine Environmental Health & Safety

    E-Print Network [OSTI]

    El Zarki, Magda

    Manual (RSM) The UC Irvine Radiation Safety Manual provides information for users of the TRIGA nuclear reactor, radioactive materials, particle accelerators and x-ray machines. The written RSM is located at: http://www.ehs.uci.edu/programs/biosafety/bioSafety_handBook/index.html. #12;

  10. Implementation Guide for Use with 10 CFR Part 851, Worker Safety and Health Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-27T23:59:59.000Z

    This Guide provides supplemental information and describes implementation practices to assist contractors in effectively developing, managing and implementing worker safety and health programs required by 10 Code of Federal Regulations, Part 851, Worker Safety and Health Program. Canceled by DOE G 440.1-1B.

  11. Skid-Steer Loader Safety

    E-Print Network [OSTI]

    Smith, David

    2005-06-28T23:59:59.000Z

    -steer loaders have been used in the construc- tion and landscaping industry for years. They are also common on dairy, beef and swine operations. Unlike conventional tractors, these compact and maneuverable machines allow farmers to enter narrow alleyways... the automatic safety switches. Machine Safeguards Using and maintaining manufacturer-installed safety devices will eliminate many skid-loader injuries and fatalities. Occupational Safety and Health Administration (OSHA) regulations and industry standards...

  12. Response margins of the dynamic analysis of piping systems

    SciTech Connect (OSTI)

    Johnson, J.J.; Benda, B.J.; Chuang, T.Y.; Smith, P.D.

    1984-04-01T23:59:59.000Z

    This report is organized as follows: Section 2 describes the three piping systems of the Zion nuclear power plant which formed the basis of the present study. The auxiliary feedwater (AFW) piping from steam generator to containment, the residual heat removal (RHR) and safety injection piping in the auxiliary building, and the reactor coolant loops (RCL) including a portion of the branch lines were analyzed. Section 3 describes the analysis methods and the analyses performed. Section 4 presents the numerical results; the principal results presented as comparisons of response calculated by best estimate time history analysis methods vs. the SRP response spectrum technique. Section 5 draws conclusions from the results. Appendix A contains a brief description of the mathematical models that defined the structures containing the three piping systems. Response from these models provided input to the piping models. Appendix B provides a detailed derivation of the pseudostatic mode approach to the multisupport time history analysis method used in this study.

  13. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  14. Sandia National Laboratories: Hydrogen Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Safety Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar...

  15. APS Safety Guidelines for Beamlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Guidelines for Beamlines Accident Investigations LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form...

  16. APS Experiment Safety Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in project reviews as requested, recommends laser safety policy, reviews accident investigation conclusions, and evaluates plans to protect personnel where laser...

  17. Fermilab | Traffic Safety at Fermilab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit a SuggestionQuestion Fermilab traffic rules (FESHM 9010) Fermilab traffic accident statistics Traffic safety awareness training Resources Texting While Driving...

  18. Natural Gas Pipeline Safety (Kansas)

    Broader source: Energy.gov [DOE]

    This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

  19. Analysis of the efficiency and potential collapse of the ensemble Kalman filter for marginal and joint posteriors

    E-Print Network [OSTI]

    Morzfeld, Matthias

    2015-01-01T23:59:59.000Z

    In data assimilation one updates the state of a numerical model with information from sparse and noisy observations of the model's state. A popular approach to data assimilation in geophysical applications is the ensemble Kalman filter (EnKF). An alternative approach is particle filtering and, recently, much theoretical work has been done to understand the abilities and limitations of particle filters. Here we extend this work to EnKF. First we explain that EnKF and particle filters solve different problems: the EnKF approximates a specific marginal of the joint posterior of particle filters. We then perform a linear analysis of the EnKF as a sequential sampling algorithm for the joint posterior (i.e. as a particle filter), and show that the EnKF collapses on this problem in the exact same way and under similar conditions as particle filters. However, it is critical to realize that the collapse of the EnKF on the joint posterior does not imply its collapse on the marginal posterior. This raises the question, ...

  20. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2004-09-01T23:59:59.000Z

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.